1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-01 07:56:48 +02:00
openwrt-xburst/target/linux/xburst/files-2.6.27/drivers/rtc/rtc-jz4750.c
Mirko Vogt dc3d3f1c49 yet another patchset - 2.6.27
it's basically also provided by ingenic and nativly based on 2.6.27,
adjusted to fit into the OpenWrt-environment
2009-10-28 03:13:11 +08:00

543 lines
14 KiB
C
Executable File

/*
* Real Time Clock interface for Jz4750/Jz4755.
*
* Copyright (C) 2005-2009, Ingenic Semiconductor Inc.
*
* Author: Richard Feng <cjfeng@ingenic.cn>
* Regen Huang <lhhuang@ingenic.cn>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/jzsoc.h>
#define TIMER_FREQ CLOCK_TICK_RATE
/* The divider is decided by the RTC clock frequency. */
#define RTC_FREQ_DIVIDER (32768 - 1)
/* Default time for the first-time power on */
static struct rtc_time default_tm = {
.tm_year = (2009 - 1900), // year 2009
.tm_mon = (10 - 1), // month 10
.tm_mday = 1, // day 1
.tm_hour = 12,
.tm_min = 0,
.tm_sec = 0
};
static unsigned long rtc_freq = 1024;
static struct rtc_time rtc_alarm;
static DEFINE_SPINLOCK(jz4750_rtc_lock);
static inline int rtc_periodic_alarm(struct rtc_time *tm)
{
return (tm->tm_year == -1) ||
((unsigned)tm->tm_mon >= 12) ||
((unsigned)(tm->tm_mday - 1) >= 31) ||
((unsigned)tm->tm_hour > 23) ||
((unsigned)tm->tm_min > 59) ||
((unsigned)tm->tm_sec > 59);
}
/*
* Calculate the next alarm time given the requested alarm time mask
* and the current time.
*/
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
{
unsigned long next_time;
unsigned long now_time;
next->tm_year = now->tm_year;
next->tm_mon = now->tm_mon;
next->tm_mday = now->tm_mday;
next->tm_hour = alrm->tm_hour;
next->tm_min = alrm->tm_min;
next->tm_sec = alrm->tm_sec;
rtc_tm_to_time(now, &now_time);
rtc_tm_to_time(next, &next_time);
if (next_time < now_time) {
/* Advance one day */
next_time += 60 * 60 * 24;
rtc_time_to_tm(next_time, next);
}
}
static int rtc_update_alarm(struct rtc_time *alrm)
{
struct rtc_time alarm_tm, now_tm;
unsigned long now, time;
int ret;
do {
now = REG_RTC_RSR;
rtc_time_to_tm(now, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
ret = rtc_tm_to_time(&alarm_tm, &time);
if (ret != 0)
break;
while ( !__rtc_write_ready());
REG_RTC_RCR = REG_RTC_RCR & ~( RTC_RCR_1HZIE | RTC_RCR_1HZ | RTC_RCR_AIE | RTC_RCR_AF | RTC_RCR_AE);
while ( !__rtc_write_ready());
REG_RTC_RSAR = time;
while ( !__rtc_write_ready());
} while (now != REG_RTC_RSR);
return ret;
}
static irqreturn_t jz4750_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
unsigned int rtsr;
unsigned long events = 0;
spin_lock(&jz4750_rtc_lock);
rtsr = REG_RTC_RCR;
if ((rtsr & (RTC_RCR_1HZIE | RTC_RCR_AE | RTC_RCR_AIE)) == (RTC_RCR_1HZIE | RTC_RCR_AE | RTC_RCR_AIE)) {
//printk("1Hz&alarm!\n");
while ( !__rtc_write_ready());
