mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2024-11-27 21:34:04 +02:00
5d7b80359c
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@29748 3c298f89-4303-0410-b956-a3cf2f4a3e73
9369 lines
296 KiB
Diff
9369 lines
296 KiB
Diff
--- a/configure
|
||
+++ b/configure
|
||
@@ -3602,6 +3602,9 @@ case "${target}" in
|
||
ip2k-*-*)
|
||
noconfigdirs="$noconfigdirs target-libstdc++-v3 ${libgcj}"
|
||
;;
|
||
+ ubicom32-*-*)
|
||
+ noconfigdirs="$noconfigdirs target-libffi"
|
||
+ ;;
|
||
*-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu)
|
||
noconfigdirs="$noconfigdirs target-newlib target-libgloss"
|
||
;;
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/constraints.md
|
||
@@ -0,0 +1,149 @@
|
||
+; Constraint definitions for Ubicom32
|
||
+
|
||
+; Copyright (C) 2009 Free Software Foundation, Inc.
|
||
+; Contributed by Ubicom, Inc.
|
||
+
|
||
+; This file is part of GCC.
|
||
+
|
||
+; GCC is free software; you can redistribute it and/or modify it
|
||
+; under the terms of the GNU General Public License as published
|
||
+; by the Free Software Foundation; either version 3, or (at your
|
||
+; option) any later version.
|
||
+
|
||
+; GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+; License for more details.
|
||
+
|
||
+; You should have received a copy of the GNU General Public License
|
||
+; along with GCC; see the file COPYING3. If not see
|
||
+; <http://www.gnu.org/licenses/>.
|
||
+
|
||
+(define_register_constraint "a" "ALL_ADDRESS_REGS"
|
||
+ "An An register.")
|
||
+
|
||
+(define_register_constraint "d" "DATA_REGS"
|
||
+ "A Dn register.")
|
||
+
|
||
+(define_register_constraint "h" "ACC_REGS"
|
||
+ "An accumulator register.")
|
||
+
|
||
+(define_register_constraint "l" "ACC_LO_REGS"
|
||
+ "An accn_lo register.")
|
||
+
|
||
+(define_register_constraint "Z" "FDPIC_REG"
|
||
+ "The FD-PIC GOT pointer: A0.")
|
||
+
|
||
+(define_constraint "I"
|
||
+ "An 8-bit signed constant value."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= -128) && (ival <= 127)")))
|
||
+
|
||
+(define_constraint "Q"
|
||
+ "An 8-bit signed constant value represented as unsigned."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= 0x00) && (ival <= 0xff)")))
|
||
+
|
||
+(define_constraint "R"
|
||
+ "An 8-bit signed constant value represented as unsigned."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))")))
|
||
+
|
||
+(define_constraint "J"
|
||
+ "A 7-bit unsigned constant value."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= 0) && (ival <= 127)")))
|
||
+
|
||
+(define_constraint "K"
|
||
+ "A 7-bit unsigned constant value shifted << 1."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)")))
|
||
+
|
||
+(define_constraint "L"
|
||
+ "A 7-bit unsigned constant value shifted << 2."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)")))
|
||
+
|
||
+(define_constraint "M"
|
||
+ "A 5-bit unsigned constant value."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= 0) && (ival <= 31)")))
|
||
+
|
||
+(define_constraint "N"
|
||
+ "A signed 16 bit constant value."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= -32768) && (ival <= 32767)")))
|
||
+
|
||
+(define_constraint "O"
|
||
+ "An exact bitmask of contiguous 1 bits starting at bit 0."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "exact_log2 (ival + 1) != -1")))
|
||
+
|
||
+(define_constraint "P"
|
||
+ "A 7-bit negative constant value shifted << 2."
|
||
+ (and (match_code "const_int")
|
||
+ (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)")))
|
||
+
|
||
+(define_constraint "S"
|
||
+ "A symbolic reference."
|
||
+ (match_code "symbol_ref"))
|
||
+
|
||
+(define_constraint "Y"
|
||
+ "An FD-PIC symbolic reference."
|
||
+ (and (match_test "TARGET_FDPIC")
|
||
+ (match_test "GET_CODE (op) == UNSPEC")
|
||
+ (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT")
|
||
+ (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC"))))
|
||
+
|
||
+(define_memory_constraint "T1"
|
||
+ "A memory operand that can be used for .1 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (match_test "GET_MODE (op) == QImode")))
|
||
+
|
||
+(define_memory_constraint "T2"
|
||
+ "A memory operand that can be used for .2 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (match_test "GET_MODE (op) == HImode")))
|
||
+
|
||
+(define_memory_constraint "T4"
|
||
+ "A memory operand that can be used for .4 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (ior (match_test "GET_MODE (op) == SImode")
|
||
+ (match_test "GET_MODE (op) == DImode")
|
||
+ (match_test "GET_MODE (op) == SFmode"))))
|
||
+
|
||
+(define_memory_constraint "U1"
|
||
+ "An offsettable memory operand that can be used for .1 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (match_test "GET_MODE (op) == QImode")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
|
||
+
|
||
+(define_memory_constraint "U2"
|
||
+ "An offsettable memory operand that can be used for .2 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (match_test "GET_MODE (op) == HImode")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
|
||
+
|
||
+(define_memory_constraint "U4"
|
||
+ "An offsettable memory operand that can be used for .4 instruction."
|
||
+ (and (match_test "memory_operand (op, GET_MODE(op))")
|
||
+ (ior (match_test "GET_MODE (op) == SImode")
|
||
+ (match_test "GET_MODE (op) == DImode")
|
||
+ (match_test "GET_MODE (op) == SFmode"))
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
|
||
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/crti.S
|
||
@@ -0,0 +1,54 @@
|
||
+/* Specialized code needed to support construction and destruction of
|
||
+ file-scope objects in C++ and Java code, and to support exception handling.
|
||
+ Copyright (C) 1999 Free Software Foundation, Inc.
|
||
+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
|
||
+
|
||
+This file is part of GCC.
|
||
+
|
||
+GCC is free software; you can redistribute it and/or modify
|
||
+it under the terms of the GNU General Public License as published by
|
||
+the Free Software Foundation; either version 2, or (at your option)
|
||
+any later version.
|
||
+
|
||
+GCC is distributed in the hope that it will be useful,
|
||
+but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+GNU General Public License for more details.
|
||
+
|
||
+You should have received a copy of the GNU General Public License
|
||
+along with GCC; see the file COPYING. If not, write to
|
||
+the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
+Boston, MA 02111-1307, USA. */
|
||
+
|
||
+/* As a special exception, if you link this library with files
|
||
+ compiled with GCC to produce an executable, this does not cause
|
||
+ the resulting executable to be covered by the GNU General Public License.
|
||
+ This exception does not however invalidate any other reasons why
|
||
+ the executable file might be covered by the GNU General Public License. */
|
||
+
|
||
+/*
|
||
+ * This file just supplies function prologues for the .init and .fini
|
||
+ * sections. It is linked in before crtbegin.o.
|
||
+ */
|
||
+ .file "crti.o"
|
||
+ .ident "GNU C crti.o"
|
||
+
|
||
+ .section .init
|
||
+ .align 2
|
||
+ .globl _init
|
||
+ .type _init, @function
|
||
+_init:
|
||
+ move.4 -4(sp)++, a5
|
||
+#ifdef __UBICOM32_FDPIC__
|
||
+ move.4 -4(sp)++, a0
|
||
+#endif
|
||
+
|
||
+ .section .fini
|
||
+ .align 2
|
||
+ .globl _fini
|
||
+ .type _fini, @function
|
||
+_fini:
|
||
+ move.4 -4(sp)++, a5
|
||
+#ifdef __UBICOM32_FDPIC__
|
||
+ move.4 -4(sp)++, a0
|
||
+#endif
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/crtn.S
|
||
@@ -0,0 +1,47 @@
|
||
+/* Specialized code needed to support construction and destruction of
|
||
+ file-scope objects in C++ and Java code, and to support exception handling.
|
||
+ Copyright (C) 1999 Free Software Foundation, Inc.
|
||
+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
|
||
+
|
||
+This file is part of GCC.
|
||
+
|
||
+GCC is free software; you can redistribute it and/or modify
|
||
+it under the terms of the GNU General Public License as published by
|
||
+the Free Software Foundation; either version 2, or (at your option)
|
||
+any later version.
|
||
+
|
||
+GCC is distributed in the hope that it will be useful,
|
||
+but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+GNU General Public License for more details.
|
||
+
|
||
+You should have received a copy of the GNU General Public License
|
||
+along with GCC; see the file COPYING. If not, write to
|
||
+the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
+Boston, MA 02111-1307, USA. */
|
||
+
|
||
+/* As a special exception, if you link this library with files
|
||
+ compiled with GCC to produce an executable, this does not cause
|
||
+ the resulting executable to be covered by the GNU General Public License.
|
||
+ This exception does not however invalidate any other reasons why
|
||
+ the executable file might be covered by the GNU General Public License. */
|
||
+
|
||
+/*
|
||
+ * This file supplies function epilogues for the .init and .fini sections.
|
||
+ * It is linked in after all other files.
|
||
+ */
|
||
+
|
||
+ .file "crtn.o"
|
||
+ .ident "GNU C crtn.o"
|
||
+
|
||
+ .section .init
|
||
+#ifdef __UBICOM32_FDPIC__
|
||
+ move.4 a0, (sp)4++
|
||
+#endif
|
||
+ ret (sp)4++
|
||
+
|
||
+ .section .fini
|
||
+#ifdef __UBICOM32_FDPIC__
|
||
+ move.4 a0, (sp)4++
|
||
+#endif
|
||
+ ret (sp)4++
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/elf.h
|
||
@@ -0,0 +1,29 @@
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC "\
|
||
+%{msim:%{!shared:crt0%O%s}} \
|
||
+crti%O%s crtbegin%O%s"
|
||
+
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
|
||
+
|
||
+#ifdef __UBICOM32_FDPIC__
|
||
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
+ asm (SECTION_OP); \
|
||
+ asm ("move.4 a0, 0(sp);\n\t" \
|
||
+ "call a5," USER_LABEL_PREFIX #FUNC ";"); \
|
||
+ asm (TEXT_SECTION_ASM_OP);
|
||
+#endif
|
||
+
|
||
+#undef SUBTARGET_DRIVER_SELF_SPECS
|
||
+#define SUBTARGET_DRIVER_SELF_SPECS \
|
||
+ "%{mfdpic:-msim} "
|
||
+
|
||
+#define NO_IMPLICIT_EXTERN_C
|
||
+
|
||
+/*
|
||
+ * We need this to compile crtbegin/crtend. This should really be picked
|
||
+ * up from elfos.h but at the moment including elfos.h causes other more
|
||
+ * serous linker issues.
|
||
+ */
|
||
+#define INIT_SECTION_ASM_OP "\t.section\t.init"
|
||
+#define FINI_SECTION_ASM_OP "\t.section\t.fini"
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/linux.h
|
||
@@ -0,0 +1,80 @@
|
||
+/* Definitions of target machine for Ubicom32-uclinux
|
||
+
|
||
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
+ 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ GCC is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published
|
||
+ by the Free Software Foundation; either version 3, or (at your
|
||
+ option) any later version.
|
||
+
|
||
+ GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+ License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with GCC; see the file COPYING3. If not see
|
||
+ <http://www.gnu.org/licenses/>. */
|
||
+
|
||
+/* Don't assume anything about the header files. */
|
||
+#define NO_IMPLICIT_EXTERN_C
|
||
+
|
||
+#undef LIB_SPEC
|
||
+#define LIB_SPEC \
|
||
+ "%{pthread:-lpthread} " \
|
||
+ "-lc"
|
||
+
|
||
+#undef LINK_GCC_C_SEQUENCE_SPEC
|
||
+#define LINK_GCC_C_SEQUENCE_SPEC \
|
||
+ "%{static:--start-group} %G %L %{static:--end-group} " \
|
||
+ "%{!static: %G}"
|
||
+
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC \
|
||
+ "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \
|
||
+ "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}"
|
||
+
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC \
|
||
+ "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s"
|
||
+
|
||
+/* taken from linux.h */
|
||
+/* The GNU C++ standard library requires that these macros be defined. */
|
||
+#undef CPLUSPLUS_CPP_SPEC
|
||
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
|
||
+
|
||
+#define TARGET_OS_CPP_BUILTINS() \
|
||
+ do { \
|
||
+ builtin_define_std ("__UBICOM32__"); \
|
||
+ builtin_define_std ("__ubicom32__"); \
|
||
+ builtin_define ("__gnu_linux__"); \
|
||
+ builtin_define_std ("linux"); \
|
||
+ builtin_define_std ("unix"); \
|
||
+ builtin_assert ("system=linux"); \
|
||
+ builtin_assert ("system=unix"); \
|
||
+ builtin_assert ("system=posix"); \
|
||
+ } while (0)
|
||
+
|
||
+#define OBJECT_FORMAT_ELF
|
||
+
|
||
+
|
||
+#undef DRIVER_SELF_SPECS
|
||
+#define DRIVER_SELF_SPECS \
|
||
+ "%{!mno-fdpic:-mfdpic}"
|
||
+
|
||
+#undef LINK_SPEC
|
||
+#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \
|
||
+ %{static:-dn -Bstatic} \
|
||
+ %{shared:-G -Bdynamic} \
|
||
+ %{!shared: %{!static: \
|
||
+ %{rdynamic:-export-dynamic} \
|
||
+ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \
|
||
+ %{static}} "
|
||
+
|
||
+/*
|
||
+#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h"
|
||
+*/
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/predicates.md
|
||
@@ -0,0 +1,327 @@
|
||
+; Predicate definitions for Ubicom32.
|
||
+
|
||
+; Copyright (C) 2009 Free Software Foundation, Inc.
|
||
+; Contributed by Ubicom, Inc.
|
||
+
|
||
+; This file is part of GCC.
|
||
+
|
||
+; GCC is free software; you can redistribute it and/or modify it
|
||
+; under the terms of the GNU General Public License as published
|
||
+; by the Free Software Foundation; either version 3, or (at your
|
||
+; option) any later version.
|
||
+
|
||
+; GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+; License for more details.
|
||
+
|
||
+; You should have received a copy of the GNU General Public License
|
||
+; along with GCC; see the file COPYING3. If not see
|
||
+; <http://www.gnu.org/licenses/>.
|
||
+
|
||
+(define_predicate "ubicom32_move_operand"
|
||
+ (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum")
|
||
+{
|
||
+ if (CONST_INT_P (op))
|
||
+ return true;
|
||
+
|
||
+ if (GET_CODE (op) == CONST_DOUBLE)
|
||
+ return true;
|
||
+
|
||
+ if (GET_CODE (op) == CONST)
|
||
+ return memory_address_p (mode, op);
|
||
+
|
||
+ if (GET_MODE (op) != mode)
|
||
+ return false;
|
||
+
|
||
+ if (MEM_P (op))
|
||
+ return memory_address_p (mode, XEXP (op, 0));
|
||
+
|
||
+ if (GET_CODE (op) == SUBREG) {
|
||
+ op = SUBREG_REG (op);
|
||
+
|
||
+ if (REG_P (op))
|
||
+ return true;
|
||
+
|
||
+ if (! MEM_P (op))
|
||
+ return false;
|
||
+
|
||
+ /* Paradoxical SUBREG. */
|
||
+ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op)))
|
||
+ return false;
|
||
+
|
||
+ return memory_address_p (GET_MODE (op), XEXP (op, 0));
|
||
+ }
|
||
+
|
||
+ return register_operand (op, mode);
|
||
+})
|
||
+
|
||
+;; Returns true if OP is either a symbol reference or a sum of a
|
||
+;; symbol reference and a constant.
|
||
+
|
||
+(define_predicate "ubicom32_symbolic_address_operand"
|
||
+ (match_code "symbol_ref, label_ref, const")
|
||
+{
|
||
+ switch (GET_CODE (op))
|
||
+ {
|
||
+ case SYMBOL_REF:
|
||
+ case LABEL_REF:
|
||
+ return true;
|
||
+
|
||
+ case CONST:
|
||
+ op = XEXP (op, 0);
|
||
+ return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
||
+ || GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
||
+ && CONST_INT_P (XEXP (op, 1)));
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+})
|
||
+
|
||
+;; Return true if operand is the uClinux FD-PIC register.
|
||
+
|
||
+(define_predicate "ubicom32_fdpic_operand"
|
||
+ (match_code "reg")
|
||
+{
|
||
+ if (! TARGET_FDPIC)
|
||
+ return false;
|
||
+
|
||
+ if (!REG_P (op))
|
||
+ return false;
|
||
+
|
||
+ if (GET_MODE (op) != mode && mode != VOIDmode)
|
||
+ return false;
|
||
+
|
||
+ if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER)
|
||
+ return false;
|
||
+
|
||
+ return true;
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_fdpic_got_offset_operand"
|
||
+ (match_code "unspec")
|
||
+{
|
||
+ if (! TARGET_FDPIC)
|
||
+ return false;
|
||
+
|
||
+ if (GET_CODE (op) != UNSPEC)
|
||
+ return false;
|
||
+
|
||
+ if (XINT (op, 1) != UNSPEC_FDPIC_GOT
|
||
+ && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC)
|
||
+ return false;
|
||
+
|
||
+ return true;
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_arith_operand"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_move_operand (op, mode)
|
||
+ && ! ubicom32_symbolic_address_operand (op, mode)
|
||
+ && (! CONST_INT_P (op)
|
||
+ || satisfies_constraint_I (op)));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_arith_operand_dot1"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_move_operand (op, mode)
|
||
+ && ! ubicom32_symbolic_address_operand (op, mode)
|
||
+ && (! CONST_INT_P (op)
|
||
+ || satisfies_constraint_Q (op)));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_arith_operand_dot2"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_move_operand (op, mode)
|
||
+ && ! ubicom32_symbolic_address_operand (op, mode)
|
||
+ && (! CONST_INT_P (op)
|
||
+ || satisfies_constraint_R (op)));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_compare_operand"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_move_operand (op, mode)
|
||
+ && ! ubicom32_symbolic_address_operand (op, mode)
|
||
+ && (! CONST_INT_P (op)
|
||
+ || satisfies_constraint_N (op)));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_compare_operator"
|
||
+ (match_code "compare"))
|
||
+
|
||
+(define_predicate "ubicom32_and_or_si3_operand"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_arith_operand (op, mode)
|
||
+ || (CONST_INT_P (op)
|
||
+ && ((exact_log2 (INTVAL (op) + 1) != -1
|
||
+ && exact_log2 (INTVAL (op) + 1) <= 31)
|
||
+ || (exact_log2 (INTVAL (op)) != -1
|
||
+ && exact_log2 (INTVAL (op)) <= 31)
|
||
+ || (exact_log2 (~INTVAL (op)) != -1
|
||
+ && exact_log2 (~INTVAL (op)) <= 31))));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_and_or_hi3_operand"
|
||
+ (match_code "subreg, reg, const_int, lo_sum, mem")
|
||
+{
|
||
+ return (ubicom32_arith_operand (op, mode)
|
||
+ || (CONST_INT_P (op)
|
||
+ && exact_log2 (INTVAL (op) + 1) != -1
|
||
+ && exact_log2 (INTVAL (op) + 1) <= 15));
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_mem_or_address_register_operand"
|
||
+ (match_code "subreg, reg, mem")
|
||
+{
|
||
+ unsigned int regno;
|
||
+
|
||
+ if (MEM_P (op)
|
||
+ && memory_operand (op, mode))
|
||
+ return true;
|
||
+
|
||
+ if (REG_P (op))
|
||
+ regno = REGNO (op);
|
||
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
|
||
+ {
|
||
+ int offset;
|
||
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
|
||
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
|
||
+ else
|
||
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
||
+ GET_MODE (SUBREG_REG (op)),
|
||
+ SUBREG_BYTE (op),
|
||
+ GET_MODE (op));
|
||
+ regno = REGNO (SUBREG_REG (op)) + offset;
|
||
+ }
|
||
+ else
|
||
+ return false;
|
||
+
|
||
+ return (regno >= FIRST_PSEUDO_REGISTER
|
||
+ || REGNO_REG_CLASS (regno) == FDPIC_REG
|
||
+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_data_register_operand"
|
||
+ (match_code "subreg, reg")
|
||
+{
|
||
+ unsigned int regno;
|
||
+
|
||
+ if (REG_P (op))
|
||
+ regno = REGNO (op);
|
||
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
|
||
+ {
|
||
+ int offset;
|
||
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
|
||
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
|
||
+ else
|
||
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
||
+ GET_MODE (SUBREG_REG (op)),
|
||
+ SUBREG_BYTE (op),
|
||
+ GET_MODE (op));
|
||
+ regno = REGNO (SUBREG_REG (op)) + offset;
|
||
+ }
|
||
+ else
|
||
+ return false;
|
||
+
|
||
+ return ((regno >= FIRST_PSEUDO_REGISTER
|
||
+ && regno != REGNO (virtual_stack_vars_rtx))
|
||
+ || REGNO_REG_CLASS (regno) == DATA_REGS);
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_address_register_operand"
|
||
+ (match_code "subreg, reg")
|
||
+{
|
||
+ unsigned int regno;
|
||
+
|
||
+ if (REG_P (op))
|
||
+ regno = REGNO (op);
|
||
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
|
||
+ {
|
||
+ int offset;
|
||
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
|
||
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
|
||
+ else
|
||
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
||
+ GET_MODE (SUBREG_REG (op)),
|
||
+ SUBREG_BYTE (op),
|
||
+ GET_MODE (op));
|
||
+ regno = REGNO (SUBREG_REG (op)) + offset;
|
||
+ }
|
||
+ else
|
||
+ return false;
|
||
+
|
||
+ return (regno >= FIRST_PSEUDO_REGISTER
|
||
+ || REGNO_REG_CLASS (regno) == FDPIC_REG
|
||
+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_acc_lo_register_operand"
|
||
+ (match_code "subreg, reg")
|
||
+{
|
||
+ unsigned int regno;
|
||
+
|
||
+ if (REG_P (op))
|
||
+ regno = REGNO (op);
|
||
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
|
||
+ {
|
||
+ int offset;
|
||
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
|
||
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
|
||
+ else
|
||
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
||
+ GET_MODE (SUBREG_REG (op)),
|
||
+ SUBREG_BYTE (op),
|
||
+ GET_MODE (op));
|
||
+ regno = REGNO (SUBREG_REG (op)) + offset;
|
||
+ }
|
||
+ else
|
||
+ return false;
|
||
+
|
||
+ return ((regno >= FIRST_PSEUDO_REGISTER
|
||
+ && regno != REGNO (virtual_stack_vars_rtx))
|
||
+ || REGNO_REG_CLASS (regno) == ACC_LO_REGS);
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_acc_hi_register_operand"
|
||
+ (match_code "subreg, reg")
|
||
+{
|
||
+ unsigned int regno;
|
||
+
|
||
+ if (REG_P (op))
|
||
+ regno = REGNO (op);
|
||
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
|
||
+ {
|
||
+ int offset;
|
||
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
|
||
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
|
||
+ else
|
||
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
||
+ GET_MODE (SUBREG_REG (op)),
|
||
+ SUBREG_BYTE (op),
|
||
+ GET_MODE (op));
|
||
+ regno = REGNO (SUBREG_REG (op)) + offset;
|
||
+ }
|
||
+ else
|
||
+ return false;
|
||
+
|
||
+ return ((regno >= FIRST_PSEUDO_REGISTER
|
||
+ && regno != REGNO (virtual_stack_vars_rtx))
|
||
+ || REGNO_REG_CLASS (regno) == ACC_REGS);
|
||
+})
|
||
+
|
||
+(define_predicate "ubicom32_call_address_operand"
|
||
+ (match_code "symbol_ref, subreg, reg")
|
||
+{
|
||
+ return (GET_CODE (op) == SYMBOL_REF || REG_P (op));
|
||
+})
|
||
+
|
||
+(define_special_predicate "ubicom32_cc_register_operand"
|
||
+ (and (match_code "reg")
|
||
+ (match_test "REGNO (op) == CC_REGNUM")))
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/t-ubicom32
|
||
@@ -0,0 +1,52 @@
|
||
+# Name of assembly file containing libgcc1 functions.
|
||
+# This entry must be present, but it can be empty if the target does
|
||
+# not need any assembler functions to support its code generation.
|
||
+CROSS_LIBGCC1 =
|
||
+
|
||
+# Alternatively if assembler functions *are* needed then define the
|
||
+# entries below:
|
||
+# CROSS_LIBGCC1 = libgcc1-asm.a
|
||
+
|
||
+LIB2FUNCS_EXTRA = \
|
||
+ $(srcdir)/config/udivmodsi4.c \
|
||
+ $(srcdir)/config/divmod.c \
|
||
+ $(srcdir)/config/udivmod.c
|
||
+
|
||
+# If any special flags are necessary when building libgcc2 put them here.
|
||
+#
|
||
+# TARGET_LIBGCC2_CFLAGS =
|
||
+
|
||
+# We want fine grained libraries, so use the new code to build the
|
||
+# floating point emulation libraries.
|
||
+FPBIT = fp-bit.c
|
||
+DPBIT = dp-bit.c
|
||
+
|
||
+fp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ echo '#define FLOAT' > fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
|
||
+
|
||
+dp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
|
||
+
|
||
+# Commented out to speed up compiler development!
|
||
+#
|
||
+# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4
|
||
+# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4
|
||
+
|
||
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
|
||
+MULTILIB_OPTIONS += mfdpic
|
||
+MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi
|
||
+MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore
|
||
+
|
||
+# Assemble startup files.
|
||
+$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES)
|
||
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
|
||
+ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S
|
||
+
|
||
+$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES)
|
||
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
|
||
+ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S
|
||
+
|
||
+# these parts are required because uClibc ldso needs them to link.
|
||
+# they are not in the specfile so they will not be included automatically.
|
||
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/t-ubicom32-linux
|
||
@@ -0,0 +1,35 @@
|
||
+# Name of assembly file containing libgcc1 functions.
|
||
+# This entry must be present, but it can be empty if the target does
|
||
+# not need any assembler functions to support its code generation.
|
||
+CROSS_LIBGCC1 =
|
||
+
|
||
+# Alternatively if assembler functions *are* needed then define the
|
||
+# entries below:
|
||
+# CROSS_LIBGCC1 = libgcc1-asm.a
|
||
+
|
||
+LIB2FUNCS_EXTRA = \
|
||
+ $(srcdir)/config/udivmodsi4.c \
|
||
+ $(srcdir)/config/divmod.c \
|
||
+ $(srcdir)/config/udivmod.c
|
||
+
|
||
+# If any special flags are necessary when building libgcc2 put them here.
|
||
+#
|
||
+# TARGET_LIBGCC2_CFLAGS =
|
||
+
|
||
+# We want fine grained libraries, so use the new code to build the
|
||
+# floating point emulation libraries.
|
||
+FPBIT = fp-bit.c
|
||
+DPBIT = dp-bit.c
|
||
+
|
||
+fp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ echo '#define FLOAT' > fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
|
||
+
|
||
+dp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
|
||
+
|
||
+# We only support v3 and v4 ISAs for uClinux.
|
||
+
|
||
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
|
||
+
|
||
+#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/t-ubicom32-uclinux
|
||
@@ -0,0 +1,35 @@
|
||
+# Name of assembly file containing libgcc1 functions.
|
||
+# This entry must be present, but it can be empty if the target does
|
||
+# not need any assembler functions to support its code generation.
|
||
+CROSS_LIBGCC1 =
|
||
+
|
||
+# Alternatively if assembler functions *are* needed then define the
|
||
+# entries below:
|
||
+# CROSS_LIBGCC1 = libgcc1-asm.a
|
||
+
|
||
+LIB2FUNCS_EXTRA = \
|
||
+ $(srcdir)/config/udivmodsi4.c \
|
||
+ $(srcdir)/config/divmod.c \
|
||
+ $(srcdir)/config/udivmod.c
|
||
+
|
||
+# If any special flags are necessary when building libgcc2 put them here.
|
||
+#
|
||
+# TARGET_LIBGCC2_CFLAGS =
|
||
+
|
||
+# We want fine grained libraries, so use the new code to build the
|
||
+# floating point emulation libraries.
|
||
+FPBIT = fp-bit.c
|
||
+DPBIT = dp-bit.c
|
||
+
|
||
+fp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ echo '#define FLOAT' > fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
|
||
+
|
||
+dp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
|
||
+
|
||
+# We only support v3 and v4 ISAs for uClinux.
|
||
+
|
||
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
|
||
+
|
||
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32-modes.def
|
||
@@ -0,0 +1,30 @@
|
||
+/* Definitions of target machine for GNU compiler, Ubicom32 architecture.
|
||
+ Copyright (C) 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ GCC is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published
|
||
+ by the Free Software Foundation; either version 3, or (at your
|
||
+ option) any later version.
|
||
+
|
||
+ GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+ License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with GCC; see the file COPYING3. If not see
|
||
+ <http://www.gnu.org/licenses/>. */
|
||
+
|
||
+/* Some insns set all condition code flags, some only set the Z and N flags, and
|
||
+ some only set the Z flag. */
|
||
+
|
||
+CC_MODE (CCW);
|
||
+CC_MODE (CCWZN);
|
||
+CC_MODE (CCWZ);
|
||
+CC_MODE (CCS);
|
||
+CC_MODE (CCSZN);
|
||
+CC_MODE (CCSZ);
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32-protos.h
|
||
@@ -0,0 +1,84 @@
|
||
+/* Function prototypes for Ubicom IP3000.
|
||
+
|
||
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
+ 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GNU CC.
|
||
+
|
||
+ GNU CC is free software; you can redistribute it and/or modify it under
|
||
+ the terms of the GNU General Public License as published by the Free
|
||
+ Software Foundation; either version 2, or (at your option) any later
|
||
+ version.
|
||
+
|
||
+ GNU CC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
+ for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License along
|
||
+ with GNU CC; see the file COPYING. If not, write to the Free Software
|
||
+ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+#ifdef RTX_CODE
|
||
+
|
||
+#ifdef TREE_CODE
|
||
+extern void ubicom32_va_start (tree, rtx);
|
||
+#endif /* TREE_CODE */
|
||
+
|
||
+extern void ubicom32_print_operand (FILE *, rtx, int);
|
||
+extern void ubicom32_print_operand_address (FILE *, rtx);
|
||
+
|
||
+extern void ubicom32_conditional_register_usage (void);
|
||
+extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class);
|
||
+extern int ubicom32_regno_ok_for_index_p (int, int);
|
||
+extern void ubicom32_expand_movsi (rtx *);
|
||
+extern void ubicom32_expand_addsi3 (rtx *);
|
||
+extern int ubicom32_emit_mult_sequence (rtx *);
|
||
+extern void ubicom32_emit_move_const_int (rtx, rtx);
|
||
+extern bool ubicom32_legitimate_constant_p (rtx);
|
||
+extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int);
|
||
+extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode);
|
||
+extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int);
|
||
+extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1);
|
||
+extern int ubicom32_mode_dependent_address_p (rtx);
|
||
+extern void ubicom32_output_cond_jump (rtx, rtx, rtx);
|
||
+extern void ubicom32_expand_eh_return (rtx *);
|
||
+extern void ubicom32_expand_call_fdpic (rtx *);
|
||
+extern void ubicom32_expand_call_value_fdpic (rtx *);
|
||
+extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx);
|
||
+extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx);
|
||
+extern int ubicom32_shiftable_const_int (int);
|
||
+#endif /* RTX_CODE */
|
||
+
|
||
+#ifdef TREE_CODE
|
||
+extern void init_cumulative_args (CUMULATIVE_ARGS *cum,
|
||
+ tree fntype,
|
||
+ struct rtx_def *libname,
|
||
+ int indirect);
|
||
+extern struct rtx_def *function_arg (CUMULATIVE_ARGS *,
|
||
+ enum machine_mode, tree, int);
|
||
+extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *,
|
||
+ enum machine_mode,
|
||
+ tree, int);
|
||
+extern int function_arg_partial_nregs (CUMULATIVE_ARGS *,
|
||
+ enum machine_mode, tree, int);
|
||
+extern struct rtx_def *ubicom32_va_arg (tree, tree);
|
||
+extern int ubicom32_reg_parm_stack_space (tree);
|
||
+#endif /* TREE_CODE */
|
||
+
|
||
+extern struct rtx_def * ubicom32_builtin_saveregs (void);
|
||
+extern void asm_file_start (FILE *);
|
||
+extern void ubicom32_expand_prologue (void);
|
||
+extern void ubicom32_expand_epilogue (void);
|
||
+extern int ubicom32_initial_elimination_offset (int, int);
|
||
+extern int ubicom32_regno_ok_for_base_p (int, int);
|
||
+extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode);
|
||
+extern int ubicom32_can_use_return_insn_p (void);
|
||
+extern rtx ubicom32_return_addr_rtx (int, rtx);
|
||
+extern void ubicom32_optimization_options (int, int);
|
||
+extern void ubicom32_override_options (void);
|
||
+extern bool ubicom32_match_cc_mode (rtx, enum machine_mode);
|
||
+
|
||
+extern int ubicom32_reorg_completed;
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32.c
|
||
@@ -0,0 +1,2881 @@
|
||
+/* Subroutines for insn-output.c for Ubicom32
|
||
+
|
||
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
+ 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ GCC is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published
|
||
+ by the Free Software Foundation; either version 3, or (at your
|
||
+ option) any later version.
