1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-10 04:20:15 +02:00
openwrt-xburst/target/linux/generic/files/crypto/ocf/c7108/aes-7108.c
luka 94a17b96c4 ocf: update to version 20120127
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@32672 3c298f89-4303-0410-b956-a3cf2f4a3e73
2012-07-11 23:38:14 +00:00

842 lines
24 KiB
C

/*
* Copyright (C) 2006 Micronas USA
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
//#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/crypto.h>
#include <linux/mm.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <asm/io.h>
#include <asm/delay.h>
//#include <asm/scatterlist.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <cryptodev.h>
#include <uio.h>
#include <aes-7108.h>
/* Runtime mode */
static int c7108_crypto_mode = C7108_AES_CTRL_MODE_CTR;
//static int c7108_crypto_mode = C7108_AES_CTRL_MODE_CBC;
static int32_t c7108_id = -1;
static struct cipher_7108 **c7108_sessions = NULL;
static u_int32_t c7108_sesnum = 0;
static unsigned long iobar;
/* Crypto entry points */
static int c7108_process(void *, struct cryptop *, int);
static int c7108_newsession(void *, u_int32_t *, struct cryptoini *);
static int c7108_freesession(void *, u_int64_t);
/* Globals */
static int debug = 0;
static spinlock_t csr_mutex;
/* Generic controller-based lock */
#define AES_LOCK()\
spin_lock(&csr_mutex)
#define AES_UNLOCK()\
spin_unlock(&csr_mutex)
/* 7108 AES register access */
#define c7108_reg_wr8(a,d) iowrite8(d, (void*)(iobar+(a)))
#define c7108_reg_wr16(a,d) iowrite16(d, (void*)(iobar+(a)))
#define c7108_reg_wr32(a,d) iowrite32(d, (void*)(iobar+(a)))
#define c7108_reg_rd8(a) ioread8((void*)(iobar+(a)))
#define c7108_reg_rd16(a) ioread16((void*)(iobar+(a)))
#define c7108_reg_rd32(a) ioread32((void*)(iobar+(a)))
static int
c7108_xlate_key(int klen, u8* k8ptr, u32* k32ptr)
{
int i, nw=0;
nw = ((klen >= 256) ? 8 : (klen >= 192) ? 6 : 4);
for ( i = 0; i < nw; i++) {
k32ptr[i] = (k8ptr[i+3] << 24) | (k8ptr[i+2] << 16) |
(k8ptr[i+1] << 8) | k8ptr[i];
}
return 0;
}
static int
c7108_cache_key(int klen, u32* k32ptr, u8* k8ptr)
{
int i, nb=0;
u8* ptr = (u8*)k32ptr;
nb = ((klen >= 256) ? 32 : (klen >= 192) ? 24 : 16);
for ( i = 0; i < nb; i++)
k8ptr[i] = ptr[i];
return 0;
}
static int
c7108_aes_setup_dma(u32 src, u32 dst, u32 len)
{
if (len < 16) {
printk("len < 16\n");
return -10;
}
if (len % 16) {
printk("len not multiple of 16\n");
return -11;
}
c7108_reg_wr16(C7108_AES_DMA_SRC0_LO, (u16) src);
c7108_reg_wr16(C7108_AES_DMA_SRC0_HI, (u16)((src & 0xffff0000) >> 16));
