1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-06 07:10:15 +02:00
openwrt-xburst/package/broadcom-57xx/src/tigon3.c
nbd 128434cb23 (6/6) bcm57xx: package
This is the bcm57xx package.  I have tested default vlan functions,
but I dont have the equipment to test more advanced setups.  The default
vlan setup seems to be working fine.  I also added the activate_gpio
parameter which will make the driver activate the switch via gpio before
probing for it.

I'm not sure which method is best for autoload.  For the wrt350n, I
need the activate_gpio parameter.  But its probably not a good idea
to add that to the autoload file.  On a system without a bcm57xx switch,
isn't it a bad idea to mess with the gpios looking for the switch? Ideally,
wouldn't it be best to load the bcm57xx module from broadcom-diag, after
it has determined which router its on?  I tried using 'request_module' from
there, but had no success.  For now, I am relying on preinit to load
the bcm57xx module with activate_gpio param, after it has failed to load
switch_robo and switch_adm.

Signed-off-by: Ben Pfountz <netprince (at) vt (dot) edu>


git-svn-id: svn://svn.openwrt.org/openwrt/trunk@11471 3c298f89-4303-0410-b956-a3cf2f4a3e73
2008-06-15 11:11:28 +00:00

9737 lines
311 KiB
C

/******************************************************************************/
/* */
/* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 - 2005 Broadcom */
/* Corporation. */
/* All rights reserved. */
/* */
/* This program is free software; you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, located in the file LICENSE. */
/* */
/* History: */
/******************************************************************************/
/* $Id: tigon3.c,v 1.10 2007/06/01 05:58:19 michael Exp $ */
#include "mm.h"
#include "typedefs.h"
#include "osl.h"
#include "bcmdefs.h"
#include "bcmdevs.h"
#include "sbutils.h"
#include "bcmrobo.h"
#include "proto/ethernet.h"
/******************************************************************************/
/* Local functions. */
/******************************************************************************/
LM_STATUS LM_Abort(PLM_DEVICE_BLOCK pDevice);
LM_STATUS LM_QueueRxPackets(PLM_DEVICE_BLOCK pDevice);
static LM_STATUS LM_InitBcm540xPhy(PLM_DEVICE_BLOCK pDevice);
static LM_VOID LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice);
LM_VOID LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice);
LM_VOID LM_ServiceTxInterrupt(PLM_DEVICE_BLOCK pDevice);
static LM_STATUS LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice);
static LM_UINT32 GetPhyAdFlowCntrlSettings(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_SetFlowControl(PLM_DEVICE_BLOCK pDevice,
LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd);
#ifdef INCLUDE_TBI_SUPPORT
STATIC LM_STATUS LM_SetupFiberPhy(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_InitBcm800xPhy(PLM_DEVICE_BLOCK pDevice);
#endif
STATIC LM_STATUS LM_SetupCopperPhy(PLM_DEVICE_BLOCK pDevice);
STATIC LM_VOID LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice);
STATIC LM_STATUS LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice);
STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid(LM_UINT16 Svid, LM_UINT16 Ssid);
LM_VOID LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2);
STATIC LM_STATUS LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize);
STATIC LM_STATUS LM_DisableChip(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_ResetChip(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_DisableFW(PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
PT3_SND_BD pSendBd);
STATIC LM_VOID LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice,
LM_RESET_TYPE Mode);
STATIC LM_VOID LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice,
LM_RESET_TYPE Mode);
STATIC LM_VOID LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice,
LM_RESET_TYPE Mode);
STATIC void LM_GetPhyId(LM_DEVICE_BLOCK *pDevice);
/******************************************************************************/
/* External functions. */
/******************************************************************************/
LM_STATUS LM_LoadRlsFirmware(PLM_DEVICE_BLOCK pDevice);
#ifdef INCLUDE_TCP_SEG_SUPPORT
LM_STATUS LM_LoadStkOffLdFirmware(PLM_DEVICE_BLOCK pDevice);
LM_UINT32 LM_GetStkOffLdFirmwareSize(PLM_DEVICE_BLOCK pDevice);
#endif
LM_UINT32
LM_RegRd(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
{
#ifdef PCIX_TARGET_WORKAROUND
if (pDevice->Flags & UNDI_FIX_FLAG)
{
return (LM_RegRdInd(pDevice, Register));
}
else
#endif
{
return (REG_RD_OFFSET(pDevice, Register));
}
}
/* Mainly used to flush posted write before delaying */
LM_VOID
LM_RegRdBack(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
{
LM_UINT32 dummy;
#ifdef PCIX_TARGET_WORKAROUND
if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG)
{
return;
}
else
#endif
{
if (pDevice->Flags & REG_RD_BACK_FLAG)
return;
dummy = REG_RD_OFFSET(pDevice, Register);
}
}
LM_VOID
LM_RegWr(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32,
LM_UINT32 ReadBack)
{
#ifdef PCIX_TARGET_WORKAROUND
if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG)
{
LM_RegWrInd(pDevice, Register, Value32);
}
else
#endif
{
LM_UINT32 dummy;
REG_WR_OFFSET(pDevice, Register, Value32);
if (ReadBack && (pDevice->Flags & REG_RD_BACK_FLAG))
{
dummy = REG_RD_OFFSET(pDevice, Register);
}
}
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_UINT32
LM_RegRdInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Register) {
LM_UINT32 Value32;
MM_ACQUIRE_UNDI_LOCK(pDevice);
MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
MM_ReadConfig32(pDevice, T3_PCI_REG_DATA_REG, &Value32);
MM_RELEASE_UNDI_LOCK(pDevice);
return MM_SWAP_LE32(Value32);
} /* LM_RegRdInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_RegWrInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 Register,
LM_UINT32 Value32) {
MM_ACQUIRE_UNDI_LOCK(pDevice);
MM_WriteConfig32(pDevice, T3_PCI_REG_ADDR_REG, Register);
MM_WriteConfig32(pDevice, T3_PCI_REG_DATA_REG, MM_SWAP_LE32(Value32));
MM_RELEASE_UNDI_LOCK(pDevice);
} /* LM_RegWrInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_UINT32
LM_MemRdInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 MemAddr) {
LM_UINT32 Value32;
MM_ACQUIRE_UNDI_LOCK(pDevice);
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
MM_ReadConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
MM_RELEASE_UNDI_LOCK(pDevice);
return MM_SWAP_LE32(Value32);
} /* LM_MemRdInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_MemWrInd(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 MemAddr,
LM_UINT32 Value32) {
MM_ACQUIRE_UNDI_LOCK(pDevice);
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG, MM_SWAP_LE32(Value32));
MM_RELEASE_UNDI_LOCK(pDevice);
} /* LM_MemWrInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_QueueRxPackets(
PLM_DEVICE_BLOCK pDevice) {
LM_STATUS Lmstatus;
PLM_PACKET pPacket;
PT3_RCV_BD pRcvBd = 0;
LM_UINT32 StdBdAdded = 0;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
LM_UINT32 JumboBdAdded = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
LM_UINT32 ConIdx, Idx;
LM_UINT32 Diff = 0;
Lmstatus = LM_STATUS_SUCCESS;
if (pDevice->Flags & RX_BD_LIMIT_64_FLAG)
{
ConIdx = pDevice->pStatusBlkVirt->RcvStdConIdx;
Diff = (pDevice->RxStdProdIdx - ConIdx) &
T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
if (Diff >= 56)
{
if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container))
{
pDevice->QueueAgain = TRUE;
}
return LM_STATUS_SUCCESS;
}
}
pDevice->QueueAgain = FALSE;
pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
while(pPacket) {
switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
/* Initialize the buffer descriptor. */
Idx = pDevice->RxJumboProdIdx;
pRcvBd = &pDevice->pRxJumboBdVirt[Idx];
pPacket->u.Rx.RcvRingProdIdx = Idx;
pDevice->RxJumboRing[Idx] = pPacket;
/* Update the producer index. */
pDevice->RxJumboProdIdx = (Idx + 1) &
T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
JumboBdAdded++;
break;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
/* Initialize the buffer descriptor. */
Idx = pDevice->RxStdProdIdx;
pRcvBd = &pDevice->pRxStdBdVirt[Idx];
pPacket->u.Rx.RcvRingProdIdx = Idx;
pDevice->RxStdRing[Idx] = pPacket;
/* Update the producer index. */
pDevice->RxStdProdIdx = (Idx + 1) &
T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
StdBdAdded++;
break;
case T3_UNKNOWN_RCV_PROD_RING:
default:
Lmstatus = LM_STATUS_FAILURE;
break;
} /* switch */
/* Bail out if there is any error. */
if(Lmstatus != LM_STATUS_SUCCESS)
{
break;
}
/* Initialize the receive buffer pointer */
MM_MapRxDma(pDevice, pPacket, &pRcvBd->HostAddr);
/* The opaque field may point to an offset from a fix addr. */
pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR(pPacket) -
MM_UINT_PTR(pDevice->pPacketDescBase));
if ((pDevice->Flags & RX_BD_LIMIT_64_FLAG) &&
((Diff + StdBdAdded) >= 63))
{
if (QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container))
{
pDevice->QueueAgain = TRUE;
}
break;
}
pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
} /* while */
MM_WMB();
/* Update the procedure index. */
if(StdBdAdded)
{
MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low,
pDevice->RxStdProdIdx);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low);
}
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if(JumboBdAdded)
{
MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low,
pDevice->RxJumboProdIdx);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low);
}
}
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
return Lmstatus;
} /* LM_QueueRxPackets */
#define EEPROM_CMD_TIMEOUT 100000
#define NVRAM_CMD_TIMEOUT 100000
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS LM_NVRAM_AcquireLock( PLM_DEVICE_BLOCK pDevice )
{
LM_UINT i;
LM_UINT32 value32;
LM_STATUS status;
status = LM_STATUS_SUCCESS;
/* BCM4785: Avoid all access to NVRAM & EEPROM. */
if (pDevice->Flags & SB_CORE_FLAG)
return status;
/* Request access to the flash interface. */
REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_SET1 );
/*
* The worst case wait time for Nvram arbitration
* using serial eprom is about 45 msec on a 5704
* with the other channel loading boot code.
*/
for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ )
{
value32 = REG_RD( pDevice, Nvram.SwArb );
if( value32 & SW_ARB_GNT1 )
{
break;
}
MM_Wait(20);
}
return status;
} /* LM_NVRAM_AcquireLock */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS LM_NVRAM_ReleaseLock( PLM_DEVICE_BLOCK pDevice )
{
/* BCM4785: Avoid all access to NVRAM & EEPROM. */
if (pDevice->Flags & SB_CORE_FLAG)
return LM_STATUS_SUCCESS;
/* Relinquish nvram interface. */
REG_WR( pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 );
REG_RD_BACK( pDevice, Nvram.SwArb );
return LM_STATUS_SUCCESS;
} /* LM_NVRAM_ReleaseLock */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd )
{
LM_UINT32 i;
LM_UINT32 value32;
LM_STATUS status;
status = LM_STATUS_SUCCESS;
REG_WR( pDevice, Grc.EepromAddr, cmd );
for( i = 0; i < EEPROM_CMD_TIMEOUT; i++ )
{
value32 = REG_RD( pDevice, Grc.EepromAddr );
if( value32 & SEEPROM_ADDR_COMPLETE )
{
break;
}
MM_Wait(20);
}
if( i == EEPROM_CMD_TIMEOUT )
{
B57_ERR(("EEPROM command (0x%x) timed out!\n", cmd));
status = LM_STATUS_FAILURE;
}
return status;
} /* LM_EEPROM_ExecuteCommand */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_ExecuteCommand( PLM_DEVICE_BLOCK pDevice, LM_UINT32 cmd )
{
LM_UINT32 i;
LM_UINT32 value32;
LM_STATUS status;
status = LM_STATUS_SUCCESS;
REG_WR( pDevice, Nvram.Cmd, cmd );
REG_RD_BACK( pDevice, Nvram.Cmd );
MM_Wait(10);
/* Wait for the command to complete. */
for( i = 0; i < NVRAM_CMD_TIMEOUT; i++ )
{
value32 = REG_RD( pDevice, Nvram.Cmd );
if( value32 & NVRAM_CMD_DONE )
{
break;
}
MM_Wait(1);
}
if( i == NVRAM_CMD_TIMEOUT )
{
B57_ERR(("NVRAM command (0x%x) timed out!\n", cmd));
status = LM_STATUS_FAILURE;
}
return status;
} /* LM_NVRAM_ExecuteCommand */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT32 * data )
{
LM_UINT32 value32;
LM_UINT32 Addr;
LM_UINT32 Dev;
LM_STATUS status;
Dev = offset / pDevice->flashinfo.chipsize;
Addr = offset % pDevice->flashinfo.chipsize;
value32 = REG_RD( pDevice, Grc.EepromAddr );
value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK |
SEEPROM_ADDR_RW_MASK);
value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) |
SEEPROM_ADDR_START | SEEPROM_ADDR_READ;
status = LM_EEPROM_ExecuteCommand( pDevice, value32 );
if( status == LM_STATUS_SUCCESS )
{
value32 = REG_RD( pDevice, Grc.EepromData );
/* The endianess of the eeprom and flash interface is different */
*data = MM_SWAP_LE32( value32 );
}
return status;
} /* LM_EEPROM_Read_UINT32 */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_Read_UINT32( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT32 * data )
{
LM_UINT32 physaddr;
LM_UINT32 ctrlreg;
LM_UINT32 value32;
LM_STATUS status;
if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL &&
pDevice->flashinfo.buffered == TRUE )
{
/*
* One supported flash part has 9 address bits to address a
* particular page and another 9 address bits to address a
* particular byte within that page.
*/
LM_UINT32 pagenmbr;
pagenmbr = offset / pDevice->flashinfo.pagesize;
pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS;
physaddr = pagenmbr + (offset % pDevice->flashinfo.pagesize);
}
else
{
physaddr = offset;
}
REG_WR( pDevice, Nvram.Addr, physaddr );
ctrlreg = NVRAM_CMD_DONE | NVRAM_CMD_DO_IT |
NVRAM_CMD_LAST | NVRAM_CMD_FIRST | NVRAM_CMD_RD;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_SUCCESS )
{
value32 = REG_RD( pDevice, Nvram.ReadData );
/*
* Data is swapped so that the byte stream is the same
* in big and little endian systems. Caller will do
* additional swapping depending on how it wants to
* look at the data.
*/
*data = MM_SWAP_BE32( value32 );
}
return status;
} /* LM_NVRAM_Read_UINT32 */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_VOID
LM_EEPROM_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
LM_UINT32 cursize;
LM_UINT32 value32;
LM_STATUS status;
/*
* Initialize the chipsize to the largest EEPROM size we support.
* This will intentionally restrict our sizing operations to the
* first EEPROM chip.
*/
pDevice->flashinfo.chipsize = ATMEL_AT24C512_CHIP_SIZE;
value32 = 0;
/* If anything fails, use the smallest chip as the default chip size. */
cursize = ATMEL_AT24C64_CHIP_SIZE;
status = LM_NvramRead(pDevice, 0, &value32);
if( status != LM_STATUS_SUCCESS )
{
goto done;
}
value32 = MM_SWAP_BE32(value32);
if( value32 != 0x669955aa )
{
goto done;
}
/*
* Size the chip by reading offsets at increasing powers of two.
* When we encounter our validation signature, we know the addressing
* has wrapped around, and thus have our chip size.
*/
while( cursize < ATMEL_AT24C64_CHIP_SIZE )
{
status = LM_NvramRead(pDevice, cursize, &value32);
if( status != LM_STATUS_SUCCESS )
{
cursize = ATMEL_AT24C64_CHIP_SIZE;
break;
}
value32 = MM_SWAP_BE32(value32);
if( value32 == 0x669955aa )
{
break;
}
cursize <<= 1;
}
done:
*size = cursize;
pDevice->flashinfo.pagesize = cursize;
} /* LM_EEPROM_ReadSize */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_Atmel_Buffered_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
LM_UINT32 config3;
LM_UINT32 value32;
LM_STATUS status;
/* Temporarily replace the read command with a "read ID" command. */
config3 = REG_RD( pDevice, Nvram.Config3 );
value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK);
value32 |= NVRAM_READ_COMMAND(0x57);
REG_WR( pDevice, Nvram.Config3, value32 );
REG_WR( pDevice, Nvram.Addr, 0x0 );
status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32);
/* Restore the original read command. */
REG_WR( pDevice, Nvram.Config3, config3 );
if( status == LM_STATUS_SUCCESS )
{
switch( value32 & 0x3c )
{
case 0x0c:
*size = (1 * (1<<20))/8;
break;
case 0x14:
*size = (2 * (1<<20))/8;
break;
case 0x1c:
*size = (4 * (1<<20))/8;
break;
case 0x24:
*size = (8 * (1<<20))/8;
break;
}
}
return status;
} /* LM_FLASH_Atmel_Buffered_ReadSize */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_ST_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
LM_STATUS status;
LM_UINT32 i;
LM_UINT32 ctrlreg;
LM_UINT32 value32;
LM_UINT32 config1;
/* We need to get the size through pass-thru mode. */
config1 = REG_RD( pDevice, Nvram.Config1 );
value32 = config1 | FLASH_PASS_THRU_MODE;
REG_WR( pDevice, Nvram.Config1, value32 );
/* Issue the "read ID" command. */
REG_WR( pDevice, Nvram.WriteData, 0x9f );
ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_FIRST | NVRAM_CMD_WR;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
goto done;
}
/* Read in the "read ID" response. */
ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;
/* Discard the first three bytes. */
for( i = 0; i < 2; i++ )
{
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
goto done;
}
value32 = REG_RD(pDevice, Nvram.ReadData);
}
ctrlreg |= NVRAM_CMD_LAST;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_SUCCESS )
{
value32 = REG_RD(pDevice, Nvram.ReadData) & 0xff;
switch( value32 )
{
case 0x11:
*size = (1 * (1<<20)) / 8;
break;
case 0x12:
*size = (2 * (1<<20)) / 8;
break;
case 0x13:
*size = (4 * (1<<20)) / 8;
break;
case 0x14:
*size = (8 * (1<<20)) / 8;
break;
}
}
done:
/* Restore the previous flash mode. */
REG_WR( pDevice, Nvram.Config1, config1 );
return status;
} /* LM_FLASH_ST_ReadSize */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_Saifun_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
LM_UINT32 config3;
LM_UINT32 value32;
LM_STATUS status;
/* Temporarily replace the read command with a "read ID" command. */
config3 = REG_RD( pDevice, Nvram.Config3 );
value32 = config3 & ~NVRAM_READ_COMMAND(NVRAM_COMMAND_MASK);
value32 |= NVRAM_READ_COMMAND(0xab);
REG_WR( pDevice, Nvram.Config3, value32 );
REG_WR( pDevice, Nvram.Addr, 0x0 );
status = LM_NVRAM_Read_UINT32(pDevice, 0x0, &value32);
/* Restore the original read command. */
REG_WR( pDevice, Nvram.Config3, config3 );
if( status == LM_STATUS_SUCCESS )
{
switch( value32 & 0xff )
{
case 0x05:
*size = (512 * (1<<10)/8);
break;
case 0x10:
*size = (1 * (1<<20)/8);
break;
case 0x11:
*size = (2 * (1<<20)/8);
break;
}
}
return status;
} /* LM_FLASH_Saifun_ReadSize */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_FLASH_ReadSize( PLM_DEVICE_BLOCK pDevice, LM_UINT32 * size )
{
LM_UINT32 value32;
LM_STATUS status;
status = LM_NVRAM_AcquireLock( pDevice );
if( status == LM_STATUS_FAILURE )
{
return status;
}
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD( pDevice, Nvram.NvmAccess );
value32 |= NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE;
REG_WR( pDevice, Nvram.NvmAccess, value32 );
}
}
switch( pDevice->flashinfo.jedecnum )
{
case JEDEC_ST:
status = LM_FLASH_ST_ReadSize( pDevice, size );
break;
case JEDEC_ATMEL:
if( pDevice->flashinfo.buffered == TRUE )
{
status = LM_FLASH_Atmel_Buffered_ReadSize( pDevice, size );
}
else
{
status = LM_STATUS_FAILURE;
}
break;
case JEDEC_SAIFUN:
status = LM_FLASH_Saifun_ReadSize( pDevice, size );
break;
case JEDEC_SST:
default:
status = LM_STATUS_FAILURE;
}
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD( pDevice, Nvram.NvmAccess );
value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
REG_WR( pDevice, Nvram.NvmAccess, value32 );
}
}
LM_NVRAM_ReleaseLock( pDevice );
return status;
} /* LM_FLASH_ReadSize */
STATIC LM_VOID LM_NVRAM_Detect_570X( PLM_DEVICE_BLOCK pDevice )
{
LM_UINT32 value32;
value32 = REG_RD(pDevice, Nvram.Config1);
if( (value32 & FLASH_INTERFACE_ENABLE) == 0 )
{
pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
}
else
{
/*
* 5705 and older products do not have bits 24 and 25 defined.
* If we've gotten here, then we can guarantee the flash is
* an Atmel AT45DB011DB.
*/
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
pDevice->flashinfo.buffered = TRUE;
}
} /* LM_NVRAM_Detect_570X */
STATIC LM_VOID LM_NVRAM_Detect_5750( PLM_DEVICE_BLOCK pDevice )
{
LM_UINT32 value32;
value32 = REG_RD(pDevice, Nvram.Config1);
if( (value32 & FLASH_INTERFACE_ENABLE) == 0 )
{
pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
return;
}
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
switch( value32 & FLASH_PART_5750_TYPEMASK )
{
case FLASH_VENDOR_ATMEL_FLASH_BUFFERED:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
pDevice->flashinfo.buffered = TRUE;
break;
case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.pagesize = ATMEL_AT25F512_PAGE_SIZE;
pDevice->flashinfo.buffered = FALSE;
break;
case FLASH_VENDOR_ST:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.pagesize = ST_M45PEX0_PAGE_SIZE;
pDevice->flashinfo.buffered = TRUE;
break;
case FLASH_VENDOR_SAIFUN:
pDevice->flashinfo.jedecnum = JEDEC_SAIFUN;
pDevice->flashinfo.pagesize = SAIFUN_SA25F0XX_PAGE_SIZE;
pDevice->flashinfo.buffered = FALSE;
break;
case FLASH_VENDOR_SST_SMALL:
case FLASH_VENDOR_SST_LARGE:
pDevice->flashinfo.jedecnum = JEDEC_SST;
pDevice->flashinfo.pagesize = SST_25VF0X0_PAGE_SIZE;
pDevice->flashinfo.buffered = FALSE;
break;
default:
B57_ERR(("bcm57xx : Unknown NVRAM type.\n"));
pDevice->flashinfo.jedecnum = 0;
pDevice->flashinfo.romtype = 0;
pDevice->flashinfo.buffered = FALSE;
pDevice->flashinfo.pagesize = 0;
}
} /* LM_NVRAM_Detect_5750 */
STATIC LM_VOID LM_NVRAM_Detect_5752( PLM_DEVICE_BLOCK pDevice )
{
LM_BOOL supported;
LM_UINT32 value32;
supported = FALSE;
value32 = REG_RD(pDevice, Nvram.Config1);
if(value32 & BIT_27)
pDevice->Flags |= PROTECTED_NVRAM_FLAG;
switch( value32 & FLASH_PART_5752_TYPEMASK )
{
case FLASH_PART_5752_EEPROM_ATMEL_64K:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
pDevice->flashinfo.buffered = FALSE;
pDevice->flashinfo.chipsize = (64 * (1<<10)/8);
supported = TRUE;
break;
case FLASH_PART_5752_EEPROM_ATMEL_376K:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
pDevice->flashinfo.buffered = FALSE;
pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ATMEL_AT45DB041:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8;
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ATMEL_AT25F512:
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = FALSE;
pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ST_M25P10A:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8;
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ST_M25P05A:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (512 * (1<<10)/8);
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ST_M45PE10:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (1 * (1<<20)) / 8;
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ST_M45PE20:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (2 * (1<<20)) / 8;
supported = TRUE;
break;
case FLASH_PART_5752_FLASH_ST_M45PE40:
pDevice->flashinfo.jedecnum = JEDEC_ST;
pDevice->flashinfo.romtype = ROM_TYPE_FLASH;
pDevice->flashinfo.buffered = TRUE;
pDevice->flashinfo.chipsize = (4 * (1<<20)) / 8;
supported = TRUE;
break;
default:
B57_ERR(("bcm57xx : Unknown NVRAM type.\n"));
}
if( pDevice->flashinfo.romtype == ROM_TYPE_FLASH )
{
switch( value32 & FLASH_PART_5752_PAGEMASK )
{
case FLASH_PART_5752_PAGE_SIZE_256B:
pDevice->flashinfo.pagesize = 256;
break;
case FLASH_PART_5752_PAGE_SIZE_512B:
pDevice->flashinfo.pagesize = 512;
break;
case FLASH_PART_5752_PAGE_SIZE_1K:
pDevice->flashinfo.pagesize = 1024;
break;
case FLASH_PART_5752_PAGE_SIZE_2K:
pDevice->flashinfo.pagesize = 2048;
break;
case FLASH_PART_5752_PAGE_SIZE_4K:
pDevice->flashinfo.pagesize = 4096;
break;
case FLASH_PART_5752_PAGE_SIZE_264B:
pDevice->flashinfo.pagesize = 264;
break;
default:
B57_ERR(("bcm57xx : Unknown NVRAM page size.\n"));
supported = FALSE;
}
}
if( supported != TRUE )
{
B57_ERR(("Flash type unsupported!!!\n"));
pDevice->flashinfo.jedecnum = 0;
pDevice->flashinfo.romtype = 0;
pDevice->flashinfo.buffered = FALSE;
pDevice->flashinfo.pagesize = 0;
}
} /* LM_NVRAM_Detect_5752 */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_VOID LM_NVRAM_Init( PLM_DEVICE_BLOCK pDevice )
{
LM_UINT32 Value32;
/* BCM4785: Avoid all access to NVRAM & EEPROM. */
if (pDevice->Flags & SB_CORE_FLAG)
return;
pDevice->NvramSize = 0;
/* Intialize clock period and state machine. */
Value32 = SEEPROM_ADDR_CLK_PERD(SEEPROM_CLOCK_PERIOD) |
SEEPROM_ADDR_FSM_RESET;
REG_WR(pDevice, Grc.EepromAddr, Value32);
REG_RD_BACK(pDevice, Grc.EepromAddr);
MM_Wait(100);
/* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
Value32 = REG_RD(pDevice, Grc.LocalCtrl);
REG_WR(pDevice, Grc.LocalCtrl, Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
switch( T3_ASIC_REV(pDevice->ChipRevId) )
{
case T3_ASIC_REV_5700:
case T3_ASIC_REV_5701:
pDevice->flashinfo.romtype = ROM_TYPE_EEPROM;
break;
case T3_ASIC_REV_5752:
LM_NVRAM_Detect_5752(pDevice);
break;
case T3_ASIC_REV_5714_A0:
case T3_ASIC_REV_5780:
case T3_ASIC_REV_5714:
case T3_ASIC_REV_5750:
LM_NVRAM_Detect_5750(pDevice);
break;
default:
LM_NVRAM_Detect_570X(pDevice);
}
/* Set the 5701 compatibility mode if we are using EEPROM. */
if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 &&
pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
{
Value32 = REG_RD(pDevice, Nvram.Config1);
if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
REG_WR(pDevice, Nvram.NvmAccess,
REG_RD(pDevice, Nvram.NvmAccess) | ACCESS_EN);
}
}
/* Use the new interface to read EEPROM. */
Value32 &= ~FLASH_COMPAT_BYPASS;
REG_WR(pDevice, Nvram.Config1, Value32);
if( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
REG_WR(pDevice, Nvram.NvmAccess,
REG_RD(pDevice, Nvram.NvmAccess) & ~ACCESS_EN);
}
}
}
if( !(T3_ASIC_5752(pDevice->ChipRevId)) )
{
if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
{
/* The only EEPROM we support is an ATMEL */
pDevice->flashinfo.jedecnum = JEDEC_ATMEL;
pDevice->flashinfo.pagesize = 0;
pDevice->flashinfo.buffered = FALSE;
LM_EEPROM_ReadSize( pDevice, &pDevice->flashinfo.chipsize );
}
else
{
LM_FLASH_ReadSize( pDevice, &pDevice->flashinfo.chipsize );
pDevice->Flags |= FLASH_DETECTED_FLAG;
}
}
pDevice->NvramSize = pDevice->flashinfo.chipsize;
B57_INFO(("*nvram:size=0x%x jnum=0x%x page=0x%x buff=0x%x \n",
pDevice->NvramSize, pDevice->flashinfo.jedecnum,
pDevice->flashinfo.pagesize, pDevice->flashinfo.buffered));
} /* LM_NVRAM_Init */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_NvramRead( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset, LM_UINT32 * data )
{
LM_UINT32 value32;
LM_STATUS status;
/* BCM4785: Avoid all access to NVRAM & EEPROM. */
if (pDevice->Flags & SB_CORE_FLAG) {
*data = 0xffffffff;
return LM_STATUS_FAILURE;
}
if( offset >= pDevice->flashinfo.chipsize )
{
return LM_STATUS_FAILURE;
}
if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 )
{
status = LM_EEPROM_Read_UINT32( pDevice, offset, data );
}
else
{
status = LM_NVRAM_AcquireLock( pDevice );
if( status == LM_STATUS_FAILURE )
{
return status;
}
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD( pDevice, Nvram.NvmAccess );
value32 |= NVRAM_ACCESS_ENABLE;
REG_WR( pDevice, Nvram.NvmAccess, value32 );
}
}
status = LM_NVRAM_Read_UINT32(pDevice, offset, data);
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD( pDevice, Nvram.NvmAccess );
value32 &= ~NVRAM_ACCESS_ENABLE;
REG_WR( pDevice, Nvram.NvmAccess, value32 );
}
}
LM_NVRAM_ReleaseLock( pDevice );
}
return status;
} /* LM_NvramRead */
#ifdef ETHTOOL_SEEPROM
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_ReadBlock(PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT8 *data, LM_UINT32 size)
{
LM_STATUS status;
LM_UINT32 value32;
LM_UINT32 bytecnt;
LM_UINT8 * srcptr;
status = LM_STATUS_SUCCESS;
while( size > 0 )
{
/* Make sure the read is word aligned. */
value32 = offset & 0x3;
if( value32 )
{
bytecnt = sizeof(LM_UINT32) - value32;
offset -= value32;
srcptr = (LM_UINT8 *)(&value32) + value32;
}
else
{
bytecnt = sizeof(LM_UINT32);
srcptr = (LM_UINT8 *)(&value32);
}
if( bytecnt > size )
{
bytecnt = size;
}
if( T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701 )
{
status = LM_NVRAM_Read_UINT32( pDevice, offset, &value32 );
}
else
{
status = LM_EEPROM_Read_UINT32( pDevice, offset, &value32 );
}
if( status != LM_STATUS_SUCCESS )
{
break;
}
memcpy( data, srcptr, bytecnt );
offset += sizeof(LM_UINT32);
data += bytecnt;
size -= bytecnt;
}
return status;
} /* LM_NVRAM_ReadBlock */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_EEPROM_WriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT8 * data, LM_UINT32 size )
{
LM_UINT8 * dstptr;
LM_UINT32 value32;
LM_UINT32 bytecnt;
LM_UINT32 subword1;
LM_UINT32 subword2;
LM_UINT32 Addr;
LM_UINT32 Dev;
LM_STATUS status;
if( offset > pDevice->flashinfo.chipsize )
{
return LM_STATUS_FAILURE;
}
status = LM_STATUS_SUCCESS;
if( size == 0 )
{
return status;
}
if( offset & 0x3 )
{
/*
* If our initial offset does not fall on a word boundary, we
* have to do a read / modify / write to preserve the
* preceding bits we are not interested in.
