1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-10 10:10:15 +02:00
openwrt-xburst/target/linux/ar71xx/files/drivers/net/ag71xx/ag71xx_ar7240.c
nbd 2ec5c216fb ar71xx: merge the ar7240 switch driver from r22675
git-svn-id: svn://svn.openwrt.org/openwrt/branches/backfire@22678 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-08-16 19:24:00 +00:00

852 lines
21 KiB
C

/*
* Driver for the built-in ethernet switch of the Atheros AR7240 SoC
* Copyright (c) 2010 Gabor Juhos <juhosg@openwrt.org>
* Copyright (c) 2010 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/etherdevice.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include <linux/mii.h>
#include <linux/bitops.h>
#include <linux/switch.h>
#include "ag71xx.h"
#define BITM(_count) (BIT(_count) - 1)
#define BITS(_shift, _count) (BITM(_count) << _shift)
#define AR7240_REG_MASK_CTRL 0x00
#define AR7240_MASK_CTRL_REVISION_M BITM(8)
#define AR7240_MASK_CTRL_VERSION_M BITM(8)
#define AR7240_MASK_CTRL_VERSION_S 8
#define AR7240_MASK_CTRL_SOFT_RESET BIT(31)
#define AR7240_REG_MAC_ADDR0 0x20
#define AR7240_REG_MAC_ADDR1 0x24
#define AR7240_REG_FLOOD_MASK 0x2c
#define AR7240_FLOOD_MASK_BROAD_TO_CPU BIT(26)
#define AR7240_REG_GLOBAL_CTRL 0x30
#define AR7240_GLOBAL_CTRL_MTU_M BITM(12)
#define AR7240_REG_VTU 0x0040
#define AR7240_VTU_OP BITM(3)
#define AR7240_VTU_OP_NOOP 0x0
#define AR7240_VTU_OP_FLUSH 0x1
#define AR7240_VTU_OP_LOAD 0x2
#define AR7240_VTU_OP_PURGE 0x3
#define AR7240_VTU_OP_REMOVE_PORT 0x4
#define AR7240_VTU_ACTIVE BIT(3)
#define AR7240_VTU_FULL BIT(4)
#define AR7240_VTU_PORT BITS(8, 4)
#define AR7240_VTU_PORT_S 8
#define AR7240_VTU_VID BITS(16, 12)
#define AR7240_VTU_VID_S 16
#define AR7240_VTU_PRIO BITS(28, 3)
#define AR7240_VTU_PRIO_S 28
#define AR7240_VTU_PRIO_EN BIT(31)
#define AR7240_REG_VTU_DATA 0x0044
#define AR7240_VTUDATA_MEMBER BITS(0, 10)
#define AR7240_VTUDATA_VALID BIT(11)
#define AR7240_REG_AT_CTRL 0x5c
#define AR7240_AT_CTRL_ARP_EN BIT(20)
#define AR7240_REG_TAG_PRIORITY 0x70
#define AR7240_REG_SERVICE_TAG 0x74
#define AR7240_SERVICE_TAG_M BITM(16)
#define AR7240_REG_CPU_PORT 0x78
#define AR7240_MIRROR_PORT_S 4
#define AR7240_CPU_PORT_EN BIT(8)
#define AR7240_REG_MIB_FUNCTION0 0x80
#define AR7240_MIB_TIMER_M BITM(16)
#define AR7240_MIB_AT_HALF_EN BIT(16)
#define AR7240_MIB_BUSY BIT(17)
#define AR7240_MIB_FUNC_S 24
#define AR7240_MIB_FUNC_NO_OP 0x0
#define AR7240_MIB_FUNC_FLUSH 0x1
#define AR7240_MIB_FUNC_CAPTURE 0x3
#define AR7240_REG_MDIO_CTRL 0x98
#define AR7240_MDIO_CTRL_DATA_M BITM(16)
#define AR7240_MDIO_CTRL_REG_ADDR_S 16
#define AR7240_MDIO_CTRL_PHY_ADDR_S 21
#define AR7240_MDIO_CTRL_CMD_WRITE 0
#define AR7240_MDIO_CTRL_CMD_READ BIT(27)
#define AR7240_MDIO_CTRL_MASTER_EN BIT(30)
#define AR7240_MDIO_CTRL_BUSY BIT(31)
#define AR7240_REG_PORT_BASE(_port) (0x100 + (_port) * 0x100)
#define AR7240_REG_PORT_STATUS(_port) (AR7240_REG_PORT_BASE((_port)) + 0x00)
#define AR7240_PORT_STATUS_SPEED_M BITM(2)
#define AR7240_PORT_STATUS_SPEED_10 0