|
||
+
|
||
+ GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+ License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with GCC; see the file COPYING3. If not see
|
||
+ <http://www.gnu.org/licenses/>. */
|
||
+
|
||
+#include "config.h"
|
||
+#include "system.h"
|
||
+#include "coretypes.h"
|
||
+#include "tm.h"
|
||
+#include "rtl.h"
|
||
+#include "tree.h"
|
||
+#include "regs.h"
|
||
+#include "hard-reg-set.h"
|
||
+#include "real.h"
|
||
+#include "insn-config.h"
|
||
+#include "conditions.h"
|
||
+#include "insn-flags.h"
|
||
+#include "output.h"
|
||
+#include "insn-attr.h"
|
||
+#include "insn-codes.h"
|
||
+#include "flags.h"
|
||
+#include "recog.h"
|
||
+#include "expr.h"
|
||
+#include "function.h"
|
||
+#include "obstack.h"
|
||
+#include "toplev.h"
|
||
+#include "tm_p.h"
|
||
+#include "tm-constrs.h"
|
||
+#include "basic-block.h"
|
||
+#include "integrate.h"
|
||
+#include "target.h"
|
||
+#include "target-def.h"
|
||
+#include "reload.h"
|
||
+#include "df.h"
|
||
+#include "langhooks.h"
|
||
+#include "optabs.h"
|
||
+
|
||
+static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
|
||
+static void ubicom32_layout_frame (void);
|
||
+static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT);
|
||
+static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT);
|
||
+static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed);
|
||
+static bool ubicom32_fixed_condition_code_regs (unsigned int *,
|
||
+ unsigned int *);
|
||
+static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode,
|
||
+ enum machine_mode);
|
||
+static int ubicom32_naked_function_p (void);
|
||
+static void ubicom32_machine_dependent_reorg (void);
|
||
+static bool ubicom32_assemble_integer (rtx, unsigned int, int);
|
||
+static void ubicom32_asm_init_sections (void);
|
||
+static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree,
|
||
+ bool);
|
||
+static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode, const_tree type,
|
||
+ bool named ATTRIBUTE_UNUSED);
|
||
+static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode, const_tree type,
|
||
+ bool named ATTRIBUTE_UNUSED);
|
||
+
|
||
+static bool ubicom32_return_in_memory (const_tree type,
|
||
+ const_tree fntype ATTRIBUTE_UNUSED);
|
||
+static bool ubicom32_is_base_reg (rtx, int);
|
||
+static void ubicom32_init_builtins (void);
|
||
+static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
|
||
+static tree ubicom32_fold_builtin (tree, tree, bool);
|
||
+static int ubicom32_get_valid_offset_mask (enum machine_mode);
|
||
+static bool ubicom32_cannot_force_const_mem (rtx);
|
||
+
|
||
+/* Case values threshold */
|
||
+int ubicom32_case_values_threshold = 6;
|
||
+
|
||
+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
|
||
+int ubicom32_v3 = 1;
|
||
+
|
||
+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
|
||
+int ubicom32_v4 = 1;
|
||
+
|
||
+/* Valid attributes:
|
||
+ naked - don't generate function prologue/epilogue and `ret' command. */
|
||
+const struct attribute_spec ubicom32_attribute_table[] =
|
||
+{
|
||
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
+ { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute },
|
||
+ { NULL, 0, 0, false, false, false, NULL }
|
||
+};
|
||
+
|
||
+#undef TARGET_ASM_FUNCTION_PROLOGUE
|
||
+#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue
|
||
+
|
||
+#undef TARGET_ASM_FUNCTION_EPILOGUE
|
||
+#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue
|
||
+
|
||
+#undef TARGET_ATTRIBUTE_TABLE
|
||
+#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table
|
||
+
|
||
+/* All addresses cost the same amount. */
|
||
+#undef TARGET_ADDRESS_COST
|
||
+#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
|
||
+
|
||
+#undef TARGET_RTX_COSTS
|
||
+#define TARGET_RTX_COSTS ubicom32_rtx_costs
|
||
+
|
||
+#undef TARGET_FIXED_CONDITION_CODE_REGS
|
||
+#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs
|
||
+
|
||
+#undef TARGET_CC_MODES_COMPATIBLE
|
||
+#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible
|
||
+
|
||
+#undef TARGET_MACHINE_DEPENDENT_REORG
|
||
+#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg
|
||
+
|
||
+#undef TARGET_ASM_INTEGER
|
||
+#define TARGET_ASM_INTEGER ubicom32_assemble_integer
|
||
+
|
||
+#undef TARGET_ASM_INIT_SECTIONS
|
||
+#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections
|
||
+
|
||
+#undef TARGET_ARG_PARTIAL_BYTES
|
||
+#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes
|
||
+
|
||
+#undef TARGET_PASS_BY_REFERENCE
|
||
+#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference
|
||
+
|
||
+#undef TARGET_CALLEE_COPIES
|
||
+#define TARGET_CALLEE_COPIES ubicom32_callee_copies
|
||
+
|
||
+#undef TARGET_RETURN_IN_MEMORY
|
||
+#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory
|
||
+
|
||
+#undef TARGET_INIT_BUILTINS
|
||
+#define TARGET_INIT_BUILTINS ubicom32_init_builtins
|
||
+
|
||
+#undef TARGET_EXPAND_BUILTIN
|
||
+#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin
|
||
+
|
||
+#undef TARGET_FOLD_BUILTIN
|
||
+#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin
|
||
+
|
||
+#undef TARGET_CANNOT_FORCE_CONST_MEM
|
||
+#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem
|
||
+
|
||
+struct gcc_target targetm = TARGET_INITIALIZER;
|
||
+
|
||
+static char save_regs[FIRST_PSEUDO_REGISTER];
|
||
+static int nregs;
|
||
+static int frame_size;
|
||
+int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */
|
||
+int ubicom32_can_use_calli_to_ret;
|
||
+
|
||
+#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT)
|
||
+#define ROUND_CALL_BLOCK_SIZE(BYTES) \
|
||
+ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1))
|
||
+
|
||
+/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
|
||
+ must report the mode of the memory reference from PRINT_OPERAND to
|
||
+ PRINT_OPERAND_ADDRESS. */
|
||
+enum machine_mode output_memory_reference_mode;
|
||
+
|
||
+/* Flag for some split insns from the ubicom32.md. */
|
||
+int ubicom32_reorg_completed;
|
||
+
|
||
+enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] =
|
||
+{
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ DATA_REGS,
|
||
+ FDPIC_REG,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ADDRESS_REGS,
|
||
+ ACC_REGS,
|
||
+ ACC_LO_REGS,
|
||
+ ACC_REGS,
|
||
+ ACC_LO_REGS,
|
||
+ SOURCE3_REG,
|
||
+ ADDRESS_REGS,
|
||
+ NO_REGS, /* CC_REG must be NO_REGS */
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS,
|
||
+ SPECIAL_REGS
|
||
+};
|
||
+
|
||
+rtx ubicom32_compare_op0;
|
||
+rtx ubicom32_compare_op1;
|
||
+
|
||
+/* Handle command line option overrides. */
|
||
+
|
||
+void
|
||
+ubicom32_override_options (void)
|
||
+{
|
||
+ flag_pic = 0;
|
||
+
|
||
+ if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) {
|
||
+ /* If we have a version 1 architecture then we want to avoid using jump
|
||
+ tables. */
|
||
+ ubicom32_case_values_threshold = 30000;
|
||
+ ubicom32_v3 = 0;
|
||
+ ubicom32_v4 = 0;
|
||
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) {
|
||
+ ubicom32_v3 = 0;
|
||
+ ubicom32_v4 = 0;
|
||
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) {
|
||
+ ubicom32_v3 = 1;
|
||
+ ubicom32_v4 = 0;
|
||
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) {
|
||
+ ubicom32_v3 = 1;
|
||
+ ubicom32_v4 = 1;
|
||
+ }
|
||
+
|
||
+ /* There is no single unaligned SI op for PIC code. Sometimes we
|
||
+ need to use ".4byte" and sometimes we need to use ".picptr".
|
||
+ See ubicom32_assemble_integer for details. */
|
||
+ if (TARGET_FDPIC)
|
||
+ targetm.asm_out.unaligned_op.si = 0;
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_conditional_register_usage (void)
|
||
+{
|
||
+ /* If we're using the old ipOS ABI we need to make D10 through D13
|
||
+ caller-clobbered. */
|
||
+ if (TARGET_IPOS_ABI)
|
||
+ {
|
||
+ call_used_regs[D10_REGNUM] = 1;
|
||
+ call_used_regs[D11_REGNUM] = 1;
|
||
+ call_used_regs[D12_REGNUM] = 1;
|
||
+ call_used_regs[D13_REGNUM] = 1;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* We have some number of optimizations that don't really work for the Ubicom32
|
||
+ architecture so we deal with them here. */
|
||
+
|
||
+void
|
||
+ubicom32_optimization_options (int level ATTRIBUTE_UNUSED,
|
||
+ int size ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ /* The tree IVOPTs pass seems to do really bad things for the Ubicom32
|
||
+ architecture - it tends to turn things that would happily use pre/post
|
||
+ increment/decrement into operations involving unecessary loop
|
||
+ indicies. */
|
||
+ flag_ivopts = 0;
|
||
+
|
||
+ /* We have problems where DSE at the RTL level misses partial stores
|
||
+ to the stack. For now we disable it to avoid this. */
|
||
+ flag_dse = 0;
|
||
+}
|
||
+
|
||
+/* Print operand X using operand code CODE to assembly language output file
|
||
+ FILE. */
|
||
+
|
||
+void
|
||
+ubicom32_print_operand (FILE *file, rtx x, int code)
|
||
+{
|
||
+ switch (code)
|
||
+ {
|
||
+ case 'A':
|
||
+ /* Identify the correct accumulator to use. */
|
||
+ if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM)
|
||
+ fprintf (file, "acc0");
|
||
+ else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM)
|
||
+ fprintf (file, "acc1");
|
||
+ else
|
||
+ abort ();
|
||
+ break;
|
||
+
|
||
+ case 'b':
|
||
+ case 'B':
|
||
+ {
|
||
+ enum machine_mode mode;
|
||
+
|
||
+ mode = GET_MODE (XEXP (x, 0));
|
||
+
|
||
+ /* These are normal and reversed branches. */
|
||
+ switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
|
||
+ {
|
||
+ case NE:
|
||
+ fprintf (file, "ne");
|
||
+ break;
|
||
+
|
||
+ case EQ:
|
||
+ fprintf (file, "eq");
|
||
+ break;
|
||
+
|
||
+ case GE:
|
||
+ if (mode == CCSZNmode || mode == CCWZNmode)
|
||
+ fprintf (file, "pl");
|
||
+ else
|
||
+ fprintf (file, "ge");
|
||
+ break;
|
||
+
|
||
+ case GT:
|
||
+ fprintf (file, "gt");
|
||
+ break;
|
||
+
|
||
+ case LE:
|
||
+ fprintf (file, "le");
|
||
+ break;
|
||
+
|
||
+ case LT:
|
||
+ if (mode == CCSZNmode || mode == CCWZNmode)
|
||
+ fprintf (file, "mi");
|
||
+ else
|
||
+ fprintf (file, "lt");
|
||
+ break;
|
||
+
|
||
+ case GEU:
|
||
+ fprintf (file, "cs");
|
||
+ break;
|
||
+
|
||
+ case GTU:
|
||
+ fprintf (file, "hi");
|
||
+ break;
|
||
+
|
||
+ case LEU:
|
||
+ fprintf (file, "ls");
|
||
+ break;
|
||
+
|
||
+ case LTU:
|
||
+ fprintf (file, "cc");
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+ }
|
||
+ break;
|
||
+
|
||
+ case 'C':
|
||
+ /* This is used for the operand to a call instruction;
|
||
+ if it's a REG, enclose it in parens, else output
|
||
+ the operand normally. */
|
||
+ if (REG_P (x))
|
||
+ {
|
||
+ fputc ('(', file);
|
||
+ ubicom32_print_operand (file, x, 0);
|
||
+ fputc (')', file);
|
||
+ }
|
||
+ else
|
||
+ ubicom32_print_operand (file, x, 0);
|
||
+ break;
|
||
+
|
||
+ case 'd':
|
||
+ /* Bit operations we need bit numbers. */
|
||
+ fprintf (file, "%d", exact_log2 (INTVAL (x)));
|
||
+ break;
|
||
+
|
||
+ case 'D':
|
||
+ /* Bit operations we need bit numbers. */
|
||
+ fprintf (file, "%d", exact_log2 (~ INTVAL (x)));
|
||
+ break;
|
||
+
|
||
+ case 'E':
|
||
+ /* For lea, which we use to add address registers.
|
||
+ We don't want the '#' on a constant. */
|
||
+ if (CONST_INT_P (x))
|
||
+ {
|
||
+ fprintf (file, "%ld", INTVAL (x));
|
||
+ break;
|
||
+ }
|
||
+ /* FALL THROUGH */
|
||
+
|
||
+ default:
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case MEM:
|
||
+ output_memory_reference_mode = GET_MODE (x);
|
||
+ output_address (XEXP (x, 0));
|
||
+ break;
|
||
+
|
||
+ case PLUS:
|
||
+ output_address (x);
|
||
+ break;
|
||
+
|
||
+ case REG:
|
||
+ fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
+ break;
|
||
+
|
||
+ case SUBREG:
|
||
+ fprintf (file, "%s", reg_names[subreg_regno (x)]);
|
||
+ break;
|
||
+
|
||
+ /* This will only be single precision.... */
|
||
+ case CONST_DOUBLE:
|
||
+ {
|
||
+ unsigned long val;
|
||
+ REAL_VALUE_TYPE rv;
|
||
+
|
||
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
|
||
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
|
||
+ fprintf (file, "0x%lx", val);
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ case CONST_INT:
|
||
+ case SYMBOL_REF:
|
||
+ case CONST:
|
||
+ case LABEL_REF:
|
||
+ case CODE_LABEL:
|
||
+ case LO_SUM:
|
||
+ ubicom32_print_operand_address (file, x);
|
||
+ break;
|
||
+
|
||
+ case HIGH:
|
||
+ fprintf (file, "#%%hi(");
|
||
+ ubicom32_print_operand_address (file, XEXP (x, 0));
|
||
+ fprintf (file, ")");
|
||
+ break;
|
||
+
|
||
+ case UNSPEC:
|
||
+ switch (XINT (x, 1))
|
||
+ {
|
||
+ case UNSPEC_FDPIC_GOT:
|
||
+ fprintf (file, "#%%got_lo(");
|
||
+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
|
||
+ fprintf (file, ")");
|
||
+ break;
|
||
+
|
||
+ case UNSPEC_FDPIC_GOT_FUNCDESC:
|
||
+ fprintf (file, "#%%got_funcdesc_lo(");
|
||
+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
|
||
+ fprintf (file, ")");
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+ break;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Output assembly language output for the address ADDR to FILE. */
|
||
+
|
||
+void
|
||
+ubicom32_print_operand_address (FILE *file, rtx addr)
|
||
+{
|
||
+ switch (GET_CODE (addr))
|
||
+ {
|
||
+ case POST_INC:
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode));
|
||
+ break;
|
||
+
|
||
+ case PRE_INC:
|
||
+ fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode));
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "++");
|
||
+ break;
|
||
+
|
||
+ case POST_DEC:
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode));
|
||
+ break;
|
||
+
|
||
+ case PRE_DEC:
|
||
+ fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode));
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "++");
|
||
+ break;
|
||
+
|
||
+ case POST_MODIFY:
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1)));
|
||
+ break;
|
||
+
|
||
+ case PRE_MODIFY:
|
||
+ fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1)));
|
||
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
|
||
+ fprintf (file, "++");
|
||
+ break;
|
||
+
|
||
+ case REG:
|
||
+ fputc ('(', file);
|
||
+ fprintf (file, "%s", reg_names[REGNO (addr)]);
|
||
+ fputc (')', file);
|
||
+ break;
|
||
+
|
||
+ case PLUS:
|
||
+ {
|
||
+ rtx base = XEXP (addr, 0);
|
||
+ rtx index = XEXP (addr, 1);
|
||
+
|
||
+ /* Switch around addresses of the form index * scaling + base. */
|
||
+ if (! ubicom32_is_base_reg (base, 1))
|
||
+ {
|
||
+ rtx tmp = base;
|
||
+ base = index;
|
||
+ index = tmp;
|
||
+ }
|
||
+
|
||
+ if (CONST_INT_P (index))
|
||
+ {
|
||
+ fprintf (file, "%ld", INTVAL (index));
|
||
+ fputc ('(', file);
|
||
+ fputs (reg_names[REGNO (base)], file);
|
||
+ }
|
||
+ else if (GET_CODE (index) == MULT
|
||
+ || REG_P (index))
|
||
+ {
|
||
+ if (GET_CODE (index) == MULT)
|
||
+ index = XEXP (index, 0);
|
||
+ fputc ('(', file);
|
||
+ fputs (reg_names[REGNO (base)], file);
|
||
+ fputc (',', file);
|
||
+ fputs (reg_names[REGNO (index)], file);
|
||
+ }
|
||
+ else
|
||
+ abort ();
|
||
+
|
||
+ fputc (')', file);
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ case LO_SUM:
|
||
+ fprintf (file, "%%lo(");
|
||
+ ubicom32_print_operand (file, XEXP (addr, 1), 'L');
|
||
+ fprintf (file, ")(");
|
||
+ ubicom32_print_operand (file, XEXP (addr, 0), 0);
|
||
+ fprintf (file, ")");
|
||
+ break;
|
||
+
|
||
+ case CONST_INT:
|
||
+ fputc ('#', file);
|
||
+ output_addr_const (file, addr);
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ output_addr_const (file, addr);
|
||
+ break;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* X and Y are two things to compare using CODE. Emit the compare insn and
|
||
+ return the rtx for the cc reg in the proper mode. */
|
||
+
|
||
+rtx
|
||
+ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
|
||
+{
|
||
+ enum machine_mode mode = SELECT_CC_MODE (code, x, y);
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (mode, CC_REGNUM);
|
||
+
|
||
+ emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
|
||
+ gen_rtx_COMPARE (mode, x, y)));
|
||
+
|
||
+ return cc_reg;
|
||
+}
|
||
+
|
||
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
+ return the mode to be used for the comparison. */
|
||
+
|
||
+enum machine_mode
|
||
+ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y)
|
||
+{
|
||
+ /* Is this a short compare? */
|
||
+ if (GET_MODE (x) == QImode
|
||
+ || GET_MODE (x) == HImode
|
||
+ || GET_MODE (y) == QImode
|
||
+ || GET_MODE (y) == HImode)
|
||
+ {
|
||
+ switch (op)
|
||
+ {
|
||
+ case EQ :
|
||
+ case NE :
|
||
+ return CCSZmode;
|
||
+
|
||
+ case GE:
|
||
+ case LT:
|
||
+ if (y == const0_rtx)
|
||
+ return CCSZNmode;
|
||
+
|
||
+ default :
|
||
+ return CCSmode;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* We have a word compare. */
|
||
+ switch (op)
|
||
+ {
|
||
+ case EQ :
|
||
+ case NE :
|
||
+ return CCWZmode;
|
||
+
|
||
+ case GE :
|
||
+ case LT :
|
||
+ if (y == const0_rtx)
|
||
+ return CCWZNmode;
|
||
+
|
||
+ default :
|
||
+ return CCWmode;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Return TRUE or FALSE depending on whether the first SET in INSN
|
||
+ has source and destination with matching CC modes, and that the
|
||
+ CC mode is at least as constrained as REQ_MODE. */
|
||
+bool
|
||
+ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode)
|
||
+{
|
||
+ rtx set;
|
||
+ enum machine_mode set_mode;
|
||
+
|
||
+ set = PATTERN (insn);
|
||
+ if (GET_CODE (set) == PARALLEL)
|
||
+ set = XVECEXP (set, 0, 0);
|
||
+ gcc_assert (GET_CODE (set) == SET);
|
||
+ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
|
||
+
|
||
+ /* SET_MODE is the mode we have in the instruction. This must either
|
||
+ be the same or less restrictive that the required mode REQ_MODE. */
|
||
+ set_mode = GET_MODE (SET_DEST (set));
|
||
+
|
||
+ switch (req_mode)
|
||
+ {
|
||
+ case CCSZmode:
|
||
+ if (set_mode != CCSZmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ case CCSZNmode:
|
||
+ if (set_mode != CCSZmode
|
||
+ && set_mode != CCSZNmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ case CCSmode:
|
||
+ if (set_mode != CCSmode
|
||
+ && set_mode != CCSZmode
|
||
+ && set_mode != CCSZNmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ case CCWZmode:
|
||
+ if (set_mode != CCWZmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ case CCWZNmode:
|
||
+ if (set_mode != CCWZmode
|
||
+ && set_mode != CCWZNmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ case CCWmode:
|
||
+ if (set_mode != CCWmode
|
||
+ && set_mode != CCWZmode
|
||
+ && set_mode != CCWZNmode)
|
||
+ return 0;
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ gcc_unreachable ();
|
||
+ }
|
||
+
|
||
+ return (GET_MODE (SET_SRC (set)) == set_mode);
|
||
+}
|
||
+
|
||
+/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
|
||
+ that we can implement more efficiently. */
|
||
+
|
||
+void
|
||
+ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1)
|
||
+{
|
||
+ /* If we have a REG and a MEM then compare the MEM with the REG and not
|
||
+ the other way round. */
|
||
+ if (REG_P (*op0) && MEM_P (*op1))
|
||
+ {
|
||
+ rtx tem = *op0;
|
||
+ *op0 = *op1;
|
||
+ *op1 = tem;
|
||
+ *code = swap_condition (*code);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* If we have a REG and a CONST_INT then we may want to reverse things
|
||
+ if the constant can be represented as an "I" constraint. */
|
||
+ if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1))
|
||
+ {
|
||
+ rtx tem = *op0;
|
||
+ *op0 = *op1;
|
||
+ *op1 = tem;
|
||
+ *code = swap_condition (*code);
|
||
+ return;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Return the fixed registers used for condition codes. */
|
||
+
|
||
+static bool
|
||
+ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
|
||
+{
|
||
+ *p1 = CC_REGNUM;
|
||
+ *p2 = INVALID_REGNUM;
|
||
+
|
||
+ return true;
|
||
+}
|
||
+
|
||
+/* If two condition code modes are compatible, return a condition code
|
||
+ mode which is compatible with both. Otherwise, return
|
||
+ VOIDmode. */
|
||
+
|
||
+static enum machine_mode
|
||
+ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
|
||
+{
|
||
+ if (m1 == m2)
|
||
+ return m1;
|
||
+
|
||
+ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
|
||
+ return VOIDmode;
|
||
+
|
||
+ switch (m1)
|
||
+ {
|
||
+ case CCWmode:
|
||
+ if (m2 == CCWZNmode || m2 == CCWZmode)
|
||
+ return m1;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ case CCWZNmode:
|
||
+ if (m2 == CCWmode)
|
||
+ return m2;
|
||
+
|
||
+ if (m2 == CCWZmode)
|
||
+ return m1;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ case CCWZmode:
|
||
+ if (m2 == CCWmode || m2 == CCWZNmode)
|
||
+ return m2;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ case CCSmode:
|
||
+ if (m2 == CCSZNmode || m2 == CCSZmode)
|
||
+ return m1;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ case CCSZNmode:
|
||
+ if (m2 == CCSmode)
|
||
+ return m2;
|
||
+
|
||
+ if (m2 == CCSZmode)
|
||
+ return m1;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ case CCSZmode:
|
||
+ if (m2 == CCSmode || m2 == CCSZNmode)
|
||
+ return m2;
|
||
+
|
||
+ return VOIDmode;
|
||
+
|
||
+ default:
|
||
+ gcc_unreachable ();
|
||
+ }
|
||
+}
|
||
+
|
||
+static rtx
|
||
+ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg)
|
||
+{
|
||
+ int unspec;
|
||
+ rtx got_offs;
|
||
+ rtx got_offs_scaled;
|
||
+ rtx plus_scaled;
|
||
+ rtx tmp;
|
||
+ rtx new_rtx;
|
||
+
|
||
+ gcc_assert (reg != 0);
|
||
+
|
||
+ if (GET_CODE (orig) == SYMBOL_REF
|
||
+ && SYMBOL_REF_FUNCTION_P (orig))
|
||
+ unspec = UNSPEC_FDPIC_GOT_FUNCDESC;
|
||
+ else
|
||
+ unspec = UNSPEC_FDPIC_GOT;
|
||
+
|
||
+ got_offs = gen_reg_rtx (SImode);
|
||
+ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec);
|
||
+ emit_move_insn (got_offs, tmp);
|
||
+
|
||
+ got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4));
|
||
+ plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled);
|
||
+ new_rtx = gen_const_mem (Pmode, plus_scaled);
|
||
+ emit_move_insn (reg, new_rtx);
|
||
+
|
||
+ return reg;
|
||
+}
|
||
+
|
||
+static rtx
|
||
+ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg)
|
||
+{
|
||
+ rtx addr = orig;
|
||
+ rtx new_rtx = orig;
|
||
+
|
||
+ if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
|
||
+ {
|
||
+ rtx base;
|
||
+
|
||
+ if (GET_CODE (addr) == CONST)
|
||
+ {
|
||
+ addr = XEXP (addr, 0);
|
||
+ gcc_assert (GET_CODE (addr) == PLUS);
|
||
+ }
|
||
+
|
||
+ base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg);
|
||
+ return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1));
|
||
+ }
|
||
+
|
||
+ return new_rtx;
|
||
+}
|
||
+
|
||
+/* Code generation. */
|
||
+
|
||
+void
|
||
+ubicom32_expand_movsi (rtx *operands)
|
||
+{
|
||
+ if (GET_CODE (operands[1]) == SYMBOL_REF
|
||
+ || (GET_CODE (operands[1]) == CONST
|
||
+ && GET_CODE (XEXP (operands[1], 0)) == PLUS
|
||
+ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
|
||
+ || CONSTANT_ADDRESS_P (operands[1]))
|
||
+ {
|
||
+ if (TARGET_FDPIC)
|
||
+ {
|
||
+ rtx tmp;
|
||
+ rtx fdpic_reg;
|
||
+
|
||
+ gcc_assert (can_create_pseudo_p ());
|
||
+ tmp = gen_reg_rtx (Pmode);
|
||
+ fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
|
||
+ if (GET_CODE (operands[1]) == SYMBOL_REF
|
||
+ || GET_CODE (operands[1]) == LABEL_REF)
|
||
+ operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg);
|
||
+ else
|
||
+ operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx tmp;
|
||
+ enum machine_mode mode;
|
||
+
|
||
+ /* We want to avoid reusing operand 0 if we can because it limits
|
||
+ our ability to optimize later. */
|
||
+ tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
|
||
+
|
||
+ mode = GET_MODE (operands[0]);
|
||
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
|
||
+ gen_rtx_HIGH (mode, operands[1])));
|
||
+ operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]);
|
||
+ if (can_create_pseudo_p() && ! REG_P (operands[0]))
|
||
+ {
|
||
+ tmp = gen_reg_rtx (mode);
|
||
+ emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1]));
|
||
+ operands[1] = tmp;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Emit code for addsi3. */
|
||
+
|
||
+void
|
||
+ubicom32_expand_addsi3 (rtx *operands)
|
||
+{
|
||
+ rtx op, clob;
|
||
+
|
||
+ if (can_create_pseudo_p ())
|
||
+ {
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
|
||
+ }
|
||
+
|
||
+ /* Emit the instruction. */
|
||
+
|
||
+ op = gen_rtx_SET (VOIDmode, operands[0],
|
||
+ gen_rtx_PLUS (SImode, operands[1], operands[2]));
|
||
+
|
||
+ if (! can_create_pseudo_p ())
|
||
+ {
|
||
+ /* Reload doesn't know about the flags register, and doesn't know that
|
||
+ it doesn't want to clobber it. We can only do this with PLUS. */
|
||
+ emit_insn (op);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
|
||
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Emit code for mulsi3. Return 1 if we have generated all the code
|
||
+ necessary to do the multiplication. */
|
||
+
|
||
+int
|
||
+ubicom32_emit_mult_sequence (rtx *operands)
|
||
+{
|
||
+ if (! ubicom32_v4)
|
||
+ {
|
||
+ rtx a1, a1_1, a2;
|
||
+ rtx b1, b1_1, b2;
|
||
+ rtx mac_lo_rtx;
|
||
+ rtx t1, t2, t3;
|
||
+
|
||
+ /* Give up if we cannot create new pseudos. */
|
||
+ if (!can_create_pseudo_p())
|
||
+ return 0;
|
||
+
|
||
+ /* Synthesize 32-bit multiplication using 16-bit operations:
|
||
+
|
||
+ a1 = highpart (a)
|
||
+ a2 = lowpart (a)
|
||
+
|
||
+ b1 = highpart (b)
|
||
+ b2 = lowpart (b)
|
||
+
|
||
+ c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
|
||
+ = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
|
||
+ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^
|
||
+ Signed Signed Unsigned */
|
||
+
|
||
+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
|
||
+ {
|
||
+ rtx op1;
|
||
+
|
||
+ op1 = gen_reg_rtx (SImode);
|
||
+ emit_move_insn (op1, operands[1]);
|
||
+ operands[1] = op1;
|
||
+ }
|
||
+
|
||
+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
|
||
+ {
|
||
+ rtx op2;
|
||
+
|
||
+ op2 = gen_reg_rtx (SImode);
|
||
+ emit_move_insn (op2, operands[2]);
|
||
+ operands[2] = op2;
|
||
+ }
|
||
+
|
||
+ /* a1 = highpart (a) */
|
||
+ a1 = gen_reg_rtx (HImode);
|
||
+ a1_1 = gen_reg_rtx (SImode);
|
||
+ emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16)));
|
||
+ emit_move_insn (a1, gen_lowpart (HImode, a1_1));
|
||
+
|
||
+ /* a2 = lowpart (a) */
|
||
+ a2 = gen_reg_rtx (HImode);
|
||
+ emit_move_insn (a2, gen_lowpart (HImode, operands[1]));
|
||
+
|
||
+ /* b1 = highpart (b) */
|
||
+ b1 = gen_reg_rtx (HImode);
|
||
+ b1_1 = gen_reg_rtx (SImode);
|
||
+ emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16)));
|
||
+ emit_move_insn (b1, gen_lowpart (HImode, b1_1));
|
||
+
|
||
+ /* b2 = lowpart (b) */
|
||
+ b2 = gen_reg_rtx (HImode);
|
||
+ emit_move_insn (b2, gen_lowpart (HImode, operands[2]));
|
||
+
|
||
+ /* t1 = (a1 * b2) << 16 */
|
||
+ t1 = gen_reg_rtx (SImode);
|
||
+ mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM);
|
||
+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2));
|
||
+ emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16)));
|
||
+
|
||
+ /* t2 = (a2 * b1) << 16 */
|
||
+ t2 = gen_reg_rtx (SImode);
|
||
+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1));
|
||
+ emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16)));
|
||
+
|
||
+ /* mac_lo = a2 * b2 */
|
||
+ emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2));
|
||
+
|
||
+ /* t3 = t1 + t2 */
|
||
+ t3 = gen_reg_rtx (SImode);
|
||
+ emit_insn (gen_addsi3 (t3, t1, t2));
|
||
+
|
||
+ /* c = t3 + mac_lo_rtx */
|
||
+ emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3));
|
||
+
|
||
+ return 1;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx acc_rtx;
|
||
+
|
||
+ /* Give up if we cannot create new pseudos. */
|
||
+ if (!can_create_pseudo_p())
|
||
+ return 0;
|
||
+
|
||
+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
|
||
+ {
|
||
+ rtx op1;
|
||
+
|
||
+ op1 = gen_reg_rtx (SImode);
|
||
+ emit_move_insn (op1, operands[1]);
|
||
+ operands[1] = op1;
|
||
+ }
|
||
+
|
||
+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
|
||
+ {
|
||
+ rtx op2;
|
||
+
|
||
+ op2 = gen_reg_rtx (SImode);
|
||
+ emit_move_insn (op2, operands[2]);
|
||
+ operands[2] = op2;
|
||
+ }
|
||
+
|
||
+ acc_rtx = gen_reg_rtx (DImode);
|
||
+ emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2]));
|
||
+ emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx));
|
||
+
|
||
+ return 1;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Move the integer value VAL into OPERANDS[0]. */
|
||
+
|
||
+void
|
||
+ubicom32_emit_move_const_int (rtx dest, rtx imm)
|
||
+{
|
||
+ rtx xoperands[2];
|
||
+
|
||
+ xoperands[0] = dest;
|
||
+ xoperands[1] = imm;
|
||
+
|
||
+ /* Treat mem destinations separately. Values must be explicitly sign
|
||
+ extended. */
|
||
+ if (MEM_P (dest))
|
||
+ {
|
||
+ rtx low_hword_mem;
|
||
+ rtx low_hword_addr;
|
||
+
|
||
+ /* Emit shorter sequence for signed 7-bit quantities. */
|
||
+ if (satisfies_constraint_I (imm))
|
||
+ {
|
||
+ output_asm_insn ("move.4\t%0, %1", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* Special case for pushing constants. */
|
||
+ if (GET_CODE (XEXP (dest, 0)) == PRE_DEC
|
||
+ && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
|
||
+ {
|
||
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
|
||
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* See if we can add 2 to the original address. This is only
|
||
+ possible if the original address is of the form REG or
|
||
+ REG+const. */
|
||
+ low_hword_addr = plus_constant (XEXP (dest, 0), 2);
|
||
+ if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1))
|
||
+ {
|
||
+ low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr);
|
||
+ MEM_COPY_ATTRIBUTES (low_hword_mem, dest);
|
||
+ output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands);
|
||
+ xoperands[0] = low_hword_mem;
|
||
+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* The original address is too complex. We need to use a
|
||
+ scratch memory by (sp) and move that to the original
|
||
+ destination. */
|
||
+ if (! reg_mentioned_p (stack_pointer_rtx, dest))
|
||
+ {
|
||
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
|
||
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
|
||
+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* Our address mentions the stack pointer so we need to
|
||
+ use our scratch data register here as well as scratch
|
||
+ memory. */
|
||
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
|
||
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
|
||
+ output_asm_insn ("move.4\td15, (sp)4++", xoperands);
|
||
+ output_asm_insn ("move.4\t%0, d15", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* Move into registers are zero extended by default. */
|
||
+ if (! REG_P (dest))
|
||
+ abort ();
|
||
+
|
||
+ if (satisfies_constraint_N (imm))
|
||
+ {
|
||
+ output_asm_insn ("movei\t%0, %1", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if (INTVAL (xoperands[1]) >= 0xff80
|
||
+ && INTVAL (xoperands[1]) < 0x10000)
|
||
+ {
|
||
+ xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000);
|
||
+ output_asm_insn ("move.2\t%0, %1", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS
|
||
+ || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG)
|
||
+ && ((INTVAL (xoperands[1]) & 0x80000000) == 0))
|
||
+ {
|
||
+ output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands);
|
||
+ if ((INTVAL (xoperands[1]) & 0x7f) != 0)
|
||
+ output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if ((INTVAL (xoperands[1]) & 0xffff0000) == 0)
|
||
+ {
|
||
+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
|
||
+ output_asm_insn ("move.2\t%0, %0", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* This is very expensive. The constant is so large that we
|
||
+ need to use the stack to do the load. */
|
||
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
|
||
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
|
||
+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
|
||
+}
|
||
+
|
||
+/* Stack layout. Prologue/Epilogue. */
|
||
+
|
||
+static int save_regs_size;
|
||
+
|
||
+static void
|
||
+ubicom32_layout_frame (void)
|
||
+{
|
||
+ int regno;
|
||
+
|
||
+ memset ((char *) &save_regs[0], 0, sizeof (save_regs));
|
||
+ nregs = 0;
|
||
+ frame_size = get_frame_size ();
|
||
+
|
||
+ if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM))
|
||
+ {
|
||
+ save_regs[FRAME_POINTER_REGNUM] = 1;
|
||
+ ++nregs;
|
||
+ }
|
||
+
|
||
+ if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO))
|
||
+ ubicom32_can_use_calli_to_ret = 1;
|
||
+ else
|
||
+ {
|
||
+ ubicom32_can_use_calli_to_ret = 0;
|
||
+ save_regs[LINK_REGNO] = 1;
|
||
+ ++nregs;
|
||
+ }
|
||
+
|
||
+ /* Figure out which register(s) needs to be saved. */
|
||
+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++)
|
||
+ if (df_regs_ever_live_p(regno)
|
||
+ && ! call_used_regs[regno]
|
||
+ && ! fixed_regs[regno]
|
||
+ && ! save_regs[regno])
|
||
+ {
|
||
+ save_regs[regno] = 1;
|
||
+ ++nregs;
|
||
+ }
|
||
+
|
||
+ save_regs_size = 4 * nregs;
|
||
+}
|
||
+
|
||
+static void
|
||
+ubicom32_emit_add_movsi (int regno, int adj)
|
||
+{
|
||
+ rtx x;
|
||
+ rtx reg = gen_rtx_REG (SImode, regno);
|
||
+
|
||
+ adj += 4;
|
||
+ if (adj > 8 * 4)
|
||
+ {
|
||
+ x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (-adj)));
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
|
||
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
+ GEN_INT (-adj)));
|
||
+ x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg);
|
||
+ }
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_expand_prologue (void)
|
||
+{
|
||
+ rtx x;
|
||
+ int regno;
|
||
+ int outgoing_args_size = crtl->outgoing_args_size;
|
||
+ int adj;
|
||
+
|
||
+ if (ubicom32_naked_function_p ())
|
||
+ return;
|
||
+
|
||
+ ubicom32_builtin_saveregs ();
|
||
+
|
||
+ ubicom32_layout_frame ();
|
||
+ adj = (outgoing_args_size + get_frame_size () + save_regs_size
|
||
+ + crtl->args.pretend_args_size);
|
||
+
|
||
+ if (!adj)
|
||
+ ;
|
||
+ else if (outgoing_args_size + save_regs_size < 508
|
||
+ && get_frame_size () + save_regs_size > 508)
|
||
+ {
|
||
+ int i = 0;
|
||
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (-adj));
|
||
+ x = emit_insn (x);
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+
|
||
+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
|
||
+ if (save_regs[regno] && regno != LINK_REGNO)
|
||
+ {
|
||
+ x = gen_rtx_MEM (SImode,
|
||
+ gen_rtx_PLUS (Pmode,
|
||
+ stack_pointer_rtx,
|
||
+ GEN_INT (i * 4 + outgoing_args_size)));
|
||
+ x = emit_move_insn (x, gen_rtx_REG (SImode, regno));
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ ++i;
|
||
+ }
|
||
+ if (save_regs[LINK_REGNO])
|
||
+ {
|
||
+ x = gen_rtx_MEM (SImode,
|
||
+ gen_rtx_PLUS (Pmode,
|
||
+ stack_pointer_rtx,
|
||
+ GEN_INT (i * 4 + outgoing_args_size)));
|
||
+ x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO));
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ }
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ int regno;
|
||
+ int adj = get_frame_size () + crtl->args.pretend_args_size;
|
||
+ int i = 0;
|
||
+
|
||
+ if (save_regs[LINK_REGNO])
|
||
+ {
|
||
+ ubicom32_emit_add_movsi (LINK_REGNO, adj);
|
||
+ ++i;
|
||
+ }
|
||
+
|
||
+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno)
|
||
+ if (save_regs[regno] && regno != LINK_REGNO)
|
||
+ {
|
||
+ if (i)
|
||
+ {
|
||
+ rtx mem = gen_rtx_MEM (SImode,
|
||
+ gen_rtx_PRE_DEC (Pmode,
|
||
+ stack_pointer_rtx));
|
||
+ x = emit_move_insn (mem, gen_rtx_REG (SImode, regno));
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ }
|
||
+ else
|
||
+ ubicom32_emit_add_movsi (regno, adj);
|
||
+ ++i;
|
||
+ }
|
||
+
|
||
+ if (outgoing_args_size || (!i && adj))
|
||
+ {
|
||
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (-outgoing_args_size - (i ? 0 : adj)));
|
||
+ x = emit_insn (x);
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (frame_pointer_needed)
|
||
+ {
|
||
+ int fp_adj = save_regs_size + outgoing_args_size;
|
||
+ x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (fp_adj));
|
||
+ x = emit_insn (x);
|
||
+ RTX_FRAME_RELATED_P (x) = 1;
|
||
+ }
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_expand_epilogue (void)
|
||
+{
|
||
+ rtx x;
|
||
+ int regno;
|
||
+ int outgoing_args_size = crtl->outgoing_args_size;
|
||
+ int adj;
|
||
+ int i;
|
||
+
|
||
+ if (ubicom32_naked_function_p ())
|
||
+ {
|
||
+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
|
||
+ LINK_REGNO)));
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if (cfun->calls_alloca)
|
||
+ {
|
||
+ x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
|
||
+ GEN_INT (-save_regs_size));
|
||
+ emit_insn (x);
|
||
+ outgoing_args_size = 0;
|
||
+ }
|
||
+
|
||
+ if (outgoing_args_size)
|
||
+ {
|
||
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (outgoing_args_size));
|
||
+ emit_insn (x);
|
||
+ }
|
||
+
|
||
+ i = 0;
|
||
+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
|
||
+ if (save_regs[regno] && regno != LINK_REGNO)
|
||
+ {
|
||
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
|
||
+ emit_move_insn (gen_rtx_REG (SImode, regno), x);
|
||
+ ++i;
|
||
+ }
|
||
+
|
||
+ /* Do we have to adjust the stack after we've finished restoring regs? */
|
||
+ adj = get_frame_size() + crtl->args.pretend_args_size;
|
||
+ if (cfun->stdarg)
|
||
+ adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
|
||
+
|
||
+#if 0
|
||
+ if (crtl->calls_eh_return && 0)
|
||
+ {
|
||
+ if (save_regs[LINK_REGNO])
|
||
+ {
|
||
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
|
||
+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
|
||
+ }
|
||
+
|
||
+ if (adj)
|
||
+ {
|
||
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (adj));
|
||
+ x = emit_insn (x);
|
||
+ }
|
||
+
|
||
+ /* Perform the additional bump for __throw. */
|
||
+ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ EH_RETURN_STACKADJ_RTX));
|
||
+ emit_jump_insn (gen_eh_return_internal ());
|
||
+ return;
|
||
+ }
|
||
+#endif
|
||
+
|
||
+ if (save_regs[LINK_REGNO])
|
||
+ {
|
||
+ if (adj >= 4 && adj <= (6 * 4))
|
||
+ {
|
||
+ x = GEN_INT (adj + 4);
|
||
+ emit_jump_insn (gen_return_from_post_modify_sp (x));
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if (adj == 0)
|
||
+ {
|
||
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
|
||
+ emit_jump_insn (gen_return_internal (x));
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
|
||
+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
|
||
+ }
|
||
+
|
||
+ if (adj)
|
||
+ {
|
||
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
||
+ GEN_INT (adj));
|
||
+ x = emit_insn (x);
|
||
+ adj = 0;
|
||
+ }
|
||
+
|
||
+ /* Given that we've just done all the hard work here we may as well use
|
||
+ a calli to return. */
|
||
+ ubicom32_can_use_calli_to_ret = 1;
|
||
+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO)));
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_expand_call_fdpic (rtx *operands)
|
||
+{
|
||
+ rtx c;
|
||
+ rtx addr;
|
||
+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
|
||
+
|
||
+ addr = XEXP (operands[0], 0);
|
||
+
|
||
+ c = gen_call_fdpic (addr, operands[1], fdpic_reg);
|
||
+ emit_call_insn (c);
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_expand_call_value_fdpic (rtx *operands)
|
||
+{
|
||
+ rtx c;
|
||
+ rtx addr;
|
||
+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
|
||
+
|
||
+ addr = XEXP (operands[1], 0);
|
||
+
|
||
+ c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg);
|
||
+ emit_call_insn (c);
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_expand_eh_return (rtx *operands)
|
||
+{
|
||
+ if (REG_P (operands[0])
|
||
+ || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO)
|
||
+ {
|
||
+ rtx sp = EH_RETURN_STACKADJ_RTX;
|
||
+ emit_move_insn (sp, operands[0]);
|
||
+ operands[0] = sp;
|
||
+ }
|
||
+
|
||
+ if (REG_P (operands[1])
|
||
+ || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO)
|
||
+ {
|
||
+ rtx ra = EH_RETURN_HANDLER_RTX;
|
||
+ emit_move_insn (ra, operands[1]);
|
||
+ operands[1] = ra;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Compute the offsets between eliminable registers. */
|
||
+
|
||
+int
|
||
+ubicom32_initial_elimination_offset (int from, int to)
|
||
+{
|
||
+ ubicom32_layout_frame ();
|
||
+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
||
+ return save_regs_size + crtl->outgoing_args_size;
|
||
+
|
||
+ if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
|
||
+ return get_frame_size ()/* + save_regs_size */;
|
||
+
|
||
+ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
||
+ return get_frame_size ()
|
||
+ + crtl->outgoing_args_size
|
||
+ + save_regs_size;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Return 1 if it is appropriate to emit `ret' instructions in the
|
||
+ body of a function. Do this only if the epilogue is simple, needing a
|
||
+ couple of insns. Prior to reloading, we can't tell how many registers
|
||
+ must be saved, so return 0 then. Return 0 if there is no frame
|
||
+ marker to de-allocate.