*/
status = LM_EEPROM_Read_UINT32(pDevice, offset & ~0x3, &subword1);
if( status == LM_STATUS_FAILURE )
{
return status;
}
}
if( (offset + size) & 0x3 )
{
/*
* Likewise, if our ending offset does not fall on a word
* boundary, we have to do a read / modify / write to
* preserve the trailing bits we are not interested in.
*/
status = LM_EEPROM_Read_UINT32( pDevice, (offset + size) & ~0x3,
&subword2 );
if( status == LM_STATUS_FAILURE )
{
return status;
}
}
/* Enable EEPROM write. */
if( pDevice->Flags & EEPROM_WP_FLAG )
{
REG_WR( pDevice, Grc.LocalCtrl,
pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1 );
REG_RD_BACK( pDevice, Grc.LocalCtrl );
MM_Wait(40);
value32 = REG_RD( pDevice, Grc.LocalCtrl );
if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 )
{
return LM_STATUS_FAILURE;
}
}
while( size > 0 )
{
value32 = offset & 0x3;
if( value32 )
{
/*
* We have to read / modify / write the data to
* preserve the flash contents preceding the offset.
*/
offset &= ~0x3;
dstptr = ((LM_UINT8 *)(&value32)) + value32;
bytecnt = sizeof(LM_UINT32) - value32;
value32 = subword1;
}
else if( size < sizeof(LM_UINT32) )
{
dstptr = (LM_UINT8 *)(&value32);
bytecnt = size;
value32 = subword2;
}
else
{
dstptr = (LM_UINT8 *)(&value32);
bytecnt = sizeof(LM_UINT32);
}
if( size < bytecnt )
{
bytecnt = size;
}
memcpy( dstptr, (void *)data, bytecnt );
data += bytecnt;
size -= bytecnt;
/*
* Swap the data so that the byte stream will be
* written the same in little and big endian systems.
*/
value32 = MM_SWAP_LE32(value32);
/* Set the write value to the eeprom */
REG_WR( pDevice, Grc.EepromData, value32 );
Dev = offset / pDevice->flashinfo.chipsize;
Addr = offset % pDevice->flashinfo.chipsize;
value32 = REG_RD( pDevice, Grc.EepromAddr );
value32 &= ~(SEEPROM_ADDR_DEV_ID_MASK | SEEPROM_ADDR_ADDRESS_MASK |
SEEPROM_ADDR_RW_MASK);
value32 |= SEEPROM_ADDR_DEV_ID(Dev) | SEEPROM_ADDR_ADDRESS(Addr) |
SEEPROM_ADDR_START | SEEPROM_ADDR_WRITE;
status = LM_EEPROM_ExecuteCommand( pDevice, value32 );
if( status != LM_STATUS_SUCCESS )
{
break;
}
offset += sizeof(LM_UINT32);
}
/* Write-protect EEPROM. */
if( pDevice->Flags & EEPROM_WP_FLAG )
{
REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
REG_RD_BACK(pDevice, Grc.LocalCtrl);
MM_Wait(40);
}
return status;
} /* LM_EEPROM_WriteBlock */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_WriteBlockUnBuffered( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT8 * data, LM_UINT32 size )
{
LM_UINT i;
LM_STATUS status;
LM_UINT32 tgtoff;
LM_UINT32 value32;
LM_UINT32 ctrlreg;
LM_UINT32 pagesize;
LM_UINT32 pagemask;
LM_UINT32 physaddr;
/* Cache the pagesize. */
pagesize = pDevice->flashinfo.pagesize;
if( pDevice->flashinfo.jedecnum == JEDEC_SAIFUN )
{
/* Config2 = 0x500d8 */
/* Config3 = 0x3840253 */
/* Write1 = 0xaf000400 */
/* Configure the erase command to be "page erase". */
/* Configure the status command to be "read status register". */
value32 = REG_RD( pDevice, Nvram.Config2 );
value32 &= ~(NVRAM_STATUS_COMMAND( NVRAM_COMMAND_MASK ) |
NVRAM_ERASE_COMMAND( NVRAM_COMMAND_MASK ));
value32 |= NVRAM_STATUS_COMMAND( SAIFUN_SA25F0XX_READ_STATUS_CMD ) |
NVRAM_ERASE_COMMAND( SAIFUN_SA25F0XX_PAGE_ERASE_CMD );
REG_WR( pDevice, Nvram.Config2, value32 );
/* Configure the write command to be "page write". */
value32 = REG_RD( pDevice, Nvram.Config3 );
value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( SAIFUN_SA25F0XX_PAGE_WRITE_CMD );
REG_WR( pDevice, Nvram.Config3, value32 );
/* Make sure the "write enable" command is correct. */
value32 = REG_RD( pDevice, Nvram.Write1 );
value32 &= ~NVRAM_WRITE1_WRENA_CMD( NVRAM_COMMAND_MASK );
value32 |= NVRAM_WRITE1_WRENA_CMD( SAIFUN_SA25F0XX_WRENA_CMD );
REG_WR( pDevice, Nvram.Write1, value32 );
pagemask = SAIFUN_SA25F0XX_PAGE_MASK;
}
else
{
/* Unsupported flash type */
return LM_STATUS_FAILURE;
}
if( size == 0 )
{
status = LM_STATUS_SUCCESS;
goto done;
}
while( size > 0 )
{
/* Align the offset to a page boundary. */
physaddr = offset & ~pagemask;
status = LM_NVRAM_ReadBlock( pDevice, physaddr,
pDevice->flashbuffer,
pagesize );
if( status == LM_STATUS_FAILURE )
{
break;
}
/* Calculate the target index. */
tgtoff = offset & pagemask;
/* Copy the new data into the save buffer. */
for( i = tgtoff; i < pagesize && size > 0; i++ )
{
pDevice->flashbuffer[i] = *data++;
size--;
}
/* Move the offset to the next page. */
offset = offset + (pagesize - tgtoff);
/*
* The LM_NVRAM_ReadBlock() function releases
* the access enable bit. Reacquire it.
*/
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
REG_WR(pDevice, Nvram.NvmAccess, NVRAM_ACCESS_ENABLE);
/*
* Before we can erase the flash page, we need
* to issue a special "write enable" command.
*/
ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
break;
}
/* Erase the target page */
REG_WR(pDevice, Nvram.Addr, physaddr);
ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
break;
}
/* Issue another write enable to start the write. */
ctrlreg = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
break;
}
/* Copy the data into our NIC's buffers. */
for( i = 0; i < pagesize; i+= 4 )
{
value32 = *((LM_UINT32 *)(&pDevice->flashbuffer[i]));
value32 = MM_SWAP_BE32( value32 );
/* Write the location we wish to write to. */
REG_WR( pDevice, Nvram.Addr, physaddr );
/* Write the data we wish to write. */
REG_WR( pDevice, Nvram.WriteData, value32 );
ctrlreg = NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR;
if( i == 0 )
{
ctrlreg |= NVRAM_CMD_FIRST;
}
else if( i == (pagesize - 4) )
{
ctrlreg |= NVRAM_CMD_LAST;
}
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
size = 0;
break;
}
physaddr += sizeof(LM_UINT32);
}
}
/* Paranoia. Turn off the "write enable" flag. */
ctrlreg = NVRAM_CMD_WRITE_DISABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
done:
return status;
} /* LM_NVRAM_WriteBlockUnBuffered */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NVRAM_WriteBlockBuffered( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT8 * data, LM_UINT32 size )
{
LM_STATUS status;
LM_UINT32 value32;
LM_UINT32 bytecnt;
LM_UINT32 ctrlreg;
LM_UINT32 pageoff;
LM_UINT32 physaddr;
LM_UINT32 subword1;
LM_UINT32 subword2;
LM_UINT8 * dstptr;
if(T3_ASIC_5752(pDevice->ChipRevId) &&
(pDevice->flashinfo.jedecnum == JEDEC_ST ||
pDevice->flashinfo.jedecnum == JEDEC_ATMEL ))
{
/* Do nothing as the 5752 does will take care of it */
}
else if( pDevice->flashinfo.jedecnum == JEDEC_ST )
{
/*
* Program our chip to look at bit0 of the NVRAM's status
* register when polling the write or erase operation status.
*/
value32 = REG_RD(pDevice, Nvram.Config1);
value32 &= ~FLASH_STATUS_BITS_MASK;
REG_WR( pDevice, Nvram.Config1, value32 );
/* Program the "read status" and "page erase" commands. */
value32 = NVRAM_STATUS_COMMAND( ST_M45PEX0_READ_STATUS_CMD ) |
NVRAM_ERASE_COMMAND( ST_M45PEX0_PAGE_ERASE_CMD );
REG_WR( pDevice, Nvram.Config2, value32 );
/* Set the write command to be "page program". */
value32 = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */
value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( ST_M45PEX0_PAGE_PRGM_CMD );
REG_WR( pDevice, Nvram.Config3, value32 );
/* Set the "write enable" and "write disable" commands. */
value32 = NVRAM_WRITE1_WRENA_CMD( ST_M45PEX0_WRENA_CMD ) |
NVRAM_WRITE1_WRDIS_CMD( ST_M45PEX0_WRDIS_CMD );
REG_WR( pDevice, Nvram.Write1, value32 );
}
else if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL )
{
if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
{
#if 0
Config1 = 0x2008200
Config2 = 0x9f0081
Config3 = 0xa184a053
Write1 = 0xaf000400
#endif
}
else if( pDevice->flashinfo.buffered == TRUE )
{
/*
* Program our chip to look at bit7 of the NVRAM's status
* register when polling the write operation status.
*/
value32 = REG_RD(pDevice, Nvram.Config1);
value32 |= FLASH_STATUS_BITS_MASK;
REG_WR( pDevice, Nvram.Config1, value32 );
/* Set the write command to be "page program". */
value32 = REG_RD(pDevice, Nvram.Config3); /* default = 0x03840a53 */
value32 &= ~NVRAM_WRITE_UNBUFFERED_COMMAND( NVRAM_COMMAND_MASK );
value32 |= NVRAM_WRITE_UNBUFFERED_COMMAND( ATMEL_AT45DB0X1B_BUFFER_WRITE_CMD );
REG_WR( pDevice, Nvram.Config3, value32 );
/* Config1 = 0x2008273 */
/* Config2 = 0x00570081 */
/* Config3 = 0x68848353 */
}
else
{
/* NVRAM type unsupported. */
return LM_STATUS_FAILURE;
}
}
else
{
/* NVRAM type unsupported. */
return LM_STATUS_FAILURE;
}
status = LM_STATUS_SUCCESS;
if( offset & 0x3 )
{
/*
* If our initial offset does not fall on a word boundary, we
* have to do a read / modify / write to preserve the
* preceding bits we are not interested in.
*/
status = LM_NVRAM_ReadBlock( pDevice, offset & ~0x3,
(LM_UINT8 *)&subword1,
sizeof(subword1) );
if( status == LM_STATUS_FAILURE )
{
return status;
}
}
if( (offset + size) & 0x3 )
{
/*
* Likewise, if our ending offset does not fall on a word
* boundary, we have to do a read / modify / write to
* preserve the trailing bits we are not interested in.
*/
status = LM_NVRAM_ReadBlock( pDevice, (offset + size) & ~0x3,
(LM_UINT8 *)&subword2,
sizeof(subword2) );
if( status == LM_STATUS_FAILURE )
{
return status;
}
}
ctrlreg = NVRAM_CMD_FIRST;
while( size > 0 )
{
value32 = offset & 0x3;
if( value32 )
{
/*
* We have to read / modify / write the data to
* preserve the flash contents preceding the offset.
*/
offset &= ~0x3;
dstptr = ((LM_UINT8 *)(&value32)) + value32;
bytecnt = sizeof(LM_UINT32) - value32;
value32 = subword1;
}
else if( size < sizeof(LM_UINT32) )
{
dstptr = (LM_UINT8 *)(&value32);
bytecnt = size;
value32 = subword2;
}
else
{
dstptr = (LM_UINT8 *)(&value32);
bytecnt = sizeof(LM_UINT32);
}
if( size < bytecnt )
{
bytecnt = size;
}
memcpy( dstptr, (void *)data, bytecnt );
data += bytecnt;
size -= bytecnt;
/*
* Swap the data so that the byte stream will be
* written the same in little and big endian systems.
*/
value32 = MM_SWAP_BE32(value32);
/* Set the desired write data value to the flash. */
REG_WR(pDevice, Nvram.WriteData, value32);
pageoff = offset % pDevice->flashinfo.pagesize;
/* Set the target address. */
if( pDevice->flashinfo.jedecnum == JEDEC_ATMEL &&
pDevice->flashinfo.romtype == ROM_TYPE_FLASH )
{
/*
* If we're dealing with the special ATMEL part, we need to
* convert the submitted offset before it can be considered
* a physical address.
*/
LM_UINT32 pagenmbr;
pagenmbr = offset / pDevice->flashinfo.pagesize;
pagenmbr = pagenmbr << ATMEL_AT45DB0X1B_PAGE_POS;
physaddr = pagenmbr + pageoff;
}
else
{
physaddr = offset;
}
REG_WR(pDevice, Nvram.Addr, physaddr);
ctrlreg |= (NVRAM_CMD_DO_IT | NVRAM_CMD_DONE | NVRAM_CMD_WR);
if( pageoff == 0 )
{
/* Set CMD_FIRST when we are at the beginning of a page. */
ctrlreg |= NVRAM_CMD_FIRST;
}
else if( pageoff == (pDevice->flashinfo.pagesize - 4) )
{
/*
* Enable the write to the current page
* before moving on to the next one.
*/
ctrlreg |= NVRAM_CMD_LAST;
}
if( size == 0 )
{
ctrlreg |= NVRAM_CMD_LAST;
}
if( pDevice->flashinfo.jedecnum == JEDEC_ST &&
((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714)) &&
(ctrlreg & NVRAM_CMD_FIRST) )
{
LM_UINT32 wrencmd;
REG_WR(pDevice, Nvram.Write1, ST_M45PEX0_WRENA_CMD);
/* We need to issue a special "write enable" command first. */
wrencmd = NVRAM_CMD_WRITE_ENABLE | NVRAM_CMD_DO_IT | NVRAM_CMD_DONE;
status = LM_NVRAM_ExecuteCommand( pDevice, wrencmd );
if( status == LM_STATUS_FAILURE )
{
return status;
}
}
if( pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
{
/* We always do complete word writes to eeprom. */
ctrlreg |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
}
status = LM_NVRAM_ExecuteCommand( pDevice, ctrlreg );
if( status == LM_STATUS_FAILURE )
{
break;
}
offset += sizeof(LM_UINT32);
ctrlreg = 0;
}
return status;
} /* LM_NVRAM_WriteBlockBuffered */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_NVRAM_WriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT8 * data, LM_UINT32 size )
{
LM_UINT32 value32;
LM_STATUS status;
if( offset > pDevice->flashinfo.chipsize ||
(offset + size) > pDevice->flashinfo.chipsize )
{
return LM_STATUS_FAILURE;
}
if( size == 0 )
{
return LM_STATUS_SUCCESS;
}
if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 )
{
status = LM_EEPROM_WriteBlock( pDevice, offset, data, size );
}
else
{
status = LM_NVRAM_AcquireLock( pDevice );
if( status == LM_STATUS_FAILURE )
{
return status;
}
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD( pDevice, Nvram.NvmAccess );
value32 |= (NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
REG_WR( pDevice, Nvram.NvmAccess, value32 );
}
}
/* Enable EEPROM write. */
if( pDevice->Flags & EEPROM_WP_FLAG )
{
REG_WR(pDevice, Grc.LocalCtrl,
pDevice->GrcLocalCtrl | GRC_MISC_LOCAL_CTRL_GPIO_OE1);
REG_RD_BACK(pDevice, Grc.LocalCtrl);
MM_Wait(40);
value32 = REG_RD(pDevice, Grc.LocalCtrl);
if( value32 & GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 )
{
status = LM_STATUS_FAILURE;
goto error;
}
}
value32 = REG_RD(pDevice, Grc.Mode);
value32 |= GRC_MODE_NVRAM_WRITE_ENABLE;
REG_WR(pDevice, Grc.Mode, value32);
if( pDevice->flashinfo.buffered == TRUE ||
pDevice->flashinfo.romtype == ROM_TYPE_EEPROM )
{
status = LM_NVRAM_WriteBlockBuffered(pDevice, offset, data, size);
}
else
{
status = LM_NVRAM_WriteBlockUnBuffered(pDevice, offset, data, size);
}
value32 = REG_RD(pDevice, Grc.Mode);
value32 &= ~GRC_MODE_NVRAM_WRITE_ENABLE;
REG_WR(pDevice, Grc.Mode, value32);
if( pDevice->Flags & EEPROM_WP_FLAG )
{
REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
REG_RD_BACK(pDevice, Grc.LocalCtrl);
MM_Wait(40);
}
error:
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
if( (pDevice->Flags & PROTECTED_NVRAM_FLAG) == 0)
{
value32 = REG_RD(pDevice, Nvram.NvmAccess);
value32 &= ~(NVRAM_ACCESS_ENABLE | NVRAM_ACCESS_WRITE_ENABLE);
REG_WR(pDevice, Nvram.NvmAccess, value32);
}
}
LM_NVRAM_ReleaseLock( pDevice );
}
return status;
} /* LM_NVRAM_WriteBlock */
LM_STATUS LM_NvramWriteBlock( PLM_DEVICE_BLOCK pDevice, LM_UINT32 offset,
LM_UINT32 * data, LM_UINT32 size )
{
/* BCM4785: Avoid all access to NVRAM & EEPROM. */
if (pDevice->Flags & SB_CORE_FLAG)
return LM_STATUS_FAILURE;
return LM_NVRAM_WriteBlock( pDevice, offset, (LM_UINT8 *)data, size * 4 );
}
#endif /* ETHTOOL_SEEPROM */
static int
bcm_ether_atoe(char *p, struct ether_addr *ea)
{
int i = 0;
for (;;) {
ea->octet[i++] = (char) simple_strtoul(p, &p, 16);
if (!*p++ || i == 6)
break;
}
return (i == 6);
}
/******************************************************************************/
/* Description: */
/* This routine initializes default parameters and reads the PCI */
/* configurations. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_GetAdapterInfo(
PLM_DEVICE_BLOCK pDevice)
{
PLM_ADAPTER_INFO pAdapterInfo;
LM_UINT32 Value32, LedCfg, Ver;
LM_STATUS Status;
LM_UINT32 EeSigFound;
LM_UINT32 EePhyTypeSerdes = 0;
LM_UINT32 EePhyId = 0;
/* Get Device Id and Vendor Id */
Status = MM_ReadConfig32(pDevice, PCI_VENDOR_ID_REG, &Value32);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
pDevice->PciVendorId = (LM_UINT16) Value32;
pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
Status = MM_ReadConfig32(pDevice, PCI_REV_ID_REG, &Value32);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
pDevice->PciRevId = (LM_UINT8) Value32;
/* Get chip revision id. */
Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
pDevice->ChipRevId = Value32 >> 16;
/* determine if it is PCIE system */
if( (Value32 = MM_FindCapability(pDevice, T3_PCIE_CAPABILITY_ID)) != 0)
{
pDevice->Flags |= PCI_EXPRESS_FLAG;
}
/* Get subsystem vendor. */
Status = MM_ReadConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
pDevice->SubsystemVendorId = (LM_UINT16) Value32;
/* Get PCI subsystem id. */
pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
/* Read bond id for baxter A0 since it has same rev id as hamilton A0*/
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5714_A0) {
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 | MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS);
Value32 = LM_RegRdInd(pDevice, 0x6804);
Value32 &= GRC_MISC_BD_ID_MASK;
if((Value32 == 0)||(Value32 == 0x8000)) {
pDevice->ChipRevId = T3_CHIP_ID_5752_A0;
}else{
pDevice->ChipRevId = T3_CHIP_ID_5714_A0;
}
Status = MM_ReadConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, Value32 & ~ MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS);
}
/* Get the cache line size. */
MM_ReadConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
pDevice->CacheLineSize = (LM_UINT8) Value32;
pDevice->SavedCacheLineReg = Value32;
if(pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
pDevice->ChipRevId != T3_CHIP_ID_5704_A0)
{
pDevice->Flags &= ~UNDI_FIX_FLAG;
}
#ifndef PCIX_TARGET_WORKAROUND
pDevice->Flags &= ~UNDI_FIX_FLAG;
#endif
/* Map the memory base to system address space. */
if (!(pDevice->Flags & UNDI_FIX_FLAG))
{
Status = MM_MapMemBase(pDevice);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
/* Initialize the memory view pointer. */
pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
}
if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) ||
(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX))
{
pDevice->Flags |= TX_4G_WORKAROUND_FLAG;
}
if ( (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
(pDevice->Flags == PCI_EXPRESS_FLAG))
{
pDevice->Flags |= REG_RD_BACK_FLAG;
}
if(pDevice->ChipRevId==T3_CHIP_ID_5750_A0)
return LM_STATUS_UNKNOWN_ADAPTER;
#ifdef PCIX_TARGET_WORKAROUND
MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
if((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)
{
if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
{
pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
}
}
if (pDevice->Flags & UNDI_FIX_FLAG)
{
pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
}
#endif
/* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
/* management register may be clobbered which may cause the */
/* BCM5700 to go into D3 state. While in this state, we will */
/* need to restore the device to D0 state. */
MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
Value32 |= T3_PM_PME_ASSERTED;
Value32 &= ~T3_PM_POWER_STATE_MASK;
Value32 |= T3_PM_POWER_STATE_D0;
MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
/* read the current PCI command word */
MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
/* Make sure bus-mastering is enabled. */
Value32 |= PCI_BUSMASTER_ENABLE;
#ifdef PCIX_TARGET_WORKAROUND
/* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
are enabled */
if (pDevice->Flags & ENABLE_PCIX_FIX_FLAG) {
Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
PCI_PARITY_ERROR_ENABLE);
}
if (pDevice->Flags & UNDI_FIX_FLAG)
{
Value32 &= ~PCI_MEM_SPACE_ENABLE;
}
#endif
if (pDevice->Flags & ENABLE_MWI_FLAG)
{
Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
}
else {
Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
}
/* save the value we are going to write into the PCI command word */
pDevice->PciCommandStatusWords = Value32;
Status = MM_WriteConfig32(pDevice, PCI_COMMAND_REG, Value32);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
/* Setup the mode registers. */
pDevice->MiscHostCtrl =
MISC_HOST_CTRL_MASK_PCI_INT |
MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
#ifdef BIG_ENDIAN_HOST
MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
#endif /* BIG_ENDIAN_HOST */
MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
/* write to PCI misc host ctr first in order to enable indirect accesses */
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
/* Set power state to D0. */
LM_SetPowerState(pDevice, LM_POWER_STATE_D0);
/* Preserve HOST_STACK_UP bit in case ASF firmware is running */
Value32 = REG_RD(pDevice, Grc.Mode) & GRC_MODE_HOST_STACK_UP;
#ifdef BIG_ENDIAN_HOST
Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
#else
Value32 |= GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
REG_WR(pDevice, Grc.Mode, Value32);
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
REG_WR(pDevice, Grc.LocalCtrl, GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1);
REG_RD_BACK(pDevice, Grc.LocalCtrl);
}
MM_Wait(40);
/* Enable memory arbiter*/
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
{
Value32 = REG_RD(pDevice,MemArbiter.Mode);
REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32);
}
else
{
REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
}
LM_SwitchClocks(pDevice);
REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);
/* Check to see if PXE ran and did not shutdown properly */
if ((REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE) ||
!(REG_RD(pDevice, PciCfg.MiscHostCtrl) & MISC_HOST_CTRL_MASK_PCI_INT))
{
LM_DisableInterrupt(pDevice);
/* assume ASF is enabled */
pDevice->AsfFlags = ASF_ENABLED;
if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
}
LM_ShutdownChip(pDevice, LM_SHUTDOWN_RESET);
pDevice->AsfFlags = 0;
}
#ifdef PCIX_TARGET_WORKAROUND
MM_ReadConfig32(pDevice, T3_PCI_STATE_REG, &Value32);
if (!(pDevice->Flags & ENABLE_PCIX_FIX_FLAG) &&
((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0))
{
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B5)
{
MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300]), 0);
MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]), 0);
MM_MEMWRITEL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x301]),
0xffffffff);
if (MM_MEMREADL(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
{
pDevice->Flags |= ENABLE_PCIX_FIX_FLAG;
}
}
}
#endif
LM_NVRAM_Init(pDevice);
Status = LM_STATUS_FAILURE;
/* BCM4785: Use the MAC address stored in the main flash. */
if (pDevice->Flags & SB_CORE_FLAG) {
bcm_ether_atoe(getvar(NULL, "et0macaddr"), (struct ether_addr *)pDevice->NodeAddress);
Status = LM_STATUS_SUCCESS;
} else {
/* Get the node address. First try to get in from the shared memory. */
/* If the signature is not present, then get it from the NVRAM. */
Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
if((Value32 >> 16) == 0x484b)
{
int i;
pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
pDevice->NodeAddress[1] = (LM_UINT8) Value32;
Value32 = MEM_RD_OFFSET(pDevice, T3_MAC_ADDR_LOW_MAILBOX);
pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
pDevice->NodeAddress[5] = (LM_UINT8) Value32;
/* Check for null MAC address which can happen with older boot code */
for (i = 0; i < 6; i++)
{
if (pDevice->NodeAddress[i] != 0)
{
Status = LM_STATUS_SUCCESS;
break;
}
}
}
}
if (Status != LM_STATUS_SUCCESS)
{
int MacOffset;
MacOffset = 0x7c;
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
(T3_ASIC_5714_FAMILY(pDevice->ChipRevId)) )
{
if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID)
{
MacOffset = 0xcc;
}
/* the boot code is not running */
if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS)
{
REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET);
}
else
{
LM_NVRAM_ReleaseLock(pDevice);
}
}
Status = LM_NvramRead(pDevice, MacOffset, &Value32);
if(Status == LM_STATUS_SUCCESS)
{
LM_UINT8 *c = (LM_UINT8 *) &Value32;
pDevice->NodeAddress[0] = c[2];
pDevice->NodeAddress[1] = c[3];
Status = LM_NvramRead(pDevice, MacOffset + 4, &Value32);
c = (LM_UINT8 *) &Value32;
pDevice->NodeAddress[2] = c[0];
pDevice->NodeAddress[3] = c[1];
pDevice->NodeAddress[4] = c[2];
pDevice->NodeAddress[5] = c[3];
}
}
if(Status != LM_STATUS_SUCCESS)
{
Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].High);
pDevice->NodeAddress[0] = (Value32 >> 8) & 0xff;
pDevice->NodeAddress[1] = Value32 & 0xff;
Value32 = REG_RD(pDevice, MacCtrl.MacAddr[0].Low);
pDevice->NodeAddress[2] = (Value32 >> 24) & 0xff;
pDevice->NodeAddress[3] = (Value32 >> 16) & 0xff;
pDevice->NodeAddress[4] = (Value32 >> 8) & 0xff;
pDevice->NodeAddress[5] = Value32 & 0xff;
B57_ERR(("WARNING: Cannot get MAC addr from NVRAM, using %2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n",
pDevice->NodeAddress[0], pDevice->NodeAddress[1],
pDevice->NodeAddress[2], pDevice->NodeAddress[3],
pDevice->NodeAddress[4], pDevice->NodeAddress[5]));
}
memcpy(pDevice->PermanentNodeAddress, pDevice->NodeAddress, 6);
/* Initialize the default values. */
pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
pDevice->DisableAutoNeg = FALSE;
pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
pDevice->PhyFlags = 0;
if (!(pDevice->Flags & PCI_EXPRESS_FLAG))
pDevice->Flags |= DELAY_PCI_GRANT_FLAG;
pDevice->RequestedLineSpeed = LM_LINE_SPEED_AUTO;
pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
#ifdef INCLUDE_TBI_SUPPORT
pDevice->TbiFlags = 0;
pDevice->IgnoreTbiLinkChange = FALSE;
#endif
#ifdef INCLUDE_TCP_SEG_SUPPORT
pDevice->LargeSendMaxSize = T3_TCP_SEG_MAX_OFFLOAD_SIZE;
pDevice->LargeSendMinNumSeg = T3_TCP_SEG_MIN_NUM_SEG;
#endif
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705))
{
pDevice->PhyFlags |= PHY_RESET_ON_LINKDOWN;
pDevice->PhyFlags |= PHY_CHECK_TAPS_AFTER_RESET;
}
if ((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5703_AX) ||
(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_AX))
{
pDevice->PhyFlags |= PHY_ADC_FIX;
}
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
{
pDevice->PhyFlags |= PHY_5704_A0_FIX;
}
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
pDevice->PhyFlags |= PHY_5705_5750_FIX;
}
/* Ethernet@Wirespeed is supported on 5701,5702,5703,5704,5705a0,5705a1 */
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
!((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
(pDevice->ChipRevId != T3_CHIP_ID_5705_A0) &&
(pDevice->ChipRevId != T3_CHIP_ID_5705_A1)))
{
pDevice->PhyFlags |= PHY_ETHERNET_WIRESPEED;
}
switch (T3_ASIC_REV(pDevice->ChipRevId))
{
case T3_ASIC_REV_5704:
pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
break;
default:
pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
break;
}
pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
pDevice->QueueRxPackets = TRUE;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if(T3_ASIC_IS_JUMBO_CAPABLE(pDevice->ChipRevId)){
if( ! T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
pDevice->Flags |= JUMBO_CAPABLE_FLAG;
}
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
pDevice->BondId = REG_RD(pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
if(((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) &&
((pDevice->BondId == 0x10000) || (pDevice->BondId == 0x18000))) ||
((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) &&
((pDevice->BondId == 0x14000) || (pDevice->BondId == 0x1c000))))
{
return LM_STATUS_UNKNOWN_ADAPTER;
}
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
{
if ((pDevice->BondId == 0x8000) || (pDevice->BondId == 0x4000))
{
pDevice->PhyFlags |= PHY_NO_GIGABIT;
}
}
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
{
if ((pDevice->BondId == GRC_MISC_BD_ID_5788) ||
(pDevice->BondId == GRC_MISC_BD_ID_5788M))
{
pDevice->Flags |= BCM5788_FLAG;
}
if ((pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901)) ||
(pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5901A2)) ||
(pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5705F)))
{
pDevice->PhyFlags |= PHY_NO_GIGABIT;
}
}
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5750)
{
if ( (pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5751F))||
(pDevice->PciDeviceId == T3_PCI_DEVICE_ID(T3_PCI_ID_BCM5753F)))
{
pDevice->PhyFlags |= PHY_NO_GIGABIT;
}
}
/* CIOBE multisplit has a bug */
/* Get Eeprom info. */
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR);
if (Value32 == T3_NIC_DATA_SIG)
{
EeSigFound = TRUE;
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
/* For now the 5753 cannot drive gpio2 or ASF will blow */
if(Value32 & T3_NIC_GPIO2_NOT_AVAILABLE)
{
pDevice->Flags |= GPIO2_DONOT_OUTPUT;
}
if (Value32 & T3_NIC_MINI_PCI)
{
pDevice->Flags |= MINI_PCI_FLAG;
}
/* Determine PHY type. */
switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK)
{
case T3_NIC_CFG_PHY_TYPE_COPPER:
EePhyTypeSerdes = FALSE;
break;
case T3_NIC_CFG_PHY_TYPE_FIBER:
EePhyTypeSerdes = TRUE;
break;
default:
EePhyTypeSerdes = FALSE;
break;
}
if ( T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
LedCfg = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2);
LedCfg = LedCfg & (T3_NIC_CFG_LED_MODE_MASK |
T3_SHASTA_EXT_LED_MODE_MASK);
}
else
{
/* Determine PHY led mode. for legacy devices */
LedCfg = Value32 & T3_NIC_CFG_LED_MODE_MASK;
}
switch (LedCfg)
{
default:
case T3_NIC_CFG_LED_PHY_MODE_1:
pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
break;
case T3_NIC_CFG_LED_PHY_MODE_2:
pDevice->LedCtrl = LED_CTRL_PHY_MODE_2;
break;
case T3_NIC_CFG_LED_MAC_MODE:
pDevice->LedCtrl = LED_CTRL_MAC_MODE;
break;
case T3_SHASTA_EXT_LED_SHARED_TRAFFIC_LINK_MODE:
pDevice->LedCtrl = LED_CTRL_SHARED_TRAFFIC_LINK;
if ((pDevice->ChipRevId != T3_CHIP_ID_5750_A0) &&
(pDevice->ChipRevId != T3_CHIP_ID_5750_A1))
{
pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 |
LED_CTRL_PHY_MODE_2;
}
break;
case T3_SHASTA_EXT_LED_MAC_MODE:
pDevice->LedCtrl = LED_CTRL_SHASTA_MAC_MODE;
break;
case T3_SHASTA_EXT_LED_WIRELESS_COMBO_MODE:
pDevice->LedCtrl = LED_CTRL_WIRELESS_COMBO;
if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0)
{
pDevice->LedCtrl |= LED_CTRL_PHY_MODE_1 |
LED_CTRL_PHY_MODE_2;
}
break;
}
if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)) &&
(pDevice->SubsystemVendorId == T3_SVID_DELL))
{
pDevice->LedCtrl = LED_CTRL_PHY_MODE_2;
}
if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) ||
(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId)) )
{
/* Enable EEPROM write protection. */
if(Value32 & T3_NIC_EEPROM_WP)
{
pDevice->Flags |= EEPROM_WP_FLAG;
}
}
pDevice->AsfFlags = 0;
#ifdef BCM_ASF
if (Value32 & T3_NIC_CFG_ENABLE_ASF)
{
pDevice->AsfFlags |= ASF_ENABLED;
if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
}
}
#endif
if (Value32 & T3_NIC_FIBER_WOL_CAPABLE)
{
pDevice->Flags |= FIBER_WOL_CAPABLE_FLAG;
}
if (Value32 & T3_NIC_WOL_LIMIT_10)
{