REG_RTC_RCR = rtsr & ~(RTC_RCR_1HZ | RTC_RCR_1HZIE | RTC_RCR_AF | RTC_RCR_AIE);
while ( !__rtc_write_ready());
if (rtsr & RTC_RCR_AF) {
rtsr &= ~RTC_RCR_AIE;
while ( !__rtc_write_ready());
__rtc_disable_alarm_irq();
while ( !__rtc_write_ready());
__rtc_clear_alarm_flag();
while ( !__rtc_write_ready());
__rtc_disable_alarm();
}
/* update irq data & counter */
if (rtsr & RTC_RCR_AF)
events |= RTC_AF | RTC_IRQF;
if (rtsr & RTC_RCR_1HZ)
events |= RTC_UF | RTC_IRQF;
rtc_update_irq(rtc, 1, events);
if ((rtsr & RTC_RCR_AF) && rtc_periodic_alarm(&rtc_alarm))
rtc_update_alarm(&rtc_alarm);
if (rtsr & RTC_RCR_1HZ) {
if ((rtsr & RTC_RCR_AF) == 0) {
while ( !__rtc_write_ready());
__rtc_enable_alarm_irq();
}
while ( !__rtc_write_ready());
__rtc_enable_1Hz_irq();
while ( !__rtc_write_ready());
}
} else if ((rtsr & (RTC_RCR_1HZ | RTC_RCR_1HZIE)) == (RTC_RCR_1HZ | RTC_RCR_1HZIE)) {
//printk("1Hz!\n");
while ( !__rtc_write_ready());
REG_RTC_RCR = rtsr & ~(RTC_RCR_1HZ | RTC_RCR_1HZIE | RTC_RCR_AF | RTC_RCR_AIE);
while ( !__rtc_write_ready());
REG_RTC_RCR |= RTC_RCR_1HZIE;
if (rtsr & RTC_RCR_1HZ)
events |= RTC_UF | RTC_IRQF;
rtc_update_irq(rtc, 1, events);
} else if ((rtsr & (RTC_RCR_AE | RTC_RCR_AIE | RTC_RCR_AF)) == (RTC_RCR_AE | RTC_RCR_AIE | RTC_RCR_AF)) {
//printk("alarm!\n");
while ( !__rtc_write_ready());
REG_RTC_RCR = rtsr & ~(RTC_RCR_1HZ | RTC_RCR_1HZIE | RTC_RCR_AF | RTC_RCR_AIE);
/* clear alarm interrupt if it has occurred */
rtsr &= ~RTC_RCR_AIE;
events |= RTC_AF | RTC_IRQF;
rtc_update_irq(rtc, 1, events);
if (rtsr & RTC_RCR_AF && rtc_periodic_alarm(&rtc_alarm))
rtc_update_alarm(&rtc_alarm);
}
spin_unlock(&jz4750_rtc_lock);
return IRQ_HANDLED;
}
#if 0
static int rtc_timer1_count;
static irqreturn_t timer1_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
/*
* If we match for the first time, rtc_timer1_count will be 1.
* Otherwise, we wrapped around (very unlikely but
* still possible) so compute the amount of missed periods.
* The match reg is updated only when the data is actually retrieved
* to avoid unnecessary interrupts.
*/
OSSR = OSSR_M1; /* clear match on timer1 */
rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
if (rtc_timer1_count == 1)
rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
return IRQ_HANDLED;
}
#endif
#if 0
static int jz4750_rtc_read_callback(struct device *dev, int data)
{
if (data & RTC_PF) {
/* interpolate missed periods and set match for the next */
unsigned long period = TIMER_FREQ/rtc_freq;
unsigned long oscr = OSCR;
unsigned long osmr1 = OSMR1;
unsigned long missed = (oscr - osmr1)/period;
data += missed << 8;
OSSR = OSSR_M1; /* clear match on timer 1 */
OSMR1 = osmr1 + (missed + 1)*period;
/* Ensure we didn't miss another match in the mean time.
* Here we compare (match - OSCR) 8 instead of 0 --
* see comment in pxa_timer_interrupt() for explanation.
