1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-10 04:00:14 +02:00
openwrt-xburst/target/linux/ar7/files/drivers/vlynq/vlynq.c
florian 2ed8e5602f I recently came across an ar7 device which has the vlynq hardwired
so that the clocks are always generated by the remote device
instead of the local one.

Upon initialization the current version of vlynq driver disables
remote clock generation and causes the entire bus to hang on my
device.

This patch adds support for detecting which device (local or remote)
is responsible of clock generation and implements clock
initialization based on detection result.

Signed-off-by: Antti Seppala <a.seppala at gmail.com>


git-svn-id: svn://svn.openwrt.org/openwrt/trunk@16049 3c298f89-4303-0410-b956-a3cf2f4a3e73
2009-05-25 13:13:10 +00:00

784 lines
19 KiB
C

/*
* Copyright (C) 2006, 2007 Eugene Konev <ejka@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/vlynq.h>
#define VLYNQ_CTRL_PM_ENABLE 0x80000000
#define VLYNQ_CTRL_CLOCK_INT 0x00008000
#define VLYNQ_CTRL_CLOCK_DIV(x) (((x) & 7) << 16)
#define VLYNQ_CTRL_INT_LOCAL 0x00004000
#define VLYNQ_CTRL_INT_ENABLE 0x00002000
#define VLYNQ_CTRL_INT_VECTOR(x) (((x) & 0x1f) << 8)
#define VLYNQ_CTRL_INT2CFG 0x00000080
#define VLYNQ_CTRL_RESET 0x00000001
#define VLYNQ_CTRL_CLOCK_MASK (0x7 << 16)
#define VLYNQ_INT_OFFSET 0x00000014
#define VLYNQ_REMOTE_OFFSET 0x00000080
#define VLYNQ_STATUS_LINK 0x00000001
#define VLYNQ_STATUS_LERROR 0x00000080
#define VLYNQ_STATUS_RERROR 0x00000100
#define VINT_ENABLE 0x00000100
#define VINT_TYPE_EDGE 0x00000080
#define VINT_LEVEL_LOW 0x00000040
#define VINT_VECTOR(x) ((x) & 0x1f)
#define VINT_OFFSET(irq) (8 * ((irq) % 4))
#define VLYNQ_AUTONEGO_V2 0x00010000
struct vlynq_regs {
u32 revision;
u32 control;
u32 status;
u32 int_prio;
u32 int_status;
u32 int_pending;
u32 int_ptr;
u32 tx_offset;
struct vlynq_mapping rx_mapping[4];
u32 chip;
u32 autonego;
u32 unused[6];
u32 int_device[8];
};
#define vlynq_reg_read(reg) readl(&(reg))
#define vlynq_reg_write(reg, val) writel(val, &(reg))
static int __vlynq_enable_device(struct vlynq_device *dev);
#ifdef VLYNQ_DEBUG
static void vlynq_dump_regs(struct vlynq_device *dev)
{
int i;
printk(KERN_DEBUG "VLYNQ local=%p remote=%p\n",
dev->local, dev->remote);
for (i = 0; i < 32; i++) {
printk(KERN_DEBUG "VLYNQ: local %d: %08x\n",
i + 1, ((u32 *)dev->local)[i]);
printk(KERN_DEBUG "VLYNQ: remote %d: %08x\n",
i + 1, ((u32 *)dev->remote)[i]);
}
}
static void vlynq_dump_mem(u32 *base, int count)
{
int i;
for (i = 0; i < (count + 3) / 4; i++) {
if (i % 4 == 0) printk(KERN_DEBUG "\nMEM[0x%04x]:", i * 4);
printk(KERN_DEBUG " 0x%08x", *(base + i));
}
printk(KERN_DEBUG "\n");
}
#endif
int vlynq_linked(struct vlynq_device *dev)
{
int i;
for (i = 0; i < 100; i++)
if (vlynq_reg_read(dev->local->status) & VLYNQ_STATUS_LINK)
return 1;
else
cpu_relax();
return 0;
}
static void vlynq_reset(struct vlynq_device *dev)
{
vlynq_reg_write(dev->local->control,
vlynq_reg_read(dev->local->control) |
VLYNQ_CTRL_RESET);
/* Wait for the devices to finish resetting */
msleep(5);
/* Remove reset bit */
vlynq_reg_write(dev->local->control,
vlynq_reg_read(dev->local->control) &
~VLYNQ_CTRL_RESET);
/* Give some time for the devices to settle */