c7108_reg_wr16(C7108_AES_DMA_DST0_LO, (u16) dst);
c7108_reg_wr16(C7108_AES_DMA_DST0_HI, (u16)((dst & 0xffff0000) >> 16));
c7108_reg_wr16(C7108_AES_DMA_LEN, (u16) ((len / 16) - 1));
return 0;
}
static int
c7108_aes_set_hw_iv(u8 iv[16])
{
c7108_reg_wr16(C7108_AES_IV0_LO, (u16) ((iv[1] << 8) | iv[0]));
c7108_reg_wr16(C7108_AES_IV0_HI, (u16) ((iv[3] << 8) | iv[2]));
c7108_reg_wr16(C7108_AES_IV1_LO, (u16) ((iv[5] << 8) | iv[4]));
c7108_reg_wr16(C7108_AES_IV1_HI, (u16) ((iv[7] << 8) | iv[6]));
c7108_reg_wr16(C7108_AES_IV2_LO, (u16) ((iv[9] << 8) | iv[8]));
c7108_reg_wr16(C7108_AES_IV2_HI, (u16) ((iv[11] << 8) | iv[10]));
c7108_reg_wr16(C7108_AES_IV3_LO, (u16) ((iv[13] << 8) | iv[12]));
c7108_reg_wr16(C7108_AES_IV3_HI, (u16) ((iv[15] << 8) | iv[14]));
return 0;
}
static void
c7108_aes_read_dkey(u32 * dkey)
{
dkey[0] = (c7108_reg_rd16(C7108_AES_EKEY0_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY0_LO);
dkey[1] = (c7108_reg_rd16(C7108_AES_EKEY1_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY1_LO);
dkey[2] = (c7108_reg_rd16(C7108_AES_EKEY2_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY2_LO);
dkey[3] = (c7108_reg_rd16(C7108_AES_EKEY3_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY3_LO);
dkey[4] = (c7108_reg_rd16(C7108_AES_EKEY4_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY4_LO);
dkey[5] = (c7108_reg_rd16(C7108_AES_EKEY5_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY5_LO);
dkey[6] = (c7108_reg_rd16(C7108_AES_EKEY6_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY6_LO);
dkey[7] = (c7108_reg_rd16(C7108_AES_EKEY7_HI) << 16) |
c7108_reg_rd16(C7108_AES_EKEY7_LO);
}
static int
c7108_aes_cipher(int op,
u32 dst,
u32 src,
u32 len,
int klen,
u16 mode,
u32 key[8],
u8 iv[16])
{
int rv = 0, cnt=0;
u16 ctrl = 0, stat = 0;
AES_LOCK();
/* Setup key length */
if (klen == 128) {
ctrl |= C7108_AES_KEY_LEN_128;
} else if (klen == 192) {
ctrl |= C7108_AES_KEY_LEN_192;
} else if (klen == 256) {
ctrl |= C7108_AES_KEY_LEN_256;
} else {
AES_UNLOCK();
return -3;
}
/* Check opcode */
if (C7108_AES_ENCRYPT == op) {
ctrl |= C7108_AES_ENCRYPT;
} else if (C7108_AES_DECRYPT == op) {
ctrl |= C7108_AES_DECRYPT;
} else {
AES_UNLOCK();
return -4;
}
/* check mode */
if ( (mode != C7108_AES_CTRL_MODE_CBC) &&
(mode != C7108_AES_CTRL_MODE_CFB) &&
(mode != C7108_AES_CTRL_MODE_OFB) &&
(mode != C7108_AES_CTRL_MODE_CTR) &&
(mode != C7108_AES_CTRL_MODE_ECB) ) {
AES_UNLOCK();
return -5;
}
/* Now set mode */
ctrl |= mode;
/* For CFB, OFB, and CTR, neither backward key
* expansion nor key inversion is required.
