mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2025-01-27 18:41:06 +02:00
17c7b6c3fd
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@8653 3c298f89-4303-0410-b956-a3cf2f4a3e73
664 lines
17 KiB
C
664 lines
17 KiB
C
/*
|
|
LzmaDecode.c
|
|
LZMA Decoder
|
|
|
|
LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
|
|
http://www.7-zip.org/
|
|
|
|
LZMA SDK is licensed under two licenses:
|
|
1) GNU Lesser General Public License (GNU LGPL)
|
|
2) Common Public License (CPL)
|
|
It means that you can select one of these two licenses and
|
|
follow rules of that license.
|
|
|
|
SPECIAL EXCEPTION:
|
|
Igor Pavlov, as the author of this code, expressly permits you to
|
|
statically or dynamically link your code (or bind by name) to the
|
|
interfaces of this file without subjecting your linked code to the
|
|
terms of the CPL or GNU LGPL. Any modifications or additions
|
|
to this file, however, are subject to the LGPL or CPL terms.
|
|
*/
|
|
|
|
#include "LzmaDecode.h"
|
|
|
|
#ifndef Byte
|
|
#define Byte unsigned char
|
|
#endif
|
|
|
|
#define kNumTopBits 24
|
|
#define kTopValue ((UInt32)1 << kNumTopBits)
|
|
|
|
#define kNumBitModelTotalBits 11
|
|
#define kBitModelTotal (1 << kNumBitModelTotalBits)
|
|
#define kNumMoveBits 5
|
|
|
|
typedef struct _CRangeDecoder
|
|
{
|
|
Byte *Buffer;
|
|
Byte *BufferLim;
|
|
UInt32 Range;
|
|
UInt32 Code;
|
|
#ifdef _LZMA_IN_CB
|
|
ILzmaInCallback *InCallback;
|
|
int Result;
|
|
#endif
|
|
int ExtraBytes;
|
|
} CRangeDecoder;
|
|
|
|
Byte RangeDecoderReadByte(CRangeDecoder *rd)
|
|
{
|
|
if (rd->Buffer == rd->BufferLim)
|
|
{
|
|
#ifdef _LZMA_IN_CB
|
|
UInt32 size;
|
|
rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
|
|
rd->BufferLim = rd->Buffer + size;
|
|
if (size == 0)
|
|
#endif
|
|
{
|
|
rd->ExtraBytes = 1;
|
|
return 0xFF;
|
|
}
|
|
}
|
|
return (*rd->Buffer++);
|
|
}
|
|
|
|
/* #define ReadByte (*rd->Buffer++) */
|
|
#define ReadByte (RangeDecoderReadByte(rd))
|
|
|
|
void RangeDecoderInit(CRangeDecoder *rd,
|
|
#ifdef _LZMA_IN_CB
|
|
ILzmaInCallback *inCallback
|
|
#else
|
|
Byte *stream, UInt32 bufferSize
|
|
#endif
|
|
)
|
|
{
|
|
int i;
|
|
#ifdef _LZMA_IN_CB
|
|
rd->InCallback = inCallback;
|
|
rd->Buffer = rd->BufferLim = 0;
|
|
#else
|
|
rd->Buffer = stream;
|
|
rd->BufferLim = stream + bufferSize;
|
|
#endif
|
|
rd->ExtraBytes = 0;
|
|
rd->Code = 0;
|
|
rd->Range = (0xFFFFFFFF);
|
|
for(i = 0; i < 5; i++)
|
|
rd->Code = (rd->Code << 8) | ReadByte;
|
|
}
|
|
|
|
#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;
|
|
#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
|
|
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
|
|
|
|
UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
|
|
{
|
|
RC_INIT_VAR
|
|
UInt32 result = 0;
|
|
int i;
|
|
for (i = numTotalBits; i > 0; i--)
|
|
{
|
|
/* UInt32 t; */
|
|
range >>= 1;
|
|
|
|
result <<= 1;
|
|
if (code >= range)
|
|
{
|
|
code -= range;
|
|
result |= 1;
|
|
}
|
|
/*
|
|
t = (code - range) >> 31;
|
|
t &= 1;
|
|
code -= range & (t - 1);
|
|
result = (result + result) | (1 - t);
|
|
*/
|
|
RC_NORMALIZE
|
|
}
|
|
RC_FLUSH_VAR
|
|
return result;
|
|
}
|
|
|
|
int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
|
|
{
|
|
UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
|
|
if (rd->Code < bound)
|
|
{
|
|
rd->Range = bound;
|
|
*prob += (kBitModelTotal - *prob) >> kNumMoveBits;
|
|