|
||
+
|
||
+ If NON_SAVING_SETJMP is defined and true, then it is not possible
|
||
+ for the epilogue to be simple, so return 0. This is a special case
|
||
+ since NON_SAVING_SETJMP will not cause regs_ever_live to change
|
||
+ until final, but jump_optimize may need to know sooner if a
|
||
+ `return' is OK. */
|
||
+
|
||
+int
|
||
+ubicom32_can_use_return_insn_p (void)
|
||
+{
|
||
+ if (! reload_completed || frame_pointer_needed)
|
||
+ return 0;
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+/* Attributes and CC handling. */
|
||
+
|
||
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
|
||
+ struct attribute_spec.handler. */
|
||
+static tree
|
||
+ubicom32_handle_fndecl_attribute (tree *node, tree name,
|
||
+ tree args ATTRIBUTE_UNUSED,
|
||
+ int flags ATTRIBUTE_UNUSED,
|
||
+ bool *no_add_attrs)
|
||
+{
|
||
+ if (TREE_CODE (*node) != FUNCTION_DECL)
|
||
+ {
|
||
+ warning ("'%s' attribute only applies to functions",
|
||
+ IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ }
|
||
+
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+/* A C expression that places additional restrictions on the register class to
|
||
+ use when it is necessary to copy value X into a register in class CLASS.
|
||
+ The value is a register class; perhaps CLASS, or perhaps another, smaller
|
||
+ class. On many machines, the following definition is safe:
|
||
+
|
||
+ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
|
||
+
|
||
+ Sometimes returning a more restrictive class makes better code. For
|
||
+ example, on the 68000, when X is an integer constant that is in range for a
|
||
+ `moveq' instruction, the value of this macro is always `DATA_REGS' as long
|
||
+ as CLASS includes the data registers. Requiring a data register guarantees
|
||
+ that a `moveq' will be used.
|
||
+
|
||
+ If X is a `const_double', by returning `NO_REGS' you can force X into a
|
||
+ memory constant. This is useful on certain machines where immediate
|
||
+ floating values cannot be loaded into certain kinds of registers. */
|
||
+
|
||
+enum reg_class
|
||
+ubicom32_preferred_reload_class (rtx x, enum reg_class class)
|
||
+{
|
||
+ /* If a symbolic constant, HIGH or a PLUS is reloaded,
|
||
+ it is most likely being used as an address, so
|
||
+ prefer ADDRESS_REGS. If 'class' is not a superset
|
||
+ of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */
|
||
+ if (GET_CODE (x) == PLUS
|
||
+ || GET_CODE (x) == HIGH
|
||
+ || GET_CODE (x) == LABEL_REF
|
||
+ || GET_CODE (x) == SYMBOL_REF
|
||
+ || GET_CODE (x) == CONST)
|
||
+ {
|
||
+ if (reg_class_subset_p (ALL_ADDRESS_REGS, class))
|
||
+ return ALL_ADDRESS_REGS;
|
||
+
|
||
+ return NO_REGS;
|
||
+ }
|
||
+
|
||
+ return class;
|
||
+}
|
||
+
|
||
+/* Function arguments and varargs. */
|
||
+
|
||
+int
|
||
+ubicom32_reg_parm_stack_space (tree fndecl)
|
||
+{
|
||
+ return 0;
|
||
+
|
||
+ if (fndecl
|
||
+ && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0
|
||
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl))))
|
||
+ != void_type_node))
|
||
+ return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Flush the argument registers to the stack for a stdarg function;
|
||
+ return the new argument pointer. */
|
||
+
|
||
+rtx
|
||
+ubicom32_builtin_saveregs (void)
|
||
+{
|
||
+ int regno;
|
||
+
|
||
+ if (! cfun->stdarg)
|
||
+ return 0;
|
||
+
|
||
+ for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno)
|
||
+ emit_move_insn (gen_rtx_MEM (SImode,
|
||
+ gen_rtx_PRE_DEC (SImode,
|
||
+ stack_pointer_rtx)),
|
||
+ gen_rtx_REG (SImode, regno));
|
||
+
|
||
+ return stack_pointer_rtx;
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_va_start (tree valist, rtx nextarg)
|
||
+{
|
||
+ std_expand_builtin_va_start (valist, nextarg);
|
||
+}
|
||
+
|
||
+rtx
|
||
+ubicom32_va_arg (tree valist, tree type)
|
||
+{
|
||
+ HOST_WIDE_INT size, rsize;
|
||
+ tree addr, incr, tmp;
|
||
+ rtx addr_rtx;
|
||
+ int indirect = 0;
|
||
+
|
||
+ /* Round up sizeof(type) to a word. */
|
||
+ size = int_size_in_bytes (type);
|
||
+ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
|
||
+
|
||
+ /* Large types are passed by reference. */
|
||
+ if (size > 8)
|
||
+ {
|
||
+ indirect = 1;
|
||
+ size = rsize = UNITS_PER_WORD;
|
||
+ }
|
||
+
|
||
+ incr = valist;
|
||
+ addr = incr = save_expr (incr);
|
||
+
|
||
+ /* FIXME Nat's version - is it correct? */
|
||
+ tmp = fold_convert (ptr_type_node, size_int (rsize));
|
||
+ tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp);
|
||
+ incr = fold (tmp);
|
||
+
|
||
+ /* FIXME Nat's version - is it correct? */
|
||
+ incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr);
|
||
+
|
||
+ TREE_SIDE_EFFECTS (incr) = 1;
|
||
+ expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
||
+
|
||
+ addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
|
||
+
|
||
+ if (size < UNITS_PER_WORD)
|
||
+ emit_insn (gen_addsi3 (addr_rtx, addr_rtx,
|
||
+ GEN_INT (UNITS_PER_WORD - size)));
|
||
+
|
||
+ if (indirect)
|
||
+ {
|
||
+ addr_rtx = force_reg (Pmode, addr_rtx);
|
||
+ addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
|
||
+ set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
|
||
+ }
|
||
+
|
||
+ return addr_rtx;
|
||
+}
|
||
+
|
||
+void
|
||
+init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
|
||
+ int indirect ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ cum->nbytes = 0;
|
||
+
|
||
+ if (!libname)
|
||
+ {
|
||
+ cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0
|
||
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
||
+ != void_type_node));
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Return an RTX to represent where a value in mode MODE will be passed
|
||
+ to a function. If the result is 0, the argument will be pushed. */
|
||
+
|
||
+rtx
|
||
+function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
|
||
+ int named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ rtx result = 0;
|
||
+ int size, align;
|
||
+ int nregs = UBICOM32_FUNCTION_ARG_REGS;
|
||
+
|
||
+ /* Figure out the size of the object to be passed. */
|
||
+ if (mode == BLKmode)
|
||
+ size = int_size_in_bytes (type);
|
||
+ else
|
||
+ size = GET_MODE_SIZE (mode);
|
||
+
|
||
+ /* Figure out the alignment of the object to be passed. */
|
||
+ align = size;
|
||
+
|
||
+ cum->nbytes = (cum->nbytes + 3) & ~3;
|
||
+
|
||
+ /* Don't pass this arg via a register if all the argument registers
|
||
+ are used up. */
|
||
+ if (cum->nbytes >= nregs * UNITS_PER_WORD)
|
||
+ return 0;
|
||
+
|
||
+ /* Don't pass this arg via a register if it would be split between
|
||
+ registers and memory. */
|
||
+ result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
|
||
+
|
||
+ return result;
|
||
+}
|
||
+
|
||
+rtx
|
||
+function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
|
||
+ int named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ if (cfun->stdarg)
|
||
+ return 0;
|
||
+
|
||
+ return function_arg (cum, mode, type, named);
|
||
+}
|
||
+
|
||
+
|
||
+/* Implement hook TARGET_ARG_PARTIAL_BYTES.
|
||
+
|
||
+ Returns the number of bytes at the beginning of an argument that
|
||
+ must be put in registers. The value must be zero for arguments
|
||
+ that are passed entirely in registers or that are entirely pushed
|
||
+ on the stack. */
|
||
+static int
|
||
+ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
||
+ tree type, bool named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int size, diff;
|
||
+
|
||
+ int nregs = UBICOM32_FUNCTION_ARG_REGS;
|
||
+
|
||
+ /* round up to full word */
|
||
+ cum->nbytes = (cum->nbytes + 3) & ~3;
|
||
+
|
||
+ if (targetm.calls.pass_by_reference (cum, mode, type, named))
|
||
+ return 0;
|
||
+
|
||
+ /* number of bytes left in registers */
|
||
+ diff = nregs*UNITS_PER_WORD - cum->nbytes;
|
||
+
|
||
+ /* regs all used up */
|
||
+ if (diff <= 0)
|
||
+ return 0;
|
||
+
|
||
+ /* Figure out the size of the object to be passed. */
|
||
+ if (mode == BLKmode)
|
||
+ size = int_size_in_bytes (type);
|
||
+ else
|
||
+ size = GET_MODE_SIZE (mode);
|
||
+
|
||
+ /* enough space left in regs for size */
|
||
+ if (size <= diff)
|
||
+ return 0;
|
||
+
|
||
+ /* put diff bytes in regs and rest on stack */
|
||
+ return diff;
|
||
+
|
||
+}
|
||
+
|
||
+static bool
|
||
+ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode, const_tree type,
|
||
+ bool named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int size;
|
||
+
|
||
+ if (type)
|
||
+ size = int_size_in_bytes (type);
|
||
+ else
|
||
+ size = GET_MODE_SIZE (mode);
|
||
+
|
||
+ return size <= 0 || size > 8;
|
||
+}
|
||
+
|
||
+static bool
|
||
+ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode, const_tree type,
|
||
+ bool named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int size;
|
||
+
|
||
+ if (type)
|
||
+ size = int_size_in_bytes (type);
|
||
+ else
|
||
+ size = GET_MODE_SIZE (mode);
|
||
+
|
||
+ return size <= 0 || size > 8;
|
||
+}
|
||
+
|
||
+static bool
|
||
+ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int size, mode;
|
||
+
|
||
+ if (!type)
|
||
+ return true;
|
||
+
|
||
+ size = int_size_in_bytes(type);
|
||
+ if (size > 8)
|
||
+ return true;
|
||
+
|
||
+ mode = TYPE_MODE(type);
|
||
+ if (mode == BLKmode)
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+/* Return true if a given register number REGNO is acceptable for machine
|
||
+ mode MODE. */
|
||
+bool
|
||
+ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
|
||
+{
|
||
+ /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */
|
||
+ if (! ubicom32_v3)
|
||
+ {
|
||
+ if (regno == ACC0_HI_REGNUM)
|
||
+ return (mode == QImode || mode == HImode);
|
||
+ }
|
||
+
|
||
+ /* Only the flags reg can hold CCmode. */
|
||
+ if (GET_MODE_CLASS (mode) == MODE_CC)
|
||
+ return regno == CC_REGNUM;
|
||
+
|
||
+ /* We restrict the choice of DImode registers to only being address,
|
||
+ data or accumulator regs. We also restrict them to only start on
|
||
+ even register numbers so we never have to worry about partial
|
||
+ overlaps between operands in instructions. */
|
||
+ if (GET_MODE_SIZE (mode) > 4)
|
||
+ {
|
||
+ switch (REGNO_REG_CLASS (regno))
|
||
+ {
|
||
+ case ADDRESS_REGS:
|
||
+ case DATA_REGS:
|
||
+ case ACC_REGS:
|
||
+ return (regno & 1) == 0;
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return true;
|
||
+}
|
||
+
|
||
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
+ and check its validity for a certain class.
|
||
+ We have two alternate definitions for each of them.
|
||
+ The usual definition accepts all pseudo regs; the other rejects
|
||
+ them unless they have been allocated suitable hard regs.
|
||
+ The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
+
|
||
+ Most source files want to accept pseudo regs in the hope that
|
||
+ they will get allocated to the class that the insn wants them to be in.
|
||
+ Source files for reload pass need to be strict.
|
||
+ After reload, it makes no difference, since pseudo regs have
|
||
+ been eliminated by then.
|
||
+
|
||
+ These assume that REGNO is a hard or pseudo reg number.
|
||
+ They give nonzero only if REGNO is a hard reg of the suitable class
|
||
+ or a pseudo reg currently allocated to a suitable hard reg.
|
||
+ Since they use reg_renumber, they are safe only once reg_renumber
|
||
+ has been allocated, which happens in local-alloc.c. */
|
||
+
|
||
+int
|
||
+ubicom32_regno_ok_for_base_p (int regno, int strict)
|
||
+{
|
||
+ if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM)
|
||
+ || (!strict
|
||
+ && (regno >= FIRST_PSEUDO_REGISTER
|
||
+ || regno == ARG_POINTER_REGNUM))
|
||
+ || (strict && (reg_renumber
|
||
+ && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM
|
||
+ && reg_renumber[regno] <= STACK_POINTER_REGNUM)))
|
||
+ return 1;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+int
|
||
+ubicom32_regno_ok_for_index_p (int regno, int strict)
|
||
+{
|
||
+ if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM)
|
||
+ || (!strict && regno >= FIRST_PSEUDO_REGISTER)
|
||
+ || (strict && (reg_renumber
|
||
+ && reg_renumber[regno] >= FIRST_DATA_REGNUM
|
||
+ && reg_renumber[regno] <= LAST_DATA_REGNUM)))
|
||
+ return 1;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Returns 1 if X is a valid index register. STRICT is 1 if only hard
|
||
+ registers should be accepted. Accept either REG or SUBREG where a
|
||
+ register is valid. */
|
||
+
|
||
+static bool
|
||
+ubicom32_is_index_reg (rtx x, int strict)
|
||
+{
|
||
+ if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict))
|
||
+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
|
||
+ && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict)))
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+/* Return 1 if X is a valid index for a memory address. */
|
||
+
|
||
+static bool
|
||
+ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict)
|
||
+{
|
||
+ /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2
|
||
+ or 4 depending on mode. */
|
||
+ if (CONST_INT_P (x))
|
||
+ {
|
||
+ switch (mode)
|
||
+ {
|
||
+ case QImode:
|
||
+ return satisfies_constraint_J (x);
|
||
+
|
||
+ case HImode:
|
||
+ return satisfies_constraint_K (x);
|
||
+
|
||
+ case SImode:
|
||
+ case SFmode:
|
||
+ return satisfies_constraint_L (x);
|
||
+
|
||
+ case DImode:
|
||
+ return satisfies_constraint_L (x)
|
||
+ && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4));
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (mode != SImode && mode != HImode && mode != QImode)
|
||
+ return false;
|
||
+
|
||
+ /* Register index scaled by mode of operand: REG + REG * modesize.
|
||
+ Valid scaled index registers are:
|
||
+
|
||
+ SImode (mult (dreg) 4))
|
||
+ HImode (mult (dreg) 2))
|
||
+ QImode (mult (dreg) 1)) */
|
||
+ if (GET_CODE (x) == MULT
|
||
+ && ubicom32_is_index_reg (XEXP (x, 0), strict)
|
||
+ && CONST_INT_P (XEXP (x, 1))
|
||
+ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode))
|
||
+ return true;
|
||
+
|
||
+ /* REG + REG addressing is allowed for QImode. */
|
||
+ if (ubicom32_is_index_reg (x, strict) && mode == QImode)
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+static bool
|
||
+ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs)
|
||
+{
|
||
+ if (offs < 0)
|
||
+ return false;
|
||
+
|
||
+ switch (mode)
|
||
+ {
|
||
+ case QImode:
|
||
+ return offs <= 127;
|
||
+
|
||
+ case HImode:
|
||
+ return offs <= 254;
|
||
+
|
||
+ case SImode:
|
||
+ case SFmode:
|
||
+ return offs <= 508;
|
||
+
|
||
+ case DImode:
|
||
+ return offs <= 504;
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+}
|
||
+
|
||
+static int
|
||
+ubicom32_get_valid_offset_mask (enum machine_mode mode)
|
||
+{
|
||
+ switch (mode)
|
||
+ {
|
||
+ case QImode:
|
||
+ return 127;
|
||
+
|
||
+ case HImode:
|
||
+ return 255;
|
||
+
|
||
+ case SImode:
|
||
+ case SFmode:
|
||
+ return 511;
|
||
+
|
||
+ case DImode:
|
||
+ return 255;
|
||
+
|
||
+ default:
|
||
+ return 0;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Returns 1 if X is a valid base register. STRICT is 1 if only hard
|
||
+ registers should be accepted. Accept either REG or SUBREG where a
|
||
+ register is valid. */
|
||
+
|
||
+static bool
|
||
+ubicom32_is_base_reg (rtx x, int strict)
|
||
+{
|
||
+ if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict))
|
||
+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
|
||
+ && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict)))
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+static bool
|
||
+ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return TARGET_FDPIC;
|
||
+}
|
||
+
|
||
+/* Determine if X is a legitimate constant. */
|
||
+
|
||
+bool
|
||
+ubicom32_legitimate_constant_p (rtx x)
|
||
+{
|
||
+ /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether
|
||
+ a constant can be entered into reg_equiv_constant[]. If we return true,
|
||
+ reload can create new instances of the constant whenever it likes.
|
||
+
|
||
+ The idea is therefore to accept as many constants as possible (to give
|
||
+ reload more freedom) while rejecting constants that can only be created
|
||
+ at certain times. In particular, anything with a symbolic component will
|
||
+ require use of the pseudo FDPIC register, which is only available before
|
||
+ reload. */
|
||
+ if (TARGET_FDPIC)
|
||
+ {
|
||
+ if (GET_CODE (x) == SYMBOL_REF
|
||
+ || (GET_CODE (x) == CONST
|
||
+ && GET_CODE (XEXP (x, 0)) == PLUS
|
||
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
|
||
+ || CONSTANT_ADDRESS_P (x))
|
||
+ return false;
|
||
+
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* For non-PIC code anything goes! */
|
||
+ return true;
|
||
+}
|
||
+
|
||
+/* Address validation. */
|
||
+
|
||
+bool
|
||
+ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
|
||
+{
|
||
+ if (TARGET_DEBUG_ADDRESS)
|
||
+ {
|
||
+ fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n",
|
||
+ (strict) ? " (STRICT)" : "");
|
||
+ debug_rtx (x);
|
||
+ }
|
||
+
|
||
+ if (CONSTANT_ADDRESS_P (x))
|
||
+ return false;
|
||
+
|
||
+ if (ubicom32_is_base_reg (x, strict))
|
||
+ return true;
|
||
+
|
||
+ if ((GET_CODE (x) == POST_INC
|
||
+ || GET_CODE (x) == PRE_INC
|
||
+ || GET_CODE (x) == POST_DEC
|
||
+ || GET_CODE (x) == PRE_DEC)
|
||
+ && REG_P (XEXP (x, 0))
|
||
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
|
||
+ && mode != DImode)
|
||
+ return true;
|
||
+
|
||
+ if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
|
||
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
|
||
+ && GET_CODE (XEXP (x, 1)) == PLUS
|
||
+ && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))
|
||
+ && CONST_INT_P (XEXP (XEXP (x, 1), 1))
|
||
+ && mode != DImode)
|
||
+ {
|
||
+ HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1));
|
||
+ switch (mode)
|
||
+ {
|
||
+ case QImode:
|
||
+ return disp >= -8 && disp <= 7;
|
||
+
|
||
+ case HImode:
|
||
+ return disp >= -16 && disp <= 14 && ! (disp & 1);
|
||
+
|
||
+ case SImode:
|
||
+ return disp >= -32 && disp <= 28 && ! (disp & 3);
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* Accept base + index * scale. */
|
||
+ if (GET_CODE (x) == PLUS
|
||
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
|
||
+ && ubicom32_is_index_expr (mode, XEXP (x, 1), strict))
|
||
+ return true;
|
||
+
|
||
+ /* Accept index * scale + base. */
|
||
+ if (GET_CODE (x) == PLUS
|
||
+ && ubicom32_is_base_reg (XEXP (x, 1), strict)
|
||
+ && ubicom32_is_index_expr (mode, XEXP (x, 0), strict))
|
||
+ return true;
|
||
+
|
||
+ if (! TARGET_FDPIC)
|
||
+ {
|
||
+ /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits
|
||
+ displacement operand:
|
||
+
|
||
+ moveai a1, #%hi(SYM)
|
||
+ move.4 d3, %lo(SYM)(a1) */
|
||
+ if (GET_CODE (x) == LO_SUM
|
||
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
|
||
+ && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
|
||
+ || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */)
|
||
+ && mode != DImode)
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ if (TARGET_DEBUG_ADDRESS)
|
||
+ fprintf (stderr, "\nNot a legitimate address.\n");
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+rtx
|
||
+ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode)
|
||
+{
|
||
+ if (mode == BLKmode)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ if (GET_CODE (x) == PLUS
|
||
+ && REG_P (XEXP (x, 0))
|
||
+ && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0)))
|
||
+ && CONST_INT_P (XEXP (x, 1))
|
||
+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1))))
|
||
+ {
|
||
+ rtx base;
|
||
+ rtx plus;
|
||
+ rtx new_rtx;
|
||
+ HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
|
||
+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
|
||
+ HOST_WIDE_INT high = val ^ low;
|
||
+
|
||
+ if (val < 0)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ if (! low)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ /* Reload the high part into a base reg; leave the low part
|
||
+ in the mem directly. */
|
||
+ base = XEXP (x, 0);
|
||
+ if (! ubicom32_is_base_reg (base, 0))
|
||
+ base = copy_to_mode_reg (Pmode, base);
|
||
+
|
||
+ plus = expand_simple_binop (Pmode, PLUS,
|
||
+ gen_int_mode (high, Pmode),
|
||
+ base, NULL, 0, OPTAB_WIDEN);
|
||
+ new_rtx = plus_constant (plus, low);
|
||
+
|
||
+ return new_rtx;
|
||
+ }
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/* Try a machine-dependent way of reloading an illegitimate address AD
|
||
+ operand. If we find one, push the reload and and return the new address.