msleep(5);
}
static void vlynq_irq_unmask(unsigned int irq)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
val |= (VINT_ENABLE | virq) << VINT_OFFSET(virq);
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
}
static void vlynq_irq_mask(unsigned int irq)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
val &= ~(VINT_ENABLE << VINT_OFFSET(virq));
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
}
static int vlynq_irq_type(unsigned int irq, unsigned int flow_type)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
switch (flow_type & IRQ_TYPE_SENSE_MASK) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_EDGE_BOTH:
val |= VINT_TYPE_EDGE << VINT_OFFSET(virq);
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_HIGH:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_LOW:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val |= VINT_LEVEL_LOW << VINT_OFFSET(virq);
break;
default:
return -EINVAL;
}
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
return 0;
}
static void vlynq_local_ack(unsigned int irq)
{
struct vlynq_device *dev = get_irq_chip_data(irq);
u32 status = vlynq_reg_read(dev->local->status);
if (printk_ratelimit())
printk(KERN_DEBUG "%s: local status: 0x%08x\n",
dev->dev.bus_id, status);
vlynq_reg_write(dev->local->status, status);
}
static void vlynq_remote_ack(unsigned int irq)
{
struct vlynq_device *dev = get_irq_chip_data(irq);
u32 status = vlynq_reg_read(dev->remote->status);
if (printk_ratelimit())
printk(KERN_DEBUG "%s: remote status: 0x%08x\n",
dev->dev.bus_id, status);
vlynq_reg_write(dev->remote->status, status);
}
static irqreturn_t vlynq_irq(int irq, void *dev_id)
{
struct vlynq_device *dev = dev_id;
u32 status;
int virq = 0;
status = vlynq_reg_read(dev->local->int_status);
vlynq_reg_write(dev->local->int_status, status);
if (unlikely(!status))
spurious_interrupt();
while (status) {
if (status & 1)
do_IRQ(dev->irq_start + virq);
status >>= 1;
virq++;
}
return IRQ_HANDLED;
}
static struct irq_chip vlynq_irq_chip = {
.name = "vlynq",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.set_type = vlynq_irq_type,
};
static struct irq_chip vlynq_local_chip = {
.name = "vlynq local error",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.ack = vlynq_local_ack,
};
static struct irq_chip vlynq_remote_chip = {
.name = "vlynq local error",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.ack = vlynq_remote_ack,
};
static int vlynq_setup_irq(struct vlynq_device *dev)
{
u32 val;
int i, virq;
if (dev->local_irq == dev->remote_irq) {
printk(KERN_ERR
"%s: local vlynq irq should be different from remote\n",
dev->dev.bus_id);
return -EINVAL;
}
/* Clear local and remote error bits */
vlynq_reg_write(dev->local->status, vlynq_reg_read(dev->local->status));
vlynq_reg_write(dev->remote->status,
vlynq_reg_read(dev->remote->status));
/* Now setup interrupts */
val = VLYNQ_CTRL_INT_VECTOR(dev->local_irq);
val |= VLYNQ_CTRL_INT_ENABLE | VLYNQ_CTRL_INT_LOCAL |
VLYNQ_CTRL_INT2CFG;
val |= vlynq_reg_read(dev->local->control);
vlynq_reg_write(dev->local->int_ptr, VLYNQ_INT_OFFSET);
vlynq_reg_write(dev->local->control, val);
val = VLYNQ_CTRL_INT_VECTOR(dev->remote_irq);
val |= VLYNQ_CTRL_INT_ENABLE;
val |= vlynq_reg_read(dev->remote->control);