if (rd->Range < kTopValue)
|
|
{
|
|
rd->Code = (rd->Code << 8) | ReadByte;
|
|
rd->Range <<= 8;
|
|
}
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
rd->Range -= bound;
|
|
rd->Code -= bound;
|
|
*prob -= (*prob) >> kNumMoveBits;
|
|
if (rd->Range < kTopValue)
|
|
{
|
|
rd->Code = (rd->Code << 8) | ReadByte;
|
|
rd->Range <<= 8;
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#define RC_GET_BIT2(prob, mi, A0, A1) \
|
|
UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
|
|
if (code < bound) \
|
|
{ A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
|
|
else \
|
|
{ A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
|
|
RC_NORMALIZE
|
|
|
|
#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
|
|
|
|
int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
|
|
{
|
|
int mi = 1;
|
|
int i;
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_INIT_VAR
|
|
#endif
|
|
for(i = numLevels; i > 0; i--)
|
|
{
|
|
#ifdef _LZMA_LOC_OPT
|
|
CProb *prob = probs + mi;
|
|
RC_GET_BIT(prob, mi)
|
|
#else
|
|
mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
|
|
#endif
|
|
}
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_FLUSH_VAR
|
|
#endif
|
|
return mi - (1 << numLevels);
|
|
}
|
|
|
|
int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
|
|
{
|
|
int mi = 1;
|
|
int i;
|
|
int symbol = 0;
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_INIT_VAR
|
|
#endif
|
|
for(i = 0; i < numLevels; i++)
|
|
{
|
|
#ifdef _LZMA_LOC_OPT
|
|
CProb *prob = probs + mi;
|
|
RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
|
|
#else
|
|
int bit = RangeDecoderBitDecode(probs + mi, rd);
|
|
mi = mi + mi + bit;
|
|
symbol |= (bit << i);
|
|
#endif
|
|
}
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_FLUSH_VAR
|
|
#endif
|
|
return symbol;
|
|
}
|
|
|
|
Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
|
|
{
|
|
int symbol = 1;
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_INIT_VAR
|
|
#endif
|
|
do
|
|
{
|
|
#ifdef _LZMA_LOC_OPT
|
|
CProb *prob = probs + symbol;
|
|
RC_GET_BIT(prob, symbol)
|
|
#else
|
|
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
|
|
#endif
|
|
}
|
|
while (symbol < 0x100);
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_FLUSH_VAR
|
|
#endif
|
|
return symbol;
|
|
}
|
|
|
|
Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
|
|
{
|
|
int symbol = 1;
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_INIT_VAR
|
|
#endif
|
|
do
|
|
{
|
|
int bit;
|
|
int matchBit = (matchByte >> 7) & 1;
|
|
matchByte <<= 1;
|
|
#ifdef _LZMA_LOC_OPT
|
|
{
|
|
CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
|
|
RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
|
|
}
|
|
#else
|
|
bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
|
|
symbol = (symbol << 1) | bit;
|
|
#endif
|
|
if (matchBit != bit)
|
|
{
|
|
while (symbol < 0x100)
|
|
{
|
|
#ifdef _LZMA_LOC_OPT
|
|
CProb *prob = probs + symbol;
|
|
RC_GET_BIT(prob, symbol)
|
|
#else
|
|
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
while (symbol < 0x100);
|
|
#ifdef _LZMA_LOC_OPT
|
|
RC_FLUSH_VAR
|
|
#endif
|
|
return symbol;
|
|
}
|
|
|
|
#define kNumPosBitsMax 4
|
|
#define kNumPosStatesMax (1 << kNumPosBitsMax)
|
|
|
|
#define kLenNumLowBits 3
|
|
#define kLenNumLowSymbols (1 << kLenNumLowBits)
|
|
#define kLenNumMidBits 3
|
|
#define kLenNumMidSymbols (1 << kLenNumMidBits)
|
|
#define kLenNumHighBits 8