*/
if ( (C7108_AES_DECRYPT == op) &&
(C7108_AES_CTRL_MODE_CBC == mode ||
C7108_AES_CTRL_MODE_ECB == mode ) ){
/* Program Key */
c7108_reg_wr16(C7108_AES_KEY0_LO, (u16) key[4]);
c7108_reg_wr16(C7108_AES_KEY0_HI, (u16) (key[4] >> 16));
c7108_reg_wr16(C7108_AES_KEY1_LO, (u16) key[5]);
c7108_reg_wr16(C7108_AES_KEY1_HI, (u16) (key[5] >> 16));
c7108_reg_wr16(C7108_AES_KEY2_LO, (u16) key[6]);
c7108_reg_wr16(C7108_AES_KEY2_HI, (u16) (key[6] >> 16));
c7108_reg_wr16(C7108_AES_KEY3_LO, (u16) key[7]);
c7108_reg_wr16(C7108_AES_KEY3_HI, (u16) (key[7] >> 16));
c7108_reg_wr16(C7108_AES_KEY6_LO, (u16) key[2]);
c7108_reg_wr16(C7108_AES_KEY6_HI, (u16) (key[2] >> 16));
c7108_reg_wr16(C7108_AES_KEY7_LO, (u16) key[3]);
c7108_reg_wr16(C7108_AES_KEY7_HI, (u16) (key[3] >> 16));
if (192 == klen) {
c7108_reg_wr16(C7108_AES_KEY4_LO, (u16) key[7]);
c7108_reg_wr16(C7108_AES_KEY4_HI, (u16) (key[7] >> 16));
c7108_reg_wr16(C7108_AES_KEY5_LO, (u16) key[7]);
c7108_reg_wr16(C7108_AES_KEY5_HI, (u16) (key[7] >> 16));
} else if (256 == klen) {
/* 256 */
c7108_reg_wr16(C7108_AES_KEY4_LO, (u16) key[0]);
c7108_reg_wr16(C7108_AES_KEY4_HI, (u16) (key[0] >> 16));
c7108_reg_wr16(C7108_AES_KEY5_LO, (u16) key[1]);
c7108_reg_wr16(C7108_AES_KEY5_HI, (u16) (key[1] >> 16));
}
} else {
/* Program Key */
c7108_reg_wr16(C7108_AES_KEY0_LO, (u16) key[0]);
c7108_reg_wr16(C7108_AES_KEY0_HI, (u16) (key[0] >> 16));
c7108_reg_wr16(C7108_AES_KEY1_LO, (u16) key[1]);
c7108_reg_wr16(C7108_AES_KEY1_HI, (u16) (key[1] >> 16));
c7108_reg_wr16(C7108_AES_KEY2_LO, (u16) key[2]);
c7108_reg_wr16(C7108_AES_KEY2_HI, (u16) (key[2] >> 16));
c7108_reg_wr16(C7108_AES_KEY3_LO, (u16) key[3]);
c7108_reg_wr16(C7108_AES_KEY3_HI, (u16) (key[3] >> 16));
c7108_reg_wr16(C7108_AES_KEY4_LO, (u16) key[4]);
c7108_reg_wr16(C7108_AES_KEY4_HI, (u16) (key[4] >> 16));
c7108_reg_wr16(C7108_AES_KEY5_LO, (u16) key[5]);
c7108_reg_wr16(C7108_AES_KEY5_HI, (u16) (key[5] >> 16));
c7108_reg_wr16(C7108_AES_KEY6_LO, (u16) key[6]);
c7108_reg_wr16(C7108_AES_KEY6_HI, (u16) (key[6] >> 16));
c7108_reg_wr16(C7108_AES_KEY7_LO, (u16) key[7]);
c7108_reg_wr16(C7108_AES_KEY7_HI, (u16) (key[7] >> 16));
}
/* Set IV always */
c7108_aes_set_hw_iv(iv);
/* Program DMA addresses */
if ((rv = c7108_aes_setup_dma(src, dst, len)) < 0) {
AES_UNLOCK();
return rv;
}
/* Start AES cipher */
c7108_reg_wr16(C7108_AES_CTRL, ctrl | C7108_AES_GO);
//printk("Ctrl: 0x%x\n", ctrl | C7108_AES_GO);
do {
/* TODO: interrupt mode */
// printk("aes_stat=0x%x\n", stat);
//udelay(100);
} while ((cnt++ < 1000000) &&
!((stat=c7108_reg_rd16(C7108_AES_CTRL))&C7108_AES_OP_DONE));
if ((mode == C7108_AES_CTRL_MODE_ECB)||
(mode == C7108_AES_CTRL_MODE_CBC)) {
/* Save out key when the lock is held ... */
c7108_aes_read_dkey(key);
}
AES_UNLOCK();
return 0;
}
/*
* Generate a new crypto device session.