#define AR7240_PORT_STATUS_SPEED_100 1
#define AR7240_PORT_STATUS_SPEED_1000 2
#define AR7240_PORT_STATUS_TXMAC BIT(2)
#define AR7240_PORT_STATUS_RXMAC BIT(3)
#define AR7240_PORT_STATUS_TXFLOW BIT(4)
#define AR7240_PORT_STATUS_RXFLOW BIT(5)
#define AR7240_PORT_STATUS_DUPLEX BIT(6)
#define AR7240_PORT_STATUS_LINK_UP BIT(8)
#define AR7240_PORT_STATUS_LINK_AUTO BIT(9)
#define AR7240_PORT_STATUS_LINK_PAUSE BIT(10)
#define AR7240_REG_PORT_CTRL(_port) (AR7240_REG_PORT_BASE((_port)) + 0x04)
#define AR7240_PORT_CTRL_STATE_M BITM(3)
#define AR7240_PORT_CTRL_STATE_DISABLED 0
#define AR7240_PORT_CTRL_STATE_BLOCK 1
#define AR7240_PORT_CTRL_STATE_LISTEN 2
#define AR7240_PORT_CTRL_STATE_LEARN 3
#define AR7240_PORT_CTRL_STATE_FORWARD 4
#define AR7240_PORT_CTRL_LEARN_LOCK BIT(7)
#define AR7240_PORT_CTRL_VLAN_MODE_S 8
#define AR7240_PORT_CTRL_VLAN_MODE_KEEP 0
#define AR7240_PORT_CTRL_VLAN_MODE_STRIP 1
#define AR7240_PORT_CTRL_VLAN_MODE_ADD 2
#define AR7240_PORT_CTRL_VLAN_MODE_DOUBLE_TAG 3
#define AR7240_PORT_CTRL_IGMP_SNOOP BIT(10)
#define AR7240_PORT_CTRL_HEADER BIT(11)
#define AR7240_PORT_CTRL_MAC_LOOP BIT(12)
#define AR7240_PORT_CTRL_SINGLE_VLAN BIT(13)
#define AR7240_PORT_CTRL_LEARN BIT(14)
#define AR7240_PORT_CTRL_DOUBLE_TAG BIT(15)
#define AR7240_PORT_CTRL_MIRROR_TX BIT(16)
#define AR7240_PORT_CTRL_MIRROR_RX BIT(17)
#define AR7240_REG_PORT_VLAN(_port) (AR7240_REG_PORT_BASE((_port)) + 0x08)
#define AR7240_PORT_VLAN_DEFAULT_ID_S 0
#define AR7240_PORT_VLAN_DEST_PORTS_S 16
#define AR7240_PORT_VLAN_MODE_S 30
#define AR7240_PORT_VLAN_MODE_PORT_ONLY 0
#define AR7240_PORT_VLAN_MODE_PORT_FALLBACK 1
#define AR7240_PORT_VLAN_MODE_VLAN_ONLY 2
#define AR7240_PORT_VLAN_MODE_SECURE 3
#define AR7240_REG_STATS_BASE(_port) (0x20000 + (_port) * 0x100)
#define AR7240_STATS_RXBROAD 0x00
#define AR7240_STATS_RXPAUSE 0x04
#define AR7240_STATS_RXMULTI 0x08
#define AR7240_STATS_RXFCSERR 0x0c
#define AR7240_STATS_RXALIGNERR 0x10
#define AR7240_STATS_RXRUNT 0x14
#define AR7240_STATS_RXFRAGMENT 0x18
#define AR7240_STATS_RX64BYTE 0x1c
#define AR7240_STATS_RX128BYTE 0x20
#define AR7240_STATS_RX256BYTE 0x24
#define AR7240_STATS_RX512BYTE 0x28
#define AR7240_STATS_RX1024BYTE 0x2c
#define AR7240_STATS_RX1518BYTE 0x30
#define AR7240_STATS_RXMAXBYTE 0x34
#define AR7240_STATS_RXTOOLONG 0x38
#define AR7240_STATS_RXGOODBYTE 0x3c
#define AR7240_STATS_RXBADBYTE 0x44
#define AR7240_STATS_RXOVERFLOW 0x4c
#define AR7240_STATS_FILTERED 0x50
#define AR7240_STATS_TXBROAD 0x54
#define AR7240_STATS_TXPAUSE 0x58
#define AR7240_STATS_TXMULTI 0x5c
#define AR7240_STATS_TXUNDERRUN 0x60
#define AR7240_STATS_TX64BYTE 0x64
#define AR7240_STATS_TX128BYTE 0x68
#define AR7240_STATS_TX256BYTE 0x6c
#define AR7240_STATS_TX512BYTE 0x70
#define AR7240_STATS_TX1024BYTE 0x74
#define AR7240_STATS_TX1518BYTE 0x78
#define AR7240_STATS_TXMAXBYTE 0x7c
#define AR7240_STATS_TXOVERSIZE 0x80
#define AR7240_STATS_TXBYTE 0x84
#define AR7240_STATS_TXCOLLISION 0x8c
#define AR7240_STATS_TXABORTCOL 0x90