pDevice->Flags |= WOL_LIMIT_10MBPS_FLAG;
}
/* Get the PHY Id. */
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_PHY_ID_ADDR);
if (Value32)
{
EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
PHY_ID1_OUI_MASK) << 10;
Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
(Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
}
else
{
EePhyId = 0;
if (!EePhyTypeSerdes && !(pDevice->AsfFlags & ASF_ENABLED))
{
/* reset PHY if boot code couldn't read the PHY ID */
LM_ResetPhy(pDevice);
}
}
Ver = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_VER);
Ver >>= T3_NIC_DATA_VER_SHIFT;
Value32 = 0;
if((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5703) &&
(Ver > 0) && (Ver < 0x100)){
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR2);
if (Value32 & T3_NIC_CFG_CAPACITIVE_COUPLING)
{
pDevice->PhyFlags |= PHY_CAPACITIVE_COUPLING;
}
if (Value32 & T3_NIC_CFG_PRESERVE_PREEMPHASIS)
{
pDevice->TbiFlags |= TBI_DO_PREEMPHASIS;
}
}
}
else
{
EeSigFound = FALSE;
}
/* Set the PHY address. */
pDevice->PhyAddr = PHY_DEVICE_ID;
/* Disable auto polling. */
pDevice->MiMode = 0xc0000;
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(80);
if (pDevice->AsfFlags & ASF_ENABLED)
{
/* Reading PHY registers will contend with ASF */
pDevice->PhyId = 0;
}
else
{
/* Get the PHY id. */
LM_GetPhyId(pDevice);
}
/* Set the EnableTbi flag to false if we have a copper PHY. */
switch(pDevice->PhyId & PHY_ID_MASK)
{
case PHY_BCM5400_PHY_ID:
case PHY_BCM5401_PHY_ID:
case PHY_BCM5411_PHY_ID:
case PHY_BCM5461_PHY_ID:
case PHY_BCM5701_PHY_ID:
case PHY_BCM5703_PHY_ID:
case PHY_BCM5704_PHY_ID:
case PHY_BCM5705_PHY_ID:
case PHY_BCM5750_PHY_ID:
break;
case PHY_BCM5714_PHY_ID:
case PHY_BCM5780_PHY_ID:
if(EePhyTypeSerdes == TRUE)
{
pDevice->PhyFlags |= PHY_IS_FIBER;
}
break;
case PHY_BCM5752_PHY_ID:
break;
case PHY_BCM8002_PHY_ID:
pDevice->TbiFlags |= ENABLE_TBI_FLAG;
break;
default:
if (EeSigFound)
{
pDevice->PhyId = EePhyId;
if (EePhyTypeSerdes && ((pDevice->PhyId == PHY_BCM5780_PHY_ID)) )
{
pDevice->PhyFlags |= PHY_IS_FIBER;
}
else if (EePhyTypeSerdes)
{
pDevice->TbiFlags |= ENABLE_TBI_FLAG;
}
}
else if ((pAdapterInfo = LM_GetAdapterInfoBySsid(
pDevice->SubsystemVendorId,
pDevice->SubsystemId)))
{
pDevice->PhyId = pAdapterInfo->PhyId;
if (pAdapterInfo->Serdes)
{
pDevice->TbiFlags |= ENABLE_TBI_FLAG;
}
}
else
{
if (UNKNOWN_PHY_ID(pDevice->PhyId))
{
LM_ResetPhy(pDevice);
LM_GetPhyId(pDevice);
}
}
break;
}
if(UNKNOWN_PHY_ID(pDevice->PhyId) &&
!(pDevice->TbiFlags & ENABLE_TBI_FLAG))
{
if (pDevice->Flags & ROBO_SWITCH_FLAG) {
B57_ERR(("PHY ID unknown, assume it is a copper PHY.\n"));
} else {
pDevice->TbiFlags |= ENABLE_TBI_FLAG;
B57_ERR(("PHY ID unknown, assume it is SerDes\n"));
}
}
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
{
if((pDevice->SavedCacheLineReg & 0xff00) < 0x4000)
{
pDevice->SavedCacheLineReg &= 0xffff00ff;
pDevice->SavedCacheLineReg |= 0x4000;
}
}
pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
LM_ACCEPT_UNICAST;
pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_TX_UDP_CHECKSUM | LM_TASK_OFFLOAD_RX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_RX_UDP_CHECKSUM;
if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0)
{
pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
}
#ifdef INCLUDE_TCP_SEG_SUPPORT
pDevice->TaskOffloadCap |= LM_TASK_OFFLOAD_TCP_SEGMENTATION;
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
(pDevice->ChipRevId == T3_CHIP_ID_5705_A0))
{
pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION;
}
#endif
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_ENABLED)
{
if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
pDevice->TaskOffloadCap &= ~LM_TASK_OFFLOAD_TCP_SEGMENTATION;
}
}
#endif
/* Change driver parameters. */
Status = MM_GetConfig(pDevice);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
pDevice->Flags &= ~NIC_SEND_BD_FLAG;
}
/* Save the current phy link status. */
if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
!(pDevice->AsfFlags & ASF_ENABLED))
{
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
/* If we don't have link reset the PHY. */
if(!(Value32 & PHY_STATUS_LINK_PASS) ||
(pDevice->PhyFlags & PHY_RESET_ON_INIT))
{
LM_ResetPhy(pDevice);
if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS)
{
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
PHY_AN_AD_ALL_SPEEDS;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
if(!(pDevice->PhyFlags & PHY_NO_GIGABIT))
Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS ;
else
Value32 =0;
#ifdef INCLUDE_5701_AX_FIX
if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
{
Value32 |= BCM540X_CONFIG_AS_MASTER |
BCM540X_ENABLE_CONFIG_AS_MASTER;
}
#endif
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
PHY_CTRL_RESTART_AUTO_NEG);
}
}
LM_SetEthWireSpeed(pDevice);
LM_ReadPhy(pDevice, PHY_AN_AD_REG, &pDevice->advertising);
LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG,
&pDevice->advertising1000);
}
/* Currently 5401 phy only */
LM_PhyTapPowerMgmt(pDevice);
#ifdef INCLUDE_TBI_SUPPORT
if(pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
if (!(pDevice->Flags & FIBER_WOL_CAPABLE_FLAG))
{
pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
}
pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
if (pDevice->TbiFlags & TBI_PURE_POLLING_FLAG)
{
pDevice->IgnoreTbiLinkChange = TRUE;
}
}
else
{
pDevice->TbiFlags = 0;
}
#endif /* INCLUDE_TBI_SUPPORT */
/* UseTaggedStatus is only valid for 5701 and later. */
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
((pDevice->BondId == GRC_MISC_BD_ID_5788) ||
(pDevice->BondId == GRC_MISC_BD_ID_5788M))))
{
pDevice->Flags &= ~USE_TAGGED_STATUS_FLAG;
pDevice->CoalesceMode = 0;
}
else
{
pDevice->CoalesceMode = HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
}
/* Set the status block size. */
if(T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
T3_CHIP_REV(pDevice->ChipRevId) != T3_CHIP_REV_5700_BX)
{
pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
}
/* Check the DURING_INT coalescing ticks parameters. */
if (pDevice->Flags & USE_TAGGED_STATUS_FLAG)
{
if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->RxCoalescingTicksDuringInt =
DEFAULT_RX_COALESCING_TICKS_DURING_INT;
}
if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->TxCoalescingTicksDuringInt =
DEFAULT_TX_COALESCING_TICKS_DURING_INT;
}
if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->RxMaxCoalescedFramesDuringInt =
DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
}
if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->TxMaxCoalescedFramesDuringInt =
DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
}
}
else
{
if(pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->RxCoalescingTicksDuringInt = 0;
}
if(pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->TxCoalescingTicksDuringInt = 0;
}
if(pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->RxMaxCoalescedFramesDuringInt = 0;
}
if(pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE)
{
pDevice->TxMaxCoalescedFramesDuringInt = 0;
}
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if(pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */))
{
pDevice->RxJumboDescCnt = 0;
if(pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC)
{
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
}
}
else if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
{
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
pDevice->RxJumboDescCnt = 0;
}
else
{
pDevice->RxJumboBufferSize = (pDevice->RxMtu + 8 /* CRC + VLAN */ +
COMMON_CACHE_LINE_SIZE-1) & ~COMMON_CACHE_LINE_MASK;
if(pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE)
{
pDevice->RxJumboBufferSize = DEFAULT_JUMBO_RCV_BUFFER_SIZE;
pDevice->RxMtu = pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */;
}
pDevice->TxMtu = pDevice->RxMtu;
}
#else
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
pDevice->RxPacketDescCnt =
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
pDevice->RxJumboDescCnt +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
pDevice->RxStdDescCnt;
if(pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC)
{
pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
}
if(pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE)
{
pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
}
/* Configure the proper ways to get link change interrupt. */
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO)
{
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
}
else
{
pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
}
}
else if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
/* Auto-polling does not work on 5700_AX and 5700_BX. */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
}
}
/* Determine the method to get link change status. */
if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO)
{
/* The link status bit in the status block does not work on 5700_AX */
/* and 5700_BX chips. */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
}
else
{
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
}
}
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
}
if (!EeSigFound)
{
pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
}
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
{
/* bug? 5701 in LINK10 mode does not seem to work when */
/* PhyIntMode is LINK_READY. */
if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
#ifdef INCLUDE_TBI_SUPPORT
!(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
#endif
pDevice->LedCtrl == LED_CTRL_PHY_MODE_2)
{
pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
}
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
pDevice->LedCtrl = LED_CTRL_PHY_MODE_1;
}
}
#ifdef BCM_WOL
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B2)
{
pDevice->WolSpeed = WOL_SPEED_10MB;
}
else
{
if (pDevice->Flags & WOL_LIMIT_10MBPS_FLAG)
{
pDevice->WolSpeed = WOL_SPEED_10MB;
}
else
{
pDevice->WolSpeed = WOL_SPEED_100MB;
}
}
#endif
pDevice->PciState = REG_RD(pDevice, PciCfg.PciState);
pDevice->DmaReadFifoSize = 0;
if (((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705) &&
(pDevice->ChipRevId != T3_CHIP_ID_5705_A0)) ||
T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId) )
{
#ifdef INCLUDE_TCP_SEG_SUPPORT
if ((pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION) &&
((pDevice->ChipRevId == T3_CHIP_ID_5705_A1) ||
(pDevice->ChipRevId == T3_CHIP_ID_5705_A2)))
{
pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_SIZE_128;
}
else
#endif
{
if (!(pDevice->PciState & T3_PCI_STATE_HIGH_BUS_SPEED) &&
!(pDevice->Flags & BCM5788_FLAG) &&
!(pDevice->Flags & PCI_EXPRESS_FLAG))
{
pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST;
if (pDevice->ChipRevId == T3_CHIP_ID_5705_A1)
{
pDevice->Flags |= RX_BD_LIMIT_64_FLAG;
}
pDevice->Flags |= DMA_WR_MODE_RX_ACCELERATE_FLAG;
}
else if (pDevice->Flags & PCI_EXPRESS_FLAG)
{
pDevice->DmaReadFifoSize = DMA_READ_MODE_FIFO_LONG_BURST;
}
}
}
pDevice->Flags &= ~T3_HAS_TWO_CPUS;
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
pDevice->Flags |= T3_HAS_TWO_CPUS;
}
return LM_STATUS_SUCCESS;
} /* LM_GetAdapterInfo */
STATIC PLM_ADAPTER_INFO
LM_GetAdapterInfoBySsid(
LM_UINT16 Svid,
LM_UINT16 Ssid)
{
static LM_ADAPTER_INFO AdapterArr[] =
{
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6, PHY_BCM5401_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5, PHY_BCM5701_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6, PHY_BCM8002_PHY_ID, 1},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1 },
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1, PHY_BCM5701_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8, PHY_BCM5701_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10, PHY_BCM5701_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12, PHY_BCM5701_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1, PHY_BCM5703_PHY_ID, 0},
{ T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2, PHY_BCM5703_PHY_ID, 0},
{ T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0 },
{ T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1 },
{ T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0 },
{ T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0 },
{ T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0 },
{ T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0 },
{ T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1 },
{ T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0 },
{ T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID, 0 },
{ 0x1014, 0x0281, 0, 1 },
};
LM_UINT32 j;
for(j = 0; j < sizeof(AdapterArr)/sizeof(LM_ADAPTER_INFO); j++)
{
if(AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid)
{
return &AdapterArr[j];
}
}
return NULL;
}
/******************************************************************************/
/* Description: */
/* This routine sets up receive/transmit buffer descriptions queues. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_InitializeAdapter(
PLM_DEVICE_BLOCK pDevice)
{
LM_PHYSICAL_ADDRESS MemPhy;
PLM_UINT8 pMemVirt;
PLM_PACKET pPacket;
LM_STATUS Status;
LM_UINT32 Size;
LM_UINT32 Value32, j;
LM_UINT32 DmaWrCmd, DmaRdCmd, DmaWrBdry, DmaRdBdry;
MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
j = 0;
while (((Value32 & 0x3ff) != (pDevice->PciCommandStatusWords & 0x3ff)) &&
(j < 1000))
{
/* On PCIE devices, there are some rare cases where the device */
/* is in the process of link-training at this point */
MM_Wait(200);
MM_WriteConfig32(pDevice, PCI_COMMAND_REG, pDevice->PciCommandStatusWords);
MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
j++;
}
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
/* Set power state to D0. */
LM_SetPowerState(pDevice, LM_POWER_STATE_D0);
/* Intialize the queues. */
QQ_InitQueue(&pDevice->RxPacketReceivedQ.Container,
MAX_RX_PACKET_DESC_COUNT);
QQ_InitQueue(&pDevice->RxPacketFreeQ.Container,
MAX_RX_PACKET_DESC_COUNT);
QQ_InitQueue(&pDevice->TxPacketFreeQ.Container,MAX_TX_PACKET_DESC_COUNT);
QQ_InitQueue(&pDevice->TxPacketXmittedQ.Container,MAX_TX_PACKET_DESC_COUNT);
if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
{
pDevice->RcvRetRcbEntryCount = 512;
pDevice->RcvRetRcbEntryCountMask = 511;
}
else
{
pDevice->RcvRetRcbEntryCount = T3_RCV_RETURN_RCB_ENTRY_COUNT;
pDevice->RcvRetRcbEntryCountMask = T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
}
/* Allocate shared memory for: status block, the buffers for receive */
/* rings -- standard, mini, jumbo, and return rings. */
Size = T3_STATUS_BLOCK_SIZE + sizeof(T3_STATS_BLOCK) +
T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD) +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
(pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD));
/* Memory for host based Send BD. */
if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
Size += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
}
/* Allocate the memory block. */
Status = MM_AllocateSharedMemory(pDevice, Size, (PLM_VOID) &pMemVirt, &MemPhy, FALSE);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
DmaWrCmd = DMA_CTRL_WRITE_CMD;
DmaRdCmd = DMA_CTRL_READ_CMD;
DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_DISABLE;
DmaRdBdry = DMA_CTRL_READ_BOUNDARY_DISABLE;
#ifdef BCM_DISCONNECT_AT_CACHELINE
/* This code is intended for PPC64 and other similar architectures */
/* Only the following chips support this */
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) ||
(pDevice->Flags & PCI_EXPRESS_FLAG))
{
switch(pDevice->CacheLineSize * 4)
{
case 16:
case 32:
case 64:
case 128:
if (!(pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) &&
!(pDevice->Flags & PCI_EXPRESS_FLAG))
{
/* PCI-X */
/* use 384 which is a multiple of 16,32,64,128 */
DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_384_PCIX;
break;
}
else if (pDevice->Flags & PCI_EXPRESS_FLAG)
{
/* PCI Express */
/* use 128 which is a multiple of 16,32,64,128 */
DmaWrCmd = DMA_CTRL_WRITE_BOUNDARY_128_PCIE;
break;
}
/* fall through */
case 256:
/* use 256 which is a multiple of 16,32,64,128,256 */
if ((pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) &&
!(pDevice->Flags & PCI_EXPRESS_FLAG))
{
/* PCI */
DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256;
}
else if (!(pDevice->Flags & PCI_EXPRESS_FLAG))
{
/* PCI-X */
DmaWrBdry = DMA_CTRL_WRITE_BOUNDARY_256_PCIX;
}
break;
}
}
#endif
pDevice->DmaReadWriteCtrl = DmaWrCmd | DmaRdCmd | DmaWrBdry | DmaRdBdry;
/* Program DMA Read/Write */
if (pDevice->Flags & PCI_EXPRESS_FLAG)
{
/* !=0 is 256 max or greater payload size so set water mark accordingly*/
Value32 = (REG_RD(pDevice, PciCfg.DeviceCtrl) & MAX_PAYLOAD_SIZE_MASK);
if (Value32)
{
pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_PCIE_H20MARK_256;
}else
{
pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_PCIE_H20MARK_128;
}
}
else if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS)
{
if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
pDevice->DmaReadWriteCtrl |= 0x003f0000;
}
else
{
pDevice->DmaReadWriteCtrl |= 0x003f000f;
}
}
else /* pci-x */
{
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
pDevice->DmaReadWriteCtrl |= 0x009f0000;
}
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
{
pDevice->DmaReadWriteCtrl |= 0x009C0000;
}
if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 )
{
Value32 = REG_RD(pDevice, PciCfg.ClockCtrl) & 0x1f;
if ((Value32 == 0x6) || (Value32 == 0x7))
{
pDevice->Flags |= ONE_DMA_AT_ONCE_FLAG;
}
}
else if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
{
pDevice->DmaReadWriteCtrl &= ~DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
if( T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780)
pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | DMA_CTRL_WRITE_ONE_DMA_AT_ONCE);
else
pDevice->DmaReadWriteCtrl |= (BIT_20 | BIT_18 | BIT_15);
/* bit 15 is the current CQ 13140 Fix */
}
else
{
pDevice->DmaReadWriteCtrl |= 0x001b000f;
}
}
if((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704))
{
pDevice->DmaReadWriteCtrl &= 0xfffffff0;
}
if (pDevice->Flags & ONE_DMA_AT_ONCE_FLAG)
{
pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
}
REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
LM_SwitchClocks(pDevice);
if (LM_DmaTest(pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS)
{
return LM_STATUS_FAILURE;
}
/* Status block. */
pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
pDevice->StatusBlkPhy = MemPhy;
pMemVirt += T3_STATUS_BLOCK_SIZE;
LM_INC_PHYSICAL_ADDRESS(&MemPhy, T3_STATUS_BLOCK_SIZE);
/* Statistics block. */
pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
pDevice->StatsBlkPhy = MemPhy;
pMemVirt += sizeof(T3_STATS_BLOCK);
LM_INC_PHYSICAL_ADDRESS(&MemPhy, sizeof(T3_STATS_BLOCK));
/* Receive standard BD buffer. */
pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RxStdBdPhy = MemPhy;
pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS(&MemPhy,
T3_STD_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Receive jumbo BD buffer. */
pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RxJumboBdPhy = MemPhy;
pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS(&MemPhy,
T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof(T3_RCV_BD));
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Receive return BD buffer. */
pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RcvRetBdPhy = MemPhy;
pMemVirt += pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS(&MemPhy,
pDevice->RcvRetRcbEntryCount * sizeof(T3_RCV_BD));
/* Set up Send BD. */
if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
pDevice->SendBdPhy = MemPhy;
pMemVirt += sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
LM_INC_PHYSICAL_ADDRESS(&MemPhy,
sizeof(T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT);
}
#ifdef BCM_NIC_SEND_BD
else
{
pDevice->pSendBdVirt = (PT3_SND_BD)
pDevice->pMemView->uIntMem.First32k.BufferDesc;
pDevice->SendBdPhy.High = 0;
pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
}
#endif
/* Allocate memory for packet descriptors. */
Size = (pDevice->RxPacketDescCnt +
pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
Status = MM_AllocateMemory(pDevice, Size, (PLM_VOID *) &pPacket);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
pDevice->pPacketDescBase = (PLM_VOID) pPacket;
/* Create transmit packet descriptors from the memory block and add them */
/* to the TxPacketFreeQ for each send ring. */
for(j = 0; j < pDevice->TxPacketDescCnt; j++)
{
/* Ring index. */
pPacket->Flags = 0;
/* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
QQ_PushTail(&pDevice->TxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for(j.. */
/* Create receive packet descriptors from the memory block and add them */
/* to the RxPacketFreeQ. Create the Standard packet descriptors. */
for(j = 0; j < pDevice->RxStdDescCnt; j++)
{
/* Receive producer ring. */
pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
/* Receive buffer size. */
if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) &&
(pDevice->RxJumboBufferSize) )
{
pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
}else{
pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
}
/* Add the descriptor to RxPacketFreeQ. */
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for */
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Create the Jumbo packet descriptors. */
for(j = 0; j < pDevice->RxJumboDescCnt; j++)
{
/* Receive producer ring. */
pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
/* Receive buffer size. */
pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
/* Add the descriptor to RxPacketFreeQ. */
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket = (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for */
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Initialize the rest of the packet descriptors. */
Status = MM_InitializeUmPackets(pDevice);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
} /* if */
/* Default receive mask. */
pDevice->ReceiveMask &= LM_KEEP_VLAN_TAG;
pDevice->ReceiveMask |= LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
LM_ACCEPT_UNICAST;
/* Make sure we are in the first 32k memory window or NicSendBd. */
REG_WR(pDevice, PciCfg.MemWindowBaseAddr, 0);
/* Initialize the hardware. */
Status = LM_ResetAdapter(pDevice);
if(Status != LM_STATUS_SUCCESS)
{
return Status;
}
/* We are done with initialization. */
pDevice->InitDone = TRUE;
return LM_STATUS_SUCCESS;
} /* LM_InitializeAdapter */
LM_STATUS
LM_DisableChip(PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 data;
pDevice->RxMode &= ~RX_MODE_ENABLE;
REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
if(!(REG_RD(pDevice, MacCtrl.RxMode) & RX_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, RcvBdIn.Mode);
data &= ~RCV_BD_IN_MODE_ENABLE;
REG_WR(pDevice, RcvBdIn.Mode,data);
if(!(REG_RD(pDevice, RcvBdIn.Mode) & RCV_BD_IN_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, RcvListPlmt.Mode);
data &= ~RCV_LIST_PLMT_MODE_ENABLE;
REG_WR(pDevice, RcvListPlmt.Mode,data);
if(!(REG_RD(pDevice, RcvListPlmt.Mode) & RCV_LIST_PLMT_MODE_ENABLE))
{
MM_Wait(20);
}
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
data = REG_RD(pDevice, RcvListSel.Mode);
data &= ~RCV_LIST_SEL_MODE_ENABLE;
REG_WR(pDevice, RcvListSel.Mode,data);
if(!(REG_RD(pDevice, RcvListSel.Mode) & RCV_LIST_SEL_MODE_ENABLE))
{
MM_Wait(20);
}
}
data = REG_RD(pDevice, RcvDataBdIn.Mode);
data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
REG_WR(pDevice, RcvDataBdIn.Mode,data);
if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_BD_IN_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, RcvDataComp.Mode);
data &= ~RCV_DATA_COMP_MODE_ENABLE;
REG_WR(pDevice, RcvDataComp.Mode,data);
if(!(REG_RD(pDevice, RcvDataBdIn.Mode) & RCV_DATA_COMP_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, RcvBdComp.Mode);
data &= ~RCV_BD_COMP_MODE_ENABLE;
REG_WR(pDevice, RcvBdComp.Mode,data);
if(!(REG_RD(pDevice, RcvBdComp.Mode) & RCV_BD_COMP_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, SndBdSel.Mode);
data &= ~SND_BD_SEL_MODE_ENABLE;
REG_WR(pDevice, SndBdSel.Mode, data);
if(!(REG_RD(pDevice, SndBdSel.Mode) & SND_BD_SEL_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, SndBdIn.Mode);
data &= ~SND_BD_IN_MODE_ENABLE;
REG_WR(pDevice, SndBdIn.Mode, data);
if(!(REG_RD(pDevice, SndBdIn.Mode) & SND_BD_IN_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, SndDataIn.Mode);
data &= ~T3_SND_DATA_IN_MODE_ENABLE;
REG_WR(pDevice, SndDataIn.Mode,data);
if(!(REG_RD(pDevice, SndDataIn.Mode) & T3_SND_DATA_IN_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, DmaRead.Mode);
data &= ~DMA_READ_MODE_ENABLE;
REG_WR(pDevice, DmaRead.Mode, data);
if(!(REG_RD(pDevice, DmaRead.Mode) & DMA_READ_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, SndDataComp.Mode);
data &= ~SND_DATA_COMP_MODE_ENABLE;
REG_WR(pDevice, SndDataComp.Mode, data);
if(!(REG_RD(pDevice, SndDataComp.Mode) & SND_DATA_COMP_MODE_ENABLE))
{
MM_Wait(20);
}
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
data = REG_RD(pDevice,DmaComp.Mode);
data &= ~DMA_COMP_MODE_ENABLE;
REG_WR(pDevice, DmaComp.Mode, data);
if(!(REG_RD(pDevice, DmaComp.Mode) & DMA_COMP_MODE_ENABLE))
{
MM_Wait(20);
}
}
data = REG_RD(pDevice, SndBdComp.Mode);
data &= ~SND_BD_COMP_MODE_ENABLE;
REG_WR(pDevice, SndBdComp.Mode, data);
if(!(REG_RD(pDevice, SndBdComp.Mode) & SND_BD_COMP_MODE_ENABLE))
{
MM_Wait(20);
}
/* Clear TDE bit */
pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
pDevice->TxMode &= ~TX_MODE_ENABLE;
REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
if(!(REG_RD(pDevice, MacCtrl.TxMode) & TX_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, HostCoalesce.Mode);
data &= ~HOST_COALESCE_ENABLE;
REG_WR(pDevice, HostCoalesce.Mode, data);
if(!(REG_RD(pDevice, SndBdIn.Mode) & HOST_COALESCE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, DmaWrite.Mode);
data &= ~DMA_WRITE_MODE_ENABLE;
REG_WR(pDevice, DmaWrite.Mode,data);
if(!(REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE))
{
MM_Wait(20);
}
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
data = REG_RD(pDevice, MbufClusterFree.Mode);
data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
REG_WR(pDevice, MbufClusterFree.Mode,data);
if(!(REG_RD(pDevice, MbufClusterFree.Mode) & MBUF_CLUSTER_FREE_MODE_ENABLE))
{
MM_Wait(20);
}
}
/* Reset all FTQs */
REG_WR(pDevice, Ftq.Reset, 0xffffffff);
REG_WR(pDevice, Ftq.Reset, 0x0);
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
data = REG_RD(pDevice, BufMgr.Mode);
data &= ~BUFMGR_MODE_ENABLE;
REG_WR(pDevice, BufMgr.Mode,data);
if(!(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE))
{
MM_Wait(20);
}
data = REG_RD(pDevice, MemArbiter.Mode);
data &= ~T3_MEM_ARBITER_MODE_ENABLE;
REG_WR(pDevice, MemArbiter.Mode, data);
if(!(REG_RD(pDevice, MemArbiter.Mode) & T3_MEM_ARBITER_MODE_ENABLE))
{
MM_Wait(20);
}
}
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_DisableFW(PLM_DEVICE_BLOCK pDevice)
{
#ifdef BCM_ASF
int j;
LM_UINT32 Value32;
if (pDevice->AsfFlags & ASF_ENABLED)
{
MEM_WR_OFFSET(pDevice, T3_CMD_MAILBOX, T3_CMD_NICDRV_PAUSE_FW);
Value32 = REG_RD(pDevice, Grc.RxCpuEvent);
REG_WR(pDevice, Grc.RxCpuEvent, Value32 | BIT_14);
for (j = 0; j < 100; j++)
{
Value32 = REG_RD(pDevice, Grc.RxCpuEvent);
if (!(Value32 & BIT_14))
{
break;
}
MM_Wait(1);
}
}
#endif
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This function reinitializes the adapter. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_ResetAdapter(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j, k;
int reset_count = 0;
/* Disable interrupt. */
LM_DisableInterrupt(pDevice);
restart_reset:
LM_DisableFW(pDevice);
/* May get a spurious interrupt */
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
LM_WritePreResetSignatures(pDevice, LM_INIT_RESET);
/* Disable transmit and receive DMA engines. Abort all pending requests. */
if(pDevice->InitDone)
{
LM_Abort(pDevice);
}
pDevice->ShuttingDown = FALSE;
LM_ResetChip(pDevice);
LM_WriteLegacySignatures(pDevice, LM_INIT_RESET);
/* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
/* in other chip revisions except 5750 */
if ((pDevice->Flags & DELAY_PCI_GRANT_FLAG) &&
!(pDevice->Flags & PCI_EXPRESS_FLAG))
{
REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | BIT_31);
}
if(pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
{
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
{
Value32 = REG_RD(pDevice, PciCfg.PciState);
Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
REG_WR(pDevice, PciCfg.PciState, Value32);
}
}
if (T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5704_BX)
{
/* New bits defined in register 0x64 to enable some h/w fixes */
/* These new bits are 'write-only' */
Value32 = REG_RD(pDevice, PciCfg.MsiData);
REG_WR(pDevice, PciCfg.MsiData, Value32 | BIT_26 | BIT_28 | BIT_29);
}
/* Enable TaggedStatus mode. */
if (pDevice->Flags & USE_TAGGED_STATUS_FLAG)
{
pDevice->MiscHostCtrl |= MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
}
/* Restore PCI configuration registers. */
MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
pDevice->SavedCacheLineReg);
MM_WriteConfig32(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
(pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
/* Initialize the statistis Block */
pDevice->pStatusBlkVirt->Status = 0;
pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
for(j = 0; j < 16; j++)
{
pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
}
for(k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT ;k++)
{
pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
pDevice->pRxStdBdVirt[k].Flags = RCV_BD_FLAG_END;
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) &&
(pDevice->RxJumboBufferSize) )
pDevice->pRxStdBdVirt[k].Len = pDevice->RxJumboBufferSize;
else
pDevice->pRxStdBdVirt[k].Len = MAX_STD_RCV_BUFFER_SIZE;