vlynq_reg_write(dev->remote->int_ptr, VLYNQ_INT_OFFSET);
vlynq_reg_write(dev->remote->control, val);
for (i = dev->irq_start; i <= dev->irq_end; i++) {
virq = i - dev->irq_start;
if (virq == dev->local_irq) {
set_irq_chip_and_handler(i, &vlynq_local_chip,
handle_level_irq);
set_irq_chip_data(i, dev);
} else if (virq == dev->remote_irq) {
set_irq_chip_and_handler(i, &vlynq_remote_chip,
handle_level_irq);
set_irq_chip_data(i, dev);
} else {
set_irq_chip_and_handler(i, &vlynq_irq_chip,
handle_simple_irq);
set_irq_chip_data(i, dev);
vlynq_reg_write(dev->remote->int_device[virq >> 2], 0);
}
}
if (request_irq(dev->irq, vlynq_irq, IRQF_SHARED, "vlynq", dev)) {
printk(KERN_ERR "%s: request_irq failed\n", dev->dev.bus_id);
return -EAGAIN;
}
return 0;
}
static void vlynq_device_release(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
kfree(vdev);
}
static int vlynq_device_match(struct device *dev,
struct device_driver *drv)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *vdrv = to_vlynq_driver(drv);
struct vlynq_device_id *ids = vdrv->id_table;
while (ids->id) {
if (ids->id == vdev->dev_id) {
vdev->divisor = ids->divisor;
vlynq_set_drvdata(vdev, ids);
printk(KERN_INFO "Driver found for VLYNQ " \
"device: %08x\n", vdev->dev_id);
return 1;
}
printk(KERN_DEBUG "Not using the %08x VLYNQ device's driver" \
" for VLYNQ device: %08x\n", ids->id, vdev->dev_id);
ids++;
}
return 0;
}
static int vlynq_device_probe(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
struct vlynq_device_id *id = vlynq_get_drvdata(vdev);
int result = -ENODEV;
get_device(dev);
if (drv && drv->probe)
result = drv->probe(vdev, id);
if (result)
put_device(dev);
return result;
}
static int vlynq_device_remove(struct device *dev)
{
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
if (drv && drv->remove)
drv->remove(to_vlynq_device(dev));
put_device(dev);
return 0;
}
int __vlynq_register_driver(struct vlynq_driver *driver, struct module *owner)
{
driver->driver.name = driver->name;
driver->driver.bus = &vlynq_bus_type;
return driver_register(&driver->driver);
}
EXPORT_SYMBOL(__vlynq_register_driver);
void vlynq_unregister_driver(struct vlynq_driver *driver)
{
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL(vlynq_unregister_driver);
static int __vlynq_try_remote(struct vlynq_device *dev)
{
int i;
vlynq_reset(dev);
for (i = dev->dev_id ? vlynq_rdiv2 : vlynq_rdiv8; dev->dev_id ?
i <= vlynq_rdiv8 : i >= vlynq_rdiv2;
dev->dev_id ? i++ : i--) {
if (!vlynq_linked(dev))
break;
vlynq_reg_write(dev->remote->control,
(vlynq_reg_read(dev->remote->control) &
~VLYNQ_CTRL_CLOCK_MASK) |
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_rdiv1));
vlynq_reg_write(dev->local->control,
((vlynq_reg_read(dev->local->control)
& ~(VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_MASK)) |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_rdiv1)));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using remote clock divisor %d\n",
dev->dev.bus_id, i - vlynq_rdiv1 + 1);
dev->divisor = i;
return 0;
} else {
vlynq_reset(dev);
}
}
return -ENODEV;
}
static int __vlynq_try_local(struct vlynq_device *dev)
{
int i;
vlynq_reset(dev);
for (i = dev->dev_id ? vlynq_ldiv2 : vlynq_ldiv8; dev->dev_id ?