|
|
#define kLenNumHighSymbols (1 << kLenNumHighBits)
|
|
|
|
#define LenChoice 0
|
|
#define LenChoice2 (LenChoice + 1)
|
|
#define LenLow (LenChoice2 + 1)
|
|
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
|
|
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
|
|
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
|
|
|
|
int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
|
|
{
|
|
if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
|
|
return RangeDecoderBitTreeDecode(p + LenLow +
|
|
(posState << kLenNumLowBits), kLenNumLowBits, rd);
|
|
if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
|
|
return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
|
|
(posState << kLenNumMidBits), kLenNumMidBits, rd);
|
|
return kLenNumLowSymbols + kLenNumMidSymbols +
|
|
RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
|
|
}
|
|
|
|
#define kNumStates 12
|
|
|
|
#define kStartPosModelIndex 4
|
|
#define kEndPosModelIndex 14
|
|
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
|
|
|
|
#define kNumPosSlotBits 6
|
|
#define kNumLenToPosStates 4
|
|
|
|
#define kNumAlignBits 4
|
|
#define kAlignTableSize (1 << kNumAlignBits)
|
|
|
|
#define kMatchMinLen 2
|
|
|
|
#define IsMatch 0
|
|
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
|
|
#define IsRepG0 (IsRep + kNumStates)
|
|
#define IsRepG1 (IsRepG0 + kNumStates)
|
|
#define IsRepG2 (IsRepG1 + kNumStates)
|
|
#define IsRep0Long (IsRepG2 + kNumStates)
|
|
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
|
|
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
|
|
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
|
|
#define LenCoder (Align + kAlignTableSize)
|
|
#define RepLenCoder (LenCoder + kNumLenProbs)
|
|
#define Literal (RepLenCoder + kNumLenProbs)
|
|
|
|
#if Literal != LZMA_BASE_SIZE
|
|
StopCompilingDueBUG
|
|
#endif
|
|
|
|
#ifdef _LZMA_OUT_READ
|
|
|
|
typedef struct _LzmaVarState
|
|
{
|
|
CRangeDecoder RangeDecoder;
|
|
Byte *Dictionary;
|
|
UInt32 DictionarySize;
|
|
UInt32 DictionaryPos;
|
|
UInt32 GlobalPos;
|
|
UInt32 Reps[4];
|
|
int lc;
|
|
int lp;
|
|
int pb;
|
|
int State;
|
|
int PreviousIsMatch;
|
|
int RemainLen;
|
|
} LzmaVarState;
|
|
|
|
int LzmaDecoderInit(
|
|
unsigned char *buffer, UInt32 bufferSize,
|
|
int lc, int lp, int pb,
|
|
unsigned char *dictionary, UInt32 dictionarySize,
|
|
#ifdef _LZMA_IN_CB
|
|
ILzmaInCallback *inCallback
|
|
#else
|
|
unsigned char *inStream, UInt32 inSize
|
|
#endif
|
|
)
|
|
{
|
|
LzmaVarState *vs = (LzmaVarState *)buffer;
|
|
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
|
|
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
|
|
UInt32 i;
|
|
if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
|
|
return LZMA_RESULT_NOT_ENOUGH_MEM;
|
|
vs->Dictionary = dictionary;
|
|
vs->DictionarySize = dictionarySize;
|
|
vs->DictionaryPos = 0;
|
|
vs->GlobalPos = 0;
|
|
vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
|
|
vs->lc = lc;
|
|
vs->lp = lp;
|
|
vs->pb = pb;
|
|
vs->State = 0;
|
|
vs->PreviousIsMatch = 0;
|
|
vs->RemainLen = 0;
|
|
dictionary[dictionarySize - 1] = 0;
|
|
for (i = 0; i < numProbs; i++)
|
|
p[i] = kBitModelTotal >> 1;
|
|
RangeDecoderInit(&vs->RangeDecoder,
|
|
#ifdef _LZMA_IN_CB
|
|
inCallback
|
|
#else
|
|
inStream, inSize
|
|
#endif
|
|
);
|
|
return LZMA_RESULT_OK;
|
|
}
|
|
|
|
int LzmaDecode(unsigned char *buffer,
|
|