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Receive jumbo BD buffer. */
for(k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++)
{
pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
pDevice->pRxJumboBdVirt[k].Flags = RCV_BD_FLAG_END |
RCV_BD_FLAG_JUMBO_RING;
pDevice->pRxJumboBdVirt[k].Len = (LM_UINT16) pDevice->RxJumboBufferSize;
}
#endif
REG_WR(pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
/* GRC mode control register. */
Value32 =
#ifdef BIG_ENDIAN_HOST
GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA |
GRC_MODE_WORD_SWAP_DATA |
#else
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA |
GRC_MODE_WORD_SWAP_DATA |
#endif
GRC_MODE_INT_ON_MAC_ATTN |
GRC_MODE_HOST_STACK_UP;
/* Configure send BD mode. */
if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
Value32 |= GRC_MODE_HOST_SEND_BDS;
}
#ifdef BCM_NIC_SEND_BD
else
{
Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
}
#endif
/* Configure pseudo checksum mode. */
if (pDevice->Flags & NO_TX_PSEUDO_HDR_CSUM_FLAG)
{
Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
}
if (pDevice->Flags & NO_RX_PSEUDO_HDR_CSUM_FLAG)
{
Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
}
pDevice->GrcMode = Value32;
REG_WR(pDevice, Grc.Mode, Value32);
/* Setup the timer prescalar register. */
Value32 = REG_RD(pDevice, Grc.MiscCfg) & ~0xff;
/* Clock is always 66Mhz. */
REG_WR(pDevice, Grc.MiscCfg, Value32 | (65 << 1));
/* Set up the MBUF pool base address and size. */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
{
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION)
{
Value32 = LM_GetStkOffLdFirmwareSize(pDevice);
Value32 = (Value32 + 0x7f) & ~0x7f;
pDevice->MbufBase = T3_NIC_BCM5705_MBUF_POOL_ADDR + Value32;
pDevice->MbufSize = T3_NIC_BCM5705_MBUF_POOL_SIZE - Value32 - 0xa00;
REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
}
#endif
}
else if (!T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
REG_WR(pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
REG_WR(pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
/* Set up the DMA descriptor pool base address and size. */
REG_WR(pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
REG_WR(pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
}
/* Configure MBUF and Threshold watermarks */
/* Configure the DMA read MBUF low water mark. */
if(pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE)
{
if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
T3_DEF_DMA_MBUF_LOW_WMARK_5705);
REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
T3_DEF_RX_MAC_MBUF_LOW_WMARK_5705);
REG_WR(pDevice, BufMgr.MbufHighWaterMark,
T3_DEF_MBUF_HIGH_WMARK_5705);
}
else
{
REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
T3_DEF_DMA_MBUF_LOW_WMARK);
REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
T3_DEF_RX_MAC_MBUF_LOW_WMARK);
REG_WR(pDevice, BufMgr.MbufHighWaterMark,
T3_DEF_MBUF_HIGH_WMARK);
}
}else if( T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){
REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,0);
REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,0x4b);
REG_WR(pDevice, BufMgr.MbufHighWaterMark,0x96);
}
else
{
REG_WR(pDevice, BufMgr.MbufReadDmaLowWaterMark,
T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
REG_WR(pDevice, BufMgr.MbufMacRxLowWaterMark,
T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
REG_WR(pDevice, BufMgr.MbufHighWaterMark,
T3_DEF_MBUF_HIGH_WMARK_JUMBO);
}
REG_WR(pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
REG_WR(pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
/* Enable buffer manager. */
REG_WR(pDevice, BufMgr.Mode, BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
for(j = 0 ;j < 2000; j++)
{
if(REG_RD(pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
break;
MM_Wait(10);
}
if(j >= 2000)
{
return LM_STATUS_FAILURE;
}
/* GRC reset will reset FTQ */
/* Receive BD Ring replenish threshold. */
REG_WR(pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt/8);
/* Initialize the Standard Receive RCB. */
REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
pDevice->RxStdBdPhy.High);
REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
pDevice->RxStdBdPhy.Low);
REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
(LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
512 << 16);
}
else
{
REG_WR(pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
MAX_STD_RCV_BUFFER_SIZE << 16);
/* Initialize the Jumbo Receive RCB. */
REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
pDevice->RxJumboBdPhy.High);
REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
pDevice->RxJumboBdPhy.Low);
REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
REG_WR(pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
(LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
REG_WR(pDevice, RcvBdIn.JumboRcvThreshold, pDevice->RxJumboDescCnt/8);
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Initialize the Mini Receive RCB. */
REG_WR(pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
/* Disable all the unused rings. */
for(j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
MEM_WR(pDevice, SendRcb[j].u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
} /* for */
}
/* Initialize the indices. */
pDevice->SendProdIdx = 0;
pDevice->SendConIdx = 0;
MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low);
MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low);
/* Set up host or NIC based send RCB. */
if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
MEM_WR(pDevice, SendRcb[0].HostRingAddr.High,
pDevice->SendBdPhy.High);
MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low,
pDevice->SendBdPhy.Low);
/* Setup the RCB. */
MEM_WR(pDevice, SendRcb[0].u.MaxLen_Flags,
T3_SEND_RCB_ENTRY_COUNT << 16);
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
/* Set up the NIC ring address in the RCB. */
MEM_WR(pDevice, SendRcb[0].NicRingAddr,T3_NIC_SND_BUFFER_DESC_ADDR);
}
for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
{
pDevice->pSendBdVirt[k].HostAddr.High = 0;
pDevice->pSendBdVirt[k].HostAddr.Low = 0;
}
}
#ifdef BCM_NIC_SEND_BD
else
{
MEM_WR(pDevice, SendRcb[0].HostRingAddr.High, 0);
MEM_WR(pDevice, SendRcb[0].HostRingAddr.Low, 0);
MEM_WR(pDevice, SendRcb[0].NicRingAddr,
pDevice->SendBdPhy.Low);
for(k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++)
{
MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.High), 0);
MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].HostAddr.Low), 0);
MM_MEMWRITEL(&(pDevice->pSendBdVirt[k].u1.Len_Flags), 0);
pDevice->ShadowSendBd[k].HostAddr.High = 0;
pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
}
}
#endif
MM_ATOMIC_SET(&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT-1);
/* Configure the receive return rings. */
for(j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++)
{
MEM_WR(pDevice, RcvRetRcb[j].u.MaxLen_Flags, T3_RCB_FLAG_RING_DISABLED);
}
pDevice->RcvRetConIdx = 0;
MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.High,
pDevice->RcvRetBdPhy.High);
MEM_WR(pDevice, RcvRetRcb[0].HostRingAddr.Low,
pDevice->RcvRetBdPhy.Low);
MEM_WR(pDevice, RcvRetRcb[0].NicRingAddr, 0);
/* Setup the RCB. */
MEM_WR(pDevice, RcvRetRcb[0].u.MaxLen_Flags,
pDevice->RcvRetRcbEntryCount << 16);
/* Reinitialize RX ring producer index */
MB_REG_WR(pDevice, Mailbox.RcvStdProdIdx.Low, 0);
MB_REG_RD(pDevice, Mailbox.RcvStdProdIdx.Low);
MB_REG_WR(pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
MB_REG_RD(pDevice, Mailbox.RcvJumboProdIdx.Low);
MB_REG_WR(pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
MB_REG_RD(pDevice, Mailbox.RcvMiniProdIdx.Low);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
pDevice->RxJumboProdIdx = 0;
pDevice->RxJumboQueuedCnt = 0;
#endif
/* Reinitialize our copy of the indices. */
pDevice->RxStdProdIdx = 0;
pDevice->RxStdQueuedCnt = 0;
#if T3_JUMBO_RCV_ENTRY_COUNT
pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_ENTRY_COUNT */
/* Configure the MAC address. */
LM_SetMacAddress(pDevice, pDevice->NodeAddress);
/* Initialize the transmit random backoff seed. */
Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
MAC_TX_BACKOFF_SEED_MASK;
REG_WR(pDevice, MacCtrl.TxBackoffSeed, Value32);
/* Receive MTU. Frames larger than the MTU is marked as oversized. */
REG_WR(pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
/* Configure Time slot/IPG per 802.3 */
REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);
/*
* Configure Receive Rules so that packets don't match
* Programmble rule will be queued to Return Ring 1
*/
REG_WR(pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
/*
* Configure to have 16 Classes of Services (COS) and one
* queue per class. Bad frames are queued to RRR#1.
* And frames don't match rules are also queued to COS#1.
*/
REG_WR(pDevice, RcvListPlmt.Config, 0x181);
/* Enable Receive Placement Statistics */
if ((pDevice->DmaReadFifoSize == DMA_READ_MODE_FIFO_LONG_BURST) &&
(pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION))
{
Value32 = REG_RD(pDevice, RcvListPlmt.StatsEnableMask);
Value32 &= ~T3_DISABLE_LONG_BURST_READ_DYN_FIX;
REG_WR(pDevice, RcvListPlmt.StatsEnableMask, Value32);
}
else
{
REG_WR(pDevice, RcvListPlmt.StatsEnableMask,0xffffff);
}
REG_WR(pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
/* Enable Send Data Initator Statistics */
REG_WR(pDevice, SndDataIn.StatsEnableMask,0xffffff);
REG_WR(pDevice, SndDataIn.StatsCtrl,
T3_SND_DATA_IN_STATS_CTRL_ENABLE | \
T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
/* Disable the host coalescing state machine before configuring it's */
/* parameters. */
REG_WR(pDevice, HostCoalesce.Mode, 0);
for(j = 0; j < 2000; j++)
{
Value32 = REG_RD(pDevice, HostCoalesce.Mode);
if(!(Value32 & HOST_COALESCE_ENABLE))
{
break;
}
MM_Wait(10);
}
/* Host coalescing configurations. */
REG_WR(pDevice, HostCoalesce.RxCoalescingTicks, pDevice->RxCoalescingTicks);
REG_WR(pDevice, HostCoalesce.TxCoalescingTicks, pDevice->TxCoalescingTicks);
REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFrames,
pDevice->RxMaxCoalescedFrames);
REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFrames,
pDevice->TxMaxCoalescedFrames);
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
REG_WR(pDevice, HostCoalesce.RxCoalescedTickDuringInt,
pDevice->RxCoalescingTicksDuringInt);
REG_WR(pDevice, HostCoalesce.TxCoalescedTickDuringInt,
pDevice->TxCoalescingTicksDuringInt);
}
REG_WR(pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
pDevice->RxMaxCoalescedFramesDuringInt);
REG_WR(pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
pDevice->TxMaxCoalescedFramesDuringInt);
/* Initialize the address of the status block. The NIC will DMA */
/* the status block to this memory which resides on the host. */
REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.High,
pDevice->StatusBlkPhy.High);
REG_WR(pDevice, HostCoalesce.StatusBlkHostAddr.Low,
pDevice->StatusBlkPhy.Low);
/* Initialize the address of the statistics block. The NIC will DMA */
/* the statistics to this block of memory. */
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.High,
pDevice->StatsBlkPhy.High);
REG_WR(pDevice, HostCoalesce.StatsBlkHostAddr.Low,
pDevice->StatsBlkPhy.Low);
REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks,
pDevice->StatsCoalescingTicks);
REG_WR(pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
REG_WR(pDevice, HostCoalesce.StatusBlkNicAddr,0xb00);
}
/* Enable Host Coalesing state machine */
REG_WR(pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
pDevice->CoalesceMode);
/* Enable the Receive BD Completion state machine. */
REG_WR(pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
RCV_BD_COMP_MODE_ATTN_ENABLE);
/* Enable the Receive List Placement state machine. */
REG_WR(pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
/* Enable the Receive List Selector state machine. */
REG_WR(pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
RCV_LIST_SEL_MODE_ATTN_ENABLE);
}
/* Reset the Rx MAC State Machine.
*
* The Rx MAC State Machine must be reset when using fiber to prevent the
* first packet being lost. This is needed primarily so that the loopback
* test (which currently only sends one packet) doesn't fail.
*
* Also note that the Rx MAC State Machine (0x468) should be reset _before_
* writting to the MAC Mode register (0x400). Failures have been seen on
* 5780/5714's using fiber where they stopped receiving packets in a simple
* ping test when the Rx MAC State Machine was reset _after_ the MAC Mode
* register was set.
*/
if ((pDevice->TbiFlags & ENABLE_TBI_FLAG) ||
(pDevice->PhyFlags & PHY_IS_FIBER))
{
REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_RESET);
REG_RD_BACK(pDevice, MacCtrl.RxMode);
MM_Wait(10);
REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
REG_RD_BACK(pDevice, MacCtrl.RxMode);
}
/* Clear the statistics block. */
for(j = 0x0300; j < 0x0b00; j = j + 4)
{
MEM_WR_OFFSET(pDevice, j, 0);
}
/* Set Mac Mode */
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
}
else if(pDevice->PhyFlags & PHY_IS_FIBER)
{
pDevice->MacMode = MAC_MODE_PORT_MODE_GMII;
}
else
{
pDevice->MacMode = 0;
}
/* Enable transmit DMA, clear statistics. */
pDevice->MacMode |= MAC_MODE_ENABLE_TX_STATISTICS |
MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
/* GRC miscellaneous local control register. */
pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
}
else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704) &&
!(pDevice->Flags & EEPROM_WP_FLAG))
{
/* Make sure we're on Vmain */
/* The other port may cause us to be on Vaux */
pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2;
}
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
MM_Wait(40);
/* Reset RX counters. */
for(j = 0; j < sizeof(LM_RX_COUNTERS); j++)
{
((PLM_UINT8) &pDevice->RxCounters)[j] = 0;
}
/* Reset TX counters. */
for(j = 0; j < sizeof(LM_TX_COUNTERS); j++)
{
((PLM_UINT8) &pDevice->TxCounters)[j] = 0;
}
MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 0);
MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
pDevice->LastTag = 0;
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
/* Enable the DMA Completion state machine. */
REG_WR(pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
}
/* Enable the DMA Write state machine. */
Value32 = DMA_WRITE_MODE_ENABLE |
DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
if (pDevice->Flags & DMA_WR_MODE_RX_ACCELERATE_FLAG)
{
Value32 |= DMA_WRITE_MODE_RECEIVE_ACCELERATE;
}
if (pDevice->Flags & HOST_COALESCING_BUG_FIX)
{
Value32 |= (1 << 29);
}
REG_WR(pDevice, DmaWrite.Mode, Value32);
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
{
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703)
{
Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities);
Value32 &= ~PCIX_CMD_MAX_BURST_MASK;
Value32 |= PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL;
REG_WR(pDevice, PciCfg.PciXCapabilities, Value32);
}
else if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
Value32 = REG_RD(pDevice, PciCfg.PciXCapabilities);
Value32 &= ~(PCIX_CMD_MAX_SPLIT_MASK | PCIX_CMD_MAX_BURST_MASK);
Value32 |= ((PCIX_CMD_MAX_BURST_CPIOB << PCIX_CMD_MAX_BURST_SHL) &
PCIX_CMD_MAX_BURST_MASK);
if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG)
{
Value32 |= (pDevice->SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
& PCIX_CMD_MAX_SPLIT_MASK;
}
REG_WR(pDevice, PciCfg.PciXCapabilities, Value32);
}
}
/* Enable the Read DMA state machine. */
Value32 = DMA_READ_MODE_ENABLE |
DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
if (pDevice->Flags & MULTI_SPLIT_ENABLE_FLAG)
{
Value32 |= DMA_READ_MODE_MULTI_SPLIT_ENABLE;
}
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
Value32 |= pDevice->DmaReadFifoSize;
}
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
Value32 |= BIT_27;
}
#endif
REG_WR(pDevice, DmaRead.Mode, Value32);
/* Enable the Receive Data Completion state machine. */
REG_WR(pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
RCV_DATA_COMP_MODE_ATTN_ENABLE);
if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
/* Enable the Mbuf Cluster Free state machine. */
REG_WR(pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
}
/* Enable the Send Data Completion state machine. */
REG_WR(pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
/* Enable the Send BD Completion state machine. */
REG_WR(pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
SND_BD_COMP_MODE_ATTN_ENABLE);
/* Enable the Receive BD Initiator state machine. */
REG_WR(pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
/* Enable the Receive Data and Receive BD Initiator state machine. */
REG_WR(pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
/* Enable the Send Data Initiator state machine. */
REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
REG_WR(pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE | 0x8);
}
#endif
/* Enable the Send BD Initiator state machine. */
REG_WR(pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
SND_BD_IN_MODE_ATTN_ENABLE);
/* Enable the Send BD Selector state machine. */
REG_WR(pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
SND_BD_SEL_MODE_ATTN_ENABLE);
#ifdef INCLUDE_5701_AX_FIX
if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0)
{
LM_LoadRlsFirmware(pDevice);
}
#endif
/* Queue Rx packet buffers. */
if(pDevice->QueueRxPackets)
{
LM_QueueRxPackets(pDevice);
}
if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0)
{
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8);
j = 0;
while ((Value32 != MAX_STD_RCV_BUFFER_SIZE) && (j < 10))
{
MM_Wait(20);
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_STD_RCV_BUFFER_DESC_ADDR + 8);
j++;
}
if (j >= 10)
{
reset_count++;
LM_Abort(pDevice);
if (reset_count > 5)
return LM_STATUS_FAILURE;
goto restart_reset;
}
}
/* Enable the transmitter. */
pDevice->TxMode = TX_MODE_ENABLE;
REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
/* Enable the receiver. */
pDevice->RxMode = (pDevice->RxMode & RX_MODE_KEEP_VLAN_TAG) |
RX_MODE_ENABLE;
REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
#ifdef BCM_WOL
if (pDevice->RestoreOnWakeUp)
{
pDevice->RestoreOnWakeUp = FALSE;
pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
pDevice->RequestedLineSpeed = pDevice->WakeUpRequestedLineSpeed;
pDevice->RequestedDuplexMode = pDevice->WakeUpRequestedDuplexMode;
}
#endif
/* Disable auto polling. */
pDevice->MiMode = 0xc0000;
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
/* Activate Link to enable MAC state machine */
REG_WR(pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1)
{
REG_WR(pDevice, MacCtrl.SerdesCfg, 0x616000);
}
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
if(!(pDevice->TbiFlags & TBI_DO_PREEMPHASIS))
{
/* Set SerDes drive transmission level to 1.2V */
Value32 = REG_RD(pDevice, MacCtrl.SerdesCfg) & 0xfffff000;
REG_WR(pDevice, MacCtrl.SerdesCfg, Value32 | 0x880);
}
}
}
REG_WR(pDevice, MacCtrl.LowWaterMarkMaxRxFrame, 2);
if(pDevice->PhyFlags & PHY_IS_FIBER)
{
Value32 = REG_RD_OFFSET(pDevice, 0x5b0);
REG_WR_OFFSET(pDevice, 0x5b0, Value32 | BIT_10 );
pDevice->GrcLocalCtrl |= BIT_4 ;
pDevice->GrcLocalCtrl &= ~BIT_5 ;
REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
Value32 = REG_RD(pDevice, Grc.LocalCtrl);
MM_Wait(40);
}
if (!pDevice->InitDone)
{
if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) {
pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
} else {
pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
}
}
if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG) &&
( ((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5401_PHY_ID)&&
((pDevice->PhyId & PHY_ID_MASK) != PHY_BCM5411_PHY_ID) ))
{
/* 5401/5411 PHY needs a delay of about 1 second after PHY reset */
/* Without the delay, it has problem linking at forced 10 half */
/* So skip the reset... */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5780)
for(j =0; j<0x5000; j++)
MM_Wait(1);
LM_ResetPhy(pDevice);
}
/* Setup the phy chip. */
LM_SetupPhy(pDevice);
if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG)){
/* Clear CRC stats */
LM_ReadPhy(pDevice, 0x1e, &Value32);
LM_WritePhy(pDevice, 0x1e, Value32 | 0x8000);
LM_ReadPhy(pDevice, 0x14, &Value32);
}
/* Set up the receive mask. */
LM_SetReceiveMask(pDevice, pDevice->ReceiveMask);
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (pDevice->TaskToOffload & LM_TASK_OFFLOAD_TCP_SEGMENTATION)
{
if (LM_LoadStkOffLdFirmware(pDevice) == LM_STATUS_FAILURE)
{
return LM_STATUS_FAILURE;
}
}
#endif
LM_WritePostResetSignatures(pDevice, LM_INIT_RESET);
return LM_STATUS_SUCCESS;
} /* LM_ResetAdapter */
/******************************************************************************/
/* Description: */
/* This routine disables the adapter from generating interrupts. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_DisableInterrupt(
PLM_DEVICE_BLOCK pDevice)
{
REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
MISC_HOST_CTRL_MASK_PCI_INT);
MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, 1);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This routine enables the adapter to generate interrupts. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_EnableInterrupt(
PLM_DEVICE_BLOCK pDevice)
{
MB_REG_WR(pDevice, Mailbox.Interrupt[0].Low, pDevice->LastTag << 24);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.Interrupt[0].Low);
}
REG_WR(pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
~MISC_HOST_CTRL_MASK_PCI_INT);
REG_WR(pDevice, HostCoalesce.Mode, pDevice->CoalesceMode |
HOST_COALESCE_ENABLE | HOST_COALESCE_NOW);
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This routine puts a packet on the wire if there is a transmit DMA */
/* descriptor available; otherwise the packet is queued for later */
/* transmission. If the second argue is NULL, this routine will put */
/* the queued packet on the wire if possible. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_SendPacket(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
LM_UINT32 FragCount;
PT3_SND_BD pSendBd, pTmpSendBd;
#ifdef BCM_NIC_SEND_BD
PT3_SND_BD pShadowSendBd;
T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
#endif
LM_UINT32 StartIdx, Idx;
while (1)
{
/* Initalize the send buffer descriptors. */
StartIdx = Idx = pDevice->SendProdIdx;
#ifdef BCM_NIC_SEND_BD
if (pDevice->Flags & NIC_SEND_BD_FLAG)
{
pTmpSendBd = pSendBd = &NicSendBdArr[0];
}
else
#endif
{
pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
}
/* Next producer index. */
for(FragCount = 0; ; )
{
LM_UINT32 Value32, Len;
/* Initialize the pointer to the send buffer fragment. */
MM_MapTxDma(pDevice, pPacket, &pSendBd->HostAddr, &Len, FragCount);
pSendBd->u2.VlanTag = pPacket->VlanTag;
/* Setup the control flags and send buffer size. */
Value32 = (Len << 16) | pPacket->Flags;
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (Value32 & (SND_BD_FLAG_CPU_PRE_DMA | SND_BD_FLAG_CPU_POST_DMA))
{
if(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize;
}
else if (FragCount == 0)
{
pSendBd->u2.s2.Reserved = pPacket->u.Tx.MaxSegmentSize;
}
else
{
pSendBd->u2.s2.Reserved = 0;
Value32 &= 0xffff0fff;
}
}
#endif
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount)
{
pSendBd->u1.Len_Flags = Value32 | SND_BD_FLAG_END;
break;
}
else
{
pSendBd->u1.Len_Flags = Value32;
}
pSendBd++;
if ((Idx == 0) &&
!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
pSendBd = &pDevice->pSendBdVirt[0];
}
pDevice->SendRing[Idx] = 0;
} /* for */
if (pDevice->Flags & TX_4G_WORKAROUND_FLAG)
{
if (LM_Test4GBoundary(pDevice, pPacket, pTmpSendBd) ==
LM_STATUS_SUCCESS)
{
if (MM_CoalesceTxBuffer(pDevice, pPacket) != LM_STATUS_SUCCESS)
{
QQ_PushHead(&pDevice->TxPacketFreeQ.Container, pPacket);
return LM_STATUS_FAILURE;
}
continue;
}
}
break;
}
/* Put the packet descriptor in the ActiveQ. */
pDevice->SendRing[StartIdx] = pPacket;
#ifdef BCM_NIC_SEND_BD
if (pDevice->Flags & NIC_SEND_BD_FLAG)
{
pSendBd = &pDevice->pSendBdVirt[StartIdx];
pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
while (StartIdx != Idx)
{
LM_UINT32 Value32;
if ((Value32 = pTmpSendBd->HostAddr.High) !=
pShadowSendBd->HostAddr.High)
{
MM_MEMWRITEL(&(pSendBd->HostAddr.High), Value32);
pShadowSendBd->HostAddr.High = Value32;
}
MM_MEMWRITEL(&(pSendBd->HostAddr.Low), pTmpSendBd->HostAddr.Low);
if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
pShadowSendBd->u1.Len_Flags)
{
MM_MEMWRITEL(&(pSendBd->u1.Len_Flags), Value32);
pShadowSendBd->u1.Len_Flags = Value32;
}
if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG)
{
MM_MEMWRITEL(&(pSendBd->u2.VlanTag), pTmpSendBd->u2.VlanTag);
}
StartIdx = (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
if (StartIdx == 0)
{
pSendBd = &pDevice->pSendBdVirt[0];
pShadowSendBd = &pDevice->ShadowSendBd[0];
}
else
{
pSendBd++;
pShadowSendBd++;
}
pTmpSendBd++;
}
MM_WMB();
MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
{
MB_REG_WR(pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
}
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.SendNicProdIdx[0].Low);
}
else
{
MM_MMIOWB();
}
}
else
#endif
{
MM_WMB();
MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
if(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5700_BX)
{
MB_REG_WR(pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
}
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.SendHostProdIdx[0].Low);
}
else
{
MM_MMIOWB();
}
}
/* Update the SendBdLeft count. */
MM_ATOMIC_SUB(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);
/* Update the producer index. */
pDevice->SendProdIdx = Idx;
return LM_STATUS_SUCCESS;
}
STATIC LM_STATUS
LM_Test4GBoundary(PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
PT3_SND_BD pSendBd)
{
int FragCount;
LM_UINT32 Idx, Base, Len;
Idx = pDevice->SendProdIdx;
for(FragCount = 0; ; )
{
Len = pSendBd->u1.Len_Flags >> 16;
if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
((Base + 8 + Len) < Base))
{
return LM_STATUS_SUCCESS;
}
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount)
{
break;
}
pSendBd++;
if (!(pDevice->Flags & NIC_SEND_BD_FLAG))
{
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
if (Idx == 0)
{
pSendBd = &pDevice->pSendBdVirt[0];
}
}
}
return LM_STATUS_FAILURE;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_UINT32
ComputeCrc32(LM_UINT8 *pBuffer, LM_UINT32 BufferSize)
{
LM_UINT32 Reg;
LM_UINT32 Tmp;
int j, k;
Reg = 0xffffffff;
for(j = 0; j < BufferSize; j++)
{
Reg ^= pBuffer[j];
for(k = 0; k < 8; k++)
{
Tmp = Reg & 0x01;
Reg >>= 1;
if(Tmp)
{
Reg ^= 0xedb88320;
}
}
}
return ~Reg;
} /* ComputeCrc32 */
/******************************************************************************/
/* Description: */
/* This routine sets the receive control register according to ReceiveMask */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_SetReceiveMask(PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
{
LM_UINT32 ReceiveMask;
LM_UINT32 RxMode;
LM_UINT32 j, k;
ReceiveMask = Mask;
RxMode = pDevice->RxMode;
if(Mask & LM_ACCEPT_UNICAST)
{
Mask &= ~LM_ACCEPT_UNICAST;
}
if(Mask & LM_ACCEPT_MULTICAST)
{
Mask &= ~LM_ACCEPT_MULTICAST;
}
if(Mask & LM_ACCEPT_ALL_MULTICAST)
{
Mask &= ~LM_ACCEPT_ALL_MULTICAST;
}
if(Mask & LM_ACCEPT_BROADCAST)
{
Mask &= ~LM_ACCEPT_BROADCAST;
}
RxMode &= ~RX_MODE_KEEP_VLAN_TAG;
if (Mask & LM_KEEP_VLAN_TAG)
{
RxMode |= RX_MODE_KEEP_VLAN_TAG;
Mask &= ~LM_KEEP_VLAN_TAG;
}
RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
if(Mask & LM_PROMISCUOUS_MODE)
{
RxMode |= RX_MODE_PROMISCUOUS_MODE;
Mask &= ~LM_PROMISCUOUS_MODE;
}
RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
if(Mask & LM_ACCEPT_ERROR_PACKET)
{
RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
Mask &= ~LM_ACCEPT_ERROR_PACKET;
}
/* Make sure all the bits are valid before committing changes. */
if(Mask)
{
return LM_STATUS_FAILURE;
}
/* Commit the new filter. */
pDevice->ReceiveMask = ReceiveMask;
pDevice->RxMode = RxMode;
if (pDevice->PowerLevel != LM_POWER_STATE_D0)
{
return LM_STATUS_SUCCESS;
}
REG_WR(pDevice, MacCtrl.RxMode, RxMode);
/* Set up the MC hash table. */
if(ReceiveMask & LM_ACCEPT_ALL_MULTICAST)
{
for(k = 0; k < 4; k++)
{
REG_WR(pDevice, MacCtrl.HashReg[k], 0xffffffff);
}
}
else if(ReceiveMask & LM_ACCEPT_MULTICAST)
{
for(k = 0; k < 4; k++)
{
REG_WR(pDevice, MacCtrl.HashReg[k], pDevice->MulticastHash[k]);
}
}
else
{
/* Reject all multicast frames. */
for(j = 0; j < 4; j++)
{
REG_WR(pDevice, MacCtrl.HashReg[j], 0);
}
}
/* By default, Tigon3 will accept broadcast frames. We need to setup */
if(ReceiveMask & LM_ACCEPT_BROADCAST)
{
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
}
else
{
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE2_RULE);
REG_WR(pDevice, MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE2_VALUE);
}
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
{
k = 16;
}
else if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
k = 16;
}
else
{
k = 8;
}
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_ENABLED)
{
k -= 4;
}
#endif
/* disable the rest of the rules. */
for(j = RCV_LAST_RULE_IDX; j < k; j++)
{
REG_WR(pDevice, MacCtrl.RcvRules[j].Rule, 0);
REG_WR(pDevice, MacCtrl.RcvRules[j].Value, 0);
}
return LM_STATUS_SUCCESS;
} /* LM_SetReceiveMask */
/******************************************************************************/
/* Description: */
/* Disable the interrupt and put the transmitter and receiver engines in */
/* an idle state. Also aborts all pending send requests and receive */
/* buffers. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_Abort(
PLM_DEVICE_BLOCK pDevice)
{
PLM_PACKET pPacket;
LM_UINT Idx;
LM_DisableInterrupt(pDevice);
LM_DisableChip(pDevice);
/*
* If we do not have a status block pointer, then
* the device hasn't really been opened. Do not
* attempt to clean up packets.