|
||
+
|
||
+ MODE is the mode of the enclosing MEM. OPNUM is the operand number
|
||
+ and TYPE is the reload type of the current reload. */
|
||
+
|
||
+rtx
|
||
+ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode,
|
||
+ int opnum, int type)
|
||
+{
|
||
+ /* Is this an address that we've already fixed up? If it is then
|
||
+ recognize it and move on. */
|
||
+ if (GET_CODE (ad) == PLUS
|
||
+ && GET_CODE (XEXP (ad, 0)) == PLUS
|
||
+ && REG_P (XEXP (XEXP (ad, 0), 0))
|
||
+ && CONST_INT_P (XEXP (XEXP (ad, 0), 1))
|
||
+ && CONST_INT_P (XEXP (ad, 1)))
|
||
+ {
|
||
+ push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL,
|
||
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
|
||
+ opnum, (enum reload_type) type);
|
||
+ return ad;
|
||
+ }
|
||
+
|
||
+ /* Have we got an address where the offset is simply out of range? If
|
||
+ yes then reload the range as a high part and smaller offset. */
|
||
+ if (GET_CODE (ad) == PLUS
|
||
+ && REG_P (XEXP (ad, 0))
|
||
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
|
||
+ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))
|
||
+ && CONST_INT_P (XEXP (ad, 1))
|
||
+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1))))
|
||
+ {
|
||
+ rtx temp;
|
||
+ rtx new_rtx;
|
||
+
|
||
+ HOST_WIDE_INT val = INTVAL (XEXP (ad, 1));
|
||
+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
|
||
+ HOST_WIDE_INT high = val ^ low;
|
||
+
|
||
+ /* Reload the high part into a base reg; leave the low part
|
||
+ in the mem directly. */
|
||
+ temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high));
|
||
+ new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low));
|
||
+
|
||
+ push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL,
|
||
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
|
||
+ opnum, (enum reload_type) type);
|
||
+ return new_rtx;
|
||
+ }
|
||
+
|
||
+ /* If we're presented with an pre/post inc/dec then we must force this
|
||
+ to be done in an address register. The register allocator should
|
||
+ work this out for itself but at times ends up trying to use the wrong
|
||
+ class. If we get the wrong class then reload will end up generating
|
||
+ at least 3 instructions whereas this way we can hopefully keep it to
|
||
+ just 2. */
|
||
+ if ((GET_CODE (ad) == POST_INC
|
||
+ || GET_CODE (ad) == PRE_INC
|
||
+ || GET_CODE (ad) == POST_DEC
|
||
+ || GET_CODE (ad) == PRE_DEC)
|
||
+ && REG_P (XEXP (ad, 0))
|
||
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
|
||
+ && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))))
|
||
+ {
|
||
+ push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0),
|
||
+ BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0,
|
||
+ opnum, RELOAD_OTHER);
|
||
+ return ad;
|
||
+ }
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/* Compute a (partial) cost for rtx X. Return true if the complete
|
||
+ cost has been computed, and false if subexpressions should be
|
||
+ scanned. In either case, *TOTAL contains the cost result. */
|
||
+
|
||
+static bool
|
||
+ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total,
|
||
+ bool speed ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ enum machine_mode mode = GET_MODE (x);
|
||
+
|
||
+ switch (code)
|
||
+ {
|
||
+ case CONST_INT:
|
||
+ /* Very short constants often fold into instructions so
|
||
+ we pretend that they don't cost anything! This is
|
||
+ really important as regards zero values as otherwise
|
||
+ the compiler has a nasty habit of wanting to reuse
|
||
+ zeroes that are in regs but that tends to pessimize
|
||
+ the code. */
|
||
+ if (satisfies_constraint_I (x))
|
||
+ {
|
||
+ *total = 0;
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* Bit clearing costs nothing */
|
||
+ if (outer_code == AND
|
||
+ && exact_log2 (~INTVAL (x)) != -1)
|
||
+ {
|
||
+ *total = 0;
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* Masking the lower set of bits costs nothing. */
|
||
+ if (outer_code == AND
|
||
+ && exact_log2 (INTVAL (x) + 1) != -1)
|
||
+ {
|
||
+ *total = 0;
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* Bit setting costs nothing. */
|
||
+ if (outer_code == IOR
|
||
+ && exact_log2 (INTVAL (x)) != -1)
|
||
+ {
|
||
+ *total = 0;
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* Larger constants that can be loaded via movei aren't too
|
||
+ bad. If we're just doing a set they cost nothing extra. */
|
||
+ if (satisfies_constraint_N (x))
|
||
+ {
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (2);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (1);
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (5);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (3);
|
||
+ return true;
|
||
+
|
||
+ case CONST_DOUBLE:
|
||
+ /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
|
||
+ so their cost is very high. */
|
||
+ *total = COSTS_N_INSNS (6);
|
||
+ return true;
|
||
+
|
||
+ case CONST:
|
||
+ case SYMBOL_REF:
|
||
+ case MEM:
|
||
+ *total = 0;
|
||
+ return true;
|
||
+
|
||
+ case IF_THEN_ELSE:
|
||
+ *total = COSTS_N_INSNS (1);
|
||
+ return true;
|
||
+
|
||
+ case LABEL_REF:
|
||
+ case HIGH:
|
||
+ case LO_SUM:
|
||
+ case BSWAP:
|
||
+ case PLUS:
|
||
+ case MINUS:
|
||
+ case AND:
|
||
+ case IOR:
|
||
+ case XOR:
|
||
+ case ASHIFT:
|
||
+ case ASHIFTRT:
|
||
+ case LSHIFTRT:
|
||
+ case NEG:
|
||
+ case NOT:
|
||
+ case SIGN_EXTEND:
|
||
+ case ZERO_EXTEND:
|
||
+ case ZERO_EXTRACT:
|
||
+ if (outer_code == SET)
|
||
+ {
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (2);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (1);
|
||
+ }
|
||
+ return true;
|
||
+
|
||
+ case COMPARE:
|
||
+ if (outer_code == SET)
|
||
+ {
|
||
+ if (GET_MODE (XEXP (x, 0)) == DImode
|
||
+ || GET_MODE (XEXP (x, 1)) == DImode)
|
||
+ *total = COSTS_N_INSNS (2);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (1);
|
||
+ }
|
||
+ return true;
|
||
+
|
||
+ case UMOD:
|
||
+ case UDIV:
|
||
+ case MOD:
|
||
+ case DIV:
|
||
+ if (outer_code == SET)
|
||
+ {
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (600);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (200);
|
||
+ }
|
||
+ return true;
|
||
+
|
||
+ case MULT:
|
||
+ if (outer_code == SET)
|
||
+ {
|
||
+ if (! ubicom32_v4)
|
||
+ {
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (15);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (5);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (mode == DImode)
|
||
+ *total = COSTS_N_INSNS (6);
|
||
+ else
|
||
+ *total = COSTS_N_INSNS (2);
|
||
+ }
|
||
+ }
|
||
+ return true;
|
||
+
|
||
+ case UNSPEC:
|
||
+ if (XINT (x, 1) == UNSPEC_FDPIC_GOT
|
||
+ || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC)
|
||
+ *total = 0;
|
||
+ return true;
|
||
+
|
||
+ default:
|
||
+ return false;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Return 1 if ADDR can have different meanings depending on the machine
|
||
+ mode of the memory reference it is used for or if the address is
|
||
+ valid for some modes but not others.
|
||
+
|
||
+ Autoincrement and autodecrement addresses typically have
|
||
+ mode-dependent effects because the amount of the increment or
|
||
+ decrement is the size of the operand being addressed. Some machines
|
||
+ have other mode-dependent addresses. Many RISC machines have no
|
||
+ mode-dependent addresses.
|
||
+
|
||
+ You may assume that ADDR is a valid address for the machine. */
|
||
+
|
||
+int
|
||
+ubicom32_mode_dependent_address_p (rtx addr)
|
||
+{
|
||
+ if (GET_CODE (addr) == POST_INC
|
||
+ || GET_CODE (addr) == PRE_INC
|
||
+ || GET_CODE (addr) == POST_DEC
|
||
+ || GET_CODE (addr) == PRE_DEC
|
||
+ || GET_CODE (addr) == POST_MODIFY
|
||
+ || GET_CODE (addr) == PRE_MODIFY)
|
||
+ return 1;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+static void
|
||
+ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n",
|
||
+ get_frame_size (), crtl->args.pretend_args_size,
|
||
+ save_regs_size, crtl->outgoing_args_size,
|
||
+ current_function_is_leaf ? "leaf" : "nonleaf");
|
||
+}
|
||
+
|
||
+static void
|
||
+ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
|
||
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ ubicom32_reorg_completed = 0;
|
||
+}
|
||
+
|
||
+static void
|
||
+ubicom32_machine_dependent_reorg (void)
|
||
+{
|
||
+#if 0 /* Commenting out this optimization until it is fixed */
|
||
+ if (optimize)
|
||
+ {
|
||
+ compute_bb_for_insn ();
|
||
+
|
||
+ /* Do a very simple CSE pass over just the hard registers. */
|
||
+ reload_cse_regs (get_insns ());
|
||
+
|
||
+ /* Reload_cse_regs can eliminate potentially-trapping MEMs.
|
||
+ Remove any EH edges associated with them. */
|
||
+ if (flag_non_call_exceptions)
|
||
+ purge_all_dead_edges ();
|
||
+ }
|
||
+#endif
|
||
+ ubicom32_reorg_completed = 1;
|
||
+}
|
||
+
|
||
+void
|
||
+ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target)
|
||
+{
|
||
+ rtx note;
|
||
+ int mostly_false_jump;
|
||
+ rtx xoperands[2];
|
||
+ rtx cc_reg;
|
||
+
|
||
+ note = find_reg_note (insn, REG_BR_PROB, 0);
|
||
+ mostly_false_jump = !note || (INTVAL (XEXP (note, 0))
|
||
+ <= REG_BR_PROB_BASE / 2);
|
||
+
|
||
+ xoperands[0] = target;
|
||
+ xoperands[1] = cond;
|
||
+ cc_reg = XEXP (cond, 0);
|
||
+
|
||
+ if (GET_MODE (cc_reg) == CCWmode
|
||
+ || GET_MODE (cc_reg) == CCWZmode
|
||
+ || GET_MODE (cc_reg) == CCWZNmode)
|
||
+ {
|
||
+ if (mostly_false_jump)
|
||
+ output_asm_insn ("jmp%b1.w.f\t%0", xoperands);
|
||
+ else
|
||
+ output_asm_insn ("jmp%b1.w.t\t%0", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ if (GET_MODE (cc_reg) == CCSmode
|
||
+ || GET_MODE (cc_reg) == CCSZmode
|
||
+ || GET_MODE (cc_reg) == CCSZNmode)
|
||
+ {
|
||
+ if (mostly_false_jump)
|
||
+ output_asm_insn ("jmp%b1.s.f\t%0", xoperands);
|
||
+ else
|
||
+ output_asm_insn ("jmp%b1.s.t\t%0", xoperands);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ abort ();
|
||
+}
|
||
+
|
||
+/* Return non-zero if FUNC is a naked function. */
|
||
+
|
||
+static int
|
||
+ubicom32_naked_function_p (void)
|
||
+{
|
||
+ return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
|
||
+}
|
||
+
|
||
+/* Return an RTX indicating where the return address to the
|
||
+ calling function can be found. */
|
||
+rtx
|
||
+ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ if (count != 0)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ return get_hard_reg_initial_val (Pmode, LINK_REGNO);
|
||
+}
|
||
+
|
||
+/*
|
||
+ * ubicom32_readonly_data_section: This routtine handles code
|
||
+ * at the start of readonly data sections
|
||
+ */
|
||
+static void
|
||
+ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ static int num = 0;
|
||
+ if (in_section == readonly_data_section){
|
||
+ fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP);
|
||
+ if (flag_data_sections){
|
||
+ fprintf (asm_out_file, ".rodata%d", num);
|
||
+ fprintf (asm_out_file, ",\"a\"");
|
||
+ }
|
||
+ fprintf (asm_out_file, "\n");
|
||
+ }
|
||
+ num++;
|
||
+}
|
||
+
|
||
+/*
|
||
+ * ubicom32_text_section: not in readonly section
|
||
+ */
|
||
+static void
|
||
+ubicom32_text_section(const void *data ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
|
||
+}
|
||
+
|
||
+/*
|
||
+ * ubicom32_data_section: not in readonly section
|
||
+ */
|
||
+static void
|
||
+ubicom32_data_section(const void *data ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP);
|
||
+}
|
||
+
|
||
+/*
|
||
+ * ubicom32_asm_init_sections: This routine implements special
|
||
+ * section handling
|
||
+ */
|
||
+static void
|
||
+ubicom32_asm_init_sections(void)
|
||
+{
|
||
+ text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL);
|
||
+
|
||
+ data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL);
|
||
+
|
||
+ readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL);
|
||
+}
|
||
+
|
||
+/*
|
||
+ * ubicom32_profiler: This routine would call
|
||
+ * mcount to support prof and gprof if mcount
|
||
+ * was supported. Currently, do nothing.
|
||
+ */
|
||
+void
|
||
+ubicom32_profiler(void)
|
||
+{
|
||
+}
|
||
+
|
||
+/* Initialise the builtin functions. Start by initialising
|
||
+ descriptions of different types of functions (e.g., void fn(int),
|
||
+ int fn(void)), and then use these to define the builtins. */
|
||
+static void
|
||
+ubicom32_init_builtins (void)
|
||
+{
|
||
+ tree endlink;
|
||
+ tree short_unsigned_endlink;
|
||
+ tree unsigned_endlink;
|
||
+ tree short_unsigned_ftype_short_unsigned;
|
||
+ tree unsigned_ftype_unsigned;
|
||
+
|
||
+ endlink = void_list_node;
|
||
+
|
||
+ short_unsigned_endlink
|
||
+ = tree_cons (NULL_TREE, short_unsigned_type_node, endlink);
|
||
+
|
||
+ unsigned_endlink
|
||
+ = tree_cons (NULL_TREE, unsigned_type_node, endlink);
|
||
+
|
||
+ short_unsigned_ftype_short_unsigned
|
||
+ = build_function_type (short_unsigned_type_node, short_unsigned_endlink);
|
||
+
|
||
+ unsigned_ftype_unsigned
|
||
+ = build_function_type (unsigned_type_node, unsigned_endlink);
|
||
+
|
||
+ /* Initialise the byte swap function. */
|
||
+ add_builtin_function ("__builtin_ubicom32_swapb_2",
|
||
+ short_unsigned_ftype_short_unsigned,
|
||
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
|
||
+ BUILT_IN_MD, NULL,
|
||
+ NULL_TREE);
|
||
+
|
||
+ /* Initialise the byte swap function. */
|
||
+ add_builtin_function ("__builtin_ubicom32_swapb_4",
|
||
+ unsigned_ftype_unsigned,
|
||
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4,
|
||
+ BUILT_IN_MD, NULL,
|
||
+ NULL_TREE);
|
||
+}
|
||
+
|
||
+/* Given a builtin function taking 2 operands (i.e., target + source),
|
||
+ emit the RTL for the underlying instruction. */
|
||
+static rtx
|
||
+ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target)
|
||
+{
|
||
+ tree arg0;
|
||
+ rtx op0, pat;
|
||
+ enum machine_mode tmode, mode0;
|
||
+
|
||
+ /* Grab the incoming argument and emit its RTL. */
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ /* Determine the modes of the instruction operands. */
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ /* Ensure that the incoming argument RTL is in a register of the
|
||
+ correct mode. */
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+
|
||
+ /* If there isn't a suitable target, emit a target register. */
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+ /* Emit and return the new instruction. */
|
||
+ pat = GEN_FCN (icode) (target, op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+}
|
||
+
|
||
+/* Expand a call to a builtin function. */
|
||
+static rtx
|
||
+ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ int ignore ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
||
+ tree arglist = CALL_EXPR_ARGS(exp);
|
||
+ int fcode = DECL_FUNCTION_CODE (fndecl);
|
||
+
|
||
+ switch (fcode)
|
||
+ {
|
||
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
|
||
+ return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target);
|
||
+
|
||
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
|
||
+ return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target);
|
||
+
|
||
+ default:
|
||
+ gcc_unreachable();
|
||
+ }
|
||
+
|
||
+ /* Should really do something sensible here. */
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/* Fold any constant argument for a swapb.2 instruction. */
|
||
+static tree
|
||
+ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist)
|
||
+{
|
||
+ tree arg0;
|
||
+
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+
|
||
+ /* Optimize constant value. */
|
||
+ if (TREE_CODE (arg0) == INTEGER_CST)
|
||
+ {
|
||
+ HOST_WIDE_INT v;
|
||
+ HOST_WIDE_INT res;
|
||
+
|
||
+ v = TREE_INT_CST_LOW (arg0);
|
||
+ res = ((v >> 8) & 0xff)
|
||
+ | ((v & 0xff) << 8);
|
||
+
|
||
+ return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
|
||
+ }
|
||
+
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+/* Fold any constant argument for a swapb.4 instruction. */
|
||
+static tree
|
||
+ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist)
|
||
+{
|
||
+ tree arg0;
|
||
+
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+
|
||
+ /* Optimize constant value. */
|
||
+ if (TREE_CODE (arg0) == INTEGER_CST)
|
||
+ {
|
||
+ unsigned HOST_WIDE_INT v;
|
||
+ unsigned HOST_WIDE_INT res;
|
||
+
|
||
+ v = TREE_INT_CST_LOW (arg0);
|
||
+ res = ((v >> 24) & 0xff)
|
||
+ | (((v >> 16) & 0xff) << 8)
|
||
+ | (((v >> 8) & 0xff) << 16)
|
||
+ | ((v & 0xff) << 24);
|
||
+
|
||
+ return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0);
|
||
+ }
|
||
+
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+/* Fold any constant arguments for builtin functions. */
|
||
+static tree
|
||
+ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ switch (DECL_FUNCTION_CODE (fndecl))
|
||
+ {
|
||
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
|
||
+ return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist);
|
||
+
|
||
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
|
||
+ return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist);
|
||
+
|
||
+ default:
|
||
+ return NULL;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to
|
||
+ tell the assembler to generate pointers to function descriptors in
|
||
+ some cases. */
|
||
+static bool
|
||
+ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p)
|
||
+{
|
||
+ if (TARGET_FDPIC && size == UNITS_PER_WORD)
|
||
+ {
|
||
+ if (GET_CODE (value) == SYMBOL_REF
|
||
+ && SYMBOL_REF_FUNCTION_P (value))
|
||
+ {
|
||
+ fputs ("\t.picptr\t%funcdesc(", asm_out_file);
|
||
+ output_addr_const (asm_out_file, value);
|
||
+ fputs (")\n", asm_out_file);
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ if (!aligned_p)
|
||
+ {
|
||
+ /* We've set the unaligned SI op to NULL, so we always have to
|
||
+ handle the unaligned case here. */
|
||
+ assemble_integer_with_op ("\t.4byte\t", value);
|
||
+ return true;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return default_assemble_integer (value, size, aligned_p);
|
||
+}
|
||
+
|
||
+/* If the constant I can be constructed by shifting a source-1 immediate
|
||
+ by a constant number of bits then return the bit count. If not
|
||
+ return 0. */
|
||
+
|
||
+int
|
||
+ubicom32_shiftable_const_int (int i)
|
||
+{
|
||
+ int shift = 0;
|
||
+
|
||
+ /* Note that any constant that can be represented as an immediate to
|
||
+ a movei instruction is automatically ignored here in the interests
|
||
+ of the clarity of the output asm code. */
|
||
+ if (i >= -32768 && i <= 32767)
|
||
+ return 0;
|
||
+
|
||
+ /* Find the number of trailing zeroes. We could use __builtin_ctz
|
||
+ here but it's not obvious if this is supported on all build
|
||
+ compilers so we err on the side of caution. */
|
||
+ if ((i & 0xffff) == 0)
|
||
+ {
|
||
+ shift += 16;
|
||
+ i >>= 16;
|
||
+ }
|
||
+
|
||
+ if ((i & 0xff) == 0)
|
||
+ {
|
||
+ shift += 8;
|
||
+ i >>= 8;
|
||
+ }
|
||
+
|
||
+ if ((i & 0xf) == 0)
|
||
+ {
|
||
+ shift += 4;
|
||
+ i >>= 4;
|
||
+ }
|
||
+
|
||
+ if ((i & 0x3) == 0)
|
||
+ {
|
||
+ shift += 2;
|
||
+ i >>= 2;
|
||
+ }
|
||
+
|
||
+ if ((i & 0x1) == 0)
|
||
+ {
|
||
+ shift += 1;
|
||
+ i >>= 1;
|
||
+ }
|
||
+
|
||
+ if (i >= -128 && i <= 127)
|
||
+ return shift;
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32.h
|
||
@@ -0,0 +1,1564 @@
|
||
+/* Definitions of target machine for Ubicom32
|
||
+
|
||
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
+ 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ GCC is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published
|
||
+ by the Free Software Foundation; either version 3, or (at your
|
||
+ option) any later version.
|
||
+
|
||
+ GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+ License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with GCC; see the file COPYING3. If not see
|
||
+ <http://www.gnu.org/licenses/>. */
|
||
+
|
||
+
|
||
+
|
||
+#define OBJECT_FORMAT_ELF
|
||
+
|
||
+/* Run-time target specifications. */
|
||
+
|
||
+/* Target CPU builtins. */
|
||
+#define TARGET_CPU_CPP_BUILTINS() \
|
||
+ do \
|
||
+ { \
|
||
+ builtin_define_std ("__UBICOM32__"); \
|
||
+ builtin_define_std ("__ubicom32__"); \
|
||
+ \
|
||
+ if (TARGET_FDPIC) \
|
||
+ { \
|
||
+ builtin_define ("__UBICOM32_FDPIC__"); \
|
||
+ builtin_define ("__FDPIC__"); \
|
||
+ } \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+#ifndef TARGET_DEFAULT
|
||
+#define TARGET_DEFAULT 0
|
||
+#endif
|
||
+
|
||
+extern int ubicom32_case_values_threshold;
|
||
+
|
||
+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
|
||
+extern int ubicom32_v3;
|
||
+
|
||
+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
|
||
+extern int ubicom32_v4;
|
||
+
|
||
+extern int ubicom32_stack_size;
|
||
+
|
||
+/* Flag for whether we can use calli instead of ret in returns. */
|
||
+extern int ubicom32_can_use_calli_to_ret;
|
||
+
|
||
+/* This macro is a C statement to print on `stderr' a string describing the
|
||
+ particular machine description choice. Every machine description should
|
||
+ define `TARGET_VERSION'. */
|
||
+#define TARGET_VERSION fprintf (stderr, " (UBICOM32)");
|
||
+
|
||
+/* We don't need a frame pointer to debug things. Doing this means
|
||
+ that gcc can turn on -fomit-frame-pointer when '-O' is specified. */
|
||
+#define CAN_DEBUG_WITHOUT_FP
|
||
+
|
||
+/* We need to handle processor-specific options. */
|
||
+#define OVERRIDE_OPTIONS ubicom32_override_options ()
|
||
+
|
||
+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
|
||
+ ubicom32_optimization_options (LEVEL, SIZE)
|
||
+
|
||
+/* For Ubicom32 the least significant bit has the lowest bit number
|
||
+ so we define this to be 0. */
|
||
+#define BITS_BIG_ENDIAN 0
|
||
+
|
||
+/* For Ubicom32 the most significant byte in a word has the lowest
|
||
+ number. */
|
||
+#define BYTES_BIG_ENDIAN 1
|
||
+
|
||
+/* For Ubicom32, in a multiword object, the most signifant word has the
|
||
+ lowest number. */
|
||
+#define WORDS_BIG_ENDIAN 1
|
||
+
|
||
+/* Ubicom32 has 8 bits per byte. */
|
||
+#define BITS_PER_UNIT 8
|
||
+
|
||
+/* Ubicom32 has 32 bits per word. */
|
||
+#define BITS_PER_WORD 32
|
||
+
|
||
+/* Width of a word, in units (bytes). */
|
||
+#define UNITS_PER_WORD 4
|
||
+
|
||
+/* Width of a pointer, in bits. */
|
||
+#define POINTER_SIZE 32
|
||
+
|
||
+/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use
|
||
+ SImode. */
|
||
+#define Pmode SImode
|
||
+
|
||
+/* Normal alignment required for function parameters on the stack, in
|
||
+ bits. */
|
||
+#define PARM_BOUNDARY 32
|
||
+
|
||
+/* We need to maintain the stack on a 32-bit boundary. */
|
||
+#define STACK_BOUNDARY 32
|
||
+
|
||
+/* Alignment required for a function entry point, in bits. */
|
||
+#define FUNCTION_BOUNDARY 32
|
||
+
|
||
+/* Alias for the machine mode used for memory references to functions being
|
||
+ called, in `call' RTL expressions. We use byte-oriented addresses
|
||
+ here. */
|
||
+#define FUNCTION_MODE QImode
|
||
+
|
||
+/* Biggest alignment that any data type can require on this machine,
|
||
+ in bits. */
|
||
+#define BIGGEST_ALIGNMENT 32
|
||
+
|
||
+/* this default to BIGGEST_ALIGNMENT unless defined */
|
||
+/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/
|
||
+#undef MAX_OFILE_ALIGNMENT
|
||
+#define MAX_OFILE_ALIGNMENT (128 * 8)
|
||
+
|
||
+/* Alignment in bits to be given to a structure bit field that follows an empty
|
||
+ field such as `int : 0;'. */
|
||
+#define EMPTY_FIELD_BOUNDARY 32
|
||
+
|
||
+/* All structures must be a multiple of 32 bits in size. */
|
||
+#define STRUCTURE_SIZE_BOUNDARY 32
|
||
+
|
||
+/* A bit-field declared as `int' forces `int' alignment for the struct. */
|
||
+#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
+
|
||
+/* For Ubicom32 we absolutely require that data be aligned with nominal
|
||
+ alignment. */
|
||
+#define STRICT_ALIGNMENT 1
|
||
+
|
||
+/* Make strcpy of constants fast. */
|
||
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
+ (TREE_CODE (EXP) == STRING_CST \
|
||
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
+
|
||
+/* Define this macro as an expression for the alignment of a structure
|
||
+ (given by STRUCT as a tree node) if the alignment computed in the
|
||
+ usual way is COMPUTED and the alignment explicitly specified was
|
||
+ SPECIFIED. */
|
||
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
+ ((((ALIGN) < BITS_PER_WORD) \
|
||
+ && (TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
+ || TREE_CODE (TYPE) == UNION_TYPE \
|
||
+ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
||
+
|
||
+#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN)
|
||
+
|
||
+/* For Ubicom32 we default to unsigned chars. */
|
||
+#define DEFAULT_SIGNED_CHAR 0
|
||
+
|
||
+/* Machine-specific data register numbers. */
|
||
+#define FIRST_DATA_REGNUM 0
|
||
+#define D10_REGNUM 10
|
||
+#define D11_REGNUM 11
|
||
+#define D12_REGNUM 12
|
||
+#define D13_REGNUM 13
|
||
+#define LAST_DATA_REGNUM 15
|
||
+
|
||
+/* Machine-specific address register numbers. */
|
||
+#define FIRST_ADDRESS_REGNUM 16
|
||
+#define LAST_ADDRESS_REGNUM 22
|
||
+
|
||
+/* Register numbers used for passing a function's static chain pointer. If
|
||
+ register windows are used, the register number as seen by the called
|
||
+ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
|
||
+ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
|
||
+ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
|
||
+
|
||
+ The static chain register need not be a fixed register.
|
||
+
|
||
+ If the static chain is passed in memory, these macros should not be defined;
|
||
+ instead, the next two macros should be defined. */
|
||
+#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
|
||
+
|
||
+/* The register number of the frame pointer register, which is used to access
|
||
+ automatic variables in the stack frame. We generally eliminate this anyway
|
||
+ for Ubicom32 but we make it A6 by default. */
|
||
+#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM)
|
||
+
|
||
+/* The register number of the stack pointer register, which is also be a
|
||
+ fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't
|
||
+ have a hardware requirement about which register this is, but by convention
|
||
+ we use A7. */
|
||
+#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
|
||
+
|
||
+/* Machine-specific accumulator register numbers. */
|
||
+#define ACC0_HI_REGNUM 24
|
||
+#define ACC0_LO_REGNUM 25
|
||
+#define ACC1_HI_REGNUM 26
|
||
+#define ACC1_LO_REGNUM 27
|
||
+
|
||
+/* source3 register number */
|
||
+#define SOURCE3_REGNUM 28
|
||
+
|
||
+/* The register number of the arg pointer register, which is used to access the
|
||
+ function's argument list. On some machines, this is the same as the frame
|
||
+ pointer register. On some machines, the hardware determines which register
|
||
+ this is. On other machines, you can choose any register you wish for this
|
||
+ purpose. If this is not the same register as the frame pointer register,
|
||
+ then you must mark it as a fixed register according to `FIXED_REGISTERS', or
|
||
+ arrange to be able to eliminate it. */
|
||
+#define ARG_POINTER_REGNUM 29
|
||
+
|
||
+/* Pseudo-reg for condition code. */
|
||
+#define CC_REGNUM 30
|
||
+
|
||
+/* Interrupt set/clear registers. */
|
||
+#define INT_SET0_REGNUM 31
|
||
+#define INT_SET1_REGNUM 32
|
||
+#define INT_CLR0_REGNUM 33
|
||
+#define INT_CLR1_REGNUM 34
|
||
+
|
||
+/* Scratchpad registers. */
|
||
+#define SCRATCHPAD0_REGNUM 35
|
||
+#define SCRATCHPAD1_REGNUM 36
|
||
+#define SCRATCHPAD2_REGNUM 37
|
||
+#define SCRATCHPAD3_REGNUM 38
|
||
+
|
||
+/* FDPIC register. */
|
||
+#define FDPIC_REGNUM 16
|
||
+
|
||
+/* Number of hardware registers known to the compiler. They receive numbers 0
|
||
+ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
|
||
+ really is assigned the number `FIRST_PSEUDO_REGISTER'. */
|
||
+#define FIRST_PSEUDO_REGISTER 39
|
||
+
|
||
+/* An initializer that says which registers are used for fixed purposes all
|
||
+ throughout the compiled code and are therefore not available for general
|
||
+ allocation. These would include the stack pointer, the frame pointer
|
||
+ (except on machines where that can be used as a general register when no
|
||
+ frame pointer is needed), the program counter on machines where that is
|
||
+ considered one of the addressable registers, and any other numbered register
|
||
+ with a standard use.
|
||
+
|
||
+ This information is expressed as a sequence of numbers, separated by commas
|
||
+ and surrounded by braces. The Nth number is 1 if register N is fixed, 0
|
||
+ otherwise.
|
||
+
|
||
+ The table initialized from this macro, and the table initialized by the
|
||
+ following one, may be overridden at run time either automatically, by the
|
||
+ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
|
||
+ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
|
||
+#define FIXED_REGISTERS \
|
||
+ { \
|
||
+ 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \
|
||
+ 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \
|
||
+ 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \
|
||
+ 0, 0, /* acc0 hi/lo */ \
|
||
+ 0, 0, /* acc1 hi/lo */ \
|
||
+ 0, /* source3 */ \
|
||
+ 1, /* arg */ \
|
||
+ 1, /* cc */ \
|
||
+ 1, 1, /* int_set[01] */ \
|
||
+ 1, 1, /* int_clr[01] */ \
|
||
+ 1, 1, 1, 1 /* scratchpad[0123] */ \
|
||
+ }
|
||
+
|
||
+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
|
||
+ general) by function calls as well as for fixed registers. This macro
|
||
+ therefore identifies the registers that are not available for general
|
||
+ allocation of values that must live across function calls.
|
||
+
|
||
+ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
|
||
+ saves it on function entry and restores it on function exit, if the register
|
||
+ is used within the function. */
|
||
+#define CALL_USED_REGISTERS \
|
||
+ { \
|
||
+ 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \
|
||
+ 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \
|
||
+ 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \
|
||
+ 1, 1, /* acc0 hi/lo */ \
|
||
+ 1, 1, /* acc1 hi/lo */ \
|
||
+ 1, /* source3 */ \
|
||
+ 1, /* arg */ \
|
||
+ 1, /* cc */ \
|
||
+ 1, 1, /* int_set[01] */ \
|
||
+ 1, 1, /* int_clr[01] */ \
|
||
+ 1, 1, 1, 1 /* scratchpad[0123] */ \
|
||
+ }
|
||
+
|
||
+/* How to refer to registers in assembler output.
|
||
+ This sequence is indexed by compiler's hard-register-number (see above). */
|
||
+
|
||
+/* A C initializer containing the assembler's names for the machine registers,
|
||
+ each one as a C string constant. This is what translates register numbers
|
||
+ in the compiler into assembler language. */
|
||
+#define REGISTER_NAMES \
|
||
+ { \
|
||
+ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
||
+ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \
|
||
+ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
|
||
+ "acc0_hi", "acc0_lo", \
|
||
+ "acc1_hi", "acc1_lo", \
|
||
+ "source3", \
|
||
+ "arg", \
|
||
+ "cc", \
|
||
+ "int_set0", "int_set1", \
|
||
+ "int_clr0", "int_clr1", \
|
||
+ "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \
|
||
+ }
|
||
+
|
||
+#define CONDITIONAL_REGISTER_USAGE \
|
||
+ ubicom32_conditional_register_usage ();
|
||
+
|
||
+/* Order of allocation of registers. */
|
||
+
|
||
+/* If defined, an initializer for a vector of integers, containing the numbers
|
||
+ of hard registers in the order in which GNU CC should prefer to use them
|
||
+ (from most preferred to least).
|
||
+
|
||
+ For Ubicom32 we try using caller-clobbered data registers first, then
|
||
+ callee-saved data registers, then caller-clobbered address registers,
|
||
+ then callee-saved address registers and finally everything else.
|
||
+
|
||
+ The caller-clobbered registers are usually slightly cheaper to use because
|
||
+ there's no need to save/restore. */
|
||
+#define REG_ALLOC_ORDER \
|
||
+ { \
|
||
+ 0, 1, 2, 3, 4, /* d0 - d4 */ \
|
||
+ 5, 6, 7, 8, 9, /* d5 - d9 */ \
|
||
+ 14, /* d14 */ \
|
||
+ 10, 11, 12, 13, /* d10 - d13 */ \
|
||
+ 19, 20, 16, 21, /* a3, a4, a0, a5 */ \
|
||
+ 17, 18, 22, /* a1, a2, a6 */ \
|
||
+ 24, 25, /* acc0 hi/lo */ \
|
||
+ 26, 27, /* acc0 hi/lo */ \
|
||
+ 28 /* source3 */ \
|
||
+ }
|
||
+
|
||
+/* C expression for the number of consecutive hard registers, starting at
|
||
+ register number REGNO, required to hold a value of mode MODE. */
|
||
+#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
+
|
||
+/* Most registers can hold QImode, HImode and SImode values but we have to
|
||
+ be able to indicate any hard registers that cannot hold values with some
|
||
+ modes. */
|
||
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
+ ubicom32_hard_regno_mode_ok(REGNO, MODE)
|
||
+
|
||
+/* We can rename most registers aside from the FDPIC register if we're using
|
||
+ FDPIC. */
|
||
+#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1)
|
||
+
|
||
+/* A C expression that is nonzero if it is desirable to choose register
|
||
+ allocation so as to avoid move instructions between a value of mode MODE1
|
||
+ and a value of mode MODE2.
|
||
+
|
||
+ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
|
||
+ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
|
||
+ zero. */
|
||
+#define MODES_TIEABLE_P(MODE1, MODE2) 1
|
||
+
|
||
+/* An enumeral type that must be defined with all the register class names as
|
||
+ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
|
||
+ register class, followed by one more enumeral value, `LIM_REG_CLASSES',
|
||
+ which is not a register class but rather tells how many classes there are.
|
||
+
|
||
+ Each register class has a number, which is the value of casting the class
|
||
+ name to type `int'. The number serves as an index in many of the tables
|
||
+ described below. */
|
||
+
|
||
+enum reg_class
|
||
+{
|
||
+ NO_REGS,
|
||
+ DATA_REGS,
|
||
+ FDPIC_REG,
|
||
+ ADDRESS_REGS,
|
||
+ ALL_ADDRESS_REGS,
|
||
+ ACC_LO_REGS,
|
||
+ ACC_REGS,
|
||
+ CC_REG,
|
||
+ DATA_ACC_REGS,
|
||
+ SOURCE3_REG,
|
||
+ SPECIAL_REGS,
|
||
+ GENERAL_REGS,
|
||
+ ALL_REGS,
|
||
+ LIM_REG_CLASSES
|
||
+};
|
||
+
|
||
+/* The number of distinct register classes. */
|
||
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
+
|
||
+/* An initializer containing the names of the register classes as C string
|
||
+ constants. These names are used in writing some of the debugging dumps. */
|
||
+
|
||
+#define REG_CLASS_NAMES \
|
||
+{ \
|
||
+ "NO_REGS", \
|
||
+ "DATA_REGS", \
|
||
+ "FDPIC_REG", \
|
||
+ "ADDRESS_REGS", \
|
||
+ "ALL_ADDRESS_REGS", \
|
||
+ "ACC_LO_REGS", \
|
||
+ "ACC_REGS", \
|
||
+ "CC_REG", \
|
||
+ "DATA_ACC_REGS", \
|
||
+ "SOURCE3_REG", \
|
||
+ "SPECIAL_REGS", \
|
||
+ "GENERAL_REGS", \
|
||
+ "ALL_REGS", \
|
||
+ "LIM_REGS" \
|
||
+}
|
||
+
|
||
+/* An initializer containing the contents of the register classes, as integers
|
||
+ which are bit masks. The Nth integer specifies the contents of class N.