unsigned char *outStream, UInt32 outSize,
|
|
UInt32 *outSizeProcessed)
|
|
{
|
|
LzmaVarState *vs = (LzmaVarState *)buffer;
|
|
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
|
|
CRangeDecoder rd = vs->RangeDecoder;
|
|
int state = vs->State;
|
|
int previousIsMatch = vs->PreviousIsMatch;
|
|
Byte previousByte;
|
|
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
|
|
UInt32 nowPos = 0;
|
|
UInt32 posStateMask = (1 << (vs->pb)) - 1;
|
|
UInt32 literalPosMask = (1 << (vs->lp)) - 1;
|
|
int lc = vs->lc;
|
|
int len = vs->RemainLen;
|
|
UInt32 globalPos = vs->GlobalPos;
|
|
|
|
Byte *dictionary = vs->Dictionary;
|
|
UInt32 dictionarySize = vs->DictionarySize;
|
|
UInt32 dictionaryPos = vs->DictionaryPos;
|
|
|
|
if (len == -1)
|
|
{
|
|
*outSizeProcessed = 0;
|
|
return LZMA_RESULT_OK;
|
|
}
|
|
|
|
while(len > 0 && nowPos < outSize)
|
|
{
|
|
UInt32 pos = dictionaryPos - rep0;
|
|
if (pos >= dictionarySize)
|
|
pos += dictionarySize;
|
|
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
|
|
if (++dictionaryPos == dictionarySize)
|
|
dictionaryPos = 0;
|
|
len--;
|
|
}
|
|
if (dictionaryPos == 0)
|
|
previousByte = dictionary[dictionarySize - 1];
|
|
else
|
|
previousByte = dictionary[dictionaryPos - 1];
|
|
#else
|
|
|
|
int LzmaDecode(
|
|
Byte *buffer, UInt32 bufferSize,
|
|
int lc, int lp, int pb,
|
|
#ifdef _LZMA_IN_CB
|
|
ILzmaInCallback *inCallback,
|
|
#else
|
|
unsigned char *inStream, UInt32 inSize,
|
|
#endif
|
|
unsigned char *outStream, UInt32 outSize,
|
|
UInt32 *outSizeProcessed)
|
|
{
|
|
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
|
|
CProb *p = (CProb *)buffer;
|
|
CRangeDecoder rd;
|
|
UInt32 i;
|
|
int state = 0;
|
|
int previousIsMatch = 0;
|
|
Byte previousByte = 0;
|
|
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
|
|
UInt32 nowPos = 0;
|
|
UInt32 posStateMask = (1 << pb) - 1;
|
|
UInt32 literalPosMask = (1 << lp) - 1;
|
|
int len = 0;
|
|
if (bufferSize < numProbs * sizeof(CProb))
|
|
return LZMA_RESULT_NOT_ENOUGH_MEM;
|
|
for (i = 0; i < numProbs; i++)
|
|
p[i] = kBitModelTotal >> 1;
|
|
RangeDecoderInit(&rd,
|
|
#ifdef _LZMA_IN_CB
|
|
inCallback
|
|
#else
|
|
inStream, inSize
|
|
#endif
|
|
);
|
|
#endif
|
|
|
|
*outSizeProcessed = 0;
|
|
while(nowPos < outSize)
|
|
{
|
|
int posState = (int)(
|
|
(nowPos
|
|
#ifdef _LZMA_OUT_READ
|
|
+ globalPos
|
|
#endif
|
|
)
|
|
& posStateMask);
|
|
#ifdef _LZMA_IN_CB
|
|
if (rd.Result != LZMA_RESULT_OK)
|
|
return rd.Result;
|
|
#endif
|
|
if (rd.ExtraBytes != 0)
|
|
return LZMA_RESULT_DATA_ERROR;
|
|
if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
|
|
{
|
|
CProb *probs = p + Literal + (LZMA_LIT_SIZE *
|
|
(((
|
|
(nowPos
|
|
#ifdef _LZMA_OUT_READ
|
|
+ globalPos
|
|
#endif
|
|
)
|
|
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
|
|
|
|
if (state < 4) state = 0;
|
|
else if (state < 10) state -= 3;
|
|
else state -= 6;
|
|
if (previousIsMatch)
|
|
{
|
|
Byte matchByte;
|
|
#ifdef _LZMA_OUT_READ
|
|
UInt32 pos = dictionaryPos - rep0;
|
|
if (pos >= dictionarySize)
|
|
pos += dictionarySize;
|
|
matchByte = dictionary[pos];
|
|
#else
|
|
matchByte = outStream[nowPos - rep0];
|
|
#endif
|
|
previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
|
|
previousIsMatch = 0;
|
|
}
|
|
else
|
|
previousByte = LzmaLiteralDecode(probs, &rd);
|
|
outStream[nowPos++] = previousByte;
|
|
#ifdef _LZMA_OUT_READ
|
|
dictionary[dictionaryPos] = previousByte;