*/
if (pDevice->pStatusBlkVirt == NULL)
return LM_STATUS_SUCCESS;
/* Abort packets that have already queued to go out. */
Idx = pDevice->SendConIdx;
for ( ; ; )
{
if ((pPacket = pDevice->SendRing[Idx]))
{
pDevice->SendRing[Idx] = 0;
pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
pDevice->TxCounters.TxPacketAbortedCnt++;
MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);
Idx = (Idx + pPacket->u.Tx.FragCount) &
T3_SEND_RCB_ENTRY_COUNT_MASK;
QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);
}
else
{
break;
}
}
/* Cleanup the receive return rings. */
#ifdef BCM_NAPI_RXPOLL
LM_ServiceRxPoll(pDevice, T3_RCV_RETURN_RCB_ENTRY_COUNT);
#else
LM_ServiceRxInterrupt(pDevice);
#endif
/* Indicate packets to the protocol. */
MM_IndicateTxPackets(pDevice);
#ifdef BCM_NAPI_RXPOLL
/* Move the receive packet descriptors in the ReceivedQ to the */
/* free queue. */
for(; ;)
{
pPacket = (PLM_PACKET) QQ_PopHead(
&pDevice->RxPacketReceivedQ.Container);
if(pPacket == NULL)
{
break;
}
MM_UnmapRxDma(pDevice, pPacket);
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
}
#else
/* Indicate received packets to the protocols. */
MM_IndicateRxPackets(pDevice);
#endif
/* Clean up the Std Receive Producer ring. */
/* Don't always trust the consumer idx in the status block in case of */
/* hw failure */
Idx = 0;
while(Idx < T3_STD_RCV_RCB_ENTRY_COUNT)
{
if ((pPacket = pDevice->RxStdRing[Idx]))
{
MM_UnmapRxDma(pDevice, pPacket);
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
pDevice->RxStdRing[Idx] = 0;
}
Idx++;
} /* while */
/* Reinitialize our copy of the indices. */
pDevice->RxStdProdIdx = 0;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Clean up the Jumbo Receive Producer ring. */
Idx = 0;
while(Idx < T3_JUMBO_RCV_RCB_ENTRY_COUNT)
{
if ((pPacket = pDevice->RxJumboRing[Idx]))
{
MM_UnmapRxDma(pDevice, pPacket);
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
pDevice->RxJumboRing[Idx] = 0;
}
Idx++;
} /* while */
/* Reinitialize our copy of the indices. */
pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Initialize the statistis Block */
pDevice->pStatusBlkVirt->Status = 0;
pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
return LM_STATUS_SUCCESS;
} /* LM_Abort */
/******************************************************************************/
/* Description: */
/* Disable the interrupt and put the transmitter and receiver engines in */
/* an idle state. Aborts all pending send requests and receive buffers. */
/* Also free all the receive buffers. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_DoHalt(LM_DEVICE_BLOCK *pDevice)
{
PLM_PACKET pPacket;
LM_UINT32 EntryCnt;
LM_DisableFW(pDevice);
LM_WritePreResetSignatures(pDevice, LM_SHUTDOWN_RESET);
LM_Abort(pDevice);
if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID)
LM_WritePhy(pDevice, BCM546X_1c_SHADOW_REG,
(BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN));
/* Get the number of entries in the queue. */
EntryCnt = QQ_GetEntryCnt(&pDevice->RxPacketFreeQ.Container);
/* Make sure all the packets have been accounted for. */
for(EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++)
{
pPacket = (PLM_PACKET) QQ_PopHead(&pDevice->RxPacketFreeQ.Container);
if (pPacket == 0)
break;
MM_FreeRxBuffer(pDevice, pPacket);
QQ_PushTail(&pDevice->RxPacketFreeQ.Container, pPacket);
}
LM_ResetChip(pDevice);
LM_WriteLegacySignatures(pDevice, LM_SHUTDOWN_RESET);
/* Restore PCI configuration registers. */
MM_WriteConfig32(pDevice, PCI_CACHE_LINE_SIZE_REG,
pDevice->SavedCacheLineReg);
LM_RegWrInd(pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
(pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
/* Reprogram the MAC address. */
LM_SetMacAddress(pDevice, pDevice->NodeAddress);
return LM_STATUS_SUCCESS;
} /* LM_DoHalt */
LM_STATUS
LM_Halt(LM_DEVICE_BLOCK *pDevice)
{
LM_STATUS status;
status = LM_DoHalt(pDevice);
LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);
return status;
}
STATIC LM_VOID
LM_WritePreResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,T3_MAGIC_NUM_FIRMWARE_INIT_DONE);
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE)
{
if (Mode == LM_INIT_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START);
}
else if (Mode == LM_SHUTDOWN_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD);
}
else if (Mode == LM_SUSPEND_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND);
}
}
#endif
}
STATIC LM_VOID
LM_WritePostResetSignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_NEW_HANDSHAKE)
{
if (Mode == LM_INIT_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX,
T3_DRV_STATE_START_DONE);
}
else if (Mode == LM_SHUTDOWN_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX,
T3_DRV_STATE_UNLOAD_DONE);
}
}
#endif
}
STATIC LM_VOID
LM_WriteLegacySignatures(LM_DEVICE_BLOCK *pDevice, LM_RESET_TYPE Mode)
{
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_ENABLED)
{
if (Mode == LM_INIT_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_START);
}
else if (Mode == LM_SHUTDOWN_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_UNLOAD);
}
else if (Mode == LM_SUSPEND_RESET)
{
MEM_WR_OFFSET(pDevice, T3_DRV_STATE_MAILBOX, T3_DRV_STATE_SUSPEND);
}
}
#endif
}
STATIC LM_STATUS
LM_ResetChip(PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j, tmp1 = 0, tmp2 = 0;
/* Wait for access to the nvram interface before resetting. This is */
if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
{
/* Request access to the flash interface. */
LM_NVRAM_AcquireLock(pDevice);
}
Value32 = GRC_MISC_CFG_CORE_CLOCK_RESET;
if (pDevice->Flags & PCI_EXPRESS_FLAG)
{
if (REG_RD_OFFSET(pDevice, 0x7e2c) == 0x60) /* PCIE 1.0 system */
{
REG_WR_OFFSET(pDevice, 0x7e2c, 0x20);
}
if (pDevice->ChipRevId != T3_CHIP_ID_5750_A0)
{
/* This bit prevents PCIE link training during GRC reset */
REG_WR(pDevice, Grc.MiscCfg, BIT_29); /* Write bit 29 first */
Value32 |= BIT_29; /* and keep bit 29 set during GRC reset */
}
}
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
Value32 |= GRC_MISC_GPHY_KEEP_POWER_DURING_RESET;
}
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
{
/* Save the MSI ENABLE bit (may need to save the message as well) */
tmp1 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
}
/* Global reset. */
RAW_REG_WR(pDevice, Grc.MiscCfg, Value32);
MM_Wait(120);
MM_ReadConfig32(pDevice, PCI_COMMAND_REG, &Value32);
MM_Wait(120);
/* make sure we re-enable indirect accesses */
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG,
pDevice->MiscHostCtrl);
/* Set MAX PCI retry to zero. */
Value32 = T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
{
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
{
Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
}
}
MM_WriteConfig32(pDevice, T3_PCI_STATE_REG, Value32);
/* Restore PCI command register. */
MM_WriteConfig32(pDevice, PCI_COMMAND_REG,
pDevice->PciCommandStatusWords);
/* Disable PCI-X relaxed ordering bit. */
MM_ReadConfig32(pDevice, PCIX_CAP_REG, &Value32);
Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
MM_WriteConfig32(pDevice, PCIX_CAP_REG, Value32);
/* Enable memory arbiter */
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId) )
{
Value32 = REG_RD(pDevice,MemArbiter.Mode);
REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE | Value32);
}
else
{
REG_WR(pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
}
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
{
/* restore the MSI ENABLE bit (may need to restore the message also) */
tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
tmp2 |= (tmp1 & (1 << 16));
LM_RegWr( pDevice, T3_PCI_MSI_ENABLE, tmp2, TRUE );
tmp2 = LM_RegRd( pDevice, T3_PCI_MSI_ENABLE );
}
if (pDevice->ChipRevId == T3_CHIP_ID_5750_A3)
{
/* Because of chip bug on A3, we need to kill the CPU */
LM_DisableFW(pDevice);
REG_WR_OFFSET(pDevice, 0x5000, 0x400);
}
/*
* BCM4785: In order to avoid repercussions from using potentially
* defective internal ROM, stop the Rx RISC CPU, which is not
* required.
*/
if (pDevice->Flags & SB_CORE_FLAG) {
LM_DisableFW(pDevice);
LM_HaltCpu(pDevice, T3_RX_CPU_ID);
}
#ifdef BIG_ENDIAN_HOST
/* Reconfigure the mode register. */
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA |
GRC_MODE_WORD_SWAP_DATA;
#else
/* Reconfigure the mode register. */
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
REG_WR(pDevice, Grc.Mode, Value32);
if ((pDevice->Flags & MINI_PCI_FLAG) &&
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705))
{
pDevice->ClockCtrl |= T3_PCI_CLKRUN_OUTPUT_EN;
if (pDevice->ChipRevId == T3_CHIP_ID_5705_A0)
{
pDevice->ClockCtrl |= T3_PCI_FORCE_CLKRUN;
}
REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl);
}
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
}
else if(pDevice->PhyFlags & PHY_IS_FIBER)
{
pDevice->MacMode = MAC_MODE_PORT_MODE_GMII;
}
else
{
pDevice->MacMode = 0;
}
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(40);
/* BCM4785: Don't use any firmware, so don't wait */
if (!pDevice->Flags & SB_CORE_FLAG) {
/* Wait for the firmware to finish initialization. */
for(j = 0; j < 100000; j++) {
MM_Wait(10);
if (j < 100)
continue;
Value32 = MEM_RD_OFFSET(pDevice, T3_FIRMWARE_MAILBOX);
if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE) {
break;
}
}
if ((j >= 0x100000) && (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)) {
/* if the boot code is not running */
if (LM_NVRAM_AcquireLock(pDevice) != LM_STATUS_SUCCESS) {
LM_DEVICE_BLOCK *pDevice2;
REG_WR(pDevice, Nvram.Cmd, NVRAM_CMD_RESET);
pDevice2 = MM_FindPeerDev(pDevice);
if (pDevice2 && !pDevice2->InitDone)
REG_WR(pDevice2, Nvram.Cmd, NVRAM_CMD_RESET);
} else {
LM_NVRAM_ReleaseLock(pDevice);
}
}
}
if ((pDevice->Flags & PCI_EXPRESS_FLAG) &&
(pDevice->ChipRevId != T3_CHIP_ID_5750_A0))
{
/* Enable PCIE bug fix */
Value32 = REG_RD_OFFSET(pDevice, 0x7c00);
REG_WR_OFFSET(pDevice, 0x7c00, Value32 | BIT_25 | BIT_29);
}
#ifdef BCM_ASF
pDevice->AsfFlags = 0;
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_SIG_ADDR);
if (Value32 == T3_NIC_DATA_SIG)
{
Value32 = MEM_RD_OFFSET(pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
if (Value32 & T3_NIC_CFG_ENABLE_ASF)
{
pDevice->AsfFlags = ASF_ENABLED;
if (T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
pDevice->AsfFlags |= ASF_NEW_HANDSHAKE;
}
}
}
#endif
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_ShutdownChip(PLM_DEVICE_BLOCK pDevice, LM_RESET_TYPE Mode)
{
LM_DisableFW(pDevice);
LM_WritePreResetSignatures(pDevice, Mode);
if (pDevice->InitDone)
{
LM_Abort(pDevice);
}
else
{
LM_DisableChip(pDevice);
}
LM_ResetChip(pDevice);
LM_WriteLegacySignatures(pDevice, Mode);
LM_WritePostResetSignatures(pDevice, Mode);
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
void
LM_ServiceTxInterrupt(
PLM_DEVICE_BLOCK pDevice) {
PLM_PACKET pPacket;
LM_UINT32 HwConIdx;
LM_UINT32 SwConIdx;
HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
/* Get our copy of the consumer index. The buffer descriptors */
/* that are in between the consumer indices are freed. */
SwConIdx = pDevice->SendConIdx;
/* Move the packets from the TxPacketActiveQ that are sent out to */
/* the TxPacketXmittedQ. Packets that are sent use the */
/* descriptors that are between SwConIdx and HwConIdx. */
while(SwConIdx != HwConIdx)
{
pPacket = pDevice->SendRing[SwConIdx];
pDevice->SendRing[SwConIdx] = 0;
/* Set the return status. */
pPacket->PacketStatus = LM_STATUS_SUCCESS;
/* Put the packet in the TxPacketXmittedQ for indication later. */
QQ_PushTail(&pDevice->TxPacketXmittedQ.Container, pPacket);
/* Move to the next packet's BD. */
SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
T3_SEND_RCB_ENTRY_COUNT_MASK;
/* Update the number of unused BDs. */
MM_ATOMIC_ADD(&pDevice->SendBdLeft, pPacket->u.Tx.FragCount);
/* Get the new updated HwConIdx. */
HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
} /* while */
/* Save the new SwConIdx. */
pDevice->SendConIdx = SwConIdx;
} /* LM_ServiceTxInterrupt */
#ifdef BCM_NAPI_RXPOLL
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
int
LM_ServiceRxPoll(PLM_DEVICE_BLOCK pDevice, int limit)
{
PLM_PACKET pPacket=NULL;
PT3_RCV_BD pRcvBd;
LM_UINT32 HwRcvRetProdIdx;
LM_UINT32 SwRcvRetConIdx;
int received = 0;
/* Loop thru the receive return rings for received packets. */
HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
SwRcvRetConIdx = pDevice->RcvRetConIdx;
MM_RMB();
while (SwRcvRetConIdx != HwRcvRetProdIdx)
{
pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
/* Get the received packet descriptor. */
pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
MM_UINT_PTR(pRcvBd->Opaque));
switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
break;
#endif
case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
break;
}
/* Check the error flag. */
if(pRcvBd->ErrorFlag &&
pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
{
pPacket->PacketStatus = LM_STATUS_FAILURE;
pDevice->RxCounters.RxPacketErrCnt++;
if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC)
{
pDevice->RxCounters.RxErrCrcCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT)
{
pDevice->RxCounters.RxErrCollCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT)
{
pDevice->RxCounters.RxErrLinkLostCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR)
{
pDevice->RxCounters.RxErrPhyDecodeCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
{
pDevice->RxCounters.RxErrOddNibbleCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT)
{
pDevice->RxCounters.RxErrMacAbortCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64)
{
pDevice->RxCounters.RxErrShortPacketCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES)
{
pDevice->RxCounters.RxErrNoResourceCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD)
{
pDevice->RxCounters.RxErrLargePacketCnt++;
}
}
else
{
pPacket->PacketStatus = LM_STATUS_SUCCESS;
pPacket->PacketSize = pRcvBd->Len - 4;
pPacket->Flags = pRcvBd->Flags;
if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG)
{
pPacket->VlanTag = pRcvBd->VlanTag;
}
pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
}
/* Put the packet descriptor containing the received packet */
/* buffer in the RxPacketReceivedQ for indication later. */
QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket);
/* Go to the next buffer descriptor. */
SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
pDevice->RcvRetRcbEntryCountMask;
if (++received >= limit)
{
break;
}
} /* while */
pDevice->RcvRetConIdx = SwRcvRetConIdx;
/* Update the receive return ring consumer index. */
MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low);
}
else
{
MM_MMIOWB();
}
return received;
} /* LM_ServiceRxPoll */
#endif /* BCM_NAPI_RXPOLL */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
void
LM_ServiceRxInterrupt(PLM_DEVICE_BLOCK pDevice)
{
#ifndef BCM_NAPI_RXPOLL
PLM_PACKET pPacket;
PT3_RCV_BD pRcvBd;
#endif
LM_UINT32 HwRcvRetProdIdx;
LM_UINT32 SwRcvRetConIdx;
/* Loop thru the receive return rings for received packets. */
HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
SwRcvRetConIdx = pDevice->RcvRetConIdx;
#ifdef BCM_NAPI_RXPOLL
if (!pDevice->RxPoll)
{
if (SwRcvRetConIdx != HwRcvRetProdIdx)
{
if (MM_ScheduleRxPoll(pDevice) == LM_STATUS_SUCCESS)
{
pDevice->RxPoll = TRUE;
REG_WR(pDevice, Grc.Mode,
pDevice->GrcMode | GRC_MODE_NO_INTERRUPT_ON_RECEIVE);
}
}
}
#else
MM_RMB();
while(SwRcvRetConIdx != HwRcvRetProdIdx)
{
pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
/* Get the received packet descriptor. */
pPacket = (PLM_PACKET) (MM_UINT_PTR(pDevice->pPacketDescBase) +
MM_UINT_PTR(pRcvBd->Opaque));
switch(pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
pDevice->RxJumboRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
break;
#endif
case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
pDevice->RxStdRing[pPacket->u.Rx.RcvRingProdIdx] = 0;
break;
}
/* Check the error flag. */
if(pRcvBd->ErrorFlag &&
pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
{
pPacket->PacketStatus = LM_STATUS_FAILURE;
pDevice->RxCounters.RxPacketErrCnt++;
if(pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC)
{
pDevice->RxCounters.RxErrCrcCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT)
{
pDevice->RxCounters.RxErrCollCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT)
{
pDevice->RxCounters.RxErrLinkLostCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR)
{
pDevice->RxCounters.RxErrPhyDecodeCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII)
{
pDevice->RxCounters.RxErrOddNibbleCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT)
{
pDevice->RxCounters.RxErrMacAbortCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64)
{
pDevice->RxCounters.RxErrShortPacketCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES)
{
pDevice->RxCounters.RxErrNoResourceCnt++;
}
if(pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD)
{
pDevice->RxCounters.RxErrLargePacketCnt++;
}
}
else
{
pPacket->PacketStatus = LM_STATUS_SUCCESS;
pPacket->PacketSize = pRcvBd->Len - 4;
pPacket->Flags = pRcvBd->Flags;
if(pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG)
{
pPacket->VlanTag = pRcvBd->VlanTag;
}
pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
}
/* Put the packet descriptor containing the received packet */
/* buffer in the RxPacketReceivedQ for indication later. */
QQ_PushTail(&pDevice->RxPacketReceivedQ.Container, pPacket);
/* Go to the next buffer descriptor. */
SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
pDevice->RcvRetRcbEntryCountMask;
} /* while */
pDevice->RcvRetConIdx = SwRcvRetConIdx;
/* Update the receive return ring consumer index. */
MB_REG_WR(pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
if (pDevice->Flags & FLUSH_POSTED_WRITE_FLAG)
{
MB_REG_RD(pDevice, Mailbox.RcvRetConIdx[0].Low);
}
else
{
MM_MMIOWB();
}
#endif
} /* LM_ServiceRxInterrupt */
/******************************************************************************/
/* Description: */
/* This is the interrupt event handler routine. It acknowledges all */
/* pending interrupts and process all pending events. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_ServiceInterrupts(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
int ServicePhyInt = FALSE;
/* Setup the phy chip whenever the link status changes. */
if(pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG)
{
Value32 = REG_RD(pDevice, MacCtrl.Status);
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
{
if (Value32 & MAC_STATUS_MI_INTERRUPT)
{
ServicePhyInt = TRUE;
}
}
else if(Value32 & MAC_STATUS_LINK_STATE_CHANGED)
{
ServicePhyInt = TRUE;
}
}
else
{
if(pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_LINK_CHANGED_STATUS)
{
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
(pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
ServicePhyInt = TRUE;
}
}
#ifdef INCLUDE_TBI_SUPPORT
if (pDevice->IgnoreTbiLinkChange == TRUE)
{
ServicePhyInt = FALSE;
}
#endif
if (ServicePhyInt == TRUE)
{
MM_ACQUIRE_PHY_LOCK_IN_IRQ(pDevice);
LM_SetupPhy(pDevice);
MM_RELEASE_PHY_LOCK_IN_IRQ(pDevice);
}
/* Service receive and transmit interrupts. */
LM_ServiceRxInterrupt(pDevice);
LM_ServiceTxInterrupt(pDevice);
#ifndef BCM_NAPI_RXPOLL
/* No spinlock for this queue since this routine is serialized. */
if(!QQ_Empty(&pDevice->RxPacketReceivedQ.Container))
{
/* Indicate receive packets. */
MM_IndicateRxPackets(pDevice);
}
#endif
/* No spinlock for this queue since this routine is serialized. */
if(!QQ_Empty(&pDevice->TxPacketXmittedQ.Container))
{
MM_IndicateTxPackets(pDevice);
}
return LM_STATUS_SUCCESS;
} /* LM_ServiceInterrupts */
/******************************************************************************/
/* Description: Add a Multicast address. Note that MC addresses, once added, */
/* cannot be individually deleted. All addresses must be */
/* cleared. */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_MulticastAdd(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress)
{
LM_UINT32 RegIndex;
LM_UINT32 Bitpos;
LM_UINT32 Crc32;
Crc32 = ComputeCrc32(pMcAddress, ETHERNET_ADDRESS_SIZE);
/* The most significant 7 bits of the CRC32 (no inversion), */
/* are used to index into one of the possible 128 bit positions. */
Bitpos = ~Crc32 & 0x7f;
/* Hash register index. */
RegIndex = (Bitpos & 0x60) >> 5;
/* Bit to turn on within a hash register. */
Bitpos &= 0x1f;
/* Enable the multicast bit. */
pDevice->MulticastHash[RegIndex] |= (1 << Bitpos);
LM_SetReceiveMask(pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_MulticastDel(LM_DEVICE_BLOCK *pDevice, PLM_UINT8 pMcAddress)
{
return LM_STATUS_FAILURE;
} /* LM_MulticastDel */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_MulticastClear(LM_DEVICE_BLOCK *pDevice)
{
int i;
for (i = 0; i < 4; i++)
{
pDevice->MulticastHash[i] = 0;
}
LM_SetReceiveMask(pDevice, pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
return LM_STATUS_SUCCESS;
} /* LM_MulticastClear */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetMacAddress(
PLM_DEVICE_BLOCK pDevice,
PLM_UINT8 pMacAddress)
{
LM_UINT32 j;
for(j = 0; j < 4; j++)
{
REG_WR(pDevice, MacCtrl.MacAddr[j].High,
(pMacAddress[0] << 8) | pMacAddress[1]);
REG_WR(pDevice, MacCtrl.MacAddr[j].Low,
(pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
(pMacAddress[4] << 8) | pMacAddress[5]);
}
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703) ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704))
{
for (j = 0; j < 12; j++)
{
REG_WR(pDevice, MacCtrl.MacAddrExt[j].High,
(pMacAddress[0] << 8) | pMacAddress[1]);
REG_WR(pDevice, MacCtrl.MacAddrExt[j].Low,
(pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
(pMacAddress[4] << 8) | pMacAddress[5]);
}
}
return LM_STATUS_SUCCESS;
}
LM_VOID
LM_PhyTapPowerMgmt(LM_DEVICE_BLOCK *pDevice)
{
/* Turn off tap power management. */
if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);
LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1804);
LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x1204);
LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0132);
LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0232);
LM_WritePhy(pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
LM_WritePhy(pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
MM_Wait(40);
}
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* LM_STATUS_LINK_ACTIVE */
/* LM_STATUS_LINK_DOWN */
/******************************************************************************/
static LM_STATUS
LM_InitBcm540xPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_LINE_SPEED CurrentLineSpeed;
LM_DUPLEX_MODE CurrentDuplexMode;
LM_STATUS CurrentLinkStatus;
LM_UINT32 Value32;
LM_UINT32 j;
robo_info_t *robo;
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x02);
if ((pDevice->PhyFlags & PHY_RESET_ON_LINKDOWN) &&
(pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE))
{
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(!(Value32 & PHY_STATUS_LINK_PASS))
{
LM_ResetPhy(pDevice);
}
}
if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
{
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(!pDevice->InitDone)
{
Value32 = 0;
}
if(!(Value32 & PHY_STATUS_LINK_PASS))
{
LM_PhyTapPowerMgmt(pDevice);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
for(j = 0; j < 1000; j++)
{
MM_Wait(10);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(Value32 & PHY_STATUS_LINK_PASS)
{
MM_Wait(40);
break;
}
}
if((pDevice->PhyId & PHY_ID_REV_MASK) == PHY_BCM5401_B0_REV)
{
if(!(Value32 & PHY_STATUS_LINK_PASS) &&
(pDevice->OldLineSpeed == LM_LINE_SPEED_1000MBPS))
{
LM_ResetPhy(pDevice);
}
}
}
}
else if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
{
LM_WritePhy(pDevice, 0x15, 0x0a75);
LM_WritePhy(pDevice, 0x1c, 0x8c68);
LM_WritePhy(pDevice, 0x1c, 0x8d68);
LM_WritePhy(pDevice, 0x1c, 0x8c68);
}
/* Acknowledge interrupts. */
LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, BCM540X_INT_STATUS_REG, &Value32);
/* Configure the interrupt mask. */
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
{
LM_WritePhy(pDevice, BCM540X_INT_MASK_REG, ~BCM540X_INT_LINK_CHANGE);
}
/* Configure PHY led mode. */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700))
{
if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_1)
{
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG,
BCM540X_EXT_CTRL_LINK3_LED_MODE);
}
else
{
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, 0);
}
}
else if((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5461_PHY_ID)