i <= vlynq_ldiv8 : i >= vlynq_ldiv2;
dev->dev_id ? i++ : i--) {
vlynq_reg_write(dev->local->control,
(vlynq_reg_read(dev->local->control) &
~VLYNQ_CTRL_CLOCK_MASK) |
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_ldiv1));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev->dev.bus_id, i - vlynq_ldiv1 + 1);
dev->divisor = i;
return 0;
} else {
vlynq_reset(dev);
}
}
return -ENODEV;
}
static int __vlynq_try_external(struct vlynq_device *dev)
{
vlynq_reset(dev);
if (!vlynq_linked(dev))
return -ENODEV;
vlynq_reg_write(dev->remote->control,
(vlynq_reg_read(dev->remote->control) &
~VLYNQ_CTRL_CLOCK_INT));
vlynq_reg_write(dev->local->control,
(vlynq_reg_read(dev->local->control) &
~VLYNQ_CTRL_CLOCK_INT));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG "%s: using external clock\n",
dev->dev.bus_id);
dev->divisor = vlynq_div_external;
return 0;
}
return -ENODEV;
}
static int __vlynq_enable_device(struct vlynq_device *dev)
{
int result;
struct plat_vlynq_ops *ops = dev->dev.platform_data;
result = ops->on(dev);
if (result)
return result;
switch (dev->divisor) {
case vlynq_div_external:
case vlynq_div_auto:
/* When the device is brought from reset it should have clock
generation negotiated by hardware.
Check which device is generating clocks and perform setup
accordingly */
if (vlynq_linked(dev) && vlynq_reg_read(dev->remote->control) &
VLYNQ_CTRL_CLOCK_INT) {
if (!__vlynq_try_remote(dev) ||
!__vlynq_try_local(dev) ||
!__vlynq_try_external(dev))
return 0;
} else {
if (!__vlynq_try_external(dev) ||
!__vlynq_try_local(dev) ||
!__vlynq_try_remote(dev))
return 0;
}
break;
case vlynq_ldiv1: case vlynq_ldiv2: case vlynq_ldiv3: case vlynq_ldiv4:
case vlynq_ldiv5: case vlynq_ldiv6: case vlynq_ldiv7: case vlynq_ldiv8:
vlynq_reg_write(dev->local->control,
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_ldiv1));
vlynq_reg_write(dev->remote->control, 0);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev->dev.bus_id, dev->divisor - vlynq_ldiv1 + 1);
return 0;
}
break;
case vlynq_rdiv1: case vlynq_rdiv2: case vlynq_rdiv3: case vlynq_rdiv4:
case vlynq_rdiv5: case vlynq_rdiv6: case vlynq_rdiv7: case vlynq_rdiv8:
vlynq_reg_write(dev->local->control, 0);
vlynq_reg_write(dev->remote->control,
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_rdiv1));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using remote clock divisor %d\n",
dev->dev.bus_id, dev->divisor - vlynq_rdiv1 + 1);
return 0;
}
break;
}
ops->off(dev);
return -ENODEV;
}
int vlynq_enable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
int result = -ENODEV;
result = __vlynq_enable_device(dev);
if (result)
return result;
result = vlynq_setup_irq(dev);
if (result)
ops->off(dev);
dev->enabled = !result;
return result;
}
EXPORT_SYMBOL(vlynq_enable_device);
void vlynq_disable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
dev->enabled = 0;
free_irq(dev->irq, dev);
ops->off(dev);
}
EXPORT_SYMBOL(vlynq_disable_device);
int vlynq_set_local_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
vlynq_reg_write(dev->local->tx_offset, tx_offset);
for (i = 0; i < 4; i++) {
vlynq_reg_write(dev->local->rx_mapping[i].offset,
mapping[i].offset);
vlynq_reg_write(dev->local->rx_mapping[i].size,
mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_mapping);
int vlynq_set_remote_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
vlynq_reg_write(dev->remote->tx_offset, tx_offset);
for (i = 0; i < 4; i++) {
vlynq_reg_write(dev->remote->rx_mapping[i].offset,
mapping[i].offset);
vlynq_reg_write(dev->remote->rx_mapping[i].size,
mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_mapping);