*/
static int
c7108_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
{
struct cipher_7108 **swd;
u_int32_t i;
char *algo;
int mode, xfm_type;
dprintk("%s()\n", __FUNCTION__);
if (sid == NULL || cri == NULL) {
dprintk("%s,%d - EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
if (c7108_sessions) {
for (i = 1; i < c7108_sesnum; i++)
if (c7108_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (c7108_sessions == NULL || i == c7108_sesnum) {
if (c7108_sessions == NULL) {
i = 1; /* We leave c7108_sessions[0] empty */
c7108_sesnum = CRYPTO_SW_SESSIONS;
} else
c7108_sesnum *= 2;
swd = kmalloc(c7108_sesnum * sizeof(struct cipher_7108 *),
GFP_ATOMIC);
if (swd == NULL) {
/* Reset session number */
if (c7108_sesnum == CRYPTO_SW_SESSIONS)
c7108_sesnum = 0;
else
c7108_sesnum /= 2;
dprintk("%s,%d: ENOBUFS\n", __FILE__, __LINE__);
return ENOBUFS;
}
memset(swd, 0, c7108_sesnum * sizeof(struct cipher_7108 *));
/* Copy existing sessions */
if (c7108_sessions) {
memcpy(swd, c7108_sessions,
(c7108_sesnum / 2) * sizeof(struct cipher_7108 *));
kfree(c7108_sessions);
}
c7108_sessions = swd;
}
swd = &c7108_sessions[i];
*sid = i;
while (cri) {
*swd = (struct cipher_7108 *)
kmalloc(sizeof(struct cipher_7108), GFP_ATOMIC);
if (*swd == NULL) {
c7108_freesession(NULL, i);
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return ENOBUFS;
}
memset(*swd, 0, sizeof(struct cipher_7108));
algo = NULL;
mode = 0;
xfm_type = HW_TYPE_CIPHER;
switch (cri->cri_alg) {
case CRYPTO_AES_CBC:
algo = "aes";
mode = CRYPTO_TFM_MODE_CBC;
c7108_crypto_mode = C7108_AES_CTRL_MODE_CBC;
break;
#if 0
case CRYPTO_AES_CTR:
algo = "aes_ctr";
mode = CRYPTO_TFM_MODE_CBC;
c7108_crypto_mode = C7108_AES_CTRL_MODE_CTR;
break;
case CRYPTO_AES_ECB:
algo = "aes_ecb";
mode = CRYPTO_TFM_MODE_CBC;
c7108_crypto_mode = C7108_AES_CTRL_MODE_ECB;
break;
case CRYPTO_AES_OFB:
algo = "aes_ofb";
mode = CRYPTO_TFM_MODE_CBC;
c7108_crypto_mode = C7108_AES_CTRL_MODE_OFB;
break;
case CRYPTO_AES_CFB:
algo = "aes_cfb";
mode = CRYPTO_TFM_MODE_CBC;
c7108_crypto_mode = C7108_AES_CTRL_MODE_CFB;
break;
#endif
default:
printk("unsupported crypto algorithm: %d\n",
cri->cri_alg);
return -EINVAL;
break;
}
if (!algo || !*algo) {
printk("cypher_7108_crypto: Unknown algo 0x%x\n",
cri->cri_alg);
c7108_freesession(NULL, i);
return EINVAL;
}
if (xfm_type == HW_TYPE_CIPHER) {
if (debug) {
dprintk("%s key:", __FUNCTION__);
for (i = 0; i < (cri->cri_klen + 7) / 8; i++)
dprintk("%s0x%02x", (i % 8) ? " " : "\n ",
cri->cri_key[i]);
dprintk("\n");
}
} else if (xfm_type == SW_TYPE_HMAC ||
xfm_type == SW_TYPE_HASH) {
printk("cypher_7108_crypto: HMAC unsupported!\n");
return -EINVAL;
c7108_freesession(NULL, i);
} else {
printk("cypher_7108_crypto: "
"Unhandled xfm_type %d\n", xfm_type);
c7108_freesession(NULL, i);
return EINVAL;
}
(*swd)->cri_alg = cri->cri_alg;
(*swd)->xfm_type = xfm_type;
cri = cri->cri_next;
swd = &((*swd)->next);
}
return 0;
}
/*
* Free a session.