|
||
+ The way the integer MASK is interpreted is that register R is in the class
|
||
+ if `MASK & (1 << R)' is 1.
|
||
+
|
||
+ When the machine has more than 32 registers, an integer does not suffice.
|
||
+ Then the integers are replaced by sub-initializers, braced groupings
|
||
+ containing several integers. Each sub-initializer must be suitable as an
|
||
+ initializer for the type `HARD_REG_SET' which is defined in
|
||
+ `hard-reg-set.h'. */
|
||
+#define REG_CLASS_CONTENTS \
|
||
+{ \
|
||
+ {0x00000000, 0x00000000}, /* No regs */ \
|
||
+ {0x0000ffff, 0x00000000}, /* DATA_REGS */ \
|
||
+ {0x00010000, 0x00000000}, /* FDPIC_REG */ \
|
||
+ {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \
|
||
+ {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \
|
||
+ {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \
|
||
+ {0x0f000000, 0x00000000}, /* ACC_REGS */ \
|
||
+ {0x40000000, 0x00000000}, /* CC_REG */ \
|
||
+ {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \
|
||
+ {0x10000000, 0x00000000}, /* SOURGE3_REG */ \
|
||
+ {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \
|
||
+ {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \
|
||
+ {0xbfffffff, 0x0000007f} /* ALL_REGS */ \
|
||
+}
|
||
+
|
||
+extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER];
|
||
+
|
||
+/* A C expression whose value is a register class containing hard register
|
||
+ REGNO. In general there is more than one such class; choose a class which
|
||
+ is "minimal", meaning that no smaller class also contains the register. */
|
||
+#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO])
|
||
+
|
||
+#define IRA_COVER_CLASSES \
|
||
+{ \
|
||
+ GENERAL_REGS, \
|
||
+ LIM_REG_CLASSES \
|
||
+}
|
||
+
|
||
+/* Ubicom32 base registers must be address registers since addresses can
|
||
+ only be reached via address registers. */
|
||
+#define BASE_REG_CLASS ALL_ADDRESS_REGS
|
||
+
|
||
+/* Ubicom32 index registers must be data registers since we cannot add
|
||
+ two address registers together to form an address. */
|
||
+#define INDEX_REG_CLASS DATA_REGS
|
||
+
|
||
+/* A C expression which is nonzero if register number NUM is suitable for use
|
||
+ as a base register in operand addresses. It may be either a suitable hard
|
||
+ register or a pseudo register that has been allocated such a hard register. */
|
||
+
|
||
+#ifndef REG_OK_STRICT
|
||
+#define REGNO_OK_FOR_BASE_P(regno) \
|
||
+ ubicom32_regno_ok_for_base_p (regno, 0)
|
||
+#else
|
||
+#define REGNO_OK_FOR_BASE_P(regno) \
|
||
+ ubicom32_regno_ok_for_base_p (regno, 1)
|
||
+#endif
|
||
+
|
||
+/* A C expression which is nonzero if register number NUM is suitable for use
|
||
+ as an index register in operand addresses. It may be either a suitable hard
|
||
+ register or a pseudo register that has been allocated such a hard register.
|
||
+
|
||
+ The difference between an index register and a base register is that the
|
||
+ index register may be scaled. If an address involves the sum of two
|
||
+ registers, neither one of them scaled, then either one may be labeled the
|
||
+ "base" and the other the "index"; but whichever labeling is used must fit
|
||
+ the machine's constraints of which registers may serve in each capacity.
|
||
+ The compiler will try both labelings, looking for one that is valid, and
|
||
+ will reload one or both registers only if neither labeling works. */
|
||
+#ifndef REG_OK_STRICT
|
||
+#define REGNO_OK_FOR_INDEX_P(regno) \
|
||
+ ubicom32_regno_ok_for_index_p (regno, 0)
|
||
+#else
|
||
+#define REGNO_OK_FOR_INDEX_P(regno) \
|
||
+ ubicom32_regno_ok_for_index_p (regno, 1)
|
||
+#endif
|
||
+
|
||
+/* Attempt to restrict the register class we need to copy value X intoto the
|
||
+ would-be register class CLASS. Most things are fine for Ubicom32 but we
|
||
+ have to restrict certain types of address loads. */
|
||
+#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
||
+ ubicom32_preferred_reload_class (X, CLASS)
|
||
+
|
||
+/* A C expression for the maximum number of consecutive registers of
|
||
+ class CLASS needed to hold a value of mode MODE. For Ubicom32 this
|
||
+ is pretty much identical to HARD_REGNO_NREGS. */
|
||
+#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
+
|
||
+/* For Ubicom32 the stack grows downwards when we push a word onto the stack
|
||
+ - i.e. it moves to a smaller address. */
|
||
+#define STACK_GROWS_DOWNWARD 1
|
||
+
|
||
+/* Offset from the frame pointer to the first local variable slot to
|
||
+ be allocated. */
|
||
+#define STARTING_FRAME_OFFSET 0
|
||
+
|
||
+/* Offset from the argument pointer register to the first argument's
|
||
+ address. */
|
||
+#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
+
|
||
+/* A C expression whose value is RTL representing the value of the return
|
||
+ address for the frame COUNT steps up from the current frame, after the
|
||
+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
|
||
+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
|
||
+ defined.
|
||
+
|
||
+ The value of the expression must always be the correct address when COUNT is
|
||
+ zero, but may be `NULL_RTX' if there is not way to determine the return
|
||
+ address of other frames. */
|
||
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
+ ubicom32_return_addr_rtx (COUNT, FRAME)
|
||
+
|
||
+/* Register That Address the Stack Frame. */
|
||
+
|
||
+/* We don't actually require a frame pointer in most functions with the
|
||
+ Ubicom32 architecture so we allow it to be eliminated. */
|
||
+#define FRAME_POINTER_REQUIRED 0
|
||
+
|
||
+/* Macro that defines a table of register pairs used to eliminate unecessary
|
||
+ registers that point into the stack frame.
|
||
+
|
||
+ For Ubicom32 we don't generally need an arg pointer of a frame pointer
|
||
+ so we allow the arg pointer to be replaced by either the frame pointer or
|
||
+ the stack pointer. We also allow the frame pointer to be replaced by
|
||
+ the stack pointer. */
|
||
+#define ELIMINABLE_REGS \
|
||
+{ \
|
||
+ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
||
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
|
||
+}
|
||
+
|
||
+/* Let the compiler know that we want to use the ELIMINABLE_REGS macro
|
||
+ above. */
|
||
+#define CAN_ELIMINATE(FROM, TO) 1
|
||
+
|
||
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
|
||
+ initial difference between the specified pair of registers. This macro must
|
||
+ be defined if `ELIMINABLE_REGS' is defined. */
|
||
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
+ (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO)
|
||
+
|
||
+/* If defined, the maximum amount of space required for outgoing arguments will
|
||
+ be computed and placed into the variable
|
||
+ `current_function_outgoing_args_size'. No space will be pushed onto the
|
||
+ stack for each call; instead, the function prologue should increase the
|
||
+ stack frame size by this amount.
|
||
+
|
||
+ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
|
||
+ proper. */
|
||
+#define ACCUMULATE_OUTGOING_ARGS 1
|
||
+
|
||
+/* Define this macro if functions should assume that stack space has been
|
||
+ allocated for arguments even when their values are passed in registers.
|
||
+
|
||
+ The value of this macro is the size, in bytes, of the area reserved for
|
||
+ arguments passed in registers for the function represented by FNDECL.
|
||
+
|
||
+ This space can be allocated by the caller, or be a part of the
|
||
+ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
|
||
+ which. */
|
||
+#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL)
|
||
+
|
||
+/* A C expression that should indicate the number of bytes of its own arguments
|
||
+ that a function pops on returning, or 0 if the function pops no arguments
|
||
+ and the caller must therefore pop them all after the function returns.
|
||
+
|
||
+ FUNDECL is a C variable whose value is a tree node that describes the
|
||
+ function in question. Normally it is a node of type `FUNCTION_DECL' that
|
||
+ describes the declaration of the function. From this it is possible to
|
||
+ obtain the DECL_MACHINE_ATTRIBUTES of the function.
|
||
+
|
||
+ FUNTYPE is a C variable whose value is a tree node that describes the
|
||
+ function in question. Normally it is a node of type `FUNCTION_TYPE' that
|
||
+ describes the data type of the function. From this it is possible to obtain
|
||
+ the data types of the value and arguments (if known).
|
||
+
|
||
+ When a call to a library function is being considered, FUNTYPE will contain
|
||
+ an identifier node for the library function. Thus, if you need to
|
||
+ distinguish among various library functions, you can do so by their names.
|
||
+ Note that "library function" in this context means a function used to
|
||
+ perform arithmetic, whose name is known specially in the compiler and was
|
||
+ not mentioned in the C code being compiled.
|
||
+
|
||
+ STACK-SIZE is the number of bytes of arguments passed on the stack. If a
|
||
+ variable number of bytes is passed, it is zero, and argument popping will
|
||
+ always be the responsibility of the calling function.
|
||
+
|
||
+ On the Vax, all functions always pop their arguments, so the definition of
|
||
+ this macro is STACK-SIZE. On the 68000, using the standard calling
|
||
+ convention, no functions pop their arguments, so the value of the macro is
|
||
+ always 0 in this case. But an alternative calling convention is available
|
||
+ in which functions that take a fixed number of arguments pop them but other
|
||
+ functions (such as `printf') pop nothing (the caller pops all). When this
|
||
+ convention is in use, FUNTYPE is examined to determine whether a function
|
||
+ takes a fixed number of arguments. */
|
||
+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
|
||
+
|
||
+/* A C expression that controls whether a function argument is passed in a
|
||
+ register, and which register.
|
||
+
|
||
+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
|
||
+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
|
||
+ arguments so far passed in registers; MODE, the machine mode of the argument;
|
||
+ TYPE, the data type of the argument as a tree node or 0 if that is not known
|
||
+ (which happens for C support library functions); and NAMED, which is 1 for an
|
||
+ ordinary argument and 0 for nameless arguments that correspond to `...' in the
|
||
+ called function's prototype.
|
||
+
|
||
+ The value of the expression should either be a `reg' RTX for the hard
|
||
+ register in which to pass the argument, or zero to pass the argument on the
|
||
+ stack.
|
||
+
|
||
+ For machines like the Vax and 68000, where normally all arguments are
|
||
+ pushed, zero suffices as a definition.
|
||
+
|
||
+ The usual way to make the ANSI library `stdarg.h' work on a machine where
|
||
+ some arguments are usually passed in registers, is to cause nameless
|
||
+ arguments to be passed on the stack instead. This is done by making
|
||
+ `FUNCTION_ARG' return 0 whenever NAMED is 0.
|
||
+
|
||
+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
|
||
+ this macro to determine if this argument is of a type that must be passed in
|
||
+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
|
||
+ returns non-zero for such an argument, the compiler will abort. If
|
||
+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
|
||
+ stack and then loaded into a register. */
|
||
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
+ function_arg (&CUM, MODE, TYPE, NAMED)
|
||
+
|
||
+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
||
+ function_incoming_arg (&CUM, MODE, TYPE, NAMED)
|
||
+
|
||
+/* A C expression for the number of words, at the beginning of an argument,
|
||
+ must be put in registers. The value must be zero for arguments that are
|
||
+ passed entirely in registers or that are entirely pushed on the stack.
|
||
+
|
||
+ On some machines, certain arguments must be passed partially in registers
|
||
+ and partially in memory. On these machines, typically the first N words of
|
||
+ arguments are passed in registers, and the rest on the stack. If a
|
||
+ multi-word argument (a `double' or a structure) crosses that boundary, its
|
||
+ first few words must be passed in registers and the rest must be pushed.
|
||
+ This macro tells the compiler when this occurs, and how many of the words
|
||
+ should go in registers.
|
||
+
|
||
+ `FUNCTION_ARG' for these arguments should return the first register to be
|
||
+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
|
||
+ the called function. */
|
||
+
|
||
+/* A C expression that indicates when an argument must be passed by reference.
|
||
+ If nonzero for an argument, a copy of that argument is made in memory and a
|
||
+ pointer to the argument is passed instead of the argument itself. The
|
||
+ pointer is passed in whatever way is appropriate for passing a pointer to
|
||
+ that type.
|
||
+
|
||
+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
|
||
+ definition of this macro might be
|
||
+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
+ MUST_PASS_IN_STACK (MODE, TYPE) */
|
||
+
|
||
+/* If defined, a C expression that indicates when it is the called function's
|
||
+ responsibility to make a copy of arguments passed by invisible reference.
|
||
+ Normally, the caller makes a copy and passes the address of the copy to the
|
||
+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
|
||
+ nonzero, the caller does not make a copy. Instead, it passes a pointer to
|
||
+ the "live" value. The called function must not modify this value. If it
|
||
+ can be determined that the value won't be modified, it need not make a copy;
|
||
+ otherwise a copy must be made. */
|
||
+
|
||
+/* A C type for declaring a variable that is used as the first argument of
|
||
+ `FUNCTION_ARG' and other related values. For some target machines, the type
|
||
+ `int' suffices and can hold the number of bytes of argument so far.
|
||
+
|
||
+ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
|
||
+ that have been passed on the stack. The compiler has other variables to
|
||
+ keep track of that. For target machines on which all arguments are passed
|
||
+ on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
|
||
+ however, the data structure must exist and should not be empty, so use
|
||
+ `int'. */
|
||
+struct cum_arg
|
||
+{
|
||
+ int nbytes;
|
||
+ int reg;
|
||
+ int stdarg;
|
||
+};
|
||
+#define CUMULATIVE_ARGS struct cum_arg
|
||
+
|
||
+/* A C statement (sans semicolon) for initializing the variable CUM for the
|
||
+ state at the beginning of the argument list. The variable has type
|
||
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
|
||
+ of the function which will receive the args, or 0 if the args are to a
|
||
+ compiler support library function. The value of INDIRECT is nonzero when
|
||
+ processing an indirect call, for example a call through a function pointer.
|
||
+ The value of INDIRECT is zero for a call to an explicitly named function, a
|
||
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
|
||
+ arguments for the function being compiled.
|
||
+
|
||
+ When processing a call to a compiler support library function, LIBNAME
|
||
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
|
||
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
|
||
+ being processed. Thus, each time this macro is called, either LIBNAME or
|
||
+ FNTYPE is nonzero, but never both of them at once. */
|
||
+
|
||
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \
|
||
+ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT);
|
||
+
|
||
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
|
||
+ advance past an argument in the argument list. The values MODE, TYPE and
|
||
+ NAMED describe that argument. Once this is done, the variable CUM is
|
||
+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
|
||
+
|
||
+ This macro need not do anything if the argument in question was passed on
|
||
+ the stack. The compiler knows how to track the amount of stack space used
|
||
+ for arguments without any special help. */
|
||
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
+ ((CUM).nbytes += ((MODE) != BLKmode \
|
||
+ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
+ : (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
+
|
||
+/* For the Ubicom32 we define the upper function argument register here. */
|
||
+#define UBICOM32_FUNCTION_ARG_REGS 10
|
||
+
|
||
+/* A C expression that is nonzero if REGNO is the number of a hard register in
|
||
+ which function arguments are sometimes passed. This does *not* include
|
||
+ implicit arguments such as the static chain and the structure-value address.
|
||
+ On many machines, no registers can be used for this purpose since all
|
||
+ function arguments are pushed on the stack. */
|
||
+#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS)
|
||
+
|
||
+
|
||
+/* How Scalar Function Values are Returned. */
|
||
+
|
||
+/* The number of the hard register that is used to return a scalar value from a
|
||
+ function call. */
|
||
+#define RETURN_VALUE_REGNUM 0
|
||
+
|
||
+/* A C expression to create an RTX representing the place where a function
|
||
+ returns a value of data type VALTYPE. VALTYPE is a tree node representing a
|
||
+ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
|
||
+ represent that type. On many machines, only the mode is relevant.
|
||
+ (Actually, on most machines, scalar values are returned in the same place
|
||
+ regardless of mode).
|
||
+
|
||
+ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
|
||
+ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
|
||
+
|
||
+ If the precise function being called is known, FUNC is a tree node
|
||
+ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
|
||
+ possible to use a different value-returning convention for specific
|
||
+ functions when all their calls are known.
|
||
+
|
||
+ `FUNCTION_VALUE' is not used for return vales with aggregate data types,
|
||
+ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
|
||
+ related macros, below. */
|
||
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
+ gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM)
|
||
+
|
||
+/* A C expression to create an RTX representing the place where a library
|
||
+ function returns a value of mode MODE.
|
||
+
|
||
+ Note that "library function" in this context means a compiler support
|
||
+ routine, used to perform arithmetic, whose name is known specially by the
|
||
+ compiler and was not mentioned in the C code being compiled.
|
||
+
|
||
+ The definition of `LIBRARY_VALUE' need not be concerned aggregate data
|
||
+ types, because none of the library functions returns such types. */
|
||
+#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
|
||
+
|
||
+/* A C expression that is nonzero if REGNO is the number of a hard register in
|
||
+ which the values of called function may come back.
|
||
+
|
||
+ A register whose use for returning values is limited to serving as the
|
||
+ second of a pair (for a value of type `double', say) need not be recognized
|
||
+ by this macro. So for most machines, this definition suffices:
|
||
+
|
||
+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
|
||
+
|
||
+ If the machine has register windows, so that the caller and the called
|
||
+ function use different registers for the return value, this macro should
|
||
+ recognize only the caller's register numbers. */
|
||
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM)
|
||
+
|
||
+
|
||
+/* How Large Values are Returned. */
|
||
+
|
||
+/* A C expression which can inhibit the returning of certain function values in
|
||
+ registers, based on the type of value. A nonzero value says to return the
|
||
+ function value in memory, just as large structures are always returned.
|
||
+ Here TYPE will be a C expression of type `tree', representing the data type
|
||
+ of the value.
|
||
+
|
||
+ Note that values of mode `BLKmode' must be explicitly handled by this macro.
|
||
+ Also, the option `-fpcc-struct-return' takes effect regardless of this
|
||
+ macro. On most systems, it is possible to leave the macro undefined; this
|
||
+ causes a default definition to be used, whose value is the constant 1 for
|
||
+ `BLKmode' values, and 0 otherwise.
|
||
+
|
||
+ Do not use this macro to indicate that structures and unions should always
|
||
+ be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN'
|
||
+ to indicate this. */
|
||
+#define RETURN_IN_MEMORY(TYPE) \
|
||
+ (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
|
||
+
|
||
+/* Define this macro to be 1 if all structure and union return values must be
|
||
+ in memory. Since this results in slower code, this should be defined only
|
||
+ if needed for compatibility with other compilers or with an ABI. If you
|
||
+ define this macro to be 0, then the conventions used for structure and union
|
||
+ return values are decided by the `RETURN_IN_MEMORY' macro.
|
||
+
|
||
+ If not defined, this defaults to the value 1. */
|
||
+#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
+
|
||
+/* If the structure value address is not passed in a register, define
|
||
+ `STRUCT_VALUE' as an expression returning an RTX for the place
|
||
+ where the address is passed. If it returns 0, the address is
|
||
+ passed as an "invisible" first argument. */
|
||
+#define STRUCT_VALUE 0
|
||
+
|
||
+/* Define this macro as a C expression that is nonzero if the return
|
||
+ instruction or the function epilogue ignores the value of the stack pointer;
|
||
+ in other words, if it is safe to delete an instruction to adjust the stack
|
||
+ pointer before a return from the function.
|
||
+
|
||
+ Note that this macro's value is relevant only for functions for which frame
|
||
+ pointers are maintained. It is never safe to delete a final stack
|
||
+ adjustment in a function that has no frame pointer, and the compiler knows
|
||
+ this regardless of `EXIT_IGNORE_STACK'. */
|
||
+#define EXIT_IGNORE_STACK 1
|
||
+
|
||
+/* A C statement or compound statement to output to FILE some assembler code to
|
||
+ call the profiling subroutine `mcount'. Before calling, the assembler code
|
||
+ must load the address of a counter variable into a register where `mcount'
|
||
+ expects to find the address. The name of this variable is `LP' followed by
|
||
+ the number LABELNO, so you would generate the name using `LP%d' in a
|
||
+ `fprintf'.
|
||
+
|
||
+ The details of how the address should be passed to `mcount' are determined
|
||
+ by your operating system environment, not by GNU CC. To figure them out,
|
||
+ compile a small program for profiling using the system's installed C
|
||
+ compiler and look at the assembler code that results.
|
||
+
|
||
+ This declaration must be present, but it can be an abort if profiling is
|
||
+ not implemented. */
|
||
+
|
||
+#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno)
|
||
+
|
||
+/* A C statement to output, on the stream FILE, assembler code for a block of
|
||
+ data that contains the constant parts of a trampoline. This code should not
|
||
+ include a label--the label is taken care of automatically. */
|
||
+#if 0
|
||
+#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
+ do { \
|
||
+ fprintf (FILE, "\tadd -4,sp\n"); \
|
||
+ fprintf (FILE, "\t.long 0x0004fffa\n"); \
|
||
+ fprintf (FILE, "\tmov (0,sp),a0\n"); \
|
||
+ fprintf (FILE, "\tadd 4,sp\n"); \
|
||
+ fprintf (FILE, "\tmov (13,a0),a1\n"); \
|
||
+ fprintf (FILE, "\tmov (17,a0),a0\n"); \
|
||
+ fprintf (FILE, "\tjmp (a0)\n"); \
|
||
+ fprintf (FILE, "\t.long 0\n"); \
|
||
+ fprintf (FILE, "\t.long 0\n"); \
|
||
+ } while (0)
|
||
+#endif
|
||
+
|
||
+/* A C expression for the size in bytes of the trampoline, as an integer. */
|
||
+#define TRAMPOLINE_SIZE 0x1b
|
||
+
|
||
+/* Alignment required for trampolines, in bits.
|
||
+
|
||
+ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
|
||
+ aligning trampolines. */
|
||
+#define TRAMPOLINE_ALIGNMENT 32
|
||
+
|
||
+/* A C statement to initialize the variable parts of a trampoline. ADDR is an
|
||
+ RTX for the address of the trampoline; FNADDR is an RTX for the address of
|
||
+ the nested function; STATIC_CHAIN is an RTX for the static chain value that
|
||
+ should be passed to the function when it is called. */
|
||
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
+{ \
|
||
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
|
||
+ (CXT)); \
|
||
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
|
||
+ (FNADDR)); \
|
||
+}
|
||
+
|
||
+/* Ubicom32 supports pre and post increment/decrement addressing. */
|
||
+#define HAVE_POST_INCREMENT 1
|
||
+#define HAVE_PRE_INCREMENT 1
|
||
+#define HAVE_POST_DECREMENT 1
|
||
+#define HAVE_PRE_DECREMENT 1
|
||
+
|
||
+/* Ubicom32 supports pre and post address side-effects with constants
|
||
+ other than the size of the memory operand. */
|
||
+#define HAVE_PRE_MODIFY_DISP 1
|
||
+#define HAVE_POST_MODIFY_DISP 1
|
||
+
|
||
+/* A C expression that is 1 if the RTX X is a constant which is a valid
|
||
+ address. On most machines, this can be defined as `CONSTANT_P (X)',
|
||
+ but a few machines are more restrictive in which constant addresses
|
||
+ are supported.
|
||
+
|
||
+ `CONSTANT_P' accepts integer-values expressions whose values are not
|
||
+ explicitly known, such as `symbol_ref', `label_ref', and `high'
|
||
+ expressions and `const' arithmetic expressions, in addition to
|
||
+ `const_int' and `const_double' expressions. */
|
||
+#define CONSTANT_ADDRESS_P(X) \
|
||
+ (GET_CODE (X) == LABEL_REF \
|
||
+ || (GET_CODE (X) == CONST \
|
||
+ && GET_CODE (XEXP (X, 0)) == PLUS \
|
||
+ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF))
|
||
+
|
||
+/* Ubicom32 supports a maximum of 2 registers in a valid memory address.
|
||
+ One is always an address register while a second, optional, one may be a
|
||
+ data register. */
|
||
+#define MAX_REGS_PER_ADDRESS 2
|
||
+
|
||
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
|
||
+ RTX) is a legitimate memory address on the target machine for a memory
|
||
+ operand of mode MODE.
|
||
+
|
||
+ It usually pays to define several simpler macros to serve as subroutines for
|
||
+ this one. Otherwise it may be too complicated to understand.
|
||
+
|
||
+ This macro must exist in two variants: a strict variant and a non-strict
|
||
+ one. The strict variant is used in the reload pass. It must be defined so
|
||
+ that any pseudo-register that has not been allocated a hard register is
|
||
+ considered a memory reference. In contexts where some kind of register is
|
||
+ required, a pseudo-register with no hard register must be rejected.
|
||
+
|
||
+ The non-strict variant is used in other passes. It must be defined to
|
||
+ accept all pseudo-registers in every context where some kind of register is
|
||
+ required.
|
||
+
|
||
+ Compiler source files that want to use the strict variant of this macro
|
||
+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
|
||
+ conditional to define the strict variant in that case and the non-strict
|
||
+ variant otherwise.
|
||
+
|
||
+ Subroutines to check for acceptable registers for various purposes (one for
|
||
+ base registers, one for index registers, and so on) are typically among the
|
||
+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
|
||
+ subroutine macros need have two variants; the higher levels of macros may be
|
||
+ the same whether strict or not.
|
||
+
|
||
+ Normally, constant addresses which are the sum of a `symbol_ref' and an
|
||
+ integer are stored inside a `const' RTX to mark them as constant.
|
||
+ Therefore, there is no need to recognize such sums specifically as
|
||
+ legitimate addresses. Normally you would simply recognize any `const' as
|
||
+ legitimate.
|
||
+
|
||
+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
|
||
+ are not marked with `const'. It assumes that a naked `plus' indicates
|
||
+ indexing. If so, then you *must* reject such naked constant sums as
|
||
+ illegitimate addresses, so that none of them will be given to
|
||
+ `PRINT_OPERAND_ADDRESS'.
|
||
+
|
||
+ On some machines, whether a symbolic address is legitimate depends on the
|
||
+ section that the address refers to. On these machines, define the macro
|
||
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
|
||
+ then check for it here. When you see a `const', you will have to look
|
||
+ inside it to find the `symbol_ref' in order to determine the section.
|
||
+
|
||
+ The best way to modify the name string is by adding text to the beginning,
|
||
+ with suitable punctuation to prevent any ambiguity. Allocate the new name
|
||
+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
|
||
+ remove and decode the added text and output the name accordingly, and define
|
||
+ `STRIP_NAME_ENCODING' to access the original name string.
|
||
+
|
||
+ You can check the information stored here into the `symbol_ref' in the
|
||
+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
|
||
+ `PRINT_OPERAND_ADDRESS'. */
|
||
+/* On the ubicom32, the value in the address register must be
|
||
+ in the same memory space/segment as the effective address.
|
||
+
|
||
+ This is problematical for reload since it does not understand
|
||
+ that base+index != index+base in a memory reference. */
|
||
+
|
||
+#ifdef REG_OK_STRICT
|
||
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
+ if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR;
|
||
+#else
|
||
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
+ if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR;
|
||
+#endif
|
||
+
|
||
+/* Try machine-dependent ways of modifying an illegitimate address
|
||
+ to be legitimate. If we find one, return the new, valid address.
|
||
+ This macro is used in only one place: `memory_address' in explow.c.
|
||
+
|
||
+ OLDX is the address as it was before break_out_memory_refs was called.
|
||
+ In some cases it is useful to look at this to decide what needs to be done.
|
||
+
|
||
+ MODE and WIN are passed so that this macro can use
|
||
+ GO_IF_LEGITIMATE_ADDRESS.
|
||
+
|
||
+ It is always safe for this macro to do nothing. It exists to recognize
|
||
+ opportunities to optimize the output.
|
||
+
|
||
+ On RS/6000, first check for the sum of a register with a constant
|
||
+ integer that is out of range. If so, generate code to add the
|
||
+ constant with the low-order 16 bits masked to the register and force
|
||
+ this result into another register (this can be done with `cau').
|
||
+ Then generate an address of REG+(CONST&0xffff), allowing for the
|
||
+ possibility of bit 16 being a one.
|
||
+
|
||
+ Then check for the sum of a register and something not constant, try to
|
||
+ load the other things into a register and return the sum. */
|
||
+
|
||
+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
+{ \
|
||
+ rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \
|
||
+ if (result != NULL_RTX) \
|
||
+ { \
|
||
+ (X) = result; \
|
||
+ goto WIN; \
|
||
+ } \
|
||
+}
|
||
+
|
||
+/* Try a machine-dependent way of reloading an illegitimate address
|
||
+ operand. If we find one, push the reload and jump to WIN. This
|
||
+ macro is used in only one place: `find_reloads_address' in reload.c. */
|
||
+#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
|
||
+{ \
|
||
+ rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \
|
||
+ if (new_rtx) \
|
||
+ { \
|
||
+ (AD) = new_rtx; \
|
||
+ goto WIN; \
|
||
+ } \
|
||
+}
|
||
+
|
||
+/* A C statement or compound statement with a conditional `goto LABEL;'
|
||
+ executed if memory address X (an RTX) can have different meanings depending
|
||
+ on the machine mode of the memory reference it is used for or if the address
|
||
+ is valid for some modes but not others.
|
||
+
|
||
+ Autoincrement and autodecrement addresses typically have mode-dependent
|
||
+ effects because the amount of the increment or decrement is the size of the
|
||
+ operand being addressed. Some machines have other mode-dependent addresses.
|
||
+ Many RISC machines have no mode-dependent addresses.
|
||
+
|
||
+ You may assume that ADDR is a valid address for the machine. */
|
||
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
+ if (ubicom32_mode_dependent_address_p (ADDR)) \
|
||
+ goto LABEL;
|
||
+
|
||
+/* A C expression that is nonzero if X is a legitimate constant for an
|
||
+ immediate operand on the target machine. You can assume that X
|
||
+ satisfies `CONSTANT_P', so you need not check this. In fact, `1' is
|
||
+ a suitable definition for this macro on machines where anything
|
||
+ `CONSTANT_P' is valid. */
|
||
+#define LEGITIMATE_CONSTANT_P(X) \
|
||
+ ubicom32_legitimate_constant_p ((X))
|
||
+
|
||
+/* Moves between registers are pretty-much single instructions for
|
||
+ Ubicom32. We make this the default "2" that gcc likes. */
|
||
+#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
|
||
+
|
||
+/* This is a little bit of magic from the S390 port that wins 2% on code
|
||
+ size when building the Linux kernel! Unfortunately while it wins on
|
||
+ that size the user-space apps built using FD-PIC don't improve and the
|
||
+ performance is lower because we put more pressure on the caches. We may
|
||
+ want this back on some future CPU that has higher cache performance. */
|
||
+/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */
|
||
+
|
||
+/* Moves between registers and memory are more expensive than between
|
||
+ registers because we have caches and write buffers that slow things
|
||
+ down! */
|
||
+#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2
|
||
+
|
||
+/* A fall-through branch is very low cost but anything that changes the PC
|
||
+ incurs a major pipeline hazard. We don't make the full extent of this
|
||
+ hazard visible because we hope that multiple threads will absorb much
|
||
+ of the cost and so we don't want a jump being replaced with, say, 7
|
||
+ instructions. */
|
||
+#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
|
||
+ ((PREDICTABLE_P) ? 1 : 3)
|
||
+
|
||
+/* Define this macro as a C expression which is nonzero if accessing less than
|
||
+ a word of memory (i.e. a `char' or a `short') is no faster than accessing a
|
||
+ word of memory, i.e., if such access require more than one instruction or if
|
||
+ there is no difference in cost between byte and (aligned) word loads.
|
||
+
|
||
+ When this macro is not defined, the compiler will access a field by finding
|
||
+ the smallest containing object; when it is defined, a fullword load will be
|
||
+ used if alignment permits. Unless bytes accesses are faster than word
|
||
+ accesses, using word accesses is preferable since it may eliminate
|
||
+ subsequent memory access if subsequent accesses occur to other fields in the
|
||
+ same word of the structure, but to different bytes. */
|
||
+#define SLOW_BYTE_ACCESS 0
|
||
+
|
||
+/* The number of scalar move insns which should be generated instead of a
|
||
+ string move insn or a library call. Increasing the value will always make
|
||
+ code faster, but eventually incurs high cost in increased code size.