*/
while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
data += 0x100;
OSSR = OSSR_M1; /* clear match on timer 1 */
OSMR1 = osmr1 + period;
}
}
return data;
}
#endif
static int jz4750_rtc_open(struct device *dev)
{
int ret;
ret = request_irq(IRQ_RTC, jz4750_rtc_interrupt, IRQF_DISABLED,
"rtc 1Hz and alarm", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC);
goto fail_ui;
}
/*ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
"rtc timer", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
goto fail_pi;
}*/
return 0;
fail_ui:
free_irq(IRQ_RTC, dev);
return ret;
}
static void jz4750_rtc_release(struct device *dev)
{
spin_lock_irq(&jz4750_rtc_lock);
spin_unlock_irq(&jz4750_rtc_lock);
//free_irq(IRQ_OST1, dev);
free_irq(IRQ_RTC, dev);
}
static int jz4750_rtc_ioctl(struct device *dev, unsigned int cmd,
unsigned long arg)
{
switch(cmd) {
case RTC_AIE_OFF:
spin_lock_irq(&jz4750_rtc_lock);
while ( !__rtc_write_ready());
__rtc_disable_alarm_irq();
while ( !__rtc_write_ready());
__rtc_disable_alarm();
while ( !__rtc_write_ready());
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_AIE_ON:
spin_lock_irq(&jz4750_rtc_lock);
while ( !__rtc_write_ready());
__rtc_enable_alarm();
while ( !__rtc_write_ready());
__rtc_enable_alarm_irq();
while ( !__rtc_write_ready());
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_UIE_OFF:
spin_lock_irq(&jz4750_rtc_lock);
while ( !__rtc_write_ready());
__rtc_disable_1Hz_irq();
while ( !__rtc_write_ready());
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_UIE_ON:
spin_lock_irq(&jz4750_rtc_lock);
while ( !__rtc_write_ready());
__rtc_clear_1Hz_flag();
while ( !__rtc_write_ready());
__rtc_clear_alarm_flag();
while ( !__rtc_write_ready());
__rtc_enable_1Hz_irq();
while ( !__rtc_write_ready());
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_PIE_OFF:
spin_lock_irq(&jz4750_rtc_lock);
printk("no implement!\n");
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_PIE_ON:
spin_lock_irq(&jz4750_rtc_lock);
printk("no implement!\n");
spin_unlock_irq(&jz4750_rtc_lock);
return 0;
case RTC_IRQP_READ:
return put_user(rtc_freq, (unsigned long *)arg);
case RTC_IRQP_SET:
if (arg < 1 || arg > TIMER_FREQ)
return -EINVAL;
rtc_freq = arg;
return 0;
}
return -ENOIOCTLCMD;
}
static int jz4750_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned long time;
int ret;
ret = rtc_tm_to_time(tm, &time);
if (ret == 0) {
while ( !__rtc_write_ready());
REG_RTC_RSR = time;
while ( !__rtc_write_ready());
}
return ret;
}
static int jz4750_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
rtc_time_to_tm(REG_RTC_RSR, tm);
if (rtc_valid_tm(tm) < 0) {
/* Set the default time */
jz4750_rtc_set_time(dev, &default_tm);
rtc_time_to_tm(REG_RTC_RSR, tm);
}
return 0;
}
static int jz4750_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
u32 rtc_rcr;
rtc_time_to_tm(REG_RTC_RSAR, &rtc_alarm);
memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
rtc_rcr = REG_RTC_RCR;
alrm->enabled = (rtc_rcr & RTC_RCR_AIE) ? 1 : 0;
alrm->pending = (rtc_rcr & RTC_RCR_AF) ? 1 : 0;
return 0;
}
static int jz4750_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int ret;
spin_lock_irq(&jz4750_rtc_lock);
ret = rtc_update_alarm(&alrm->time);
if (ret == 0) {
if (alrm->enabled) {
while ( !__rtc_write_ready());
__rtc_enable_alarm();
while ( !__rtc_write_ready());
__rtc_enable_alarm_irq();
while ( !__rtc_write_ready());
} else {
while ( !__rtc_write_ready());
__rtc_disable_alarm_irq();
while ( !__rtc_write_ready());
__rtc_disable_alarm();
while ( !__rtc_write_ready());
}
}
spin_unlock_irq(&jz4750_rtc_lock);
return ret;
}
static int jz4750_rtc_proc(struct device *dev, struct seq_file *seq)
{
seq_printf(seq, "RTC regulator\t: 0x%08x\n", (u32) REG_RTC_RGR);
seq_printf(seq, "update_IRQ\t: %s\n",
(REG_RTC_RCR & RTC_RCR_1HZIE) ? "yes" : "no");
/*seq_printf(seq, "periodic_IRQ\t: %s\n",
(OIER & OIER_E1) ? "yes" : "no");*/
seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
return 0;
}
static const struct rtc_class_ops jz4750_rtc_ops = {
.open = jz4750_rtc_open,
//.read_callback = jz4750_rtc_read_callback,
.release = jz4750_rtc_release,
.ioctl = jz4750_rtc_ioctl,
.read_time = jz4750_rtc_read_time,
.set_time = jz4750_rtc_set_time,
.read_alarm = jz4750_rtc_read_alarm,
.set_alarm = jz4750_rtc_set_alarm,
.proc = jz4750_rtc_proc,
};
static int jz4750_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
/*
* When we are powered on for the first time, init the rtc and reset time.