*/
static int
c7108_freesession(void *arg, u_int64_t tid)
{
struct cipher_7108 *swd;
u_int32_t sid = CRYPTO_SESID2LID(tid);
dprintk("%s()\n", __FUNCTION__);
if (sid > c7108_sesnum || c7108_sessions == NULL ||
c7108_sessions[sid] == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return(EINVAL);
}
/* Silently accept and return */
if (sid == 0)
return(0);
while ((swd = c7108_sessions[sid]) != NULL) {
c7108_sessions[sid] = swd->next;
kfree(swd);
}
return 0;
}
/*
* Process a hardware request.
*/
static int
c7108_process(void *arg, struct cryptop *crp, int hint)
{
struct cryptodesc *crd;
struct cipher_7108 *sw;
u_int32_t lid;
int type;
u32 hwkey[8];
#define SCATTERLIST_MAX 16
struct scatterlist sg[SCATTERLIST_MAX];
int sg_num, sg_len, skip;
struct sk_buff *skb = NULL;
struct uio *uiop = NULL;
dprintk("%s()\n", __FUNCTION__);
/* Sanity check */
if (crp == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
return EINVAL;
}
crp->crp_etype = 0;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
crp->crp_etype = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= c7108_sesnum || lid == 0 || c7108_sessions == NULL ||
c7108_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
dprintk("%s,%d: ENOENT\n", __FILE__, __LINE__);
goto done;
}
/*
* do some error checking outside of the loop for SKB and IOV
* processing this leaves us with valid skb or uiop pointers
* for later
*/
if (crp->crp_flags & CRYPTO_F_SKBUF) {
skb = (struct sk_buff *) crp->crp_buf;
if (skb_shinfo(skb)->nr_frags >= SCATTERLIST_MAX) {
printk("%s,%d: %d nr_frags > SCATTERLIST_MAX",
__FILE__, __LINE__,
skb_shinfo(skb)->nr_frags);
goto done;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
uiop = (struct uio *) crp->crp_buf;
if (uiop->uio_iovcnt > SCATTERLIST_MAX) {
printk("%s,%d: %d uio_iovcnt > SCATTERLIST_MAX",
__FILE__, __LINE__,
uiop->uio_iovcnt);
goto done;
}
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = c7108_sessions[lid];
sw && sw->cri_alg != crd->crd_alg;
sw = sw->next)
;
/* No such context ? */
if (sw == NULL) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
goto done;
}
skip = crd->crd_skip;
/*
* setup the SG list skip from the start of the buffer
*/
memset(sg, 0, sizeof(sg));
if (crp->crp_flags & CRYPTO_F_SKBUF) {
int i, len;
type = CRYPTO_BUF_SKBUF;
sg_num = 0;
sg_len = 0;
if (skip < skb_headlen(skb)) {
//sg[sg_num].page = virt_to_page(skb->data + skip);
//sg[sg_num].offset = offset_in_page(skb->data + skip);
len = skb_headlen(skb) - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
//sg[sg_num].length = len;
sg_set_page(&sg[sg_num], virt_to_page(skb->data + skip), len, offset_in_page(skb->data + skip));
sg_len += sg[sg_num].length;
sg_num++;
skip = 0;
} else
skip -= skb_headlen(skb);
for (i = 0; sg_len < crd->crd_len &&
i < skb_shinfo(skb)->nr_frags &&
sg_num < SCATTERLIST_MAX; i++) {
if (skip < skb_shinfo(skb)->frags[i].size) {
//sg[sg_num].page = skb_frag_page(&skb_shinfo(skb)->frags[i]);
//sg[sg_num].offset = skb_shinfo(skb)->frags[i].page_offset + skip;