|
||
+
|
||
+ If you don't define this, a reasonable default is used. */
|
||
+/* According to expr.c, a value of around 6 should minimize code size. */
|
||
+#define MOVE_RATIO(SPEED) 6
|
||
+
|
||
+/* We're much better off calling a constant function address with the
|
||
+ Ubicom32 architecture because we have an opcode for doing so. Don't
|
||
+ let the compiler extract function addresses as common subexpressions
|
||
+ into an address register. */
|
||
+#define NO_FUNCTION_CSE
|
||
+
|
||
+#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y)
|
||
+
|
||
+#define REVERSIBLE_CC_MODE(MODE) 1
|
||
+
|
||
+/* Canonicalize a comparison from one we don't have to one we do have. */
|
||
+#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
|
||
+ ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
|
||
+
|
||
+/* Dividing the output into sections. */
|
||
+
|
||
+/* A C expression whose value is a string containing the assembler operation
|
||
+ that should precede instructions and read-only data. Normally `".text"' is
|
||
+ right. */
|
||
+#define TEXT_SECTION_ASM_OP "\t.section .text"
|
||
+
|
||
+/* A C expression whose value is a string containing the assembler operation to
|
||
+ identify the following data as writable initialized data. Normally
|
||
+ `".data"' is right. */
|
||
+#define DATA_SECTION_ASM_OP "\t.section .data"
|
||
+
|
||
+
|
||
+/* If defined, a C expression whose value is a string containing the
|
||
+ assembler operation to identify the following data as
|
||
+ uninitialized global data. If not defined, and neither
|
||
+ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
|
||
+ uninitialized global data will be output in the data section if
|
||
+ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
|
||
+ used. */
|
||
+#define BSS_SECTION_ASM_OP "\t.section .bss"
|
||
+
|
||
+/* This is how we tell the assembler that a symbol is weak. */
|
||
+
|
||
+#define ASM_WEAKEN_LABEL(FILE, NAME) \
|
||
+ do \
|
||
+ { \
|
||
+ fputs ("\t.weak\t", (FILE)); \
|
||
+ assemble_name ((FILE), (NAME)); \
|
||
+ fputc ('\n', (FILE)); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/* The Overall Framework of an Assembler File. */
|
||
+
|
||
+#undef SET_ASM_OP
|
||
+#define SET_ASM_OP "\t.set\t"
|
||
+
|
||
+/* A C string constant describing how to begin a comment in the target
|
||
+ assembler language. The compiler assumes that the comment will end at the
|
||
+ end of the line. */
|
||
+#define ASM_COMMENT_START ";"
|
||
+
|
||
+/* A C string constant for text to be output before each `asm' statement or
|
||
+ group of consecutive ones. Normally this is `"#APP"', which is a comment
|
||
+ that has no effect on most assemblers but tells the GNU assembler that it
|
||
+ must check the lines that follow for all valid assembler constructs. */
|
||
+#define ASM_APP_ON "#APP\n"
|
||
+
|
||
+/* A C string constant for text to be output after each `asm' statement or
|
||
+ group of consecutive ones. Normally this is `"#NO_APP"', which tells the
|
||
+ GNU assembler to resume making the time-saving assumptions that are valid
|
||
+ for ordinary compiler output. */
|
||
+#define ASM_APP_OFF "#NO_APP\n"
|
||
+
|
||
+/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
|
||
+ explicit argument. If you define this macro, it is used in place of
|
||
+ `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
|
||
+ alignment of the variable. The alignment is specified as the number of
|
||
+ bits.
|
||
+
|
||
+ Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
|
||
+ defining this macro. */
|
||
+#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
||
+ asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
|
||
+
|
||
+/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
|
||
+ newly allocated string made from the string NAME and the number NUMBER, with
|
||
+ some suitable punctuation added. Use `alloca' to get space for the string.
|
||
+
|
||
+ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
|
||
+ an assembler label for an internal static variable whose name is NAME.
|
||
+ Therefore, the string must be such as to result in valid assembler code.
|
||
+ The argument NUMBER is different each time this macro is executed; it
|
||
+ prevents conflicts between similarly-named internal static variables in
|
||
+ different scopes.
|
||
+
|
||
+ Ideally this string should not be a valid C identifier, to prevent any
|
||
+ conflict with the user's own symbols. Most assemblers allow periods or
|
||
+ percent signs in assembler symbols; putting at least one of these between
|
||
+ the name and the number will suffice. */
|
||
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
+ ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
+ sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
|
||
+
|
||
+#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
|
||
+ sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM))
|
||
+/* A C statement to store into the string STRING a label whose name
|
||
+ is made from the string PREFIX and the number NUM.
|
||
+
|
||
+ This string, when output subsequently by `assemble_name', should
|
||
+ produce the output that `(*targetm.asm_out.internal_label)' would produce
|
||
+ with the same PREFIX and NUM.
|
||
+
|
||
+ If the string begins with `*', then `assemble_name' will output
|
||
+ the rest of the string unchanged. It is often convenient for
|
||
+ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the
|
||
+ string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
|
||
+ output the string, and may change it. (Of course,
|
||
+ `ASM_OUTPUT_LABELREF' is also part of your machine description, so
|
||
+ you should know what it does on your machine.) */
|
||
+
|
||
+/* This says how to output assembler code to declare an
|
||
+ uninitialized external linkage data object. Under SVR4,
|
||
+ the linker seems to want the alignment of data objects
|
||
+ to depend on their types. We do exactly that here. */
|
||
+
|
||
+#define COMMON_ASM_OP "\t.comm\t"
|
||
+
|
||
+#undef ASM_OUTPUT_COMMON
|
||
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
+ do \
|
||
+ { \
|
||
+ fprintf ((FILE), "%s", COMMON_ASM_OP); \
|
||
+ assemble_name ((FILE), (NAME)); \
|
||
+ fprintf ((FILE), ", %u\n", (SIZE)); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/* This says how to output assembler code to declare an
|
||
+ uninitialized internal linkage data object. Under SVR4,
|
||
+ the linker seems to want the alignment of data objects
|
||
+ to depend on their types. We do exactly that here. */
|
||
+#define LOCAL_ASM_OP "\t.lcomm\t"
|
||
+
|
||
+#undef ASM_OUTPUT_LOCAL
|
||
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
+ do \
|
||
+ { \
|
||
+ fprintf ((FILE), "%s", LOCAL_ASM_OP); \
|
||
+ assemble_name ((FILE), (NAME)); \
|
||
+ fprintf ((FILE), ", %u\n", (SIZE)); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/* Globalizing directive for a label. */
|
||
+#define GLOBAL_ASM_OP ".global\t"
|
||
+
|
||
+/* Output the operand of an instruction. */
|
||
+#define PRINT_OPERAND(FILE, X, CODE) \
|
||
+ ubicom32_print_operand(FILE, X, CODE)
|
||
+
|
||
+/* Output the address of an operand. */
|
||
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
+ ubicom32_print_operand_address (FILE, ADDR)
|
||
+
|
||
+/* A C expression to output to STREAM some assembler code which will push hard
|
||
+ register number REGNO onto the stack. The code need not be optimal, since
|
||
+ this macro is used only when profiling. */
|
||
+#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)
|
||
+
|
||
+/* A C expression to output to STREAM some assembler code which will pop hard
|
||
+ register number REGNO off of the stack. The code need not be optimal, since
|
||
+ this macro is used only when profiling. */
|
||
+#define ASM_OUTPUT_REG_POP(FILE, REGNO)
|
||
+
|
||
+/* This macro should be provided on machines where the addresses in a dispatch
|
||
+ table are relative to the table's own address.
|
||
+
|
||
+ The definition should be a C statement to output to the stdio stream STREAM
|
||
+ an assembler pseudo-instruction to generate a difference between two labels.
|
||
+ VALUE and REL are the numbers of two internal labels. The definitions of
|
||
+ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
|
||
+ printed in the same way here. For example,
|
||
+
|
||
+ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
|
||
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
||
+ fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
|
||
+
|
||
+/* This macro should be provided on machines where the addresses in a dispatch
|
||
+ table are absolute.
|
||
+
|
||
+ The definition should be a C statement to output to the stdio stream STREAM
|
||
+ an assembler pseudo-instruction to generate a reference to a label. VALUE
|
||
+ is the number of an internal label whose definition is output using
|
||
+ `ASM_OUTPUT_INTERNAL_LABEL'. For example,
|
||
+
|
||
+ fprintf (STREAM, "\t.word L%d\n", VALUE) */
|
||
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
||
+ fprintf (STREAM, "\t.word .L%d\n", VALUE)
|
||
+
|
||
+/* Switch into a generic section. */
|
||
+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
|
||
+
|
||
+/* Assembler Commands for Alignment. */
|
||
+
|
||
+#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N)
|
||
+/* A C statement to output to the stdio stream STREAM an assembler
|
||
+ instruction to advance the location counter by NBYTES bytes.
|
||
+ Those bytes should be zero when loaded. NBYTES will be a C
|
||
+ expression of type `int'. */
|
||
+
|
||
+/* A C statement to output to the stdio stream STREAM an assembler command to
|
||
+ advance the location counter to a multiple of 2 to the POWER bytes. POWER
|
||
+ will be a C expression of type `int'. */
|
||
+#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
||
+ if ((LOG) != 0) \
|
||
+ fprintf (FILE, "\t.align %d\n", (LOG))
|
||
+
|
||
+/* A C expression that returns the DBX register number for the compiler
|
||
+ register number REGNO. In simple cases, the value of this expression may be
|
||
+ REGNO itself. But sometimes there are some registers that the compiler
|
||
+ knows about and DBX does not, or vice versa. In such cases, some register
|
||
+ may need to have one number in the compiler and another for DBX.
|
||
+
|
||
+ If two registers have consecutive numbers inside GNU CC, and they can be
|
||
+ used as a pair to hold a multiword value, then they *must* have consecutive
|
||
+ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
|
||
+ will be unable to access such a pair, because they expect register pairs to
|
||
+ be consecutive in their own numbering scheme.
|
||
+
|
||
+ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
|
||
+ preserve register pairs, then what you must do instead is redefine the
|
||
+ actual register numbering scheme.
|
||
+
|
||
+ This declaration is required. */
|
||
+#define DBX_REGISTER_NUMBER(REGNO) REGNO
|
||
+
|
||
+/* A C expression that returns the integer offset value for an automatic
|
||
+ variable having address X (an RTL expression). The default computation
|
||
+ assumes that X is based on the frame-pointer and gives the offset from the
|
||
+ frame-pointer. This is required for targets that produce debugging output
|
||
+ for DBX or COFF-style debugging output for SDB and allow the frame-pointer
|
||
+ to be eliminated when the `-g' options is used. */
|
||
+#define DEBUGGER_AUTO_OFFSET(X) \
|
||
+ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
|
||
+ + (frame_pointer_needed \
|
||
+ ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \
|
||
+ STACK_POINTER_REGNUM)))
|
||
+
|
||
+/* A C expression that returns the integer offset value for an argument having
|
||
+ address X (an RTL expression). The nominal offset is OFFSET. */
|
||
+#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
|
||
+ ((GET_CODE (X) == PLUS ? OFFSET : 0) \
|
||
+ + (frame_pointer_needed \
|
||
+ ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \
|
||
+ STACK_POINTER_REGNUM)))
|
||
+
|
||
+/* A C expression that returns the type of debugging output GNU CC produces
|
||
+ when the user specifies `-g' or `-ggdb'. Define this if you have arranged
|
||
+ for GNU CC to support more than one format of debugging output. Currently,
|
||
+ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
|
||
+ `DWARF2_DEBUG', and `XCOFF_DEBUG'.
|
||
+
|
||
+ The value of this macro only affects the default debugging output; the user
|
||
+ can always get a specific type of output by using `-gstabs', `-gcoff',
|
||
+ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
|
||
+
|
||
+ Defined in svr4.h.
|
||
+*/
|
||
+#undef PREFERRED_DEBUGGING_TYPE
|
||
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
|
||
+
|
||
+/* Define this macro if GNU CC should produce dwarf version 2 format debugging
|
||
+ output in response to the `-g' option.
|
||
+
|
||
+ To support optional call frame debugging information, you must also define
|
||
+ `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
|
||
+ prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
|
||
+ and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you
|
||
+ don't.
|
||
+
|
||
+ Defined in svr4.h. */
|
||
+
|
||
+#define DWARF2_DEBUGGING_INFO 1
|
||
+/*#define DWARF2_UNWIND_INFO 1*/
|
||
+#define DWARF2_UNWIND_INFO 0
|
||
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO)
|
||
+#define INCOMING_FRAME_SP_OFFSET 0
|
||
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO)
|
||
+#define EH_RETURN_FIRST 9
|
||
+#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM)
|
||
+
|
||
+/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
|
||
+ location used to store the amount to ajdust the stack. This is
|
||
+ usually a registers that is available from end of the function's body
|
||
+ to the end of the epilogue. Thus, this cannot be a register used as a
|
||
+ temporary by the epilogue.
|
||
+
|
||
+ This must be an integer register. */
|
||
+#define EH_RETURN_STACKADJ_REGNO 11
|
||
+#define EH_RETURN_STACKADJ_RTX \
|
||
+ gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
|
||
+
|
||
+/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
|
||
+ location used to store the address the processor should jump to
|
||
+ catch exception. This is usually a registers that is available from
|
||
+ end of the function's body to the end of the epilogue. Thus, this
|
||
+ cannot be a register used as a temporary by the epilogue.
|
||
+
|
||
+ This must be an address register. */
|
||
+#define EH_RETURN_HANDLER_REGNO 18
|
||
+#define EH_RETURN_HANDLER_RTX \
|
||
+ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
|
||
+
|
||
+/* #define DWARF2_DEBUGGING_INFO */
|
||
+
|
||
+/* Define this macro if GNU CC should produce dwarf version 2-style
|
||
+ line numbers. This usually requires extending the assembler to
|
||
+ support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the
|
||
+ assembler configuration header files. */
|
||
+/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */
|
||
+
|
||
+
|
||
+/* An alias for a machine mode name. This is the machine mode that elements
|
||
+ of a jump-table have. */
|
||
+#define CASE_VECTOR_MODE Pmode
|
||
+
|
||
+/* Smallest number of different values for which it is best to use a
|
||
+ jump-table instead of a tree of conditional branches. For most Ubicom32
|
||
+ targets this is quite small, but for the v1 architecture implementations
|
||
+ we had very little data memory and so heavily prefer the tree approach
|
||
+ rather than the jump tables. */
|
||
+#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold
|
||
+
|
||
+/* Register operations within the Ubicom32 architecture always operate on
|
||
+ the whole register word and not just the sub-bits required for the opcode
|
||
+ mode size. */
|
||
+#define WORD_REGISTER_OPERATIONS
|
||
+
|
||
+/* The maximum number of bytes that a single instruction can move quickly from
|
||
+ memory to memory. */
|
||
+#define MOVE_MAX 4
|
||
+
|
||
+/* A C expression that is nonzero if on this machine the number of bits
|
||
+ actually used for the count of a shift operation is equal to the number of
|
||
+ bits needed to represent the size of the object being shifted. When this
|
||
+ macro is non-zero, the compiler will assume that it is safe to omit a
|
||
+ sign-extend, zero-extend, and certain bitwise `and' instructions that
|
||
+ truncates the count of a shift operation. On machines that have
|
||
+ instructions that act on bitfields at variable positions, which may include
|
||
+ `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
|
||
+ deletion of truncations of the values that serve as arguments to bitfield
|
||
+ instructions.
|
||
+
|
||
+ If both types of instructions truncate the count (for shifts) and position
|
||
+ (for bitfield operations), or if no variable-position bitfield instructions
|
||
+ exist, you should define this macro.
|
||
+
|
||
+ However, on some machines, such as the 80386 and the 680x0, truncation only
|
||
+ applies to shift operations and not the (real or pretended) bitfield
|
||
+ operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
|
||
+ Instead, add patterns to the `md' file that include the implied truncation
|
||
+ of the shift instructions.
|
||
+
|
||
+ You need not define this macro if it would always have the value of zero. */
|
||
+#define SHIFT_COUNT_TRUNCATED 1
|
||
+
|
||
+/* A C expression which is nonzero if on this machine it is safe to "convert"
|
||
+ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
|
||
+ than INPREC) by merely operating on it as if it had only OUTPREC bits.
|
||
+
|
||
+ On many machines, this expression can be 1.
|
||
+
|
||
+ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
|
||
+ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
|
||
+ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
|
||
+ things. */
|
||
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
+
|
||
+/* A C string constant that tells the GNU CC driver program options to pass
|
||
+ to the assembler. It can also specify how to translate options you give
|
||
+ to GNU CC into options for GNU CC to pass to the assembler. See the
|
||
+ file `sun3.h' for an example of this.
|
||
+
|
||
+ Defined in svr4.h. */
|
||
+#undef ASM_SPEC
|
||
+#define ASM_SPEC \
|
||
+ "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}"
|
||
+
|
||
+#define LINK_SPEC "\
|
||
+%{h*} %{v:-V} \
|
||
+%{b} \
|
||
+%{mfdpic:-melf32ubicom32fdpic -z text} \
|
||
+%{static:-dn -Bstatic} \
|
||
+%{shared:-G -Bdynamic} \
|
||
+%{symbolic:-Bsymbolic} \
|
||
+%{G*} \
|
||
+%{YP,*} \
|
||
+%{Qy:} %{!Qn:-Qy}"
|
||
+
|
||
+#undef STARTFILE_SPEC
|
||
+#undef ENDFILE_SPEC
|
||
+
|
||
+/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
|
||
+
|
||
+#undef LIB_SPEC
|
||
+#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
|
||
+
|
||
+#undef HAVE_GAS_SHF_MERGE
|
||
+#define HAVE_GAS_SHF_MERGE 0
|
||
+
|
||
+#define HANDLE_SYSV_PRAGMA 1
|
||
+#undef HANDLE_PRAGMA_PACK
|
||
+
|
||
+typedef void (*ubicom32_func_ptr) (void);
|
||
+
|
||
+/* Define builtins for selected special-purpose instructions. */
|
||
+enum ubicom32_builtins
|
||
+{
|
||
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
|
||
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4
|
||
+};
|
||
+
|
||
+extern rtx ubicom32_compare_op0;
|
||
+extern rtx ubicom32_compare_op1;
|
||
+
|
||
+#define TYPE_ASM_OP "\t.type\t"
|
||
+#define TYPE_OPERAND_FMT "@%s"
|
||
+
|
||
+#ifndef ASM_DECLARE_RESULT
|
||
+#define ASM_DECLARE_RESULT(FILE, RESULT)
|
||
+#endif
|
||
+
|
||
+/* These macros generate the special .type and .size directives which
|
||
+ are used to set the corresponding fields of the linker symbol table
|
||
+ entries in an ELF object file under SVR4. These macros also output
|
||
+ the starting labels for the relevant functions/objects. */
|
||
+
|
||
+/* Write the extra assembler code needed to declare a function properly.
|
||
+ Some svr4 assemblers need to also have something extra said about the
|
||
+ function's return value. We allow for that here. */
|
||
+
|
||
+#ifndef ASM_DECLARE_FUNCTION_NAME
|
||
+#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
|
||
+ do \
|
||
+ { \
|
||
+ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
|
||
+ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
|
||
+ ASM_OUTPUT_LABEL (FILE, NAME); \
|
||
+ } \
|
||
+ while (0)
|
||
+#endif
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32.md
|
||
@@ -0,0 +1,3753 @@
|
||
+; GCC machine description for Ubicom32
|
||
+;
|
||
+; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
|
||
+; Foundation, Inc.
|
||
+; Contributed by Ubicom, Inc.
|
||
+;
|
||
+; This file is part of GCC.
|
||
+;
|
||
+; GCC is free software; you can redistribute it and/or modify
|
||
+; it under the terms of the GNU General Public License as published by
|
||
+; the Free Software Foundation; either version 3, or (at your option)
|
||
+; any later version.
|
||
+;
|
||
+; GCC is distributed in the hope that it will be useful,
|
||
+; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+; GNU General Public License for more details.
|
||
+;
|
||
+; You should have received a copy of the GNU General Public License
|
||
+; along with GCC; see the file COPYING3. If not see
|
||
+; <http://www.gnu.org/licenses/>.
|
||
+
|
||
+(define_constants
|
||
+ [(AUX_DATA_REGNO 15)
|
||
+ (LINK_REGNO 21)
|
||
+ (SP_REGNO 23)
|
||
+ (ACC0_HI_REGNO 24)
|
||
+ (ACC1_HI_REGNO 26)
|
||
+ (CC_REGNO 30)])
|
||
+
|
||
+(define_constants
|
||
+ [(UNSPEC_FDPIC_GOT 0)
|
||
+ (UNSPEC_FDPIC_GOT_FUNCDESC 1)])
|
||
+
|
||
+(define_constants
|
||
+ [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)])
|
||
+
|
||
+;; Types of instructions (for scheduling purposes).
|
||
+
|
||
+(define_attr "type" "mul,addr,other"
|
||
+ (const_string "other"))
|
||
+
|
||
+; Define instruction scheduling characteristics. We can only issue
|
||
+; one instruction per clock so we don't need to define CPU units.
|
||
+;
|
||
+(define_automaton "ubicom32")
|
||
+
|
||
+(define_cpu_unit "i_pipeline" "ubicom32");
|
||
+
|
||
+; We have a 4 cycle hazard associated with address calculations which
|
||
+; seems rather tricky to avoid so we go with a defensive assumption
|
||
+; that almost anything can be used to generate addresses.
|
||
+;
|
||
+;(define_insn_reservation "ubicom32_other" 4
|
||
+; (eq_attr "type" "other")
|
||
+; "i_pipeline")
|
||
+
|
||
+; Some moves don't generate hazards.
|
||
+;
|
||
+;(define_insn_reservation "ubicom32_addr" 1
|
||
+; (eq_attr "type" "addr")
|
||
+; "i_pipeline")
|
||
+
|
||
+; We need 3 cycles between a multiply instruction and any use of the
|
||
+; matching accumulator register(s).
|
||
+;
|
||
+(define_insn_reservation "ubicom32_mul" 4
|
||
+ (eq_attr "type" "mul")
|
||
+ "i_pipeline")
|
||
+
|
||
+(define_attr "length" ""
|
||
+ (const_int 4))
|
||
+
|
||
+(include "predicates.md")
|
||
+(include "constraints.md")
|
||
+
|
||
+; 8-bit move with no change to the flags reg.
|
||
+;
|
||
+(define_insn "movqi"
|
||
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
|
||
+ (match_operand:QI 1 "ubicom32_move_operand" "g"))]
|
||
+ ""
|
||
+ "move.1\\t%0, %1")
|
||
+
|
||
+; Combiner-generated 8-bit move with the zero flag set accordingly.
|
||
+;
|
||
+(define_insn "movqi_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:QI 1 "nonimmediate_operand" "=rm")
|
||
+ (match_dup 0))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "ext.1\\t%1, %0")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 0)
|
||
+ (const_int 0)]))]
|
||
+ "(GET_MODE (operands[2]) == CCSZNmode
|
||
+ || GET_MODE (operands[2]) == CCSZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))]
|
||
+ "(GET_MODE (operands[2]) == CCSZNmode
|
||
+ || GET_MODE (operands[2]) == CCSZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; 16-bit move with no change to the flags reg.
|
||
+;
|
||
+(define_insn "movhi"
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
|
||
+ (match_operand:HI 1 "ubicom32_move_operand" "g"))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ if (CONST_INT_P (operands[1]))
|
||
+ return \"movei\\t%0, %1\";
|
||
+
|
||
+ return \"move.2\\t%0, %1\";
|
||
+ }")
|
||
+
|
||
+; Combiner-generated 16-bit move with the zero flag set accordingly.
|
||
+;
|
||
+(define_insn "movhi_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:HI 1 "nonimmediate_operand" "=rm")
|
||
+ (match_dup 0))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "ext.2\\t%1, %0")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 0)
|
||
+ (const_int 0)]))]
|
||
+ "(GET_MODE (operands[2]) == CCSZNmode
|
||
+ || GET_MODE (operands[2]) == CCSZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))]
|
||
+ "(GET_MODE (operands[2]) == CCSZNmode
|
||
+ || GET_MODE (operands[2]) == CCSZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; 32-bit move with no change to the flags reg.
|
||
+;
|
||
+(define_expand "movsi"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "general_operand" ""))]
|
||
+ ""
|
||
+ "{
|
||
+ /* Convert any complexities in operand 1 into something that can just
|
||
+ fall into the default expander code. */
|
||
+ ubicom32_expand_movsi (operands);
|
||
+ }")
|
||
+
|
||
+(define_insn "movsi_high"
|
||
+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
|
||
+ (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))]
|
||
+ ""
|
||
+ "moveai\\t%0, #%%hi(%E1)")
|
||
+
|
||
+(define_insn "movsi_lo_sum"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a")
|
||
+ (match_operand:SI 2 "immediate_operand" "s")))]
|
||
+ ""
|
||
+ "lea.1\\t%0, %%lo(%E2)(%1)")
|
||
+
|
||
+(define_insn "movsi_internal"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ if (CONST_INT_P (operands[1]))
|
||
+ {
|
||
+ ubicom32_emit_move_const_int (operands[0], operands[1]);
|
||
+ return \"\";
|
||
+ }
|
||
+
|
||
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
+ {
|
||
+ HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]);
|
||
+
|
||
+ ubicom32_emit_move_const_int (operands[0], GEN_INT (i));
|
||
+ return \"\";
|
||
+ }
|
||
+
|
||
+ if (ubicom32_address_register_operand (operands[0], VOIDmode)
|
||
+ && register_operand (operands[1], VOIDmode))
|
||
+ {
|
||
+ if (ubicom32_address_register_operand (operands[1], VOIDmode))
|
||
+ return \"lea.1\\t%0, 0(%1)\";
|
||
+
|
||
+ /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */
|
||
+ if (ubicom32_v4)
|
||
+ return \"movea\\t%0, %1\";
|
||
+
|
||
+ return \"move.4\\t%0, %1\";
|
||
+ }
|
||
+
|
||
+ return \"move.4\\t%0, %1\";
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; constants of value 2^n by using a bset.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(exact_log2 (INTVAL (operands[1])) > 14
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (ior:SI (const_int 0)
|
||
+ (match_dup 1)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; constants of value ~(2^n) by using a bclr.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(exact_log2 (~INTVAL (operands[1])) > 14
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (and:SI (const_int -1)
|
||
+ (match_dup 1)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "")
|
||
+
|
||
+; For 32-bit constants that have bits 0 through 24 and bit 31 set the same
|
||
+; we can use swapb.4!
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff
|
||
+ && (INTVAL (operands[1]) & 0xffffffff) != 0
|
||
+ && ((INTVAL (operands[1]) & 0x80ffffff) == 0
|
||
+ || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))"
|
||
+ [(set (match_dup 0)
|
||
+ (bswap:SI (match_dup 2)))]
|
||
+ "{
|
||
+ operands[2] = GEN_INT (INTVAL (operands[1]) >> 24);
|
||
+ }")
|
||
+
|
||
+; If this is a write of a constant to memory look to see if we can usefully
|
||
+; transform this into 2 smaller writes.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "memory_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "! satisfies_constraint_I (operands[1])
|
||
+ && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)"
|
||
+ [(set (match_dup 4) (match_dup 2))
|
||
+ (set (match_dup 5) (match_dup 3))]
|
||
+ "{
|
||
+ rtx low_hword_addr;
|
||
+
|
||
+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
|
||
+ operands[3] = gen_lowpart (HImode, operands[1]);
|
||
+
|
||
+ operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0));
|
||
+ MEM_COPY_ATTRIBUTES (operands[4], operands[0]);
|
||
+
|
||
+ low_hword_addr = plus_constant (XEXP (operands[0], 0), 2);
|
||
+ operands[5] = gen_rtx_MEM (HImode, low_hword_addr);
|
||
+ MEM_COPY_ATTRIBUTES (operands[5], operands[0]);
|
||
+ }")
|
||
+
|
||
+; If we're writing memory and we've not found a better way to do this then
|
||
+; try loading into a D register and then copying to memory. This will
|
||
+; perform the fewest possible memory read/writes.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "d")
|
||
+ (set (match_operand:SI 0 "memory_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "! satisfies_constraint_I (operands[1])"
|
||
+ [(set (match_dup 2) (match_dup 1))
|
||
+ (set (match_dup 0) (match_dup 2))]
|
||
+ "")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; constants of value (2^n - 1) by using an lsr.4.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (lshiftrt:SI (const_int -1)
|
||
+ (match_dup 2)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; constants of value (2^n - 1) by using an lsr.4.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "d")
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (lshiftrt:SI (const_int -1)
|
||
+ (match_dup 3)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 2))]
|
||
+ "{
|
||
+ operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; some other constants by using an lsl.4 to shift 7 bits left by some
|
||
+; constant.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (ashift:SI (match_dup 2)
|
||
+ (match_dup 3)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
|
||
+ operands[2] = GEN_INT (INTVAL (operands[1]) >> shift);
|
||
+ operands[3] = GEN_INT (shift);
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; some other constants by using an lsl.4 to shift 7 bits left by some
|
||
+; constant.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "d")
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (ashift:SI (match_dup 3)
|
||
+ (match_dup 4)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 2))]
|
||
+ "{
|
||
+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
|
||
+ operands[3] = GEN_INT (INTVAL (operands[1]) >> shift);
|
||
+ operands[4] = GEN_INT (shift);
|
||
+ }")
|
||
+
|
||
+; For some 16-bit unsigned constants that have bit 15 set we can use
|
||
+; swapb.2!
|
||
+;
|
||
+; Note that the movsi code emits the same sequence but by using a peephole2
|
||
+; we split the pattern early enough to allow instruction scheduling to
|
||
+; occur.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)"
|
||
+ [(set (match_dup 0)
|
||
+ (zero_extend:SI (bswap:HI (match_dup 2))))]
|
||
+ "{
|
||
+ HOST_WIDE_INT i = INTVAL (operands[1]) >> 8;
|
||
+ if (i >= 0x80)
|
||
+ i -= 0x100;
|
||
+ operands[2] = GEN_INT (i);
|
||
+ }")
|
||
+
|
||
+; In general for a 16-bit unsigned constant that has bit 15 set
|
||
+; then we need a movei/move.2 pair unless we can represent it
|
||
+; via just a move.2.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(INTVAL (operands[1]) & 0xffff8000) == 0x8000
|
||
+ && (INTVAL (operands[1]) & 0xffff) < 0xff80"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 1))
|
||
+ (set (match_dup 0)
|
||
+ (zero_extend:SI (match_dup 2)))]
|
||
+ "{
|
||
+ operands[2] = gen_rtx_REG (HImode, REGNO (operands[0]));
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; 32-bit constants that have bits 16 through 31 set to arbitrary values
|
||
+; and have bits 0 through 15 set to something representable as a default
|
||
+; source-1 immediate - we use movei/shmrg.2
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(((INTVAL (operands[1]) >= 0x8000
|
||
+ && INTVAL (operands[1]) < 0xff80)
|
||
+ || INTVAL (operands[1]) >= 0x10000
|
||
+ || INTVAL (operands[1]) < -0x8000)
|
||
+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
|
||
+ || (INTVAL (operands[1]) & 0xffff) < 0x80)
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(set (match_dup 0)
|
||
+ (match_dup 2))
|
||
+ (parallel
|
||
+ [(set (match_dup 0)
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_dup 0)
|
||
+ (const_int 16))
|
||
+ (zero_extend:SI
|
||
+ (match_dup 3))))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
|
||
+ operands[3] = gen_lowpart (HImode, operands[1]);
|
||
+ }")
|
||
+
|
||
+; Exactly the same as the peephole2 preceding except that this targets a
|
||
+; general register instead of D register. Hopefully the later optimization
|
||
+; passes will notice that the value ended up in a D register first here
|
||
+; and eliminate away the other register!