int vlynq_set_local_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->remote_irq)
return -EINVAL;
dev->local_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_irq);
int vlynq_set_remote_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->local_irq)
return -EINVAL;
dev->remote_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_irq);
static int vlynq_probe(struct platform_device *pdev)
{
struct vlynq_device *dev;
struct resource *regs_res, *mem_res, *irq_res;
int len, result;
regs_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!regs_res)
return -ENODEV;
mem_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem");
if (!mem_res)
return -ENODEV;
irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "devirq");
if (!irq_res)
return -ENODEV;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
printk(KERN_ERR
"vlynq: failed to allocate device structure\n");
return -ENOMEM;
}
dev->id = pdev->id;
dev->dev.bus = &vlynq_bus_type;
dev->dev.parent = &pdev->dev;
snprintf(dev->dev.bus_id, BUS_ID_SIZE, "vlynq%d", dev->id);
dev->dev.bus_id[BUS_ID_SIZE - 1] = 0;
dev->dev.platform_data = pdev->dev.platform_data;
dev->dev.release = vlynq_device_release;
dev->regs_start = regs_res->start;
dev->regs_end = regs_res->end;
dev->mem_start = mem_res->start;
dev->mem_end = mem_res->end;
len = regs_res->end - regs_res->start;
if (!request_mem_region(regs_res->start, len, dev->dev.bus_id)) {
printk(KERN_ERR "%s: Can't request vlynq registers\n",
dev->dev.bus_id);
result = -ENXIO;
goto fail_request;
}
dev->local = ioremap(regs_res->start, len);
if (!dev->local) {
printk(KERN_ERR "%s: Can't remap vlynq registers\n",
dev->dev.bus_id);
result = -ENXIO;
goto fail_remap;
}
dev->remote = (struct vlynq_regs *)((void *)dev->local +
VLYNQ_REMOTE_OFFSET);
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->irq_start = irq_res->start;
dev->irq_end = irq_res->end;
dev->local_irq = dev->irq_end - dev->irq_start;
dev->remote_irq = dev->local_irq - 1;
if (device_register(&dev->dev))
goto fail_register;
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: regs 0x%p, irq %d, mem 0x%p\n",
dev->dev.bus_id, (void *)dev->regs_start, dev->irq,
(void *)dev->mem_start);
dev->dev_id = 0;
dev->divisor = vlynq_div_auto;
result = __vlynq_enable_device(dev);
if (result == 0) {
dev->dev_id = vlynq_reg_read(dev->remote->chip);
((struct plat_vlynq_ops *)(dev->dev.platform_data))->off(dev);
}
if (dev->dev_id)
printk(KERN_INFO "Found a VLYNQ device: %08x\n", dev->dev_id);
return 0;
fail_register:
iounmap(dev->local);
fail_remap:
fail_request:
release_mem_region(regs_res->start, len);
kfree(dev);
return result;
}
static int vlynq_remove(struct platform_device *pdev)
{
struct vlynq_device *dev = platform_get_drvdata(pdev);
device_unregister(&dev->dev);
iounmap(dev->local);
release_mem_region(dev->regs_start, dev->regs_end - dev->regs_start);
kfree(dev);
return 0;
}
static struct platform_driver vlynq_platform_driver = {
.driver.name = "vlynq",
.probe = vlynq_probe,
.remove = __devexit_p(vlynq_remove),
};
struct bus_type vlynq_bus_type = {
.name = "vlynq",
.match = vlynq_device_match,
.probe = vlynq_device_probe,
.remove = vlynq_device_remove,
};
EXPORT_SYMBOL(vlynq_bus_type);
static int __devinit vlynq_init(void)
{
int res = 0;
res = bus_register(&vlynq_bus_type);
if (res)
goto fail_bus;
res = platform_driver_register(&vlynq_platform_driver);
if (res)
goto fail_platform;
return 0;
fail_platform:
bus_unregister(&vlynq_bus_type);
fail_bus:
return res;
}
static void __devexit vlynq_exit(void)
{
platform_driver_unregister(&vlynq_platform_driver);
bus_unregister(&vlynq_bus_type);
}
module_init(vlynq_init);
module_exit(vlynq_exit);