{
/*
** Set up the 'link' LED for the 4785+5461 combo,
** using the INTR/ENERGYDET pin (on the BCM4785 bringup board).
*/
LM_WritePhy( pDevice,
BCM546X_1c_SHADOW_REG,
(BCM546X_1c_SPR_CTRL_2 | BCM546X_1c_WR_EN | BCM546X_1c_SP2_NRG_DET) );
/*
** Set up the LINK LED mode for the 4785+5461 combo,
** using the 5461 SLAVE/ANEN pin (on the BCM4785 bringup board) as
** active low link status (phy ready) feedback to the 4785
*/
LM_WritePhy( pDevice,
BCM546X_1c_SHADOW_REG,
(BCM546X_1c_SPR_CTRL_1 | BCM546X_1c_WR_EN | BCM546X_1c_SP1_LINK_LED) );
}
if (pDevice->PhyFlags & PHY_CAPACITIVE_COUPLING)
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4007);
LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &Value32);
if (!(Value32 & BIT_10))
{
/* set the bit and re-link */
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, Value32 | BIT_10);
return LM_STATUS_LINK_SETTING_MISMATCH;
}
}
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
if(UNKNOWN_PHY_ID(pDevice->PhyId) && (pDevice->Flags & ROBO_SWITCH_FLAG)) {
B57_INFO(("Force to active link of 1000 MBPS and full duplex mod.\n"));
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
/* Set the line speed based on the robo switch type */
robo = ((PUM_DEVICE_BLOCK)pDevice)->robo;
if (robo->devid == DEVID5325)
{
CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
}
else
{
CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
}
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
/* Save line settings. */
pDevice->LineSpeed = CurrentLineSpeed;
pDevice->DuplexMode = CurrentDuplexMode;
} else {
/* Get current link and duplex mode. */
for(j = 0; j < 100; j++)
{
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(Value32 & PHY_STATUS_LINK_PASS)
{
break;
}
MM_Wait(40);
}
if(Value32 & PHY_STATUS_LINK_PASS)
{
/* Determine the current line and duplex settings. */
LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
for(j = 0; j < 2000; j++)
{
MM_Wait(10);
LM_ReadPhy(pDevice, BCM540X_AUX_STATUS_REG, &Value32);
if(Value32)
{
break;
}
}
switch(Value32 & BCM540X_AUX_SPEED_MASK)
{
case BCM540X_AUX_10BASET_HD:
CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_10BASET_FD:
CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case BCM540X_AUX_100BASETX_HD:
CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_100BASETX_FD:
CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case BCM540X_AUX_100BASET_HD:
CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_100BASET_FD:
CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
default:
CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
break;
}
/* Make sure we are in auto-neg mode. */
for (j = 0; j < 200; j++)
{
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if(Value32 && Value32 != 0x7fff)
{
break;
}
if(Value32 == 0 &&
pDevice->RequestedLineSpeed == LM_LINE_SPEED_10MBPS &&
pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_HALF)
{
break;
}
MM_Wait(10);
}
/* Use the current line settings for "auto" mode. */
if(pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
{
if(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)
{
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
/* We may be exiting low power mode and the link is in */
/* 10mb. In this case, we need to restart autoneg. */
if (LM_PhyAdvertiseAll(pDevice) != LM_STATUS_SUCCESS)
{
CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
}
}
else
{
CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
}
}
else
{
/* Force line settings. */
/* Use the current setting if it matches the user's requested */
/* setting. */
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if((pDevice->LineSpeed == CurrentLineSpeed) &&
(pDevice->DuplexMode == CurrentDuplexMode))
{
if ((pDevice->DisableAutoNeg &&
!(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
(!pDevice->DisableAutoNeg &&
(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)))
{
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
else
{
CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
}
}
else
{
CurrentLinkStatus = LM_STATUS_LINK_SETTING_MISMATCH;
}
}
/* Save line settings. */
pDevice->LineSpeed = CurrentLineSpeed;
pDevice->DuplexMode = CurrentDuplexMode;
}
}
return CurrentLinkStatus;
} /* LM_InitBcm540xPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetFlowControl(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 LocalPhyAd,
LM_UINT32 RemotePhyAd)
{
LM_FLOW_CONTROL FlowCap;
/* Resolve flow control. */
FlowCap = LM_FLOW_CONTROL_NONE;
/* See Table 28B-3 of 802.3ab-1999 spec. */
if(pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE)
{
if(pDevice->PhyFlags & PHY_IS_FIBER){
LocalPhyAd &= ~(PHY_AN_AD_ASYM_PAUSE |
PHY_AN_AD_PAUSE_CAPABLE);
RemotePhyAd &= ~(PHY_AN_AD_ASYM_PAUSE |
PHY_AN_AD_PAUSE_CAPABLE);
if (LocalPhyAd & PHY_AN_AD_1000XPAUSE)
LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
if (LocalPhyAd & PHY_AN_AD_1000XPSE_ASYM)
LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
if (RemotePhyAd & PHY_AN_AD_1000XPAUSE)
RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
if (RemotePhyAd & PHY_AN_AD_1000XPSE_ASYM)
RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
}
if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE)
{
if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
{
if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
{
FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
else if(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)
{
FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
}
else
{
if(RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE)
{
FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE |
LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
}
}
else if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
{
if((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE))
{
FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
}
}
}
else
{
FlowCap = pDevice->FlowControlCap;
}
pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
/* Enable/disable rx PAUSE. */
pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
if(FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
(pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE))
{
pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
}
REG_WR(pDevice, MacCtrl.RxMode, pDevice->RxMode);
/* Enable/disable tx PAUSE. */
pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
if(FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
(pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))
{
pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
}
REG_WR(pDevice, MacCtrl.TxMode, pDevice->TxMode);
return LM_STATUS_SUCCESS;
}
#ifdef INCLUDE_TBI_SUPPORT
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_InitBcm800xPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j;
Value32 = REG_RD(pDevice, MacCtrl.Status);
/* Reset the SERDES during init and when we have link. */
if(!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED)
{
/* Set PLL lock range. */
LM_WritePhy(pDevice, 0x16, 0x8007);
/* Software reset. */
LM_WritePhy(pDevice, 0x00, 0x8000);
/* Wait for reset to complete. */
for(j = 0; j < 500; j++)
{
MM_Wait(10);
}
/* Config mode; seletct PMA/Ch 1 regs. */
LM_WritePhy(pDevice, 0x10, 0x8411);
/* Enable auto-lock and comdet, select txclk for tx. */
LM_WritePhy(pDevice, 0x11, 0x0a10);
LM_WritePhy(pDevice, 0x18, 0x00a0);
LM_WritePhy(pDevice, 0x16, 0x41ff);
/* Assert and deassert POR. */
LM_WritePhy(pDevice, 0x13, 0x0400);
MM_Wait(40);
LM_WritePhy(pDevice, 0x13, 0x0000);
LM_WritePhy(pDevice, 0x11, 0x0a50);
MM_Wait(40);
LM_WritePhy(pDevice, 0x11, 0x0a10);
/* Delay for signal to stabilize. */
for(j = 0; j < 15000; j++)
{
MM_Wait(10);
}
/* Deselect the channel register so we can read the PHY id later. */
LM_WritePhy(pDevice, 0x10, 0x8011);
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_SetupFiberPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS CurrentLinkStatus;
AUTONEG_STATUS AnStatus = 0;
LM_UINT32 Value32;
LM_UINT32 Cnt;
LM_UINT32 j, k;
LM_UINT32 MacStatus, RemotePhyAd, LocalPhyAd;
LM_FLOW_CONTROL PreviousFlowControl = pDevice->FlowControl;
if (pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE)
{
pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);
return LM_STATUS_SUCCESS;
}
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) &&
(pDevice->LinkStatus == LM_STATUS_LINK_ACTIVE) && pDevice->InitDone)
{
MacStatus = REG_RD(pDevice, MacCtrl.Status);
if ((MacStatus & (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED |
MAC_STATUS_CFG_CHANGED | MAC_STATUS_RECEIVING_CFG))
== (MAC_STATUS_PCS_SYNCED | MAC_STATUS_SIGNAL_DETECTED))
{
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
return LM_STATUS_SUCCESS;
}
}
pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
/* Initialize the send_config register. */
REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);
pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
MM_Wait(10);
/* Initialize the BCM8002 SERDES PHY. */
switch(pDevice->PhyId & PHY_ID_MASK)
{
case PHY_BCM8002_PHY_ID:
LM_InitBcm800xPhy(pDevice);
break;
default:
break;
}
/* Enable link change interrupt. */
REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
/* Default to link down. */
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Get the link status. */
MacStatus = REG_RD(pDevice, MacCtrl.Status);
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
LM_UINT32 SgDigCtrl, SgDigStatus;
LM_UINT32 SerdesCfg = 0;
LM_UINT32 ExpectedSgDigCtrl = 0;
LM_UINT32 WorkAround = 0;
LM_UINT32 PortA = 1;
if ((pDevice->ChipRevId != T3_CHIP_ID_5704_A0) &&
(pDevice->ChipRevId != T3_CHIP_ID_5704_A1))
{
WorkAround = 1;
if (REG_RD(pDevice, PciCfg.DualMacCtrl) & T3_DUAL_MAC_ID)
{
PortA = 0;
}
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
/* Save voltage reg bits & bits 14:0 */
SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) &
(BIT_23 | BIT_22 | BIT_21 | BIT_20 | 0x7fff );
}
else
{
/* preserve the voltage regulator bits */
SerdesCfg = REG_RD(pDevice, MacCtrl.SerdesCfg) &
(BIT_23 | BIT_22 | BIT_21 | BIT_20);
}
}
SgDigCtrl = REG_RD(pDevice, MacCtrl.SgDigControl);
if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ||
(pDevice->DisableAutoNeg == FALSE))
{
ExpectedSgDigCtrl = 0x81388400;
LocalPhyAd = GetPhyAdFlowCntrlSettings(pDevice);
if(LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE)
{
ExpectedSgDigCtrl |= BIT_11;
}
if(LocalPhyAd & PHY_AN_AD_ASYM_PAUSE)
{
ExpectedSgDigCtrl |= BIT_12;
}
if (SgDigCtrl != ExpectedSgDigCtrl)
{
if (WorkAround)
{
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011000 | SerdesCfg);
}
else
{
REG_WR(pDevice, MacCtrl.SerdesCfg, 0xc011880 | SerdesCfg);
}
}
REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl |
BIT_30);
REG_RD_BACK(pDevice, MacCtrl.SgDigControl);
MM_Wait(5);
REG_WR(pDevice, MacCtrl.SgDigControl, ExpectedSgDigCtrl);
pDevice->AutoNegJustInited = TRUE;
}
/* If autoneg is off, you only get SD when link is up */
else if(MacStatus & (MAC_STATUS_PCS_SYNCED |
MAC_STATUS_SIGNAL_DETECTED))
{
SgDigStatus = REG_RD(pDevice, MacCtrl.SgDigStatus);
if ((SgDigStatus & BIT_1) &&
(MacStatus & MAC_STATUS_PCS_SYNCED))
{
/* autoneg. completed */
RemotePhyAd = 0;
if(SgDigStatus & BIT_19)
{
RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
}
if(SgDigStatus & BIT_20)
{
RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
}
LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
pDevice->AutoNegJustInited = FALSE;
}
else if (!(SgDigStatus & BIT_1))
{
if (pDevice->AutoNegJustInited == TRUE)
{
/* we may be checking too soon, so check again */
/* at the next poll interval */
pDevice->AutoNegJustInited = FALSE;
}
else
{
/* autoneg. failed */
if (WorkAround)
{
if (PortA)
{
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0xc010000 | (SerdesCfg & ~0x00001000));
}
else
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0xc010880 | SerdesCfg);
}
}
else
{
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0x4010000 | (SerdesCfg & ~0x00001000));
}
else
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0x4010880 | SerdesCfg);
}
}
}
/* turn off autoneg. to allow traffic to pass */
REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400);
REG_RD_BACK(pDevice, MacCtrl.SgDigControl);
MM_Wait(40);
MacStatus = REG_RD(pDevice, MacCtrl.Status);
if ((MacStatus & MAC_STATUS_PCS_SYNCED) && !(MacStatus & MAC_STATUS_RECEIVING_CFG))
{
LM_SetFlowControl(pDevice, 0, 0);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
}
}
}
}
else
{
if (SgDigCtrl & BIT_31) {
if (WorkAround)
{
if (PortA)
{
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0xc010000 | (SerdesCfg & ~0x00001000));
}
else
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0xc010880 | SerdesCfg);
}
}
else
{
if(pDevice->TbiFlags & TBI_DO_PREEMPHASIS)
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0x4010000 | (SerdesCfg & ~0x00001000));
}
else
{
REG_WR(pDevice, MacCtrl.SerdesCfg,
0x4010880 | SerdesCfg);
}
}
}
REG_WR(pDevice, MacCtrl.SgDigControl, 0x01388400);
}
if(MacStatus & MAC_STATUS_PCS_SYNCED)
{
LM_SetFlowControl(pDevice, 0, 0);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
}
}
else if(MacStatus & MAC_STATUS_PCS_SYNCED)
{
if((pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ||
(pDevice->DisableAutoNeg == FALSE))
{
/* auto-negotiation mode. */
/* Initialize the autoneg default capaiblities. */
AutonegInit(&pDevice->AnInfo);
/* Set the context pointer to point to the main device structure. */
pDevice->AnInfo.pContext = pDevice;
/* Setup flow control advertisement register. */
Value32 = GetPhyAdFlowCntrlSettings(pDevice);
if(Value32 & PHY_AN_AD_PAUSE_CAPABLE)
{
pDevice->AnInfo.mr_adv_sym_pause = 1;
}
else
{
pDevice->AnInfo.mr_adv_sym_pause = 0;
}
if(Value32 & PHY_AN_AD_ASYM_PAUSE)
{
pDevice->AnInfo.mr_adv_asym_pause = 1;
}
else
{
pDevice->AnInfo.mr_adv_asym_pause = 0;
}
/* Try to autoneg up to six times. */
if (pDevice->IgnoreTbiLinkChange)
{
Cnt = 1;
}
else
{
Cnt = 6;
}
for (j = 0; j < Cnt; j++)
{
REG_WR(pDevice, MacCtrl.TxAutoNeg, 0);
Value32 = pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
REG_WR(pDevice, MacCtrl.Mode, Value32);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(20);
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_SEND_CONFIGS);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(20);
pDevice->AnInfo.State = AN_STATE_UNKNOWN;
pDevice->AnInfo.CurrentTime_us = 0;
REG_WR(pDevice, Grc.Timer, 0);
for(k = 0; (pDevice->AnInfo.CurrentTime_us < 75000) &&
(k < 75000); k++)
{
AnStatus = Autoneg8023z(&pDevice->AnInfo);
if((AnStatus == AUTONEG_STATUS_DONE) ||
(AnStatus == AUTONEG_STATUS_FAILED))
{
break;
}
pDevice->AnInfo.CurrentTime_us = REG_RD(pDevice, Grc.Timer);
}
if((AnStatus == AUTONEG_STATUS_DONE) ||
(AnStatus == AUTONEG_STATUS_FAILED))
{
break;
}
if (j >= 1)
{
if (!(REG_RD(pDevice, MacCtrl.Status) &
MAC_STATUS_PCS_SYNCED)) {
break;
}
}
}
/* Stop sending configs. */
MM_AnTxIdle(&pDevice->AnInfo);
/* Resolve flow control settings. */
if((AnStatus == AUTONEG_STATUS_DONE) &&
pDevice->AnInfo.mr_an_complete && pDevice->AnInfo.mr_link_ok &&
pDevice->AnInfo.mr_lp_adv_full_duplex)
{
LM_UINT32 RemotePhyAd;
LM_UINT32 LocalPhyAd;
LocalPhyAd = 0;
if(pDevice->AnInfo.mr_adv_sym_pause)
{
LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
}
if(pDevice->AnInfo.mr_adv_asym_pause)
{
LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
}
RemotePhyAd = 0;
if(pDevice->AnInfo.mr_lp_adv_sym_pause)
{
RemotePhyAd |= PHY_LINK_PARTNER_PAUSE_CAPABLE;
}
if(pDevice->AnInfo.mr_lp_adv_asym_pause)
{
RemotePhyAd |= PHY_LINK_PARTNER_ASYM_PAUSE;
}
LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
else
{
LM_SetFlowControl(pDevice, 0, 0);
}
for (j = 0; j < 30; j++)
{
MM_Wait(20);
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
REG_RD_BACK(pDevice, MacCtrl.Status);
MM_Wait(20);
if ((REG_RD(pDevice, MacCtrl.Status) &
(MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
if (pDevice->TbiFlags & TBI_POLLING_FLAGS)
{
Value32 = REG_RD(pDevice, MacCtrl.Status);
if (Value32 & MAC_STATUS_RECEIVING_CFG)
{
pDevice->IgnoreTbiLinkChange = TRUE;
}
else if (pDevice->TbiFlags & TBI_POLLING_INTR_FLAG)
{
pDevice->IgnoreTbiLinkChange = FALSE;
}
}
Value32 = REG_RD(pDevice, MacCtrl.Status);
if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
(Value32 & MAC_STATUS_PCS_SYNCED) &&
((Value32 & MAC_STATUS_RECEIVING_CFG) == 0))
{
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
}
else
{
/* We are forcing line speed. */
pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
LM_SetFlowControl(pDevice, 0, 0);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_SEND_CONFIGS);
}
}
/* Set the link polarity bit. */
pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
(pDevice->pStatusBlkVirt->Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
for (j = 0; j < 100; j++)
{
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
REG_RD_BACK(pDevice, MacCtrl.Status);
MM_Wait(5);
if ((REG_RD(pDevice, MacCtrl.Status) &
(MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
Value32 = REG_RD(pDevice, MacCtrl.Status);
if((Value32 & MAC_STATUS_PCS_SYNCED) == 0)
{
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
if (pDevice->DisableAutoNeg == FALSE)
{
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_SEND_CONFIGS);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(1);
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
}
}
/* Initialize the current link status. */
if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
{
pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl |
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_1000MBPS_LED_ON);
}
else
{
pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl |
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_OVERRIDE_TRAFFIC_LED);
}
/* Indicate link status. */
if ((pDevice->LinkStatus != CurrentLinkStatus) ||
((CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
(PreviousFlowControl != pDevice->FlowControl)))
{
pDevice->LinkStatus = CurrentLinkStatus;
MM_IndicateStatus(pDevice, CurrentLinkStatus);
}
return LM_STATUS_SUCCESS;
}
#endif /* INCLUDE_TBI_SUPPORT */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetupCopperPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS CurrentLinkStatus;
LM_UINT32 Value32;
/* Assume there is not link first. */
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Disable phy link change attention. */
REG_WR(pDevice, MacCtrl.MacEvent, 0);
/* Clear link change attention. */
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LINK_STATE_CHANGED);
/* Disable auto-polling for the moment. */
pDevice->MiMode = 0xc0000;
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(40);
/* Determine the requested line speed and duplex. */
pDevice->OldLineSpeed = pDevice->LineSpeed;
/* Set line and duplex only if we don't have a Robo switch */
if (!(pDevice->Flags & ROBO_SWITCH_FLAG)) {
pDevice->LineSpeed = pDevice->RequestedLineSpeed;
pDevice->DuplexMode = pDevice->RequestedDuplexMode;
}
/* Set the phy to loopback mode. */
if ((pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE) ||
(pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE))
{
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if(!(Value32 & PHY_CTRL_LOOPBACK_MODE) &&
(pDevice->LoopBackMode == LM_PHY_LOOP_BACK_MODE))
{
/* Disable link change and PHY interrupts. */
REG_WR(pDevice, MacCtrl.MacEvent, 0);
/* Clear link change attention. */
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140);
MM_Wait(40);
pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5703 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705 ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 &&
(pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5411_PHY_ID))
{
pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
}
/* Prevent the interrupt handling from being called. */
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
(pDevice->pStatusBlkVirt->Status &
~STATUS_BLOCK_LINK_CHANGED_STATUS);
/* GMII interface. */
pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(40);
/* Configure PHY led mode. */
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700))
{
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG,
BCM540X_EXT_CTRL_LINK3_LED_MODE);
MM_Wait(40);
}
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
int j = 0;
while (REG_RD(pDevice, DmaWrite.Mode) & DMA_WRITE_MODE_ENABLE)
{
MM_Wait(40);
j++;
if (j > 20)
break;
}
Value32 = DMA_WRITE_MODE_ENABLE |
DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
REG_WR(pDevice, DmaWrite.Mode, Value32);
}
}
pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);
return LM_STATUS_SUCCESS;
}
/* For Robo switch read PHY_CTRL_REG value as zero */
if (pDevice->Flags & ROBO_SWITCH_FLAG)
Value32 = 0;
else
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if(Value32 & PHY_CTRL_LOOPBACK_MODE)
{
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Re-enable link change interrupt. This was disabled when we */
/* enter loopback mode. */
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
{
REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT);
}
else
{
REG_WR(pDevice, MacCtrl.MacEvent,
MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
}
}
else
{
/* Initialize the phy chip. */
CurrentLinkStatus = LM_InitBcm540xPhy(pDevice);
}
if(CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH)
{
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
}
/* Setup flow control. */
pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
{
LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
FlowCap = LM_FLOW_CONTROL_NONE;
if(pDevice->DuplexMode == LM_DUPLEX_MODE_FULL)
{
if(pDevice->DisableAutoNeg == FALSE ||
pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
{
LM_UINT32 ExpectedPhyAd;
LM_UINT32 LocalPhyAd;
LM_UINT32 RemotePhyAd;
LM_ReadPhy(pDevice, PHY_AN_AD_REG, &LocalPhyAd);
pDevice->advertising = LocalPhyAd;
LocalPhyAd &= (PHY_AN_AD_ASYM_PAUSE | PHY_AN_AD_PAUSE_CAPABLE);
ExpectedPhyAd = GetPhyAdFlowCntrlSettings(pDevice);
if(LocalPhyAd != ExpectedPhyAd)
{
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
}
else
{
LM_ReadPhy(pDevice, PHY_LINK_PARTNER_ABILITY_REG,
&RemotePhyAd);
LM_SetFlowControl(pDevice, LocalPhyAd, RemotePhyAd);
}
}
else
{
pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
LM_SetFlowControl(pDevice, 0, 0);
}
}
}
if(CurrentLinkStatus == LM_STATUS_LINK_DOWN)
{
LM_ForceAutoNeg(pDevice);
/* If we force line speed, we make get link right away. */
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(Value32 & PHY_STATUS_LINK_PASS)
{
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
}
/* GMII interface. */
pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
if(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
{
if(pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
{
pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
}
else
{
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
}
}
else {
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
}
/* In order for the 5750 core in BCM4785 chip to work properly
* in RGMII mode, the Led Control Register must be set up.