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "d")
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(((INTVAL (operands[1]) >= 0x8000
|
||
+ && INTVAL (operands[1]) < 0xff80)
|
||
+ || INTVAL (operands[1]) >= 0x10000
|
||
+ || INTVAL (operands[1]) < -0x8000)
|
||
+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
|
||
+ || (INTVAL (operands[1]) & 0xffff) < 0x80)
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 3))
|
||
+ (parallel
|
||
+ [(set (match_dup 2)
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_dup 2)
|
||
+ (const_int 16))
|
||
+ (zero_extend:SI
|
||
+ (match_dup 4))))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 2))]
|
||
+ "{
|
||
+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
|
||
+ operands[4] = gen_lowpart (HImode, operands[1]);
|
||
+ }")
|
||
+
|
||
+; If we have a load of a large integer constant which does not have bit 31
|
||
+; set and we have a spare A reg then construct it with a moveai/lea.1 pair
|
||
+; instead. This avoids constructing it in 3 instructions on the stack.
|
||
+;
|
||
+; Note that we have to be careful not to match anything that matches
|
||
+; something we can do in a single instruction! There aren't many such
|
||
+; constants but there are some.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "a")
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))]
|
||
+ "(! (INTVAL (operands[1]) & 0x80000000)
|
||
+ && ((INTVAL (operands[1]) >= 0x8000
|
||
+ && INTVAL (operands[1]) < 0xff80)
|
||
+ || INTVAL (operands[1]) >= 0x10000))"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 3))
|
||
+ (set (match_dup 0)
|
||
+ (plus:SI (match_dup 2)
|
||
+ (match_dup 4)))]
|
||
+ "{
|
||
+ HOST_WIDE_INT i = INTVAL (operands[1]);
|
||
+ operands[3] = GEN_INT (i & 0xffffff80);
|
||
+ operands[4] = GEN_INT (i & 0x7f);
|
||
+ }")
|
||
+
|
||
+; If we're not dependent on the state of the condition codes we can construct
|
||
+; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:HI 2 "d")
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))
|
||
+ (match_dup 2)]
|
||
+ "(INTVAL (operands[1]) & 0x80000000
|
||
+ && INTVAL (operands[1]) < -0x8000
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(set (match_dup 0)
|
||
+ (match_dup 3))
|
||
+ (set (match_dup 2)
|
||
+ (match_dup 4))
|
||
+ (parallel
|
||
+ [(set (match_dup 0)
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_dup 0)
|
||
+ (const_int 16))
|
||
+ (zero_extend:SI
|
||
+ (match_dup 2))))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
|
||
+ operands[4] = gen_lowpart (HImode, operands[1]);
|
||
+ }")
|
||
+
|
||
+; Exactly the same as the peephole2 preceding except that this targets a
|
||
+; general register instead of D register. Hopefully the later optimization
|
||
+; passes will notice that the value ended up in a D register first here
|
||
+; and eliminate away the other register!
|
||
+;
|
||
+(define_peephole2
|
||
+ [(match_scratch:SI 2 "d")
|
||
+ (match_scratch:HI 3 "d")
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))
|
||
+ (match_dup 3)]
|
||
+ "(INTVAL (operands[1]) & 0x80000000
|
||
+ && INTVAL (operands[1]) < -0x8000
|
||
+ && peep2_regno_dead_p (0, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 4))
|
||
+ (set (match_dup 3)
|
||
+ (match_dup 5))
|
||
+ (parallel
|
||
+ [(set (match_dup 2)
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_dup 2)
|
||
+ (const_int 16))
|
||
+ (zero_extend:SI
|
||
+ (match_dup 3))))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 2))]
|
||
+ "{
|
||
+ operands[4] = gen_highpart_mode (HImode, SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (HImode, operands[1]);
|
||
+ }")
|
||
+
|
||
+(define_insn "movsi_fdpic_got_offset"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))]
|
||
+ ""
|
||
+ "movei\\t%0, %1")
|
||
+
|
||
+; The explicit MEM inside the UNSPEC prevents the compiler from moving
|
||
+; the load before a branch after a NULL test, or before a store that
|
||
+; initializes a function descriptor.
|
||
+
|
||
+(define_insn_and_split "load_fdpic_funcdesc"
|
||
+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
|
||
+ (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))]
|
||
+ UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 0)
|
||
+ (mem:SI (match_dup 1)))])
|
||
+
|
||
+; Combiner-generated 32-bit move with the zero flag set accordingly.
|
||
+;
|
||
+(define_insn "movsi_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm")
|
||
+ (match_dup 0))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ lsl.4\\t%1, %0, #0
|
||
+ add.4\\t%1, #0, %0")
|
||
+
|
||
+; Combiner-generated 32-bit move with all flags set accordingly.
|
||
+;
|
||
+(define_insn "movsi_ccw"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 1 "nonimmediate_operand" "=rm")
|
||
+ (match_dup 0))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWmode)"
|
||
+ "add.4\\t%1, #0, %0")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (parallel
|
||
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 0)
|
||
+ (const_int 0)]))
|
||
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
|
||
+ "(GET_MODE (operands[2]) == CCWZNmode
|
||
+ || GET_MODE (operands[2]) == CCWZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" ""))
|
||
+ (parallel
|
||
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
|
||
+ "(GET_MODE (operands[2]) == CCWZNmode
|
||
+ || GET_MODE (operands[2]) == CCWZmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 0)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; Combine isn't very good at merging some types of operations so we
|
||
+; have to make do with a peephole. It's not as effective but it's better
|
||
+; than doing nothing.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (parallel
|
||
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 0)
|
||
+ (const_int 0)]))
|
||
+ (set (match_operand:SI 4 "ubicom32_data_register_operand" "")
|
||
+ (match_dup 0))])]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && (GET_MODE (operands[2]) == CCWZNmode
|
||
+ || GET_MODE (operands[2]) == CCWZmode))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (set (match_dup 4)
|
||
+ (match_dup 1))])]
|
||
+ "")
|
||
+
|
||
+; Register renaming may make a general reg into a D reg in which case
|
||
+; we may be able to simplify a compare.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (parallel
|
||
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (match_operator 3 "ubicom32_compare_operator"
|
||
+ [(match_dup 0)
|
||
+ (const_int 0)]))
|
||
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && (GET_MODE (operands[2]) == CCWZNmode
|
||
+ || GET_MODE (operands[2]) == CCWZmode))"
|
||
+ [(parallel
|
||
+ [(set (match_dup 2)
|
||
+ (match_op_dup 3
|
||
+ [(match_dup 1)
|
||
+ (const_int 0)]))
|
||
+ (clobber (match_dup 4))])]
|
||
+ "")
|
||
+
|
||
+(define_insn_and_split "movdi"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm")
|
||
+ (match_operand:DI 1 "general_operand" "rmi,ri"))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 2) (match_dup 3))
|
||
+ (set (match_dup 4) (match_dup 5))]
|
||
+ "{
|
||
+ rtx dest_low;
|
||
+ rtx src_low;
|
||
+
|
||
+ dest_low = gen_lowpart (SImode, operands[0]);
|
||
+ src_low = gen_lowpart (SImode, operands[1]);
|
||
+
|
||
+ if (REG_P (operands[0])
|
||
+ && REG_P (operands[1])
|
||
+ && REGNO (operands[0]) < REGNO (operands[1]))
|
||
+ {
|
||
+ operands[2] = gen_highpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ operands[4] = dest_low;
|
||
+ operands[5] = src_low;
|
||
+ }
|
||
+ else if (reg_mentioned_p (dest_low, src_low))
|
||
+ {
|
||
+ operands[2] = gen_highpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ operands[4] = dest_low;
|
||
+ operands[5] = src_low;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ operands[2] = dest_low;
|
||
+ operands[3] = src_low;
|
||
+ operands[4] = gen_highpart (SImode, operands[0]);
|
||
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ }
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+; Combiner-generated 64-bit move with all flags set accordingly.
|
||
+;
|
||
+(define_insn "movdi_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
|
||
+ (match_dup 0))
|
||
+ (clobber (match_scratch:SI 2 "=X, d, d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_highpart (SImode, operands[0]);
|
||
+ operands[6] = gen_highpart (SImode, operands[1]);
|
||
+
|
||
+ if (ubicom32_data_register_operand (operands[0], VOIDmode))
|
||
+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
|
||
+
|
||
+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "movdi_ccw"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
|
||
+ (match_dup 0))
|
||
+ (clobber (match_scratch:SI 2 "=X, d, d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWmode)"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_highpart (SImode, operands[0]);
|
||
+ operands[6] = gen_highpart (SImode, operands[1]);
|
||
+
|
||
+ if (ubicom32_data_register_operand (operands[0], VOIDmode))
|
||
+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
|
||
+
|
||
+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "movsf"
|
||
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm")
|
||
+ (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
+ {
|
||
+ HOST_WIDE_INT val;
|
||
+ REAL_VALUE_TYPE rv;
|
||
+
|
||
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
|
||
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
|
||
+
|
||
+ ubicom32_emit_move_const_int (operands[0], GEN_INT (val));
|
||
+ return \"\";
|
||
+ }
|
||
+
|
||
+ return \"move.4\\t%0, %1\";
|
||
+ }")
|
||
+
|
||
+(define_insn "zero_extendqihi2"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "move.1\\t%0, %1")
|
||
+
|
||
+(define_insn "zero_extendqisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "move.1\\t%0, %1")
|
||
+
|
||
+(define_insn "zero_extendqisi2_ccwz_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "shmrg.1\\t%0, %1, #0")
|
||
+
|
||
+(define_insn "zero_extendhisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "move.2\\t%0, %1")
|
||
+
|
||
+(define_insn "zero_extendhisi2_ccwz_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "shmrg.2\\t%0, %1, #0")
|
||
+
|
||
+(define_insn_and_split "zero_extendqidi2"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (match_dup 1)))
|
||
+ (set (match_dup 3)
|
||
+ (const_int 0))]
|
||
+ "{
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart (SImode, operands[0]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn_and_split "zero_extendhidi2"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (match_dup 1)))
|
||
+ (set (match_dup 3)
|
||
+ (const_int 0))]
|
||
+ "{
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart (SImode, operands[0]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn_and_split "zero_extendsidi2"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=rm")
|
||
+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 1))
|
||
+ (set (match_dup 3)
|
||
+ (const_int 0))]
|
||
+ "{
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart (SImode, operands[0]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "extendqihi2"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "ext.1\\t%0, %1")
|
||
+
|
||
+(define_insn "extendqisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "ext.1\\t%0, %1")
|
||
+
|
||
+(define_insn "extendhisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "ext.2\\t%0, %1")
|
||
+
|
||
+(define_insn_and_split "extendsidi2"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=d")
|
||
+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 2)
|
||
+ (match_dup 1))
|
||
+ (parallel
|
||
+ [(set (match_dup 3)
|
||
+ (ashiftrt:SI (match_dup 2)
|
||
+ (const_int 31)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart (SImode, operands[0]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "bswaphi"
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
|
||
+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "swapb.2\\t%0, %1");
|
||
+
|
||
+(define_insn "bswaphisi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI
|
||
+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))]
|
||
+ "(ubicom32_v4)"
|
||
+ "swapb.2\\t%0, %1");
|
||
+
|
||
+(define_insn "bswapsi"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "swapb.4\\t%0, %1");
|
||
+
|
||
+(define_insn "tstqi_ext1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "ext.1\\t#0, %0")
|
||
+
|
||
+(define_expand "cmpqi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "")
|
||
+ (match_operand:QI 1 "ubicom32_data_register_operand" "")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ ubicom32_compare_op0 = operands[0];
|
||
+ ubicom32_compare_op1 = operands[1];
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "sub1_ccs"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "sub.1\\t#0, %0, %1")
|
||
+
|
||
+; If we're testing for equality we don't have to worry about reversing conditions.
|
||
+;
|
||
+(define_insn "sub1_ccsz_1"
|
||
+ [(set (reg:CCSZ CC_REGNO)
|
||
+ (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm")
|
||
+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "sub.1\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "sub1_ccsz_2"
|
||
+ [(set (reg:CCSZ CC_REGNO)
|
||
+ (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d")
|
||
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))]
|
||
+ "(ubicom32_v4)"
|
||
+ "sub.1\\t#0, %1, %0")
|
||
+
|
||
+; When the combiner runs it doesn't have any insight into whether or not an argument
|
||
+; to a compare is spilled to the stack and therefore can't swap the comparison in
|
||
+; an attempt to use sub.1 more effectively. We peephole this case here.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:QI 0 "register_operand" "")
|
||
+ (match_operand:QI 1 "ubicom32_arith_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (compare (match_operand:QI 3 "ubicom32_data_register_operand" "")
|
||
+ (match_dup 0)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operator 4 "comparison_operator"
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_operand 5 "" ""))
|
||
+ (pc)))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && peep2_regno_dead_p (3, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (compare (match_dup 1)
|
||
+ (match_dup 3)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_op_dup 6
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_dup 5))
|
||
+ (pc)))]
|
||
+ "{
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
|
||
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
|
||
+ GET_MODE (operands[4]),
|
||
+ cc_reg,
|
||
+ const0_rtx);
|
||
+ }")
|
||
+
|
||
+(define_insn "tsthi_ext2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "ext.2\\t#0, %0")
|
||
+
|
||
+(define_expand "cmphi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "")
|
||
+ (match_operand:HI 1 "ubicom32_compare_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ do
|
||
+ {
|
||
+ /* Is this a cmpi? */
|
||
+ if (CONST_INT_P (operands[1]))
|
||
+ break;
|
||
+
|
||
+ /* Must be a sub.2 - if necessary copy an operand into a reg. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], HImode))
|
||
+ operands[1] = copy_to_mode_reg (HImode, operands[1]);
|
||
+ }
|
||
+ while (0);
|
||
+
|
||
+ ubicom32_compare_op0 = operands[0];
|
||
+ ubicom32_compare_op1 = operands[1];
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "cmpi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
|
||
+ (match_operand 1 "const_int_operand" "N")))]
|
||
+ ""
|
||
+ "cmpi\\t%0, %1")
|
||
+
|
||
+(define_insn "sub2_ccs"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ ""
|
||
+ "sub.2\\t#0, %0, %1")
|
||
+
|
||
+; If we're testing for equality we don't have to worry about reversing conditions.
|
||
+;
|
||
+(define_insn "sub2_ccsz_1"
|
||
+ [(set (reg:CCSZ CC_REGNO)
|
||
+ (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm")
|
||
+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ ""
|
||
+ "sub.2\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "sub2_ccsz_2"
|
||
+ [(set (reg:CCSZ CC_REGNO)
|
||
+ (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d")
|
||
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
|
||
+ ""
|
||
+ "sub.2\\t#0, %1, %0")
|
||
+
|
||
+; When the combiner runs it doesn't have any insight into whether or not an argument
|
||
+; to a compare is spilled to the stack and therefore can't swap the comparison in
|
||
+; an attempt to use sub.2 more effectively. We peephole this case here.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "register_operand" "")
|
||
+ (match_operand:HI 1 "ubicom32_arith_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (compare (match_operand:HI 3 "ubicom32_data_register_operand" "")
|
||
+ (match_dup 0)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operator 4 "comparison_operator"
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_operand 5 "" ""))
|
||
+ (pc)))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && peep2_regno_dead_p (3, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (compare (match_dup 1)
|
||
+ (match_dup 3)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_op_dup 6
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_dup 5))
|
||
+ (pc)))]
|
||
+ "{
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
|
||
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
|
||
+ GET_MODE (operands[4]),
|
||
+ cc_reg,
|
||
+ const0_rtx);
|
||
+ }")
|
||
+
|
||
+(define_insn_and_split "tstsi_lsl4"
|
||
+ [(set (match_operand 0 "ubicom32_cc_register_operand" "=r")
|
||
+ (match_operator 1 "ubicom32_compare_operator"
|
||
+ [(match_operand:SI 2 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)]))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "#"
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (match_op_dup 1
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)]))
|
||
+ (clobber (match_dup 3))])]
|
||
+ "{
|
||
+ operands[3] = gen_reg_rtx (SImode);
|
||
+ }")
|
||
+
|
||
+(define_insn "tstsi_lsl4_d"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))
|
||
+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "lsl.4\\t%1, %0, #0")
|
||
+
|
||
+; Comparison for equality with -1.
|
||
+;
|
||
+(define_insn "cmpsi_not4_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int -1)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "not.4\\t#0, %0")
|
||
+
|
||
+(define_expand "cmpsi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "")
|
||
+ (match_operand:SI 1 "ubicom32_compare_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ do
|
||
+ {
|
||
+ /* Is this a cmpi? We can't take a memory address as cmpi takes
|
||
+ 16-bit operands. */
|
||
+ if (register_operand (operands[0], SImode)
|
||
+ && CONST_INT_P (operands[1])
|
||
+ && satisfies_constraint_N (operands[1]))
|
||
+ break;
|
||
+
|
||
+ /* Must be a sub.4 - if necessary copy an operand into a reg. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], SImode))
|
||
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
|
||
+ }
|
||
+ while (0);
|
||
+
|
||
+ ubicom32_compare_op0 = operands[0];
|
||
+ ubicom32_compare_op1 = operands[1];
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "cmpsi_cmpi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "register_operand" "r")
|
||
+ (match_operand 1 "const_int_operand" "N")))]
|
||
+ "(satisfies_constraint_N (operands[1]))"
|
||
+ "cmpi\\t%0, %1")
|
||
+
|
||
+(define_insn "cmpsi_sub4"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ ""
|
||
+ "sub.4\\t#0, %0, %1")
|
||
+
|
||
+; If we're testing for equality we don't have to worry about reversing conditions.
|
||
+;
|
||
+(define_insn "cmpsi_sub4_ccwz_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "sub.4\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "cmpsi_sub4_ccwz_2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" "rm")))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "sub.4\\t#0, %1, %0")
|
||
+
|
||
+; When the combiner runs it doesn't have any insight into whether or not an argument
|
||
+; to a compare is spilled to the stack and therefore can't swap the comparison in
|
||
+; an attempt to use sub.4 more effectively. We peephole this case here.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (compare (match_operand:SI 3 "ubicom32_data_register_operand" "")
|
||
+ (match_dup 0)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operator 4 "comparison_operator"
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_operand 5 "" ""))
|
||
+ (pc)))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && peep2_regno_dead_p (3, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (compare (match_dup 1)
|
||
+ (match_dup 3)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_op_dup 6
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_dup 5))
|
||
+ (pc)))]
|
||
+ "{
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
|
||
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
|
||
+ GET_MODE (operands[4]),
|
||
+ cc_reg,
|
||
+ const0_rtx);
|
||
+ }")
|
||
+
|
||
+(define_insn_and_split "tstdi_or4"
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))]
|
||
+ ""
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ (match_dup 0)
|
||
+ (const_int 0)))
|
||
+ (clobber (match_dup 1))])]
|
||
+ "{
|
||
+ operands[1] = gen_reg_rtx (SImode);
|
||
+ }")
|
||
+
|
||
+(define_insn "tstdi_or4_d"
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 0)))
|
||
+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[0]);
|
||
+
|
||
+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
|
||
+ return \"or.4\\t#0, %2, %3\";
|
||
+
|
||
+ return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_expand "cmpdi"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "")
|
||
+ (match_operand:DI 1 "ubicom32_data_register_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_compare_op0 = operands[0];
|
||
+ ubicom32_compare_op1 = operands[1];
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "cmpdi_sub4subc"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:DI 1 "ubicom32_data_register_operand" "d")))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[4] = gen_highpart_mode (SImode, DImode, operands[0]);
|
||
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+
|
||
+ return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+; When the combiner runs it doesn't have any insight into whether or not an argument
|
||
+; to a compare is spilled to the stack and therefore can't swap the comparison in
|
||
+; an attempt to use sub.4/subc more effectively. We peephole this case here.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:DI 0 "register_operand" "")
|
||
+ (match_operand:DI 1 "ubicom32_arith_operand" ""))
|
||
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (compare (match_operand:DI 3 "ubicom32_data_register_operand" "")
|
||
+ (match_dup 0)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operator 4 "comparison_operator"
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_operand 5 "" ""))
|
||
+ (pc)))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ && peep2_regno_dead_p (3, CC_REGNO))"
|
||
+ [(set (match_dup 2)
|
||
+ (compare (match_dup 1)
|
||
+ (match_dup 3)))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_op_dup 6
|
||
+ [(match_dup 2)
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_dup 5))
|
||
+ (pc)))]
|
||
+ "{
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
|
||
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
|
||
+ GET_MODE (operands[4]),
|
||
+ cc_reg,
|
||
+ const0_rtx);
|
||
+ }")
|
||
+
|
||
+(define_insn "btst"
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ
|
||
+ (zero_extract:SI
|
||
+ (match_operand:SI 0 "nonimmediate_operand" "rm")
|
||
+ (const_int 1)
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))]
|
||
+ ""
|
||
+ "btst\\t%0, %1")
|
||
+
|
||
+(define_insn "bfextu_ccwz_null"
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ
|
||
+ (zero_extract:SI
|
||
+ (match_operand:SI 0 "nonimmediate_operand" "rm")
|
||
+ (match_operand 1 "const_int_operand" "M")
|
||
+ (const_int 0))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ ""
|
||
+ "bfextu\\t%2, %0, %1")
|
||
+
|
||
+(define_expand "addqi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:QI 0 "memory_operand" "")
|
||
+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], QImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "addqi3_add1"
|
||
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ add.1\\t%0, %2, %1
|
||
+ add.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "addqi3_add1_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm"))
|
||
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "@
|
||
+ add.1\\t#0, %1, %0
|
||
+ add.1\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "addhi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "memory_operand" "")
|
||
+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], HImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "addhi3_add2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ add.2\\t%0, %2, %1
|
||
+ add.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "addhi3_add2_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm"))
|
||
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "@
|
||
+ add.2\\t#0, %1, %0
|
||
+ add.2\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "addsi3"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 2 "ubicom32_move_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_expand_addsi3 (operands);
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+; We start with an instruction pattern that can do all sorts of interesting
|
||
+; things but we split out any uses of lea or pdec instructions because
|
||
+; those instructions don't clobber the condition codes.
|
||
+;
|
||
+(define_insn_and_split "addsi3_1"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm")
|
||
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ #
|
||
+ #
|
||
+ #
|
||
+ #
|
||
+ #
|
||
+ add.4\\t%0, %2, %1
|
||
+ add.4\\t%0, %1, %2"
|
||
+ "(reload_completed
|
||
+ && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))"
|
||
+ [(set (match_dup 0)
|
||
+ (plus:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ ""
|
||
+)
|
||
+
|
||
+(define_insn "addsi3_1_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (plus:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ add.4\\t%0, %2, %1
|
||
+ add.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "addsi3_1_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm"))
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ add.4\\t#0, %1, %0
|
||
+ add.4\\t#0, %0, %1")
|
||
+
|
||
+(define_insn_and_split "addsi3_2"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm")
|
||
+ (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a")
|
||
+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))]
|
||
+ ""
|
||
+ "@
|
||
+ lea.4\\t%0, %E2(%1)
|
||
+ lea.2\\t%0, %E2(%1)
|
||
+ lea.1\\t%0, %E2(%1)
|
||
+ pdec\\t%0, %n2(%1)
|
||
+ lea.1\\t%0, (%1,%2)
|
||
+ #"
|
||
+ "(reload_completed
|
||
+ && ! satisfies_constraint_L (operands[2])
|
||
+ && ! satisfies_constraint_K (operands[2])
|
||
+ && ! satisfies_constraint_J (operands[2])
|
||
+ && ! satisfies_constraint_P (operands[2])
|
||
+ && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))"
|
||
+ [(set (reg:SI AUX_DATA_REGNO)
|
||
+ (match_dup 2))
|
||
+ (set (match_dup 0)
|
||
+ (plus:SI (match_dup 1)
|
||
+ (reg:SI AUX_DATA_REGNO)))]
|
||
+ ""
|
||
+)
|
||
+
|
||
+(define_insn "lea_2"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 2))
|
||
+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
|
||
+ ""
|
||
+ "lea.2\\t%0, (%2,%1)")
|
||
+
|
||
+(define_insn "lea_4"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 4))
|
||
+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
|
||
+ ""
|
||
+ "lea.4\\t%0, (%2,%1)")
|
||
+
|
||
+(define_expand "adddi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
|
||
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+; We construct a 64-bit add from 32-bit operations. Note that we use the
|
||
+; & constraint to prevent overlapping registers being allocated. We do
|
||
+; allow identical registers though as that won't break anything.
|
||
+;
|
||
+(define_insn "adddi3_add4addc"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
|
||
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart (SImode, operands[1]);
|
||
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
|
||
+
|
||
+ if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
|
||
+ return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\";
|
||
+
|
||
+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "adddi3_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
|
||
+ (plus:DI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+
|
||
+ if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
|
||
+ {
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[7] = gen_highpart (SImode, operands[1]);
|
||
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ operands[4] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[7] = gen_highpart (SImode, operands[2]);
|
||
+ operands[8] = gen_highpart (SImode, operands[1]);
|
||
+ }
|
||
+
|
||
+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "adddi3_ccwz_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm"))
|
||
+ (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "*
|
||
+ {
|
||
+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
|
||
+ {
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[4] = gen_highpart (SImode, operands[0]);
|
||
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ operands[2] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_highpart (SImode, operands[1]);
|
||
+ operands[5] = gen_highpart (SImode, operands[0]);
|
||
+ }
|
||
+
|
||
+ return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_expand "subqi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:QI 0 "memory_operand" "")
|
||
+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "")
|
||
+ (match_operand:QI 2 "ubicom32_data_register_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], QImode))
|
||
+ FAIL;
|
||
+ }")
|
||
+
|
||
+(define_insn "subqi3_sub1"
|
||
+ [(set (match_operand:QI 0 "memory_operand" "=m")
|
||
+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:QI 2 "ubicom32_data_register_operand" "d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "sub.1\\t%0, %1, %2")
|
||
+
|
||
+(define_expand "subhi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "memory_operand" "")
|
||
+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "")
|
||
+ (match_operand:HI 2 "ubicom32_data_register_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], HImode))
|
||
+ FAIL;
|
||
+ }")
|
||
+
|
||
+(define_insn "subhi3_sub2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m")
|
||
+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:HI 2 "ubicom32_data_register_operand" "d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "sub.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "subsi3"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_data_register_operand" "d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "sub.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "subsi3_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_data_register_operand" "d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (minus:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "sub.4\\t%0, %1, %2")
|
||
+
|
||
+; We construct a 64-bit add from 32-bit operations. Note that we use the
|
||
+; & constraint to prevent overlapping registers being allocated. We do
|
||
+; allow identical registers though as that won't break anything.
|
||
+;
|
||
+(define_insn "subdi3"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m")
|
||
+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI")
|
||
+ (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ operands[8] = gen_highpart (SImode, operands[2]);
|
||
+
|
||
+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "subdi3_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI")
|
||
+ (match_operand:DI 2 "ubicom32_data_register_operand" "d, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m")
|
||
+ (minus:DI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
|
||
+ operands[8] = gen_highpart (SImode, operands[2]);
|
||
+
|
||
+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+;(define_insn "negqi2"
|
||
+; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
|
||
+; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d")))
|
||
+; (clobber (reg:CC CC_REGNO))]
|
||
+; "(ubicom32_v4)"
|
||
+; "sub.1\\t%0, #0, %1")
|
||
+
|
||
+;(define_insn "neghi2"
|
||
+; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
|
||
+; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d")))
|
||
+; (clobber (reg:CC CC_REGNO))]
|
||
+; ""
|
||
+; "sub.2\\t%0, #0, %1")
|
||
+
|
||
+(define_insn "negsi2"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "sub.4\\t%0, #0, %1")
|
||
+
|
||
+(define_insn_and_split "negdi2"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
|
||
+ (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(parallel [(set (match_dup 0)
|
||
+ (minus:DI (const_int 0)
|
||
+ (match_dup 1)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "umulhisi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
|
||
+ (mult:SI
|
||
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
|
||
+ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
|
||
+ (clobber (reg:HI ACC0_HI_REGNO))
|
||
+ (clobber (reg:HI ACC1_HI_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ mulu\\t%A0, %2, %1
|
||
+ mulu\\t%A0, %1, %2"
|
||
+ [(set_attr "type" "mul,mul")])
|
||
+
|
||
+(define_insn "mulhisi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
|
||
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
|
||
+ (clobber (reg:HI ACC0_HI_REGNO))
|
||
+ (clobber (reg:HI ACC1_HI_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ muls\\t%A0, %2, %1
|
||
+ muls\\t%A0, %1, %2"
|
||
+ [(set_attr "type" "mul,mul")])
|
||
+
|
||
+(define_expand "mulsi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "")
|
||
+ (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ if (ubicom32_emit_mult_sequence (operands))
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "umulsidi3"
|
||
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
|
||
+ (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ mulu.4\\t%A0, %2, %1
|
||
+ mulu.4\\t%A0, %1, %2"
|
||
+ [(set_attr "type" "mul,mul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_dup 0))
|
||
+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
|
||
+ && ! rtx_equal_p (operands[0], operands[3])"
|
||
+ [(set (match_dup 2)
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_dup 1))
|
||
+ (zero_extend:DI (match_dup 3))))]
|
||
+ "")
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
|
||
+ (zero_extend:DI (match_dup 0))))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
|
||
+ && ! rtx_equal_p (operands[0], operands[3])"
|
||
+ [(set (match_dup 2)
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_dup 1))
|
||
+ (zero_extend:DI (match_dup 3))))]
|
||
+ "")
|
||
+
|
||
+(define_insn "umulsidi3_const"
|
||
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
|
||
+ (match_operand 2 "const_int_operand" "I")))]
|
||
+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
|
||
+ "mulu.4\\t%A0, %2, %1"
|
||
+ [(set_attr "type" "mul")])
|
||
+
|
||
+(define_insn "mulsidi3"
|
||
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
|
||
+ (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ muls.4\\t%A0, %2, %1
|
||
+ muls.4\\t%A0, %1, %2"
|
||
+ [(set_attr "type" "mul,mul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_dup 0))
|
||
+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
|
||
+ && ! rtx_equal_p (operands[0], operands[3])"
|
||
+ [(set (match_dup 2)
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_dup 1))
|
||
+ (sign_extend:DI (match_dup 3))))]
|
||
+ "")
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))
|
||
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
|
||
+ (sign_extend:DI (match_dup 0))))]
|
||
+ "(peep2_reg_dead_p (2, operands[0])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2])
|
||
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
|
||
+ && ! rtx_equal_p (operands[0], operands[3])"
|
||
+ [(set (match_dup 2)
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_dup 1))
|
||
+ (sign_extend:DI (match_dup 3))))]
|
||
+ "")
|
||
+
|
||
+(define_insn "mulsidi3_const"
|
||
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
|
||
+ (match_operand 2 "const_int_operand" "I")))]
|
||
+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
|
||
+ "muls.4\\t%A0, %2, %1"
|
||
+ [(set_attr "type" "mul")])
|
||
+
|
||
+(define_expand "andqi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:QI 0 "memory_operand" "")
|
||
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], QImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "andqi3_and1"
|
||
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ and.1\\t%0, %2, %1
|
||
+ and.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andqi3_and1_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (and:QI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "@
|
||
+ and.1\\t%0, %2, %1
|
||
+ and.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andqi3_and1_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "@
|
||
+ and.1\\t#0, %1, %0
|
||
+ and.1\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "and1_ccszn_null_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "and.1\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "and1_ccszn_null_2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (subreg:SI
|
||
+ (match_operand:QI 1 "memory_operand" "m")
|
||
+ 0))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "and.1\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "and1_ccszn_null_3"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (and:SI (subreg:SI
|
||
+ (match_operand:QI 0 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "and.1\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "andhi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "memory_operand" "")
|
||
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], HImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "andhi3_and2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ and.2\\t%0, %2, %1
|
||
+ and.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andhi3_and2_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (and:HI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "@
|
||
+ and.2\\t%0, %2, %1
|
||
+ and.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andhi3_and2_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "@
|
||
+ and.2\\t#0, %1, %0
|
||
+ and.2\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "and2_ccszn_null_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "and.2\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "and2_ccszn_null_2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (subreg:SI
|
||
+ (match_operand:HI 1 "memory_operand" "m")
|
||
+ 0))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "and.2\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "and2_ccszn_null_3"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (and:SI (subreg:SI
|
||
+ (match_operand:HI 0 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "and.2\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "andsi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ do
|
||
+ {
|
||
+ /* Is this a bfextu? */
|
||
+ if (ubicom32_data_register_operand (operands[0], SImode)
|
||
+ && CONST_INT_P (operands[2])
|
||
+ && exact_log2 (INTVAL (operands[2]) + 1) != -1)
|
||
+ break;
|
||
+
|
||
+ /* Is this a bclr? */
|
||
+ if (CONST_INT_P (operands[2])
|
||
+ && exact_log2 (~INTVAL (operands[2])) != -1)
|
||
+ break;
|
||
+
|
||
+ /* Must be an and.4 */
|
||
+ if (!ubicom32_data_register_operand (operands[1], SImode))
|
||
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
|
||
+
|
||
+ if (!ubicom32_arith_operand (operands[2], SImode))
|
||
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
|
||
+ }
|
||
+ while (0);
|
||
+ }")
|
||
+
|
||
+(define_insn "andsi3_bfextu"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
|
||
+ (match_operand:SI 2 "const_int_operand" "O")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(satisfies_constraint_O (operands[2]))"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
|
||
+
|
||
+ return \"bfextu\\t%0, %1, %3\";
|
||
+ }")
|
||
+
|
||
+(define_insn "andsi3_bfextu_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
|
||
+ (match_operand:SI 2 "const_int_operand" "O"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (and:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "(satisfies_constraint_O (operands[2])
|
||
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
|
||
+
|
||
+ return \"bfextu\\t%0, %1, %3\";
|
||
+ }")
|
||
+
|
||
+(define_insn "andsi3_bfextu_ccwz_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
|
||
+ (match_operand:SI 1 "const_int_operand" "O"))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ "(satisfies_constraint_O (operands[1])
|
||
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1));
|
||
+
|
||
+ return \"bfextu\\t%2, %0, %3\";
|
||
+ }")
|
||
+
|
||
+(define_insn "andsi3_bclr"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
|
||
+ (match_operand:SI 2 "const_int_operand" "n")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(exact_log2 (~INTVAL (operands[2])) != -1)"
|
||
+ "bclr\\t%0, %1, #%D2")
|
||
+
|
||
+(define_insn "andsi3_and4"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ and.4\\t%0, %2, %1
|
||
+ and.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andsi3_and4_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (and:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ and.4\\t%0, %2, %1
|
||
+ and.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "andsi3_and4_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ and.4\\t#0, %1, %0
|
||
+ and.4\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "andsi3_lsr4_ccwz_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
|
||
+ (match_operand:SI 1 "const_int_operand" "n"))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1
|
||
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
|
||
+ "*
|
||
+ {
|
||
+ operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1));
|
||
+
|
||
+ return \"lsr.4\\t%2, %0, %3\";
|
||
+ }")
|
||
+
|
||
+; We really would like the combiner to recognize this scenario and deal with
|
||
+; it but unfortunately it tries to canonicalize zero_extract ops on MEMs
|
||
+; into QImode operations and we can't match them in any useful way.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand:SI 1 "const_int_operand" ""))
|
||
+ (set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ
|
||
+ (and:SI (match_operand:SI 2 "nonimmediate_operand" "")
|
||
+ (match_dup 0))
|
||
+ (const_int 0)))]
|
||
+ "(exact_log2 (INTVAL (operands[1])) != -1
|
||
+ && peep2_reg_dead_p (2, operands[0]))"
|
||
+ [(set (reg:CCWZ CC_REGNO)
|
||
+ (compare:CCWZ
|
||
+ (zero_extract:SI
|
||
+ (match_dup 2)
|
||
+ (const_int 1)
|
||
+ (match_dup 3))
|
||
+ (const_int 0)))]
|
||
+ "{
|
||
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1])));
|
||
+ }")
|
||
+
|
||
+(define_expand "anddi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
|
||
+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn_and_split "anddi3_and4"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
|
||
+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(parallel [(set (match_dup 3)
|
||
+ (and:SI (match_dup 4)
|
||
+ (match_dup 5)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (parallel [(set (match_dup 6)
|
||
+ (and:SI (match_dup 7)
|
||
+ (match_dup 8)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart (SImode, operands[1]);
|
||
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_expand "iorqi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:QI 0 "memory_operand" "")
|
||
+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], QImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "iorqi3_or1"
|
||
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ or.1\\t%0, %2, %1
|
||
+ or.1\\t%0, %1, %2")
|
||
+
|
||
+(define_expand "iorhi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "memory_operand" "")
|
||
+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], HImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "iorhi3_or2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ or.2\\t%0, %2, %1
|
||
+ or.2\\t%0, %1, %2")
|
||
+
|
||
+(define_expand "iorsi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ do
|
||
+ {
|
||
+ /* Is this a bset? */
|
||
+ if (CONST_INT_P (operands[2])
|
||
+ && exact_log2 (INTVAL (operands[2])) != -1)
|
||
+ break;
|
||
+
|
||
+ /* Must be an or.4 */
|
||
+ if (!ubicom32_data_register_operand (operands[1], SImode))
|
||
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
|
||
+
|
||
+ if (!ubicom32_arith_operand (operands[2], SImode))
|
||
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
|
||
+ }
|
||
+ while (0);
|
||
+ }")
|
||
+
|
||
+(define_insn "iorsi3_bset"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
|
||
+ (match_operand 2 "const_int_operand" "n")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(exact_log2 (INTVAL (operands[2])) != -1)"
|
||
+ "bset\\t%0, %1, #%d2")
|
||
+
|
||
+(define_insn "iorsi3_or4"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ or.4\\t%0, %2, %1
|
||
+ or.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "iorsi3_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (ior:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ or.4\\t%0, %2, %1
|
||
+ or.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "iorsi3_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ or.4\\t#0, %1, %0
|
||
+ or.4\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "iordi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
|
||
+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn_and_split "iordi3_or4"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
|
||
+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(parallel [(set (match_dup 3)
|
||
+ (ior:SI (match_dup 4)
|
||
+ (match_dup 5)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (parallel [(set (match_dup 6)
|
||
+ (ior:SI (match_dup 7)
|
||
+ (match_dup 8)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart (SImode, operands[1]);
|
||
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_expand "xorqi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:QI 0 "memory_operand" "")
|
||
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "(ubicom32_v4)"
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], QImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "xorqi3_xor1"
|
||
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "@
|
||
+ xor.1\\t%0, %2, %1
|
||
+ xor.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorqi3_xor1_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:QI 0 "memory_operand" "=m, m")
|
||
+ (xor:QI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "@
|
||
+ xor.1\\t%0, %2, %1
|
||
+ xor.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorqi3_xor1_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "@
|
||
+ xor.1\\t#0, %1, %0
|
||
+ xor.1\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "xor1_ccszn_null_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "xor.1\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "xor1_ccszn_null_2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (subreg:SI
|
||
+ (match_operand:QI 1 "memory_operand" "m")
|
||
+ 0))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "xor.1\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "xor1_ccwzn_null_3"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:QI
|
||
+ (xor:SI (subreg:SI
|
||
+ (match_operand:QI 0 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
|
||
+ 3)
|
||
+ (const_int 0)))]
|
||
+ "(ubicom32_v4
|
||
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
|
||
+ "xor.1\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "xorhi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "memory_operand" "")
|
||
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ if (!memory_operand (operands[0], HImode))
|
||
+ FAIL;
|
||
+
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn "xorhi3_xor2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ xor.2\\t%0, %2, %1
|
||
+ xor.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorhi3_xor2_ccszn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:HI 0 "memory_operand" "=m, m")
|
||
+ (xor:HI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "@
|
||
+ xor.2\\t%0, %2, %1
|
||
+ xor.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorhi3_xor2_ccszn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "@
|
||
+ xor.2\\t#0, %1, %0
|
||
+ xor.2\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "xor2_ccszn_null_1"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "xor.2\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "xor2_ccszn_null_2"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
|
||
+ (subreg:SI
|
||
+ (match_operand:HI 1 "memory_operand" "m")
|
||
+ 0))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "xor.2\\t#0, %1, %0")
|
||
+
|
||
+(define_insn "xor2_ccszn_null_3"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (subreg:HI
|
||
+ (xor:SI (subreg:SI
|
||
+ (match_operand:HI 0 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
|
||
+ 2)
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
|
||
+ "xor.2\\t#0, %0, %1")
|
||
+
|
||
+(define_insn "xorsi3"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "@
|
||
+ xor.4\\t%0, %2, %1
|
||
+ xor.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorsi3_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
|
||
+ (xor:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ xor.4\\t%0, %2, %1
|
||
+ xor.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "xorsi3_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "@
|
||
+ xor.4\\t#0, %1, %0
|
||
+ xor.4\\t#0, %0, %1")
|
||
+
|
||
+(define_expand "xordi3"
|
||
+ [(parallel
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
|
||
+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ ""
|
||
+ "{
|
||
+ /* If we have a non-data reg for operand 1 then prefer that over
|
||
+ a CONST_INT in operand 2. */
|
||
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
|
||
+ && CONST_INT_P (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+
|
||
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
|
||
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
|
||
+ }")
|
||
+
|
||
+(define_insn_and_split "xordi3_xor4"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
|
||
+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
|
||
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(parallel [(set (match_dup 3)
|
||
+ (xor:SI (match_dup 4)
|
||
+ (match_dup 5)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (parallel [(set (match_dup 6)
|
||
+ (xor:SI (match_dup 7)
|
||
+ (match_dup 8)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[3] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_lowpart (SImode, operands[2]);
|
||
+ operands[6] = gen_highpart (SImode, operands[0]);
|
||
+ operands[7] = gen_highpart (SImode, operands[1]);
|
||
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+(define_insn "not2_2"
|
||
+ [(set (match_operand:HI 0 "memory_operand" "=m")
|
||
+ (subreg:HI
|
||
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
|
||
+ 2))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "not.2\\t%0, %1")
|
||
+
|
||
+(define_insn "one_cmplsi2"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "not.4\\t%0, %1")
|
||
+
|
||
+(define_insn "one_cmplsi2_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
|
||
+ (not:SI (match_dup 1)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "not.4\\t%0, %1")
|
||
+
|
||
+(define_insn "one_cmplsi2_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI"))
|
||
+ (const_int 0)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "not.4\\t#0, %0")
|
||
+
|
||
+(define_insn_and_split "one_cmpldi2"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
|
||
+ (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel [(set (match_dup 2)
|
||
+ (not:SI (match_dup 3)))
|
||
+ (clobber (reg:CC CC_REGNO))])
|
||
+ (parallel [(set (match_dup 4)
|
||
+ (not:SI (match_dup 5)))
|
||
+ (clobber (reg:CC CC_REGNO))])]
|
||
+ "{
|
||
+ operands[2] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[4] = gen_highpart (SImode, operands[0]);
|
||
+ operands[5] = gen_highpart (SImode, operands[1]);
|
||
+ }"
|
||
+ [(set_attr "length" "8")])
|
||
+
|
||
+; Conditional jump instructions
|
||
+
|
||
+(define_expand "beq"
|
||
+ [(set (pc)
|
||
+ (if_then_else (eq (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bne"
|
||
+ [(set (pc)
|
||
+ (if_then_else (ne (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bgt"
|
||
+ [(set (pc)
|
||
+ (if_then_else (gt (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "ble"
|
||
+ [(set (pc)
|
||
+ (if_then_else (le (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bge"
|
||
+ [(set (pc)
|
||
+ (if_then_else (ge (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "blt"
|
||
+ [(set (pc)
|
||
+ (if_then_else (lt (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bgtu"
|
||
+ [(set (pc)
|
||
+ (if_then_else (gtu (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bleu"
|
||
+ [(set (pc)
|
||
+ (if_then_else (leu (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bgeu"
|
||
+ [(set (pc)
|
||
+ (if_then_else (geu (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_expand "bltu"
|
||
+ [(set (pc)
|
||
+ (if_then_else (ltu (match_dup 1)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "{
|
||
+ operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0,
|
||
+ ubicom32_compare_op1);
|
||
+ }")
|
||
+
|
||
+(define_insn "jcc"
|
||
+ [(set (pc)
|
||
+ (if_then_else (match_operator 1 "comparison_operator"
|
||
+ [(match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (const_int 0)])
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ ubicom32_output_cond_jump (insn, operands[1], operands[0]);
|
||
+ return \"\";
|
||
+ }")
|
||
+
|
||
+; Reverse branch - reverse our comparison condition so that we can
|
||
+; branch in the opposite sense.