len = skb_shinfo(skb)->frags[i].size - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
//sg[sg_num].length = len;
sg_set_page(&sg[sg_num], skb_frag_page(&skb_shinfo(skb)->frags[i]), len, skb_shinfo(skb)->frags[i].page_offset + skip);
sg_len += sg[sg_num].length;
sg_num++;
skip = 0;
} else
skip -= skb_shinfo(skb)->frags[i].size;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
int len;
type = CRYPTO_BUF_IOV;
sg_len = 0;
for (sg_num = 0; sg_len < crd->crd_len &&
sg_num < uiop->uio_iovcnt &&
sg_num < SCATTERLIST_MAX; sg_num++) {
if (skip < uiop->uio_iov[sg_num].iov_len) {
//sg[sg_num].page = virt_to_page(uiop->uio_iov[sg_num].iov_base+skip);
//sg[sg_num].offset = offset_in_page(uiop->uio_iov[sg_num].iov_base+skip);
len = uiop->uio_iov[sg_num].iov_len - skip;
if (len + sg_len > crd->crd_len)
len = crd->crd_len - sg_len;
//sg[sg_num].length = len;
sg_set_page(&sg[sg_num], virt_to_page(uiop->uio_iov[sg_num].iov_base+skip), len, offset_in_page(uiop->uio_iov[sg_num].iov_base+skip));
sg_len += sg[sg_num].length;
skip = 0;
} else
skip -= uiop->uio_iov[sg_num].iov_len;
}
} else {
type = CRYPTO_BUF_CONTIG;
//sg[0].page = virt_to_page(crp->crp_buf + skip);
//sg[0].offset = offset_in_page(crp->crp_buf + skip);
sg_len = (crp->crp_ilen - skip);
if (sg_len > crd->crd_len)
sg_len = crd->crd_len;
//sg[0].length = sg_len;
sg_set_page(&sg[0], virt_to_page(crp->crp_buf + skip), sg_len, offset_in_page(crp->crp_buf + skip));
sg_num = 1;
}
if (sg_num > 0)
sg_mark_end(&sg[sg_num-1]);
switch (sw->xfm_type) {
case HW_TYPE_CIPHER: {
unsigned char iv[64];
unsigned char *ivp = iv;
int i;
int ivsize = 16; /* fixed for AES */
int blocksize = 16; /* fixed for AES */
if (sg_len < blocksize) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL len %d < %d\n",
__FILE__, __LINE__,
sg_len,
blocksize);
goto done;
}
if (ivsize > sizeof(iv)) {
crp->crp_etype = EINVAL;
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
goto done;
}
if (crd->crd_flags & CRD_F_ENCRYPT) { /* encrypt */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
ivp = crd->crd_iv;
} else {
get_random_bytes(ivp, ivsize);
}
/*
* do we have to copy the IV back to the buffer ?
*/
if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_buf,
crd->crd_inject,
ivsize,
(caddr_t)ivp);
}
c7108_xlate_key(crd->crd_klen,
(u8*)crd->crd_key, (u32*)hwkey);
/* Encrypt SG list */
for (i = 0; i < sg_num; i++) {
sg[i].dma_address =
dma_map_single(NULL,
kmap(sg_page(&sg[i])) + sg[i].offset, sg_len, DMA_BIDIRECTIONAL);
#if 0
printk("sg[%d]:0x%08x, off 0x%08x "
"kmap 0x%08x phys 0x%08x\n",
i, sg[i].page, sg[i].offset,
kmap(sg[i].page) + sg[i].offset,
sg[i].dma_address);
#endif
c7108_aes_cipher(C7108_AES_ENCRYPT,
sg[i].dma_address,
sg[i].dma_address,
sg_len,
crd->crd_klen,
c7108_crypto_mode,
hwkey,
ivp);
if ((c7108_crypto_mode == C7108_AES_CTRL_MODE_CBC)||
(c7108_crypto_mode == C7108_AES_CTRL_MODE_ECB)) {
/* Read back expanded key and cache it in key
* context.
* NOTE: for ECB/CBC modes only (not CTR, CFB, OFB)
* where you set the key once.