*/
if (pDevice->Flags & RGMII_MODE_FLAG)
{
LM_UINT32 LedCtrl_Reg;
LedCtrl_Reg = REG_RD(pDevice, MacCtrl.LedCtrl);
LedCtrl_Reg &= ~(LED_CTRL_1000MBPS_LED_ON | LED_CTRL_100MBPS_LED_ON);
if(pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
LedCtrl_Reg |= LED_CTRL_OVERRIDE_LINK_LED;
else if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS)
LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_100MBPS_LED_ON);
else /* LM_LINE_SPEED_1000MBPS */
LedCtrl_Reg |= (LED_CTRL_OVERRIDE_LINK_LED | LED_CTRL_1000MBPS_LED_ON);
REG_WR(pDevice, MacCtrl.LedCtrl, LedCtrl_Reg);
MM_Wait(40);
}
/* Set the MAC to operate in the appropriate duplex mode. */
pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
if(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)
{
pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
}
/* Set the link polarity bit. */
pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
if((pDevice->LedCtrl == LED_CTRL_PHY_MODE_2) ||
(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
pDevice->LineSpeed == LM_LINE_SPEED_10MBPS))
{
pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
}
}
else
{
if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE)
{
pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
}
}
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
/* Enable auto polling. */
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
}
/* if using MAC led mode and not using auto polling, need to configure */
/* mi status register */
else if ((pDevice->LedCtrl &
(LED_CTRL_PHY_MODE_1 | LED_CTRL_PHY_MODE_2)) == 0)
{
if (CurrentLinkStatus != LM_STATUS_LINK_ACTIVE)
{
REG_WR(pDevice, MacCtrl.MiStatus, 0);
}
else if (pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)
{
REG_WR(pDevice, MacCtrl.MiStatus,
MI_STATUS_ENABLE_LINK_STATUS_ATTN | MI_STATUS_10MBPS);
}
else
{
REG_WR(pDevice, MacCtrl.MiStatus,
MI_STATUS_ENABLE_LINK_STATUS_ATTN);
}
}
/* Enable phy link change attention. */
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT)
{
REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_MI_INTERRUPT);
}
else
{
REG_WR(pDevice, MacCtrl.MacEvent,
MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
}
if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
(pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
(((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
(pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)))
{
MM_Wait(120);
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
MEM_WR_OFFSET(pDevice, T3_FIRMWARE_MAILBOX,
T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
}
/* Indicate link status. */
if (pDevice->LinkStatus != CurrentLinkStatus) {
pDevice->LinkStatus = CurrentLinkStatus;
MM_IndicateStatus(pDevice, CurrentLinkStatus);
}
return LM_STATUS_SUCCESS;
} /* LM_SetupCopperPhy */
void
LM_5714_FamForceFiber(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Creg, new_bmcr;
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);
new_bmcr = Creg & ~PHY_CTRL_AUTO_NEG_ENABLE;
if ( pDevice->RequestedDuplexMode == 0 ||
pDevice->RequestedDuplexMode == LM_DUPLEX_MODE_FULL){
new_bmcr |= PHY_CTRL_FULL_DUPLEX_MODE;
}
if(Creg == new_bmcr)
return;
new_bmcr |= PHY_CTRL_SPEED_SELECT_1000MBPS; /* Reserve bit */
/* Force a linkdown */
LM_WritePhy(pDevice, PHY_AN_AD_REG, 0);
LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr |
PHY_CTRL_RESTART_AUTO_NEG |
PHY_CTRL_AUTO_NEG_ENABLE |
PHY_CTRL_SPEED_SELECT_1000MBPS);
MM_Wait(10);
/* Force it */
LM_WritePhy(pDevice, PHY_CTRL_REG, new_bmcr);
MM_Wait(10);
return;
}/* LM_5714_FamForceFiber */
void
LM_5714_FamGoFiberAutoNeg(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 adv,Creg,new;
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);
LM_ReadPhy(pDevice,PHY_AN_AD_REG, &adv);
new = adv & ~( PHY_AN_AD_1000XFULL |
PHY_AN_AD_1000XHALF |
PHY_AN_AD_1000XPAUSE |
PHY_AN_AD_1000XPSE_ASYM |
0x1f);
new |= PHY_AN_AD_1000XPAUSE;
new |= PHY_AN_AD_1000XFULL;
new |= PHY_AN_AD_1000XHALF;
if ((new != adv) || !(Creg & PHY_CTRL_AUTO_NEG_ENABLE)){
LM_WritePhy(pDevice, PHY_AN_AD_REG, new);
MM_Wait(5);
pDevice->AutoNegJustInited=1;
LM_WritePhy(pDevice, PHY_CTRL_REG, (Creg |
PHY_CTRL_RESTART_AUTO_NEG |
PHY_CTRL_SPEED_SELECT_1000MBPS |
PHY_CTRL_AUTO_NEG_ENABLE) );
}
return;
} /* 5714_FamGoFiberAutoNeg */
void
LM_5714_FamDoFiberLoopback(PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if( !(Value32 & PHY_CTRL_LOOPBACK_MODE) )
{
LM_WritePhy(pDevice, PHY_CTRL_REG, 0x4140);
/* Prevent the interrupt handling from being called. */
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
(pDevice->pStatusBlkVirt->Status &
~STATUS_BLOCK_LINK_CHANGED_STATUS);
}
pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
MM_IndicateStatus(pDevice, LM_STATUS_LINK_ACTIVE);
return;
}/* 5714_FamDoFiberLoopBack */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetupNewFiberPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS LmStatus = LM_STATUS_SUCCESS;
LM_UINT32 Creg,Sreg,rsav;
rsav = pDevice->LinkStatus;
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
MM_Wait(40);
/* Disable phy link change attention. */
REG_WR(pDevice, MacCtrl.MacEvent, 0);
/* Clear link change attention. */
REG_WR(pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED | MAC_STATUS_MI_COMPLETION |
MAC_STATUS_LINK_STATE_CHANGED);
if( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) &&
( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) ){
/* do nothing */
}else if ( pDevice->LoopBackMode == LM_MAC_LOOP_BACK_MODE){
LM_5714_FamDoFiberLoopback(pDevice);
goto fiberloopbackreturn;
} else if( pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) {
LM_5714_FamGoFiberAutoNeg(pDevice);
}else {
LM_5714_FamForceFiber(pDevice);
}
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Sreg);
if(Sreg & PHY_STATUS_LINK_PASS){
pDevice->LinkStatus = LM_STATUS_LINK_ACTIVE;
pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Creg);
if(Creg & PHY_CTRL_FULL_DUPLEX_MODE) {
pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
}else{
pDevice->DuplexMode = LM_DUPLEX_MODE_HALF;
pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
}
if(Creg & PHY_CTRL_AUTO_NEG_ENABLE){
LM_UINT32 ours,partner;
LM_ReadPhy(pDevice,PHY_AN_AD_REG, &ours);
LM_ReadPhy(pDevice,PHY_LINK_PARTNER_ABILITY_REG, &partner);
LM_SetFlowControl(pDevice, ours, partner);
}
}else{
pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
pDevice->LineSpeed = 0;
}
if(rsav != pDevice->LinkStatus)
MM_IndicateStatus(pDevice, pDevice->LinkStatus);
fiberloopbackreturn:
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
MM_Wait(40);
/* Enable link change interrupt. */
REG_WR(pDevice, MacCtrl.MacEvent, MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
return LmStatus;
} /* Setup New phy */
void
LM_5714_FamFiberCheckLink(
PLM_DEVICE_BLOCK pDevice)
{
if(pDevice->AutoNegJustInited){
pDevice->AutoNegJustInited=0;
return;
}
if ((pDevice->LinkStatus != LM_STATUS_LINK_ACTIVE) &&
(pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO) &&
!(pDevice->PhyFlags & PHY_FIBER_FALLBACK)){
LM_UINT32 bmcr;
LM_ReadPhy(pDevice, PHY_CTRL_REG, &bmcr);
if (bmcr & PHY_CTRL_AUTO_NEG_ENABLE) {
LM_UINT32 phy1, phy2;
LM_WritePhy(pDevice, 0x1c, 0x7c00);
LM_ReadPhy(pDevice, 0x1c, &phy1);
LM_WritePhy(pDevice, 0x17, 0x0f01);
LM_ReadPhy(pDevice, 0x15, &phy2);
LM_ReadPhy(pDevice, 0x15, &phy2);
if ((phy1 & 0x10) && !(phy2 & 0x20)) {
/* We have signal detect and not receiving
* configs.
*/
pDevice->PhyFlags |= PHY_FIBER_FALLBACK;
LM_5714_FamForceFiber(pDevice);
}
}
}
else if ( (pDevice->PhyFlags & PHY_FIBER_FALLBACK) &&
(pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)) {
LM_UINT32 phy2;
LM_WritePhy(pDevice, 0x17, 0x0f01);
LM_ReadPhy(pDevice, 0x15, &phy2);
if (phy2 & 0x20) {
/* Receiving configs. */
pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK;
LM_5714_FamGoFiberAutoNeg(pDevice);
}
}
} /* LM_5714_FamFiberCheckLink */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetupPhy(
PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS LmStatus;
LM_UINT32 Value32;
if(pDevice->PhyFlags & PHY_IS_FIBER)
{
LmStatus = LM_SetupNewFiberPhy(pDevice);
}else
#ifdef INCLUDE_TBI_SUPPORT
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
LmStatus = LM_SetupFiberPhy(pDevice);
}
else
#endif /* INCLUDE_TBI_SUPPORT */
{
LmStatus = LM_SetupCopperPhy(pDevice);
}
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0)
{
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))
{
Value32 = REG_RD(pDevice, PciCfg.PciState);
REG_WR(pDevice, PciCfg.PciState,
Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
}
}
if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF))
{
REG_WR(pDevice, MacCtrl.TxLengths, 0x26ff);
}
else
{
REG_WR(pDevice, MacCtrl.TxLengths, 0x2620);
}
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
if (pDevice->LinkStatus == LM_STATUS_LINK_DOWN)
{
REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks, 0);
}
else
{
REG_WR(pDevice, HostCoalesce.StatsCoalescingTicks,
pDevice->StatsCoalescingTicks);
}
}
return LmStatus;
}
/* test data pattern */
static LM_UINT32 pattern[4][6] = {
/* For 5703/04, each DFE TAP has 21-bits (low word 15, hi word 6)
For 5705 , each DFE TAP has 19-bits (low word 15, hi word 4)
For simplicity, we check only 19-bits, so we don't have to
distinguish which chip it is.
the LO word contains 15 bits, make sure pattern data is < 0x7fff
the HI word contains 6 bits, make sure pattern data is < 0x003f */
{0x00005555, 0x00000005, /* ch0, TAP 0, LO/HI pattern */
0x00002aaa, 0x0000000a, /* ch0, TAP 1, LO/HI pattern */
0x00003456, 0x00000003}, /* ch0, TAP 2, LO/HI pattern */
{0x00002aaa, 0x0000000a, /* ch1, TAP 0, LO/HI pattern */
0x00003333, 0x00000003, /* ch1, TAP 1, LO/HI pattern */
0x0000789a, 0x00000005}, /* ch1, TAP 2, LO/HI pattern */
{0x00005a5a, 0x00000005, /* ch2, TAP 0, LO/HI pattern */
0x00002a6a, 0x0000000a, /* ch2, TAP 1, LO/HI pattern */
0x00001bcd, 0x00000003}, /* ch2, TAP 2, LO/HI pattern */
{0x00002a5a, 0x0000000a, /* ch3, TAP 0, LO/HI pattern */
0x000033c3, 0x00000003, /* ch3, TAP 1, LO/HI pattern */
0x00002ef1, 0x00000005}, /* ch3, TAP 2, LO/HI pattern */
};
/********************************************************/
/* Routine to wait for PHY Macro Command to complete */
/* */
/* If PHY's Macro operation keeps stay busy, nothing we */
/* can do anyway. The timeout is there so we won't */
/* stay in this routine indefinitly. */
/********************************************************/
static LM_UINT32 LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice);
static LM_UINT32
LM_wait_macro_done(LM_DEVICE_BLOCK *pDevice)
{
LM_UINT32 timeout;
LM_UINT32 val32;
timeout = 100;
while (timeout--)
{
/* make sure the MACRO operation is complete */
LM_ReadPhy(pDevice, 0x16, &val32);
if ((val32 & 0x1000) == 0) break;
}
return( timeout > 0 );
}
/********************************************************/
/* This routine resets the PHY on following chips: */
/* 5703, 04, CIOB-E and 5705 */
/* */
/* This routine will issue PHY_RESET and check if */
/* the reset is sucessful. If not, another PHY RESET */
/* will be issued, until max "retry" reaches */
/* */
/* Input: */
/* pDevice - device's context */
/* retry - number of retries */
/* reset - TRUE=will cause a PHY reset initially */
/* FALSE = will not issue a PHY reset */
/* unless TAP lockup detected */
/* */
/* Output: */
/* TRUE - PHY Reset is done sucessfully */
/* FALSE - PHY Reset had failed, after "retry" */
/* has reached */
/* */
/* Dependencies: */
/* void LM_wait_macro_done() */
/* LM_UINT32 pattern[] */
/* */
/* Usage: */
/* a. Before calling this routine, caller must */
/* determine if the chip is a 5702/03/04 or */
/* CIOB-E, and only call this routine if the */
/* is one of these. */
/* or its derivatives. */
/* b. Instead of using MII register write to reset */
/* the PHY, call this routine instead */
/* c. Upon return from this routine, check return */
/* value (TRUE/FALSE) to determine if PHY reset */
/* is successful of not and "optionally" take */
/* appropriate action (such as: event log) */
/* d. Regardless of the return TRUE or FALSE, */
/* proceed with PHY setup as you normally would */
/* after a PHY_RESET. */
/* e. It is recommended that the caller will give */
/* 10 "retry", however, caller can change to a */
/* different number, depending on you code. */
/* */
/********************************************************/
LM_STATUS LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset);
LM_STATUS
LM_ResetPhy_5703_4_5(LM_DEVICE_BLOCK *pDevice, int retry, int reset)
{
LM_UINT32 val32, save9;
LM_UINT32 dataLo, dataHi;
int i, channel;
int reset_success = LM_STATUS_FAILURE;
int force_reset;
/* to actually do a PHY_RESET or not is dictated by the caller */
force_reset = reset;
while (retry-- && (reset_success != LM_STATUS_SUCCESS))
{
if (force_reset)
{
/* issue a phy reset, and wait for reset to complete */
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
for(i = 0; i < 100; i++)
{
MM_Wait(10);
LM_ReadPhy(pDevice, PHY_CTRL_REG, &val32);
if(val32 && !(val32 & PHY_CTRL_PHY_RESET))
{
MM_Wait(20);
break;
}
}
/* no more phy reset unless lockup detected */
force_reset = FALSE;
}
/* assuming reset is successful first */
reset_success = LM_STATUS_SUCCESS;
/* now go check the DFE TAPs to see if locked up, but
first, we need to set up PHY so we can read DFE TAPs */
/* Disable Transmitter and Interrupt, while we play with
the PHY registers, so the link partner won't see any
strange data and the Driver won't see any interrupts. */
LM_ReadPhy(pDevice, 0x10, &val32);
LM_WritePhy(pDevice, 0x10, val32 | 0x3000);
/* Setup Full-Duplex, 1000 mbps */
LM_WritePhy(pDevice, 0x0, 0x0140);
/* Set to Master mode */
LM_ReadPhy(pDevice, 0x9, &save9);
LM_WritePhy(pDevice, 0x9, 0x1800);
/* Enable SM_DSP_CLOCK & 6dB */
LM_WritePhy(pDevice, 0x18, 0x0c00);
/* blocks the PHY control access */
LM_WritePhy(pDevice, 0x17, 0x8005);
LM_WritePhy(pDevice, 0x15, 0x0800);
/* check TAPs for all 4 channels, as soon
as we see a lockup we'll stop checking */
for (channel=0; (channel<4) && (reset_success == LM_STATUS_SUCCESS);
channel++)
{
/* select channel and set TAP index to 0 */
LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);
/* freeze filter again just to be safe */
LM_WritePhy(pDevice, 0x16, 0x0002);
/* write fixed pattern to the RAM, 3 TAPs for
each channel, each TAP have 2 WORDs (LO/HI) */
for (i=0; i<6; i++)
LM_WritePhy(pDevice, 0x15, pattern[channel][i]);
/* Activate PHY's Macro operation to write DFE TAP from RAM,
and wait for Macro to complete */
LM_WritePhy(pDevice, 0x16, 0x0202);
if (!LM_wait_macro_done(pDevice))
{
reset_success = LM_STATUS_FAILURE;
force_reset = TRUE;
break;
}
/* --- done with write phase, now begin read phase --- */
/* select channel and set TAP index to 0 */
LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);
/* Active PHY's Macro operation to load DFE TAP to RAM,
and wait for Macro to complete */
LM_WritePhy(pDevice, 0x16, 0x0082);
if (!LM_wait_macro_done(pDevice))
{
reset_success = LM_STATUS_FAILURE;
force_reset = TRUE;
break;
}
/* enable "pre-fetch" */
LM_WritePhy(pDevice, 0x16, 0x0802);
if (!LM_wait_macro_done(pDevice))
{
reset_success = LM_STATUS_FAILURE;
force_reset = TRUE;
break;
}
/* read back the TAP values.
3 TAPs for each channel, each TAP have 2 WORDs (LO/HI) */
for (i=0; i<6; i+=2)
{
/* read Lo/Hi then wait for 'done' is faster */
LM_ReadPhy(pDevice, 0x15, &dataLo);
LM_ReadPhy(pDevice, 0x15, &dataHi);
if (!LM_wait_macro_done(pDevice))
{
reset_success = LM_STATUS_FAILURE;
force_reset = TRUE;
break;
}
/* For 5703/04, each DFE TAP has 21-bits (low word 15,
* hi word 6) For 5705, each DFE TAP pas 19-bits (low word 15,
* hi word 4) For simplicity, we check only 19-bits, so we
* don't have to distinguish which chip it is. */
dataLo &= 0x7fff;
dataHi &= 0x000f;
/* check if what we wrote is what we read back */
if ( (dataLo != pattern[channel][i]) || (dataHi != pattern[channel][i+1]) )
{
/* if failed, then the PHY is locked up,
we need to do PHY reset again */
reset_success = LM_STATUS_FAILURE;
force_reset = TRUE;
/* 04/25/2003. sb. do these writes before issueing a reset. */
/* these steps will reduce the chance of back-to-back
* phy lockup after reset */
LM_WritePhy(pDevice, 0x17, 0x000B);
LM_WritePhy(pDevice, 0x15, 0x4001);
LM_WritePhy(pDevice, 0x15, 0x4005);
break;
}
} /* for i */
} /* for channel */
} /* while */
/* restore dfe coeff back to zeros */
for (channel=0; channel<4 ; channel++)
{
LM_WritePhy(pDevice, 0x17, (channel * 0x2000) | 0x0200);
LM_WritePhy(pDevice, 0x16, 0x0002);
for (i=0; i<6; i++)
LM_WritePhy(pDevice, 0x15, 0x0000);
LM_WritePhy(pDevice, 0x16, 0x0202);
if (!LM_wait_macro_done(pDevice))
{
reset_success = LM_STATUS_FAILURE;
break;
}
}
/* remove block phy control */
LM_WritePhy(pDevice, 0x17, 0x8005);
LM_WritePhy(pDevice, 0x15, 0x0000);
/* unfreeze DFE TAP filter for all channels */
LM_WritePhy(pDevice, 0x17, 0x8200);
LM_WritePhy(pDevice, 0x16, 0x0000);
/* Restore PHY back to operating state */
LM_WritePhy(pDevice, 0x18, 0x0400);
/* Restore register 9 */
LM_WritePhy(pDevice, 0x9, save9);
/* enable transmitter and interrupt */
LM_ReadPhy(pDevice, 0x10, &val32);
LM_WritePhy(pDevice, 0x10, (val32 & ~0x3000));
return reset_success;
}
LM_VOID
LM_ResetPhy(LM_DEVICE_BLOCK *pDevice)
{
int j;
LM_UINT32 miireg;
if (pDevice->PhyFlags & PHY_CHECK_TAPS_AFTER_RESET)
{
LM_ResetPhy_5703_4_5(pDevice, 5, 1);
}
else
{
int wait_val = 100;
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
if( pDevice->PhyFlags & PHY_IS_FIBER )
wait_val = 5000;
for(j = 0; j < wait_val; j++)
{
MM_Wait(10);
LM_ReadPhy(pDevice, PHY_CTRL_REG, &miireg);
if(miireg && !(miireg & PHY_CTRL_PHY_RESET))
{
MM_Wait(20);
break;
}
}
LM_PhyTapPowerMgmt(pDevice);
}
if ( (pDevice->PhyFlags & PHY_ADC_FIX) &&
!( pDevice->PhyFlags & PHY_IS_FIBER) )
{
LM_WritePhy(pDevice, 0x18, 0x0c00);
LM_WritePhy(pDevice, 0x17, 0x201f);
LM_WritePhy(pDevice, 0x15, 0x2aaa);
LM_WritePhy(pDevice, 0x17, 0x000a);
LM_WritePhy(pDevice, 0x15, 0x0323);
LM_WritePhy(pDevice, 0x18, 0x0400);
}
if ( (pDevice->PhyFlags & PHY_5705_5750_FIX) &&
!( pDevice->PhyFlags & PHY_IS_FIBER) )
{
LM_WritePhy(pDevice, 0x18, 0x0c00);
LM_WritePhy(pDevice, 0x17, 0x000a);
LM_WritePhy(pDevice, 0x15, 0x310b);
LM_WritePhy(pDevice, 0x17, 0x201f);
LM_WritePhy(pDevice, 0x15, 0x9506);
LM_WritePhy(pDevice, 0x17, 0x401f);
LM_WritePhy(pDevice, 0x15, 0x14e2);
LM_WritePhy(pDevice, 0x18, 0x0400);
}
if ( (pDevice->PhyFlags & PHY_5704_A0_FIX) &&
!( pDevice->PhyFlags & PHY_IS_FIBER) )
{
LM_WritePhy(pDevice, 0x1c, 0x8d68);
LM_WritePhy(pDevice, 0x1c, 0x8d68);
}
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
{
LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg);
miireg |= 1; /* set tx elastic fifo */
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg);
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);
}
else if (pDevice->Flags & JUMBO_CAPABLE_FLAG)
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &miireg);
miireg |= 0x4000; /* set rx extended packet length */
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, miireg);
LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &miireg);
miireg |= 1; /* set tx elastic fifo */
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, miireg);
}
LM_SetEthWireSpeed(pDevice);
pDevice->PhyFlags &= ~PHY_FIBER_FALLBACK;
}
STATIC LM_VOID
LM_SetEthWireSpeed(LM_DEVICE_BLOCK *pDevice)
{
LM_UINT32 Value32;
if( pDevice->PhyFlags & PHY_IS_FIBER)
return;
/* Enable Ethernet@WireSpeed. */
if (pDevice->PhyFlags & PHY_ETHERNET_WIRESPEED)
{
LM_WritePhy(pDevice, 0x18, 0x7007);
LM_ReadPhy(pDevice, 0x18, &Value32);
LM_WritePhy(pDevice, 0x18, Value32 | BIT_15 | BIT_4);
}
}
STATIC LM_STATUS
LM_PhyAdvertiseAll(LM_DEVICE_BLOCK *pDevice)
{
LM_UINT32 miireg;
LM_ReadPhy(pDevice, PHY_AN_AD_REG, &miireg);
pDevice->advertising = miireg;
if ((miireg & PHY_AN_AD_ALL_SPEEDS) != PHY_AN_AD_ALL_SPEEDS)
{
return LM_STATUS_FAILURE;
}
LM_ReadPhy(pDevice, BCM540X_1000BASET_CTRL_REG, &miireg);
pDevice->advertising1000 = miireg;
if (!(pDevice->PhyFlags & PHY_NO_GIGABIT))
{
if ((miireg & BCM540X_AN_AD_ALL_1G_SPEEDS) !=
BCM540X_AN_AD_ALL_1G_SPEEDS)
{
return LM_STATUS_FAILURE;
}
}else{
if(miireg)
{
return LM_STATUS_FAILURE;
}
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_ReadPhy(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 PhyReg,
PLM_UINT32 pData32) {
LM_UINT32 Value32;
LM_UINT32 j;
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
~MI_MODE_AUTO_POLLING_ENABLE);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(40);
}
Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
MI_COM_CMD_READ | MI_COM_START;
REG_WR(pDevice, MacCtrl.MiCom, Value32);
for(j = 0; j < 200; j++)
{
MM_Wait(1);
Value32 = REG_RD(pDevice, MacCtrl.MiCom);
if(!(Value32 & MI_COM_BUSY))
{
MM_Wait(5);
Value32 = REG_RD(pDevice, MacCtrl.MiCom);
Value32 &= MI_COM_PHY_DATA_MASK;
break;
}
}
if(Value32 & MI_COM_BUSY)
{
Value32 = 0;
}
*pData32 = Value32;
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(40);
}
} /* LM_ReadPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_WritePhy(
PLM_DEVICE_BLOCK pDevice,
LM_UINT32 PhyReg,
LM_UINT32 Data32) {
LM_UINT32 Value32;
LM_UINT32 j;
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode &
~MI_MODE_AUTO_POLLING_ENABLE);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(40);
}
Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << MI_COM_FIRST_PHY_REG_ADDR_BIT) |
(Data32 & MI_COM_PHY_DATA_MASK) | MI_COM_CMD_WRITE | MI_COM_START;
REG_WR(pDevice, MacCtrl.MiCom, Value32);
for(j = 0; j < 200; j++)
{
MM_Wait(1);
Value32 = REG_RD(pDevice, MacCtrl.MiCom);
if(!(Value32 & MI_COM_BUSY))
{
MM_Wait(5);
break;
}
}
if(pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING)
{
REG_WR(pDevice, MacCtrl.MiMode, pDevice->MiMode);
REG_RD_BACK(pDevice, MacCtrl.MiMode);
MM_Wait(40);
}
} /* LM_WritePhy */
/* MII read/write functions to export to the robo support code */
LM_UINT16
robo_miird(void *h, int phyadd, int regoff)
{
PLM_DEVICE_BLOCK pdev = h;
LM_UINT32 savephyaddr, val32;
savephyaddr = pdev->PhyAddr;
pdev->PhyAddr = phyadd;
LM_ReadPhy(pdev, regoff, &val32);
pdev->PhyAddr = savephyaddr;
return ((LM_UINT16)(val32 & 0xffff));
}
void
robo_miiwr(void *h, int phyadd, int regoff, LM_UINT16 value)
{
PLM_DEVICE_BLOCK pdev = h;
LM_UINT32 val32, savephyaddr;
savephyaddr = pdev->PhyAddr;
pdev->PhyAddr = phyadd;
val32 = (LM_UINT32)value;
LM_WritePhy(pdev, regoff, val32);
pdev->PhyAddr = savephyaddr;
}
STATIC void
LM_GetPhyId(LM_DEVICE_BLOCK *pDevice)
{
LM_UINT32 Value32;
LM_ReadPhy(pDevice, PHY_ID1_REG, &Value32);
pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
LM_ReadPhy(pDevice, PHY_ID2_REG, &Value32);
pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
(Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
}
LM_STATUS
LM_EnableMacLoopBack(PLM_DEVICE_BLOCK pDevice)
{
pDevice->LoopBackMode = LM_MAC_LOOP_BACK_MODE;
pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
pDevice->MacMode |= (MAC_MODE_PORT_INTERNAL_LOOPBACK |
MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_GMII);
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
MM_Wait(40);
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_DisableMacLoopBack(PLM_DEVICE_BLOCK pDevice)
{
pDevice->LoopBackMode = 0;
pDevice->MacMode &= ~(MAC_MODE_PORT_INTERNAL_LOOPBACK |
MAC_MODE_LINK_POLARITY | MAC_MODE_PORT_MODE_MASK);
REG_WR(pDevice, MacCtrl.Mode, pDevice->MacMode);
MM_Wait(40);
if(pDevice->PhyFlags & PHY_IS_FIBER)
LM_ResetPhy(pDevice);
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_EnablePhyLoopBack(PLM_DEVICE_BLOCK pDevice)
{
pDevice->LoopBackMode = LM_PHY_LOOP_BACK_MODE;
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_DisablePhyLoopBack(PLM_DEVICE_BLOCK pDevice)
{
pDevice->LoopBackMode = 0;
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_EnableExtLoopBack(PLM_DEVICE_BLOCK pDevice, LM_LINE_SPEED LineSpeed)
{
pDevice->LoopBackMode = LM_EXT_LOOP_BACK_MODE;
pDevice->SavedDisableAutoNeg = pDevice->DisableAutoNeg;
pDevice->SavedRequestedLineSpeed = pDevice->RequestedLineSpeed;
pDevice->SavedRequestedDuplexMode = pDevice->RequestedDuplexMode;
pDevice->DisableAutoNeg = TRUE;
pDevice->RequestedLineSpeed = LineSpeed;
pDevice->RequestedDuplexMode = LM_DUPLEX_MODE_FULL;
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
LM_STATUS
LM_DisableExtLoopBack(PLM_DEVICE_BLOCK pDevice)
{
pDevice->LoopBackMode = 0;
pDevice->DisableAutoNeg = pDevice->SavedDisableAutoNeg;
pDevice->RequestedLineSpeed = pDevice->SavedRequestedLineSpeed;
pDevice->RequestedDuplexMode = pDevice->SavedRequestedDuplexMode;
LM_SetupPhy(pDevice);
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetPowerState(
PLM_DEVICE_BLOCK pDevice,
LM_POWER_STATE PowerLevel)
{
#ifdef BCM_WOL
LM_UINT32 PmeSupport;
PLM_DEVICE_BLOCK pDevice2 = 0;
int j;
#endif
LM_UINT32 Value32;
LM_UINT32 PmCtrl;
/* make sureindirect accesses are enabled*/
MM_WriteConfig32(pDevice, T3_PCI_MISC_HOST_CTRL_REG, pDevice->MiscHostCtrl);
/* Clear the PME_ASSERT bit and the power state bits. Also enable */
/* the PME bit. */
MM_ReadConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
PmCtrl |= T3_PM_PME_ASSERTED;
PmCtrl &= ~T3_PM_POWER_STATE_MASK;
/* Set the appropriate power state. */
if(PowerLevel == LM_POWER_STATE_D0)
{
/* Bring the card out of low power mode. */
PmCtrl |= T3_PM_POWER_STATE_D0;
MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
Value32 = REG_RD(pDevice, Grc.LocalCtrl);
if(T3_ASIC_5752(pDevice->ChipRevId)){
Value32 |= (GRC_MISC_LOCAL_CTRL_GPIO_OE3 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT3 |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
}
else
{
Value32 &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
}
RAW_REG_WR(pDevice, Grc.LocalCtrl, Value32);
MM_Wait(40); /* Required delay is about 20us. */
pDevice->PowerLevel = PowerLevel;
return LM_STATUS_SUCCESS;
}
#ifdef BCM_WOL
else if(PowerLevel == LM_POWER_STATE_D1)
{
PmCtrl |= T3_PM_POWER_STATE_D1;
}
else if(PowerLevel == LM_POWER_STATE_D2)
{
PmCtrl |= T3_PM_POWER_STATE_D2;
}
else if(PowerLevel == LM_POWER_STATE_D3)
{
PmCtrl |= T3_PM_POWER_STATE_D3;
}
else
{
return LM_STATUS_FAILURE;
}
PmCtrl |= T3_PM_PME_ENABLE;
/* Mask out all interrupts so LM_SetupPhy won't be called while we are */
/* setting new line speed. */
Value32 = REG_RD(pDevice, PciCfg.MiscHostCtrl);
REG_WR(pDevice, PciCfg.MiscHostCtrl, Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
if(!pDevice->RestoreOnWakeUp)
{
pDevice->RestoreOnWakeUp = TRUE;
pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
pDevice->WakeUpRequestedLineSpeed = pDevice->RequestedLineSpeed;
pDevice->WakeUpRequestedDuplexMode = pDevice->RequestedDuplexMode;
}
/* Force auto-negotiation to 10 line speed. */
pDevice->DisableAutoNeg = FALSE;
if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG))
{
pDevice->RequestedLineSpeed = LM_LINE_SPEED_10MBPS;
LM_SetupPhy(pDevice);
}
/* Put the driver in the initial state, and go through the power down */
/* sequence. */
LM_DoHalt(pDevice);
if (!(pDevice->AsfFlags & ASF_ENABLED))
{
for(j = 0; j < 20000; j++)
{
MM_Wait(10);
Value32 = MEM_RD_OFFSET(pDevice, T3_ASF_FW_STATUS_MAILBOX);
if(Value32 == ~T3_MAGIC_NUM_FIRMWARE_INIT_DONE)
{
break;
}
}
}
MEM_WR_OFFSET(pDevice, DRV_WOL_MAILBOX, DRV_WOL_SIGNATURE |
DRV_DOWN_STATE_SHUTDOWN | 0x2 | DRV_WOL_SET_MAGIC_PKT);
MM_ReadConfig32(pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)
{
/* Enable WOL. */
if (!(pDevice->TbiFlags & ENABLE_TBI_FLAG))
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x5a);
MM_Wait(40);
}
if (! T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId))
{
/* Let boot code deal with LED mode on shasta */
REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
}
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
Value32 = MAC_MODE_PORT_MODE_TBI;
}
else
{
Value32 = MAC_MODE_PORT_MODE_MII;
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700)
{
if(pDevice->LedCtrl == LED_CTRL_PHY_MODE_2 ||
pDevice->WolSpeed == WOL_SPEED_10MB)
{
Value32 |= MAC_MODE_LINK_POLARITY;
}
}
else
{
Value32 |= MAC_MODE_LINK_POLARITY;
}
}
REG_WR(pDevice, MacCtrl.Mode, Value32);
REG_RD_BACK(pDevice, MacCtrl.Mode);
MM_Wait(40); MM_Wait(40); MM_Wait(40);
/* Always enable magic packet wake-up if we have vaux. */
if((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
(pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET))
{
Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
}
#ifdef BCM_ASF
if (pDevice->AsfFlags & ASF_ENABLED)
{
Value32 &= ~MAC_MODE_ACPI_POWER_ON_ENABLE;
}
#endif
REG_WR(pDevice, MacCtrl.Mode, Value32);
/* Enable the receiver. */
REG_WR(pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
}
else if (!(pDevice->AsfFlags & ASF_ENABLED))
{
if (pDevice->TbiFlags & ENABLE_TBI_FLAG)
{
REG_WR(pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_OVERRIDE_TRAFFIC_LED);
}
else
{
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG,
BCM540X_EXT_CTRL_FORCE_LED_OFF);
LM_WritePhy(pDevice, 0x18, 0x01b2);
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5704) &&
!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
{
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOWER_POWER_MODE);
}
}
}
/* Disable tx/rx clocks, and select an alternate clock. */
if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId)){
/* Do nothing */
}
else if ((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700) ||
((T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701) &&
(pDevice->WolSpeed == WOL_SPEED_10MB)))
{
Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK |
T3_PCI_POWER_DOWN_PCI_PLL133;
REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
}
/* ASF on 5750 will not run properly on slow core clock */
else if( !(T3_ASIC_IS_575X_PLUS(pDevice->ChipRevId) &&
(pDevice->AsfFlags & ASF_ENABLED) ))
{
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
{
Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK;
}
else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
{
Value32 = T3_PCI_625_CORE_CLOCK;
}
else
{
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
}
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
MM_Wait(40);
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
{
Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK;
}
else if(T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) )
{
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_625_CORE_CLOCK;
}
else if(!T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
{
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | T3_PCI_44MHZ_CORE_CLOCK;
}
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
if (!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
MM_Wait(40);
if(T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
{
Value32 = T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_44MHZ_CORE_CLOCK;
}
else
{
Value32 = T3_PCI_44MHZ_CORE_CLOCK;
}
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl | Value32);
}
}
MM_Wait(40);
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5704)
{
pDevice2 = MM_FindPeerDev(pDevice);
}
if (!(pDevice->Flags & EEPROM_WP_FLAG))
{
LM_SwitchVaux(pDevice, pDevice2);
}
LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);
if((T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_AX) ||
(T3_CHIP_REV(pDevice->ChipRevId) == T3_CHIP_REV_5750_BX)) {
Value32= REG_RD_OFFSET(pDevice, 0x7d00);
REG_WR_OFFSET(pDevice, 0x7d00,Value32 & ~(BIT_16 | BIT_4 | BIT_2 | BIT_1 | BIT_0));
if(!(pDevice->AsfFlags & ASF_ENABLED))
LM_HaltCpu(pDevice, T3_RX_CPU_ID);
}
/* Put the the hardware in low power mode. */
if (!(pDevice->Flags & DISABLE_D3HOT_FLAG))
{
MM_WriteConfig32(pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
MM_Wait(200); /* Wait 200us for state transition */
}
pDevice->PowerLevel = PowerLevel;
#else
LM_WritePostResetSignatures(pDevice, LM_SHUTDOWN_RESET);
#endif /* BCM_WOL */
return LM_STATUS_SUCCESS;
} /* LM_SetPowerState */
LM_VOID
LM_SwitchVaux(PLM_DEVICE_BLOCK pDevice, PLM_DEVICE_BLOCK pDevice2)
{
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
return;
pDevice->GrcLocalCtrl &= ~(GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
/* Switch adapter to auxilliary power if WOL enabled */
if ((pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) ||
(pDevice->AsfFlags & ASF_ENABLED) ||
(pDevice2 && ((pDevice2->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) ||
(pDevice2->AsfFlags & ASF_ENABLED))))
{
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5701)
{
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
}
else
{
if (pDevice2 && pDevice2->InitDone)
{
return;
}
/* On NICs GPIOs are used for vaux.