*
* For other situations, we remain the rtc status unchanged.
*/
if (__rtc_status_ppr_reset_occur()) {
/* We are powered on for the first time !!! */
printk("jz4750-rtc: rtc status reset by power-on\n");
/* select external 32K crystal as RTC clock */
__cpm_select_rtcclk_rtc();
/* init rtc status */
while ( !__rtc_write_ready());
__rtc_disable_1Hz_irq();
while ( !__rtc_write_ready());
__rtc_disable_alarm_irq();
while ( !__rtc_write_ready());
__rtc_clear_alarm_flag();
while ( !__rtc_write_ready());
__rtc_clear_1Hz_flag();
while ( !__rtc_write_ready());
__rtc_disable_alarm();
while ( !__rtc_write_ready());
/* Set 32768 rtc clocks per seconds */
REG_RTC_RGR = RTC_FREQ_DIVIDER;
while ( !__rtc_write_ready());
/* Set minimum wakeup_n pin low-level assertion time for wakeup: 100ms */
REG_RTC_HWFCR = (100 << RTC_HWFCR_BIT);
while ( !__rtc_write_ready());
/* Set reset pin low-level assertion time after wakeup: must > 60ms */
REG_RTC_HRCR = (60 << RTC_HRCR_BIT);
while ( !__rtc_write_ready());
/* Reset to the default time */
jz4750_rtc_set_time(NULL, &default_tm);
while ( !__rtc_write_ready());
/* start rtc */
__rtc_enabled();
while ( !__rtc_write_ready());
}
/* clear all rtc flags */
__rtc_clear_hib_stat_all();
while ( !__rtc_write_ready());
device_init_wakeup(&pdev->dev, 1);
rtc = rtc_device_register(pdev->name, &pdev->dev, &jz4750_rtc_ops,
THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
platform_set_drvdata(pdev, rtc);
return 0;
}
static int jz4750_rtc_remove(struct platform_device *pdev)
{
struct rtc_device *rtc = platform_get_drvdata(pdev);
while ( !__rtc_write_ready());
__rtc_disable_1Hz_irq();
while ( !__rtc_write_ready());
__rtc_disable_alarm_irq();
while ( !__rtc_write_ready());
__rtc_disabled();
if (rtc)
rtc_device_unregister(rtc);
return 0;
}
#ifdef CONFIG_PM
static int jz4750_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
// if (device_may_wakeup(&pdev->dev))
// enable_irq_wake(IRQ_RTC);
return 0;
}
static int jz4750_rtc_resume(struct platform_device *pdev)
{
// if (device_may_wakeup(&pdev->dev))
// disable_irq_wake(IRQ_RTC);
return 0;
}
#else
#define jz4750_rtc_suspend NULL
#define jz4750_rtc_resume NULL
#endif
static struct platform_driver jz4750_rtc_driver = {
.probe = jz4750_rtc_probe,
.remove = jz4750_rtc_remove,
.suspend = jz4750_rtc_suspend,
.resume = jz4750_rtc_resume,
.driver = {
.name = "jz4750-rtc",
},
};
static int __init jz4750_rtc_init(void)
{
return platform_driver_register(&jz4750_rtc_driver);
}
static void __exit jz4750_rtc_exit(void)
{
platform_driver_unregister(&jz4750_rtc_driver);
}
module_init(jz4750_rtc_init);
module_exit(jz4750_rtc_exit);
MODULE_AUTHOR("Richard Feng <cjfeng@ingenic.cn>");
MODULE_DESCRIPTION("JZ4750 Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:jz4750-rtc");