*/
c7108_cache_key(crd->crd_klen,
(u32*)hwkey, (u8*)crd->crd_key);
#if 0
printk("%s expanded key:", __FUNCTION__);
for (i = 0; i < (crd->crd_klen + 7) / 8; i++)
printk("%s0x%02x", (i % 8) ? " " : "\n ",
crd->crd_key[i]);
printk("\n");
#endif
}
}
}
else { /*decrypt */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
ivp = crd->crd_iv;
} else {
crypto_copydata(crp->crp_buf, crd->crd_inject,
ivsize, (caddr_t)ivp);
}
c7108_xlate_key(crd->crd_klen,
(u8*)crd->crd_key, (u32*)hwkey);
/* Decrypt SG list */
for (i = 0; i < sg_num; i++) {
sg[i].dma_address =
dma_map_single(NULL,
kmap(sg_page(&sg[i])) + sg[i].offset,
sg_len, DMA_BIDIRECTIONAL);
#if 0
printk("sg[%d]:0x%08x, off 0x%08x "
"kmap 0x%08x phys 0x%08x\n",
i, sg[i].page, sg[i].offset,
kmap(sg[i].page) + sg[i].offset,
sg[i].dma_address);
#endif
c7108_aes_cipher(C7108_AES_DECRYPT,
sg[i].dma_address,
sg[i].dma_address,
sg_len,
crd->crd_klen,
c7108_crypto_mode,
hwkey,
ivp);
}
}
} break;
case SW_TYPE_HMAC:
case SW_TYPE_HASH:
crp->crp_etype = EINVAL;
goto done;
break;
case SW_TYPE_COMP:
crp->crp_etype = EINVAL;
goto done;
break;
default:
/* Unknown/unsupported algorithm */
dprintk("%s,%d: EINVAL\n", __FILE__, __LINE__);
crp->crp_etype = EINVAL;
goto done;
}
}
done:
crypto_done(crp);
return 0;
}
static struct {
softc_device_decl sc_dev;
} a7108dev;
static device_method_t a7108_methods = {
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, c7108_newsession),
DEVMETHOD(cryptodev_freesession, c7108_freesession),
DEVMETHOD(cryptodev_process, c7108_process),
DEVMETHOD(cryptodev_kprocess, NULL)
};
static int
cypher_7108_crypto_init(void)
{
dprintk("%s(%p)\n", __FUNCTION__, cypher_7108_crypto_init);
iobar = (unsigned long)ioremap(CCU_AES_REG_BASE, 0x4000);
printk("7108: AES @ 0x%08x (0x%08x phys) %s mode\n",
iobar, CCU_AES_REG_BASE,
c7108_crypto_mode & C7108_AES_CTRL_MODE_CBC ? "CBC" :
c7108_crypto_mode & C7108_AES_CTRL_MODE_ECB ? "ECB" :
c7108_crypto_mode & C7108_AES_CTRL_MODE_CTR ? "CTR" :
c7108_crypto_mode & C7108_AES_CTRL_MODE_CFB ? "CFB" :
c7108_crypto_mode & C7108_AES_CTRL_MODE_OFB ? "OFB" : "???");
csr_mutex = SPIN_LOCK_UNLOCKED;
memset(&a7108dev, 0, sizeof(a7108dev));
softc_device_init(&a7108dev, "aes7108", 0, a7108_methods);
c7108_id = crypto_get_driverid(softc_get_device(&a7108dev), CRYPTOCAP_F_HARDWARE);
if (c7108_id < 0)
panic("7108: crypto device cannot initialize!");
// crypto_register(c7108_id, CRYPTO_AES_CBC, 0, 0, c7108_newsession, c7108_freesession, c7108_process, NULL);
crypto_register(c7108_id, CRYPTO_AES_CBC, 0, 0);
return(0);
}
static void
cypher_7108_crypto_exit(void)
{
dprintk("%s()\n", __FUNCTION__);
crypto_unregister_all(c7108_id);
c7108_id = -1;
}
module_init(cypher_7108_crypto_init);
module_exit(cypher_7108_crypto_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Cypher 7108 Crypto (OCF module for kernel crypto)");