|
||
+;
|
||
+(define_insn_and_split "jcc_reverse"
|
||
+ [(set (pc)
|
||
+ (if_then_else (match_operator 1 "comparison_operator"
|
||
+ [(match_operand 2 "ubicom32_cc_register_operand" "")
|
||
+ (const_int 0)])
|
||
+ (pc)
|
||
+ (label_ref (match_operand 0 "" ""))))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(set (pc)
|
||
+ (if_then_else (match_dup 3)
|
||
+ (label_ref (match_dup 0))
|
||
+ (pc)))]
|
||
+ "{
|
||
+ rtx cc_reg;
|
||
+
|
||
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
|
||
+ operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])),
|
||
+ GET_MODE (operands[1]),
|
||
+ cc_reg,
|
||
+ const0_rtx);
|
||
+ }")
|
||
+
|
||
+(define_insn "jump"
|
||
+ [(set (pc)
|
||
+ (label_ref (match_operand 0 "" "")))]
|
||
+ ""
|
||
+ "jmpt\\t%l0")
|
||
+
|
||
+(define_expand "indirect_jump"
|
||
+ [(parallel [(set (pc)
|
||
+ (match_operand:SI 0 "register_operand" ""))
|
||
+ (clobber (match_dup 0))])]
|
||
+ ""
|
||
+ "")
|
||
+
|
||
+(define_insn "indirect_jump_internal"
|
||
+ [(set (pc)
|
||
+ (match_operand:SI 0 "register_operand" "a"))
|
||
+ (clobber (match_dup 0))]
|
||
+ ""
|
||
+ "calli\\t%0,0(%0)")
|
||
+
|
||
+; Program Space: The table contains instructions, typically jumps.
|
||
+; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address.
|
||
+; <Jump Table is Here> ;An -> Here.
|
||
+; LEA Ak, (An,Dn) ;Ak -> Table Entry
|
||
+; JMP/CALL (Ak)
|
||
+
|
||
+(define_expand "tablejump"
|
||
+ [(parallel [(set (pc)
|
||
+ (match_operand:SI 0 "nonimmediate_operand" ""))
|
||
+ (use (label_ref (match_operand 1 "" "")))])]
|
||
+ ""
|
||
+ "")
|
||
+
|
||
+(define_insn "tablejump_internal"
|
||
+ [(set (pc)
|
||
+ (match_operand:SI 0 "nonimmediate_operand" "rm"))
|
||
+ (use (label_ref (match_operand 1 "" "")))]
|
||
+ ""
|
||
+ "ret\\t%0")
|
||
+
|
||
+; Call subroutine with no return value.
|
||
+;
|
||
+(define_expand "call"
|
||
+ [(call (match_operand:QI 0 "general_operand" "")
|
||
+ (match_operand:SI 1 "general_operand" ""))]
|
||
+ ""
|
||
+ "{
|
||
+ if (TARGET_FDPIC)
|
||
+ {
|
||
+ ubicom32_expand_call_fdpic (operands);
|
||
+ DONE;
|
||
+ }
|
||
+
|
||
+ if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode))
|
||
+ XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
|
||
+ }")
|
||
+
|
||
+; We expand to a simple form that doesn't clobber the link register and
|
||
+; then split to a form that does. This allows the RTL optimizers that
|
||
+; run before the splitter to have the opportunity to eliminate the call
|
||
+; without marking A5 as being clobbered and this in turn avoids saves
|
||
+; and returns in a number of cases.
|
||
+;
|
||
+(define_insn_and_split "call_1"
|
||
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 1 "general_operand" "g,g"))]
|
||
+ "! TARGET_FDPIC"
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel
|
||
+ [(call (mem:QI (match_dup 0))
|
||
+ (match_dup 1))
|
||
+ (clobber (reg:SI LINK_REGNO))])]
|
||
+ "")
|
||
+
|
||
+(define_insn "call_slow"
|
||
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 1 "general_operand" "g,g"))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
|
||
+ "@
|
||
+ calli\\ta5, 0(%0)
|
||
+ moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)")
|
||
+
|
||
+(define_insn "call_fast"
|
||
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 1 "general_operand" "g,g"))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "(! TARGET_FDPIC && TARGET_FASTCALL)"
|
||
+ "@
|
||
+ calli\\ta5, 0(%0)
|
||
+ call\\ta5, %C0")
|
||
+
|
||
+; We expand to a simple form that doesn't clobber the link register and
|
||
+; then split to a form that does. This allows the RTL optimizers that
|
||
+; run before the splitter to have the opportunity to eliminate the call
|
||
+; without marking A5 as being clobbered and this in turn avoids saves
|
||
+; and returns in a number of cases.
|
||
+;
|
||
+(define_insn_and_split "call_fdpic"
|
||
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 1 "general_operand" "g,g"))
|
||
+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))]
|
||
+ "TARGET_FDPIC"
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel
|
||
+ [(call (mem:QI (match_dup 0))
|
||
+ (match_dup 1))
|
||
+ (use (match_dup 2))
|
||
+ (clobber (reg:SI LINK_REGNO))])]
|
||
+ "")
|
||
+
|
||
+(define_insn "call_fdpic_clobber"
|
||
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 1 "general_operand" "g,g"))
|
||
+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "TARGET_FDPIC"
|
||
+ "@
|
||
+ move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5)
|
||
+ call\\ta5, %C0")
|
||
+
|
||
+; Call subroutine, returning value in operand 0
|
||
+; (which must be a hard register).
|
||
+;
|
||
+(define_expand "call_value"
|
||
+ [(set (match_operand 0 "" "")
|
||
+ (call (match_operand:QI 1 "general_operand" "")
|
||
+ (match_operand:SI 2 "general_operand" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ if (TARGET_FDPIC)
|
||
+ {
|
||
+ ubicom32_expand_call_value_fdpic (operands);
|
||
+ DONE;
|
||
+ }
|
||
+
|
||
+ if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode))
|
||
+ XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
|
||
+ }")
|
||
+
|
||
+; We expand to a simple form that doesn't clobber the link register and
|
||
+; then split to a form that does. This allows the RTL optimizers that
|
||
+; run before the splitter to have the opportunity to eliminate the call
|
||
+; without marking A5 as being clobbered and this in turn avoids saves
|
||
+; and returns in a number of cases.
|
||
+;
|
||
+(define_insn_and_split "call_value_1"
|
||
+ [(set (match_operand 0 "register_operand" "=r,r")
|
||
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 2 "general_operand" "g,g")))]
|
||
+ "! TARGET_FDPIC"
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (call (mem:QI (match_dup 1))
|
||
+ (match_dup 2)))
|
||
+ (clobber (reg:SI LINK_REGNO))])]
|
||
+ "")
|
||
+
|
||
+(define_insn "call_value_slow"
|
||
+ [(set (match_operand 0 "register_operand" "=r,r")
|
||
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 2 "general_operand" "g,g")))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
|
||
+ "@
|
||
+ calli\\ta5, 0(%1)
|
||
+ moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)")
|
||
+
|
||
+(define_insn "call_value_fast"
|
||
+ [(set (match_operand 0 "register_operand" "=r,r")
|
||
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 2 "general_operand" "g,g")))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "(! TARGET_FDPIC && TARGET_FASTCALL)"
|
||
+ "@
|
||
+ calli\\ta5, 0(%1)
|
||
+ call\\ta5, %C1")
|
||
+
|
||
+; We expand to a simple form that doesn't clobber the link register and
|
||
+; then split to a form that does. This allows the RTL optimizers that
|
||
+; run before the splitter to have the opportunity to eliminate the call
|
||
+; without marking A5 as being clobbered and this in turn avoids saves
|
||
+; and returns in a number of cases.
|
||
+;
|
||
+(define_insn_and_split "call_value_fdpic"
|
||
+ [(set (match_operand 0 "register_operand" "=r,r")
|
||
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 2 "general_operand" "g,g")))
|
||
+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))]
|
||
+ "TARGET_FDPIC"
|
||
+ "#"
|
||
+ ""
|
||
+ [(parallel
|
||
+ [(set (match_dup 0)
|
||
+ (call (mem:QI (match_dup 1))
|
||
+ (match_dup 2)))
|
||
+ (use (match_dup 3))
|
||
+ (clobber (reg:SI LINK_REGNO))])]
|
||
+ "")
|
||
+
|
||
+(define_insn "call_value_fdpic_clobber"
|
||
+ [(set (match_operand 0 "register_operand" "=r,r")
|
||
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
|
||
+ (match_operand:SI 2 "general_operand" "g,g")))
|
||
+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))
|
||
+ (clobber (reg:SI LINK_REGNO))]
|
||
+ "TARGET_FDPIC"
|
||
+ "@
|
||
+ move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5)
|
||
+ call\\ta5, %C1")
|
||
+
|
||
+(define_expand "untyped_call"
|
||
+ [(parallel [(call (match_operand 0 "" "")
|
||
+ (const_int 0))
|
||
+ (match_operand 1 "" "")
|
||
+ (match_operand 2 "" "")])]
|
||
+ ""
|
||
+ "{
|
||
+ int i;
|
||
+
|
||
+ emit_call_insn (gen_call (operands[0], const0_rtx));
|
||
+
|
||
+ for (i = 0; i < XVECLEN (operands[2], 0); i++)
|
||
+ {
|
||
+ rtx set = XVECEXP (operands[2], 0, i);
|
||
+ emit_move_insn (SET_DEST (set), SET_SRC (set));
|
||
+ }
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_insn "lsl1_1"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashift:SI (subreg:SI
|
||
+ (match_operand:QI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "lsl.1\\t%0, %1, %2")
|
||
+
|
||
+; The combiner gets rather creative about left shifts of sub-word memory
|
||
+; operands because it's uncertain about whether the memory is sign or
|
||
+; zero extended. It only wants zero-extended behaviour and so throws
|
||
+; in an extra and operation.
|
||
+;
|
||
+(define_insn "lsl1_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (and:SI
|
||
+ (ashift:SI (subreg:SI
|
||
+ (match_operand:QI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "const_int_operand" "M"))
|
||
+ (match_operand:SI 3 "const_int_operand" "n")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))"
|
||
+ "lsl.1\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "lsl2_1"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashift:SI (subreg:SI
|
||
+ (match_operand:HI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "lsl.2\\t%0, %1, %2")
|
||
+
|
||
+; The combiner gets rather creative about left shifts of sub-word memory
|
||
+; operands because it's uncertain about whether the memory is sign or
|
||
+; zero extended. It only wants zero-extended behaviour and so throws
|
||
+; in an extra and operation.
|
||
+;
|
||
+(define_insn "lsl2_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (and:SI
|
||
+ (ashift:SI (subreg:SI
|
||
+ (match_operand:HI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "const_int_operand" "M"))
|
||
+ (match_operand:SI 3 "const_int_operand" "n")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))"
|
||
+ "lsl.2\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "ashlsi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "lsl.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "lshlsi3_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashift:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "lsl.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "lshlsi3_ccwz_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "lsl.4\\t%2, %0, %1")
|
||
+
|
||
+; The combiner finds this canonical form for what is in essence a right
|
||
+; shift.
|
||
+;
|
||
+(define_insn "asr1_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (sign_extract:SI (match_operand:QI 1 "memory_operand" "m")
|
||
+ (match_operand:SI 2 "const_int_operand" "M")
|
||
+ (match_operand:SI 3 "const_int_operand" "M")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
|
||
+ "asr.1\\t%0, %1, %3")
|
||
+
|
||
+; The combiner finds this canonical form for what is in essence a right
|
||
+; shift.
|
||
+;
|
||
+(define_insn "asr2_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (sign_extract:SI (match_operand:HI 1 "memory_operand" "m")
|
||
+ (match_operand:SI 2 "const_int_operand" "M")
|
||
+ (match_operand:SI 3 "const_int_operand" "M")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
|
||
+ "asr.2\\t%0, %1, %3")
|
||
+
|
||
+(define_insn "ashrsi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "asr.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "ashrsi3_ccwzn"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ashiftrt:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "asr.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "ashrsi3_ccwzn_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
|
||
+ "asr.4\\t%2, %0, %1")
|
||
+
|
||
+(define_insn "lsr1_1"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (lshiftrt:SI (subreg:SI
|
||
+ (match_operand:QI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "lsr.1\\t%0, %1, %2")
|
||
+
|
||
+; The combiner finds this canonical form for what is in essence a right
|
||
+; shift.
|
||
+;
|
||
+(define_insn "lsr1_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (zero_extract:SI (match_operand:QI 1 "memory_operand" "m")
|
||
+ (match_operand:SI 2 "const_int_operand" "M")
|
||
+ (match_operand:SI 3 "const_int_operand" "M")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
|
||
+ "lsr.1\\t%0, %1, %3")
|
||
+
|
||
+(define_insn "lsr2_1"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (lshiftrt:SI (subreg:SI
|
||
+ (match_operand:HI 1 "memory_operand" "m")
|
||
+ 0)
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4)"
|
||
+ "lsr.2\\t%0, %1, %2")
|
||
+
|
||
+; The combiner finds this canonical form for what is in essence a right
|
||
+; shift.
|
||
+;
|
||
+(define_insn "lsr2_2"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (zero_extract:SI (match_operand:HI 1 "memory_operand" "m")
|
||
+ (match_operand:SI 2 "const_int_operand" "M")
|
||
+ (match_operand:SI 3 "const_int_operand" "M")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ "(ubicom32_v4
|
||
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
|
||
+ "lsr.2\\t%0, %1, %3")
|
||
+
|
||
+(define_insn "lshrsi3"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "lsr.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "lshrsi3_ccwz"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (lshiftrt:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "lsr.4\\t%0, %1, %2")
|
||
+
|
||
+(define_insn "lshrsi3_ccwz_null"
|
||
+ [(set (reg CC_REGNO)
|
||
+ (compare
|
||
+ (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
|
||
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
|
||
+ (const_int 0)))
|
||
+ (clobber (match_scratch:SI 2 "=d"))]
|
||
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
|
||
+ "lsr.4\\t%2, %0, %1")
|
||
+
|
||
+(define_expand "prologue"
|
||
+ [(const_int 0)]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_expand_prologue ();
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_expand "epilogue"
|
||
+ [(return)]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_expand_epilogue ();
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_expand "return"
|
||
+ [(return)]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_expand_epilogue ();
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+(define_expand "_eh_return"
|
||
+ [(use (match_operand:SI 0 "register_operand" "r"))
|
||
+ (use (match_operand:SI 1 "register_operand" "r"))]
|
||
+ ""
|
||
+ "{
|
||
+ ubicom32_expand_eh_return (operands);
|
||
+ DONE;
|
||
+ }")
|
||
+
|
||
+; XXX - it looks almost certain that we could make return_internal use a Dn
|
||
+; register too. In that instance we'd have to use a ret instruction
|
||
+; rather than a calli but it might save cycles.
|
||
+;
|
||
+(define_insn "return_internal"
|
||
+ [(const_int 2)
|
||
+ (return)
|
||
+ (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))]
|
||
+ ""
|
||
+ "*
|
||
+ {
|
||
+ if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO
|
||
+ && ubicom32_can_use_calli_to_ret)
|
||
+ return \"calli\\t%0, 0(%0)\";
|
||
+
|
||
+ return \"ret\\t%0\";
|
||
+ }")
|
||
+
|
||
+(define_insn "return_from_post_modify_sp"
|
||
+ [(parallel
|
||
+ [(const_int 2)
|
||
+ (return)
|
||
+ (use (mem:SI (post_modify:SI
|
||
+ (reg:SI SP_REGNO)
|
||
+ (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_operand:SI 0 "const_int_operand" "n")))))])]
|
||
+ "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4"
|
||
+ "ret\\t(sp)%E0++")
|
||
+
|
||
+;(define_insn "eh_return_internal"
|
||
+; [(const_int 4)
|
||
+; (return)
|
||
+; (use (reg:SI 34))]
|
||
+; ""
|
||
+; "ret\\ta2")
|
||
+
|
||
+; No operation, needed in case the user uses -g but not -O.
|
||
+(define_expand "nop"
|
||
+ [(const_int 0)]
|
||
+ ""
|
||
+ "")
|
||
+
|
||
+(define_insn "nop_internal"
|
||
+ [(const_int 0)]
|
||
+ ""
|
||
+ "nop")
|
||
+
|
||
+; The combiner will generate this pattern given shift and add operations.
|
||
+; The canonical form that the combiner wants to use appears to be multiplies
|
||
+; instead of shifts even if the compiled sources use shifts.
|
||
+;
|
||
+(define_insn "shmrg1_add"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (plus:SI
|
||
+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 256))
|
||
+ (zero_extend:SI
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "shmrg.1\\t%0, %2, %1")
|
||
+
|
||
+; The combiner will generate this pattern given shift and or operations.
|
||
+;
|
||
+(define_insn "shmrg1_ior"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 8))
|
||
+ (zero_extend:SI
|
||
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "shmrg.1\\t%0, %2, %1")
|
||
+
|
||
+; The combiner will generate this pattern given shift and add operations.
|
||
+; The canonical form that the combiner wants to use appears to be multiplies
|
||
+; instead of shifts even if the compiled sources use shifts.
|
||
+;
|
||
+(define_insn "shmrg2_add"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (plus:SI
|
||
+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 65536))
|
||
+ (zero_extend:SI
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "shmrg.2\\t%0, %2, %1")
|
||
+
|
||
+; The combiner will generate this pattern given shift and or operations.
|
||
+;
|
||
+(define_insn "shmrg2_ior"
|
||
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
|
||
+ (ior:SI
|
||
+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
|
||
+ (const_int 16))
|
||
+ (zero_extend:SI
|
||
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
|
||
+ (clobber (reg:CC CC_REGNO))]
|
||
+ ""
|
||
+ "shmrg.2\\t%0, %2, %1")
|
||
+
|
||
+; Match the case where we load a word from the stack but then discard the
|
||
+; upper 16 bits. We turn this into a zero-extended load of that useful
|
||
+; 16 bits direct from the stack where possible.
|
||
+;
|
||
+
|
||
+; XXX - do these peephole2 ops actually work after the CCmode conversion?
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_operand:SI 1 "const_int_operand" ""))))
|
||
+ (set (match_operand:SI 2 "nonimmediate_operand" "")
|
||
+ (zero_extend:SI (match_operand:HI 3 "register_operand" "")))]
|
||
+ "(INTVAL (operands[1]) <= 252
|
||
+ && REGNO (operands[3]) == REGNO (operands[0])
|
||
+ && ((peep2_reg_dead_p (2, operands[0])
|
||
+ && ! reg_mentioned_p (operands[0], operands[2]))
|
||
+ || rtx_equal_p (operands[0], operands[2])))"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_dup 4)))))]
|
||
+ "{
|
||
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
|
||
+ }")
|
||
+
|
||
+; Match the case where we load a word from the stack but then discard the
|
||
+; upper 16 bits. We turn this into a 16-bit load of that useful
|
||
+; 16 bits direct from the stack where possible.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_operand:SI 1 "const_int_operand" ""))))
|
||
+ (set (match_operand:HI 2 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 3 "register_operand" ""))]
|
||
+ "(INTVAL (operands[1]) <= 252
|
||
+ && REGNO (operands[3]) == REGNO (operands[0])
|
||
+ && ((peep2_reg_dead_p (2, operands[0])
|
||
+ && ! reg_mentioned_p (operands[0], operands[2]))
|
||
+ || rtx_equal_p (operands[0], operands[2])))"
|
||
+ [(set (match_dup 2)
|
||
+ (mem:HI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_dup 4))))]
|
||
+ "{
|
||
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
|
||
+ }")
|
||
+
|
||
+; Match the case where we load a word from the stack but then discard the
|
||
+; upper 24 bits. We turn this into a zero-extended load of that useful
|
||
+; 8 bits direct from the stack where possible.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_operand:SI 1 "const_int_operand" ""))))
|
||
+ (set (match_operand:SI 2 "nonimmediate_operand" "")
|
||
+ (zero_extend:SI (match_operand:QI 3 "register_operand" "")))]
|
||
+ "(INTVAL (operands[1]) <= 124
|
||
+ && REGNO (operands[3]) == REGNO (operands[0])
|
||
+ && ((peep2_reg_dead_p (2, operands[0])
|
||
+ && ! reg_mentioned_p (operands[0], operands[2]))
|
||
+ || rtx_equal_p (operands[0], operands[2])))"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_dup 4)))))]
|
||
+ "{
|
||
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
|
||
+ }")
|
||
+
|
||
+; Match the case where we load a word from the stack but then discard the
|
||
+; upper 24 bits. We turn this into an 8-bit load of that useful
|
||
+; 8 bits direct from the stack where possible.
|
||
+;
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_operand:SI 1 "const_int_operand" ""))))
|
||
+ (set (match_operand:QI 2 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 3 "register_operand" ""))]
|
||
+ "(INTVAL (operands[1]) <= 124
|
||
+ && REGNO (operands[3]) == REGNO (operands[0])
|
||
+ && ((peep2_reg_dead_p (2, operands[0])
|
||
+ && ! reg_mentioned_p (operands[0], operands[2]))
|
||
+ || rtx_equal_p (operands[0], operands[2])))"
|
||
+ [(set (match_dup 2)
|
||
+ (mem:QI (plus:SI (reg:SI SP_REGNO)
|
||
+ (match_dup 4))))]
|
||
+ "{
|
||
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
|
||
+ }")
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/ubicom32.opt
|
||
@@ -0,0 +1,27 @@
|
||
+mdebug-address
|
||
+Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS)
|
||
+Debug addresses
|
||
+
|
||
+mdebug-context
|
||
+Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT)
|
||
+Debug contexts
|
||
+
|
||
+march=
|
||
+Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined
|
||
+Specify the name of the target architecture
|
||
+
|
||
+mfdpic
|
||
+Target Report Mask(FDPIC)
|
||
+Enable Function Descriptor PIC mode
|
||
+
|
||
+minline-plt
|
||
+Target Report Mask(INLINE_PLT)
|
||
+Enable inlining of PLT in function calls
|
||
+
|
||
+mfastcall
|
||
+Target Report Mask(FASTCALL)
|
||
+Enable default fast (call) calling sequence for smaller applications
|
||
+
|
||
+mipos-abi
|
||
+Target Report Mask(IPOS_ABI)
|
||
+Enable the ipOS ABI in which D10-D13 are caller-clobbered
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/uclinux.h
|
||
@@ -0,0 +1,67 @@
|
||
+/* Definitions of target machine for Ubicom32-uclinux
|
||
+
|
||
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
+ 2009 Free Software Foundation, Inc.
|
||
+ Contributed by Ubicom, Inc.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ GCC is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published
|
||
+ by the Free Software Foundation; either version 3, or (at your
|
||
+ option) any later version.
|
||
+
|
||
+ GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
+ License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with GCC; see the file COPYING3. If not see
|
||
+ <http://www.gnu.org/licenses/>. */
|
||
+
|
||
+/* Don't assume anything about the header files. */
|
||
+#define NO_IMPLICIT_EXTERN_C
|
||
+
|
||
+#undef LIB_SPEC
|
||
+#define LIB_SPEC \
|
||
+ "%{pthread:-lpthread} " \
|
||
+ "%{!shared:%{!symbolic: -lc}} "
|
||
+
|
||
+
|
||
+#undef LINK_GCC_C_SEQUENCE_SPEC
|
||
+#define LINK_GCC_C_SEQUENCE_SPEC \
|
||
+ "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} "
|
||
+
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC \
|
||
+ "%{!shared: crt1%O%s}" \
|
||
+ " crti%O%s crtbegin%O%s"
|
||
+
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
|
||
+
|
||
+/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that
|
||
+ we want to support both flat and ELF output. */
|
||
+#define OBJECT_FORMAT_FLAT
|
||
+
|
||
+#undef DRIVER_SELF_SPECS
|
||
+#define DRIVER_SELF_SPECS \
|
||
+ "%{!mno-fastcall:-mfastcall}"
|
||
+
|
||
+/* taken from linux.h */
|
||
+/* The GNU C++ standard library requires that these macros be defined. */
|
||
+#undef CPLUSPLUS_CPP_SPEC
|
||
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
|
||
+
|
||
+#define TARGET_OS_CPP_BUILTINS() \
|
||
+ do { \
|
||
+ builtin_define_std ("__UBICOM32__"); \
|
||
+ builtin_define_std ("__ubicom32__"); \
|
||
+ builtin_define ("__gnu_linux__"); \
|
||
+ builtin_define_std ("linux"); \
|
||
+ builtin_define_std ("unix"); \
|
||
+ builtin_assert ("system=linux"); \
|
||
+ builtin_assert ("system=unix"); \
|
||
+ builtin_assert ("system=posix"); \
|
||
+ } while (0)
|
||
--- /dev/null
|
||
+++ b/gcc/config/ubicom32/xm-ubicom32.h
|
||
@@ -0,0 +1,36 @@
|
||
+/* Configuration for Ubicom's Ubicom32 architecture.
|
||
+ Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
|
||
+ Foundation, Inc.
|
||
+ Contributed by Ubicom Inc.
|
||
+
|
||
+This file is part of GNU CC.
|
||
+
|
||
+GNU CC is free software; you can redistribute it and/or modify
|
||
+it under the terms of the GNU General Public License as published by
|
||
+the Free Software Foundation; either version 2, or (at your option)
|
||
+any later version.
|
||
+
|
||
+GNU CC is distributed in the hope that it will be useful,
|
||
+but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+GNU General Public License for more details.
|
||
+
|
||
+You should have received a copy of the GNU General Public License
|
||
+along with GNU CC; see the file COPYING. If not, write to
|
||
+the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
+Boston, MA 02111-1307, USA. */
|
||
+
|
||
+/* #defines that need visibility everywhere. */
|
||
+#define FALSE 0
|
||
+#define TRUE 1
|
||
+
|
||
+/* This describes the machine the compiler is hosted on. */
|
||
+#define HOST_BITS_PER_CHAR 8
|
||
+#define HOST_BITS_PER_SHORT 16
|
||
+#define HOST_BITS_PER_INT 32
|
||
+#define HOST_BITS_PER_LONG 32
|
||
+#define HOST_BITS_PER_LONGLONG 64
|
||
+
|
||
+/* Arguments to use with `exit'. */
|
||
+#define SUCCESS_EXIT_CODE 0
|
||
+#define FATAL_EXIT_CODE 33
|
||
--- a/gcc/config.gcc
|
||
+++ b/gcc/config.gcc
|
||
@@ -2675,6 +2675,34 @@ spu-*-elf*)
|
||
c_target_objs="${c_target_objs} spu-c.o"
|
||
cxx_target_objs="${cxx_target_objs} spu-c.o"
|
||
;;
|
||
+ubicom32-*-elf)
|
||
+ xm_file=ubicom32/xm-ubicom32.h
|
||
+ tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h
|
||
+ tmake_file=ubicom32/t-ubicom32
|
||
+ ;;
|
||
+ubicom32-*-uclinux*)
|
||
+ xm_file=ubicom32/xm-ubicom32.h
|
||
+ tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h
|
||
+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
|
||
+ extra_options="${extra_options} linux.opt"
|
||
+ tmake_file=ubicom32/t-ubicom32-uclinux
|
||
+ use_collect2=no
|
||
+ ;;
|
||
+ubicom32-*-linux-uclibc)
|
||
+ xm_file=ubicom32/xm-ubicom32.h
|
||
+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
|
||
+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
|
||
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
|
||
+ use_collect2=no
|
||
+ ;;
|
||
+ubicom32-*-linux*)
|
||
+ xm_file=ubicom32/xm-ubicom32.h
|
||
+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
|
||
+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
|
||
+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
|
||
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
|
||
+ use_collect2=no
|
||
+ ;;
|
||
v850e1-*-*)
|
||
target_cpu_default="TARGET_CPU_v850e1"
|
||
tm_file="dbxelf.h elfos.h newlib-stdint.h v850/v850.h"
|
||
--- a/libgcc/config.host
|
||
+++ b/libgcc/config.host
|
||
@@ -563,6 +563,15 @@ sparc64-*-netbsd*)
|
||
;;
|
||
spu-*-elf*)
|
||
;;
|
||
+ubicom32*-*-elf*)
|
||
+ ;;
|
||
+ubicom32*-*-uclinux*)
|
||
+ ;;
|
||
+ubicom32*-*-linux*)
|
||
+ # No need to build crtbeginT.o on uClibc systems. Should probably
|
||
+ # be moved to the OS specific section above.
|
||
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
|
||
+ ;;
|
||
v850e1-*-*)
|
||
;;
|
||
v850e-*-*)
|