|
|
if (++dictionaryPos == dictionarySize)
|
|
dictionaryPos = 0;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
previousIsMatch = 1;
|
|
if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
|
|
{
|
|
if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
|
|
{
|
|
if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
|
|
{
|
|
#ifdef _LZMA_OUT_READ
|
|
UInt32 pos;
|
|
#endif
|
|
if (
|
|
(nowPos
|
|
#ifdef _LZMA_OUT_READ
|
|
+ globalPos
|
|
#endif
|
|
)
|
|
== 0)
|
|
return LZMA_RESULT_DATA_ERROR;
|
|
state = state < 7 ? 9 : 11;
|
|
#ifdef _LZMA_OUT_READ
|
|
pos = dictionaryPos - rep0;
|
|
if (pos >= dictionarySize)
|
|
pos += dictionarySize;
|
|
previousByte = dictionary[pos];
|
|
dictionary[dictionaryPos] = previousByte;
|
|
if (++dictionaryPos == dictionarySize)
|
|
dictionaryPos = 0;
|
|
#else
|
|
previousByte = outStream[nowPos - rep0];
|
|
#endif
|
|
outStream[nowPos++] = previousByte;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
UInt32 distance;
|
|
if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
|
|
distance = rep1;
|
|
else
|
|
{
|
|
if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
|
|
distance = rep2;
|
|
else
|
|
{
|
|
distance = rep3;
|
|
rep3 = rep2;
|
|
}
|
|
rep2 = rep1;
|
|
}
|
|
rep1 = rep0;
|
|
rep0 = distance;
|
|
}
|
|
len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
|
|
state = state < 7 ? 8 : 11;
|
|
}
|
|
else
|
|
{
|
|
int posSlot;
|
|
rep3 = rep2;
|
|
rep2 = rep1;
|
|
rep1 = rep0;
|
|
state = state < 7 ? 7 : 10;
|
|
len = LzmaLenDecode(p + LenCoder, &rd, posState);
|
|
posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
|
|
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
|
|
kNumPosSlotBits), kNumPosSlotBits, &rd);
|
|
if (posSlot >= kStartPosModelIndex)
|
|
{
|
|
int numDirectBits = ((posSlot >> 1) - 1);
|
|
rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
|
|
if (posSlot < kEndPosModelIndex)
|
|
{
|
|
rep0 += RangeDecoderReverseBitTreeDecode(
|
|
p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
|
|
}
|
|
else
|
|
{
|
|
rep0 += RangeDecoderDecodeDirectBits(&rd,
|
|
numDirectBits - kNumAlignBits) << kNumAlignBits;
|
|
rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
|
|
}
|
|
}
|
|
else
|
|
rep0 = posSlot;
|
|
rep0++;
|
|
}
|
|
if (rep0 == (UInt32)(0))
|
|
{
|
|
/* it's for stream version */
|
|
len = -1;
|
|
break;
|
|
}
|
|
if (rep0 > nowPos
|
|
#ifdef _LZMA_OUT_READ
|
|
+ globalPos
|
|
#endif
|
|
)
|
|
{
|
|
return LZMA_RESULT_DATA_ERROR;
|
|
}
|
|
len += kMatchMinLen;
|
|
do
|
|
{
|
|
#ifdef _LZMA_OUT_READ
|
|
UInt32 pos = dictionaryPos - rep0;
|
|
if (pos >= dictionarySize)
|
|
pos += dictionarySize;
|
|
previousByte = dictionary[pos];
|
|
dictionary[dictionaryPos] = previousByte;
|
|
if (++dictionaryPos == dictionarySize)
|
|
dictionaryPos = 0;
|
|
#else
|
|
previousByte = outStream[nowPos - rep0];
|
|
#endif
|
|
outStream[nowPos++] = previousByte;
|
|
len--;
|
|
}
|
|
while(len > 0 && nowPos < outSize);
|
|
}
|
|
}
|
|
|
|
#ifdef _LZMA_OUT_READ
|
|
vs->RangeDecoder = rd;
|
|
vs->DictionaryPos = dictionaryPos;
|
|
vs->GlobalPos = globalPos + nowPos;
|
|
vs->Reps[0] = rep0;
|
|
vs->Reps[1] = rep1;
|
|
vs->Reps[2] = rep2;
|
|
vs->Reps[3] = rep3;
|
|
vs->State = state;
|
|
vs->PreviousIsMatch = previousIsMatch;
|
|
vs->RemainLen = len;
|
|
#endif
|
|
|
|
*outSizeProcessed = nowPos;
|
|
return LZMA_RESULT_OK;
|
|
}
|