The transition of GPIO0 from 0-1 causes vaux
to power up. Transition of GPIO1 from 1-0 turns vaux off.
GPIO2 transition from 1-0 enables a non-glitch vaux
transition from one state to another.
On certain designs we should not output GPIO2.
*/
if(pDevice->Flags & GPIO2_DONOT_OUTPUT)
{
/* GPIO0 = 0, GPIO1 = 1. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
/* GPIO0 = 1, GPIO1 = 1. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
}
else
{
/* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
MM_Wait(40);
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
MM_Wait(40);
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
} /* GPIO2 OK */
} /* Not 5700||5701 */
} /* WOL disabled */
else
{
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
{
if (pDevice2 && pDevice2->InitDone)
{
return;
}
/* GPIO1 = 1 */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
/* GPIO1 = 0 */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE1);
MM_Wait(40);
/* GPIO1 = 1 */
RAW_REG_WR(pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait(40);
}
}
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
static LM_UINT32
GetPhyAdFlowCntrlSettings(
PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
Value32 = 0;
/* Auto negotiation flow control only when autonegotiation is enabled. */
if(pDevice->DisableAutoNeg == FALSE ||
pDevice->RequestedLineSpeed == LM_LINE_SPEED_AUTO)
{
if (T3_ASIC_5714_FAMILY(pDevice->ChipRevId) &&
(pDevice->PhyFlags & PHY_IS_FIBER)) {
/* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) &&
(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)))
{
Value32 |=PHY_AN_AD_1000XPAUSE;
}
else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
{
Value32 |= PHY_AN_AD_1000XPSE_ASYM;
}
else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
{
Value32 |= (PHY_AN_AD_1000XPSE_ASYM | PHY_AN_AD_1000XPAUSE);
}
}else{
/* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
if((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) &&
(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)))
{
Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
}
else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)
{
Value32 |= PHY_AN_AD_ASYM_PAUSE;
}
else if(pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
{
Value32 |= PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
}
}
}
return Value32;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* LM_STATUS_FAILURE */
/* LM_STATUS_SUCCESS */
/* */
/******************************************************************************/
static LM_STATUS
LM_ForceAutoNeg(PLM_DEVICE_BLOCK pDevice)
{
LM_LINE_SPEED LineSpeed;
LM_DUPLEX_MODE DuplexMode;
LM_UINT32 NewPhyCtrl;
LM_UINT32 Value32, PhyReg18;
LM_UINT32 Cnt;
/* Get the interface type, line speed, and duplex mode. */
LineSpeed = pDevice->RequestedLineSpeed;
DuplexMode = pDevice->RequestedDuplexMode;
/* Exit ext. loop back, in case it was in ext. loopback mode */
/* Set Extended packet length bit on chips that support jumbo frames */
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x4c20);
LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32);
Value32 |= 1; /* set tx elastic fifo */
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32);
}
else
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18);
PhyReg18 &= ~0x8000; /* clear external loop back */
if (pDevice->Flags & JUMBO_CAPABLE_FLAG)
{
PhyReg18 |= 0x4000; /* set extended packet length */
LM_ReadPhy(pDevice, BCM540X_EXT_CTRL_REG, &Value32);
Value32 |= 1; /* set tx elastic fifo */
LM_WritePhy(pDevice, BCM540X_EXT_CTRL_REG, Value32);
}
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18);
}
#ifdef BCM_WOL
if (pDevice->RestoreOnWakeUp)
{
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
if (pDevice->WolSpeed == WOL_SPEED_100MB)
{
Value32 |= PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
}
/* Setup the auto-negotiation advertisement register. */
else if(LineSpeed == LM_LINE_SPEED_UNKNOWN)
#else
/* Setup the auto-negotiation advertisement register. */
if(LineSpeed == LM_LINE_SPEED_UNKNOWN)
#endif
{
/* Setup the 10/100 Mbps auto-negotiation advertisement register. */
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | PHY_AN_AD_ALL_SPEEDS;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
/* Advertise 1000Mbps */
if (!(pDevice->PhyFlags & PHY_NO_GIGABIT))
{
Value32 = BCM540X_AN_AD_ALL_1G_SPEEDS;
#ifdef INCLUDE_5701_AX_FIX
/* slave mode. This will force the PHY to operate in */
/* master mode. */
if(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0)
{
Value32 |= BCM540X_CONFIG_AS_MASTER |
BCM540X_ENABLE_CONFIG_AS_MASTER;
}
#endif
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
pDevice->advertising1000 = Value32;
}
else
{
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
}
}
else
{
if ((pDevice->PhyFlags & PHY_NO_GIGABIT) &&
(LineSpeed == LM_LINE_SPEED_1000MBPS))
{
LineSpeed = LM_LINE_SPEED_100MBPS;
}
if(LineSpeed == LM_LINE_SPEED_1000MBPS)
{
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
if(DuplexMode != LM_DUPLEX_MODE_FULL)
{
Value32 = BCM540X_AN_AD_1000BASET_HALF;
}
else
{
Value32 = BCM540X_AN_AD_1000BASET_FULL;
}
#ifdef INCLUDE_5701_AX_FIX
if ((pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE) ||
(pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0))
#else
if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE)
#endif
{
Value32 |= BCM540X_CONFIG_AS_MASTER |
BCM540X_ENABLE_CONFIG_AS_MASTER;
}
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
pDevice->advertising1000 = Value32;
if (pDevice->LoopBackMode == LM_EXT_LOOP_BACK_MODE)
{
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID)
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x8c20);
}
else
{
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, 0x0007);
LM_ReadPhy(pDevice, BCM5401_AUX_CTRL, &PhyReg18);
PhyReg18 |= 0x8000; /* set loop back */
LM_WritePhy(pDevice, BCM5401_AUX_CTRL, PhyReg18);
}
}
}
else if(LineSpeed == LM_LINE_SPEED_100MBPS)
{
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
if(DuplexMode != LM_DUPLEX_MODE_FULL)
{
Value32 = PHY_AN_AD_100BASETX_HALF;
}
else
{
Value32 = PHY_AN_AD_100BASETX_FULL;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
}
else if(LineSpeed == LM_LINE_SPEED_10MBPS)
{
LM_WritePhy(pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
if(DuplexMode != LM_DUPLEX_MODE_FULL)
{
Value32 = PHY_AN_AD_10BASET_HALF;
}
else
{
Value32 = PHY_AN_AD_10BASET_FULL;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings(pDevice);
LM_WritePhy(pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
}
}
/* Force line speed if auto-negotiation is disabled. */
if(pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN)
{
/* This code path is executed only when there is link. */
pDevice->LineSpeed = LineSpeed;
pDevice->DuplexMode = DuplexMode;
/* Force line seepd. */
NewPhyCtrl = 0;
switch(LineSpeed)
{
case LM_LINE_SPEED_10MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
break;
case LM_LINE_SPEED_100MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
break;
case LM_LINE_SPEED_1000MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
break;
default:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
break;
}
if(DuplexMode == LM_DUPLEX_MODE_FULL)
{
NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
}
/* Don't do anything if the PHY_CTRL is already what we wanted. */
LM_ReadPhy(pDevice, PHY_CTRL_REG, &Value32);
if(Value32 != NewPhyCtrl)
{
/* Temporary bring the link down before forcing line speed. */
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_LOOPBACK_MODE);
/* Wait for link to go down. */
for(Cnt = 0; Cnt < 1500; Cnt++)
{
MM_Wait(10);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy(pDevice, PHY_STATUS_REG, &Value32);
if(!(Value32 & PHY_STATUS_LINK_PASS))
{
MM_Wait(40);
break;
}
}
LM_WritePhy(pDevice, PHY_CTRL_REG, NewPhyCtrl);
MM_Wait(40);
}
}
else
{
LM_WritePhy(pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
PHY_CTRL_RESTART_AUTO_NEG);
}
return LM_STATUS_SUCCESS;
} /* LM_ForceAutoNegBcm540xPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_LoadFirmware(PLM_DEVICE_BLOCK pDevice,
PT3_FWIMG_INFO pFwImg,
LM_UINT32 LoadCpu,
LM_UINT32 StartCpu)
{
LM_UINT32 i;
LM_UINT32 address;
LM_VOID (*Wr_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register,LM_UINT32 Value32);
LM_UINT32 (*Rd_fn)(PLM_DEVICE_BLOCK pDevice,LM_UINT32 Register);
LM_UINT32 len;
LM_UINT32 base_addr;
/* BCM4785: Avoid all use of firmware. */
if (pDevice->Flags & SB_CORE_FLAG)
return LM_STATUS_FAILURE;
#ifdef INCLUDE_TCP_SEG_SUPPORT
if (T3_ASIC_REV(pDevice->ChipRevId) == T3_ASIC_REV_5705)
{
Wr_fn = LM_MemWrInd;
Rd_fn = LM_MemRdInd;
len = LM_GetStkOffLdFirmwareSize(pDevice);
base_addr = T3_NIC_BCM5705_MBUF_POOL_ADDR;
}
else
#endif
{
Wr_fn = LM_RegWrInd;
Rd_fn = LM_RegRdInd;
len = T3_RX_CPU_SPAD_SIZE;
base_addr = T3_RX_CPU_SPAD_ADDR;
}
if (LoadCpu & T3_RX_CPU_ID)
{
if (LM_HaltCpu(pDevice,T3_RX_CPU_ID) != LM_STATUS_SUCCESS)
{
return LM_STATUS_FAILURE;
}
/* First of all clear scrach pad memory */
for (i = 0; i < len; i+=4)
{
Wr_fn(pDevice,base_addr+i,0);
}
/* Copy code first */
address = base_addr + (pFwImg->Text.Offset & 0xffff);
for (i = 0; i <= pFwImg->Text.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
}
address = base_addr + (pFwImg->ROnlyData.Offset & 0xffff);
for (i = 0; i <= pFwImg->ROnlyData.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
}
address = base_addr + (pFwImg->Data.Offset & 0xffff);
for (i= 0; i <= pFwImg->Data.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
}
}
if ((LoadCpu & T3_TX_CPU_ID) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705))
{
if (LM_HaltCpu(pDevice,T3_TX_CPU_ID) != LM_STATUS_SUCCESS)
{
return LM_STATUS_FAILURE;
}
/* First of all clear scrach pad memory */
for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i+=4)
{
Wr_fn(pDevice,T3_TX_CPU_SPAD_ADDR+i,0);
}
/* Copy code first */
address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
for (i= 0; i <= pFwImg->Text.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->Text.Buffer)[i/4]);
}
address = T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
for (i= 0; i <= pFwImg->ROnlyData.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->ROnlyData.Buffer)[i/4]);
}
address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
for (i= 0; i <= pFwImg->Data.Length; i+=4)
{
Wr_fn(pDevice,address+i,
((LM_UINT32 *)pFwImg->Data.Buffer)[i/4]);
}
}
if (StartCpu & T3_RX_CPU_ID)
{
/* Start Rx CPU */
REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
for (i = 0 ; i < 5; i++)
{
if (pFwImg->StartAddress == REG_RD(pDevice,rxCpu.reg.PC))
break;
REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
REG_WR(pDevice,rxCpu.reg.PC,pFwImg->StartAddress);
REG_RD_BACK(pDevice,rxCpu.reg.PC);
MM_Wait(1000);
}
REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
REG_WR(pDevice,rxCpu.reg.mode, 0);
}
if ((StartCpu & T3_TX_CPU_ID) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5705))
{
/* Start Tx CPU */
REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
for (i = 0 ; i < 5; i++)
{
if (pFwImg->StartAddress == REG_RD(pDevice,txCpu.reg.PC))
break;
REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);
REG_WR(pDevice,txCpu.reg.PC,pFwImg->StartAddress);
REG_RD_BACK(pDevice,txCpu.reg.PC);
MM_Wait(1000);
}
REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
REG_WR(pDevice,txCpu.reg.mode, 0);
}
return LM_STATUS_SUCCESS;
}
LM_STATUS LM_HaltCpu(PLM_DEVICE_BLOCK pDevice,LM_UINT32 cpu_number)
{
LM_UINT32 i;
LM_STATUS status;
status = LM_STATUS_SUCCESS;
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId) &&
!(cpu_number & T3_RX_CPU_ID))
{
return status;
}
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
{
status = LM_NVRAM_AcquireLock(pDevice);
}
if (cpu_number & T3_RX_CPU_ID)
{
for (i = 0 ; i < 10000; i++)
{
REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
if (REG_RD(pDevice,rxCpu.reg.mode) & CPU_MODE_HALT)
break;
}
REG_WR(pDevice,rxCpu.reg.state, 0xffffffff);
REG_WR(pDevice,rxCpu.reg.mode,CPU_MODE_HALT);
REG_RD_BACK(pDevice,rxCpu.reg.mode);
MM_Wait(10);
if (i == 10000)
status = LM_STATUS_FAILURE;
}
/*
* BCM4785: There is only an Rx CPU for the 5750 derivative in
* the 4785. Don't go any further in this code in order to
* avoid access to the NVRAM arbitration register.
*/
if (pDevice->Flags & SB_CORE_FLAG)
return status;
if ((pDevice->Flags & T3_HAS_TWO_CPUS) &&
(cpu_number & T3_TX_CPU_ID))
{
for (i = 0 ; i < 10000; i++)
{
REG_WR(pDevice,txCpu.reg.state, 0xffffffff);
REG_WR(pDevice,txCpu.reg.mode,CPU_MODE_HALT);
if (REG_RD(pDevice,txCpu.reg.mode) & CPU_MODE_HALT)
break;
}
if (i == 10000)
status = LM_STATUS_FAILURE;
}
if ((T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700) &&
(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701))
{
if (status != LM_STATUS_SUCCESS)
{
/*
* Some part of this operation failed.
* Just undo our own actions.
*/
LM_NVRAM_ReleaseLock(pDevice);
}
else if (!(pDevice->Flags & T3_HAS_TWO_CPUS) ||
cpu_number == (T3_TX_CPU_ID | T3_RX_CPU_ID))
{
/*
* Release our NVRAM arbitration grant along
* with the firmware's arbitration request bit.
*/
REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0);
REG_RD_BACK(pDevice, Nvram.SwArb);
}
else
{
LM_NVRAM_ReleaseLock(pDevice);
if (LM_NVRAM_AcquireLock(pDevice) == LM_STATUS_SUCCESS)
{
/* All is well. Release the arbitration and continue. */
LM_NVRAM_ReleaseLock(pDevice);
}
else
{
/*
* We've timed out while attempting to get the
* NVRAM arbitration. Assume the cause is that
* the NVRAM has requested arbitration after we
* acquired arbitration the first time, but before
* the CPU was actually halted.
*/
/*
* Release our NVRAM arbitration grant along
* with the firmware's arbitration request bit.
*/
REG_WR(pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1 | SW_ARB_REQ_CLR0);
REG_RD_BACK(pDevice, Nvram.SwArb);
}
}
}
return status;
}
LM_STATUS
LM_BlinkLED(PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
{
int j;
int ret = LM_STATUS_SUCCESS;
if(BlinkDurationSec == 0)
{
BlinkDurationSec = 1;
}
if(BlinkDurationSec > 120)
{
BlinkDurationSec = 120;
}
for(j = 0; j < BlinkDurationSec * 2; j++)
{
if(j % 2)
{
// Turn on the LEDs.
REG_WR(pDevice, MacCtrl.LedCtrl,
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_1000MBPS_LED_ON |
LED_CTRL_100MBPS_LED_ON |
LED_CTRL_10MBPS_LED_ON |
LED_CTRL_OVERRIDE_TRAFFIC_LED |
LED_CTRL_BLINK_TRAFFIC_LED |
LED_CTRL_TRAFFIC_LED);
}
else
{
// Turn off the LEDs.
REG_WR(pDevice, MacCtrl.LedCtrl,
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_OVERRIDE_TRAFFIC_LED);
}
if (MM_Sleep(pDevice, 500) != LM_STATUS_SUCCESS)/* 0.5 second */
{
ret = LM_STATUS_FAILURE;
break;
}
}
REG_WR(pDevice, MacCtrl.LedCtrl, pDevice->LedCtrl);
return ret;
}
LM_STATUS
LM_SwitchClocks(PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 ClockCtrl;
if(T3_ASIC_5714_FAMILY(pDevice->ChipRevId))
return LM_STATUS_SUCCESS;
ClockCtrl = REG_RD(pDevice, PciCfg.ClockCtrl);
pDevice->ClockCtrl = ClockCtrl & (T3_PCI_FORCE_CLKRUN |
T3_PCI_CLKRUN_OUTPUT_EN | 0x1f);
if (T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
if (ClockCtrl & T3_PCI_625_CORE_CLOCK)
{
/* clear ALT clock first */
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
T3_PCI_625_CORE_CLOCK);
MM_Wait(40); /* required delay is 27usec */
}
}
else
{
if (ClockCtrl & T3_PCI_44MHZ_CORE_CLOCK)
{
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
T3_PCI_44MHZ_CORE_CLOCK | T3_PCI_SELECT_ALTERNATE_CLOCK);
MM_Wait(40); /* required delay is 27usec */
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl |
T3_PCI_SELECT_ALTERNATE_CLOCK);
MM_Wait(40); /* required delay is 27usec */
}
}
RAW_REG_WR(pDevice, PciCfg.ClockCtrl, pDevice->ClockCtrl);
MM_Wait(40); /* required delay is 27usec */
return LM_STATUS_SUCCESS;
}
int t3_do_dma(PLM_DEVICE_BLOCK pDevice,
LM_PHYSICAL_ADDRESS host_addr_phy, int length,
int dma_read)
{
T3_DMA_DESC dma_desc;
int i;
LM_UINT32 dma_desc_addr;
LM_UINT32 value32;
REG_WR(pDevice, BufMgr.Mode, 0);
REG_WR(pDevice, Ftq.Reset, 0);
dma_desc.host_addr.High = host_addr_phy.High;
dma_desc.host_addr.Low = host_addr_phy.Low;
dma_desc.nic_mbuf = 0x2100;
dma_desc.len = length;
dma_desc.flags = 0x00000005; /* Generate Rx-CPU event */
if (dma_read)
{
dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
T3_QID_DMA_HIGH_PRI_READ;
REG_WR(pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
}
else
{
dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
T3_QID_DMA_HIGH_PRI_WRITE;
REG_WR(pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
}
dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
/* Writing this DMA descriptor to DMA memory */
for (i = 0; i < sizeof(T3_DMA_DESC); i += 4)
{
value32 = *((PLM_UINT32) (((PLM_UINT8) &dma_desc) + i));
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, dma_desc_addr+i);
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_DATA_REG,
MM_SWAP_LE32(value32));
}
MM_WriteConfig32(pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
if (dma_read)
REG_WR(pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue, dma_desc_addr);
else
REG_WR(pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue, dma_desc_addr);
for (i = 0; i < 40; i++)
{
if (dma_read)
value32 = REG_RD(pDevice, Ftq.RcvBdCompFtqFifoEnqueueDequeue);
else
value32 = REG_RD(pDevice, Ftq.RcvDataCompFtqFifoEnqueueDequeue);
if ((value32 & 0xffff) == dma_desc_addr)
break;
MM_Wait(10);
}
return LM_STATUS_SUCCESS;
}
STATIC LM_STATUS
LM_DmaTest(PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
{
int j;
LM_UINT32 *ptr;
int dma_success = 0;
LM_STATUS ret = LM_STATUS_FAILURE;
if(T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV(pDevice->ChipRevId) != T3_ASIC_REV_5701)
{
return LM_STATUS_SUCCESS;
}
while (!dma_success)
{
/* Fill data with incremental patterns */
ptr = (LM_UINT32 *)pBufferVirt;
for (j = 0; j < BufferSize/4; j++)
*ptr++ = j;
if (t3_do_dma(pDevice,BufferPhy,BufferSize, 1) == LM_STATUS_FAILURE)
{
goto LM_DmaTestDone;
}
MM_Wait(40);
ptr = (LM_UINT32 *)pBufferVirt;
/* Fill data with zero */
for (j = 0; j < BufferSize/4; j++)
*ptr++ = 0;
if (t3_do_dma(pDevice,BufferPhy,BufferSize, 0) == LM_STATUS_FAILURE)
{
goto LM_DmaTestDone;
}
MM_Wait(40);
/* Check for data */
ptr = (LM_UINT32 *)pBufferVirt;
for (j = 0; j < BufferSize/4; j++)
{
if (*ptr++ != j)
{
if ((pDevice->DmaReadWriteCtrl & DMA_CTRL_WRITE_BOUNDARY_MASK)
!= DMA_CTRL_WRITE_BOUNDARY_16)
{
pDevice->DmaReadWriteCtrl = (pDevice->DmaReadWriteCtrl &
~DMA_CTRL_WRITE_BOUNDARY_MASK) |
DMA_CTRL_WRITE_BOUNDARY_16;
REG_WR(pDevice, PciCfg.DmaReadWriteCtrl,
pDevice->DmaReadWriteCtrl);
break;
}
else
{
goto LM_DmaTestDone;
}
}
}
if (j == (BufferSize/4))
dma_success = 1;
}
ret = LM_STATUS_SUCCESS;
LM_DmaTestDone:
memset(pBufferVirt, 0, BufferSize);
return ret;
}
void
LM_Add32To64Counter(LM_UINT32 Counter32, T3_64BIT_REGISTER *Counter64)
{
Counter64->Low += Counter32;
if (Counter64->Low < Counter32)
{
Counter64->High++;
}
}
LM_STATUS
LM_GetStats(PLM_DEVICE_BLOCK pDevice)
{
PT3_STATS_BLOCK pStats = (PT3_STATS_BLOCK) pDevice->pStatsBlkVirt;
if(!T3_ASIC_IS_5705_BEYOND(pDevice->ChipRevId))
{
return LM_STATUS_FAILURE;
}
if (pStats == 0)
{
return LM_STATUS_FAILURE;
}
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutOctets),
&pStats->ifHCOutOctets);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsCollisions),
&pStats->etherStatsCollisions);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXonSent),
&pStats->outXonSent);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.outXoffSent),
&pStats->outXoffSent);
LM_Add32To64Counter(REG_RD(pDevice,
MacCtrl.dot3StatsInternalMacTransmitErrors),
&pStats->dot3StatsInternalMacTransmitErrors);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsSingleCollisionFrames),
&pStats->dot3StatsSingleCollisionFrames);
LM_Add32To64Counter(REG_RD(pDevice,
MacCtrl.dot3StatsMultipleCollisionFrames),
&pStats->dot3StatsMultipleCollisionFrames);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsDeferredTransmissions),
&pStats->dot3StatsDeferredTransmissions);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsExcessiveCollisions),
&pStats->dot3StatsExcessiveCollisions);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsLateCollisions),
&pStats->dot3StatsLateCollisions);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutUcastPkts),
&pStats->ifHCOutUcastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutMulticastPkts),
&pStats->ifHCOutMulticastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCOutBroadcastPkts),
&pStats->ifHCOutBroadcastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInOctets),
&pStats->ifHCInOctets);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsFragments),
&pStats->etherStatsFragments);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInUcastPkts),
&pStats->ifHCInUcastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInMulticastPkts),
&pStats->ifHCInMulticastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.ifHCInBroadcastPkts),
&pStats->ifHCInBroadcastPkts);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFCSErrors),
&pStats->dot3StatsFCSErrors);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsAlignmentErrors),
&pStats->dot3StatsAlignmentErrors);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xonPauseFramesReceived),
&pStats->xonPauseFramesReceived);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffPauseFramesReceived),
&pStats->xoffPauseFramesReceived);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.macControlFramesReceived),
&pStats->macControlFramesReceived);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.xoffStateEntered),
&pStats->xoffStateEntered);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.dot3StatsFramesTooLong),
&pStats->dot3StatsFramesTooLong);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsJabbers),
&pStats->etherStatsJabbers);
LM_Add32To64Counter(REG_RD(pDevice, MacCtrl.etherStatsUndersizePkts),
&pStats->etherStatsUndersizePkts);
return LM_STATUS_SUCCESS;
}