#define AR7240_STATS_TXMULTICOL 0x94
#define AR7240_STATS_TXSINGLECOL 0x98
#define AR7240_STATS_TXEXCDEFER 0x9c
#define AR7240_STATS_TXDEFER 0xa0
#define AR7240_STATS_TXLATECOL 0xa4
#define AR7240_PORT_CPU 0
#define AR7240_NUM_PORTS 6
#define AR7240_NUM_PHYS 5
#define AR7240_PHY_ID1 0x004d
#define AR7240_PHY_ID2 0xd041
#define AR7240_PORT_MASK(_port) BIT((_port))
#define AR7240_PORT_MASK_ALL BITM(AR7240_NUM_PORTS)
#define AR7240_PORT_MASK_BUT(_port) (AR7240_PORT_MASK_ALL & ~BIT((_port)))
#define AR7240_MAX_VLANS 16
#define sw_to_ar7240(_dev) container_of(_dev, struct ar7240sw, swdev)
struct ar7240sw {
struct mii_bus *mii_bus;
struct mutex reg_mutex;
struct switch_dev swdev;
bool vlan;
u16 vlan_id[AR7240_MAX_VLANS];
u8 vlan_table[AR7240_MAX_VLANS];
u8 vlan_tagged;
u16 pvid[AR7240_NUM_PORTS];
};
struct ar7240sw_hw_stat {
char string[ETH_GSTRING_LEN];
int sizeof_stat;
int reg;
};
static inline void ar7240sw_init(struct ar7240sw *as, struct mii_bus *mii)
{
as->mii_bus = mii;
mutex_init(&as->reg_mutex);
}
static inline u16 mk_phy_addr(u32 reg)
{
return (0x17 & ((reg >> 4) | 0x10));
}
static inline u16 mk_phy_reg(u32 reg)
{
return ((reg << 1) & 0x1e);
}
static inline u16 mk_high_addr(u32 reg)
{
return ((reg >> 7) & 0x1ff);
}
static u32 __ar7240sw_reg_read(struct ar7240sw *as, u32 reg)
{
struct mii_bus *mii = as->mii_bus;
u16 phy_addr;
u16 phy_reg;
u32 hi, lo;
reg = (reg & 0xfffffffc) >> 2;
mdiobus_write(mii, 0x1f, 0x10, mk_high_addr(reg));
phy_addr = mk_phy_addr(reg);
phy_reg = mk_phy_reg(reg);
lo = (u32) mdiobus_read(mii, phy_addr, phy_reg);
hi = (u32) mdiobus_read(mii, phy_addr, phy_reg + 1);
return ((hi << 16) | lo);
}
static void __ar7240sw_reg_write(struct ar7240sw *as, u32 reg, u32 val)
{
struct mii_bus *mii = as->mii_bus;
u16 phy_addr;
u16 phy_reg;
reg = (reg & 0xfffffffc) >> 2;
mdiobus_write(mii, 0x1f, 0x10, mk_high_addr(reg));
phy_addr = mk_phy_addr(reg);
phy_reg = mk_phy_reg(reg);
mdiobus_write(mii, phy_addr, phy_reg + 1, (val >> 16));
mdiobus_write(mii, phy_addr, phy_reg, (val & 0xffff));
}
static u32 ar7240sw_reg_read(struct ar7240sw *as, u32 reg_addr)
{
u32 ret;
mutex_lock(&as->reg_mutex);
ret = __ar7240sw_reg_read(as, reg_addr);
mutex_unlock(&as->reg_mutex);
return ret;
}
static void ar7240sw_reg_write(struct ar7240sw *as, u32 reg_addr, u32 reg_val)
{
mutex_lock(&as->reg_mutex);
__ar7240sw_reg_write(as, reg_addr, reg_val);
mutex_unlock(&as->reg_mutex);
}
static u32 ar7240sw_reg_rmw(struct ar7240sw *as, u32 reg, u32 mask, u32 val)
{
u32 t;
mutex_lock(&as->reg_mutex);
t = __ar7240sw_reg_read(as, reg);
t &= ~mask;
t |= val;
__ar7240sw_reg_write(as, reg, t);
mutex_unlock(&as->reg_mutex);
return t;
}
static void ar7240sw_reg_set(struct ar7240sw *as, u32 reg, u32 val)
{
u32 t;
mutex_lock(&as->reg_mutex);
t = __ar7240sw_reg_read(as, reg);
t |= val;
__ar7240sw_reg_write(as, reg, t);
mutex_unlock(&as->reg_mutex);
}
static int ar7240sw_reg_wait(struct ar7240sw *as, u32 reg, u32 mask, u32 val,
unsigned timeout)
{
int i;
for (i = 0; i < timeout; i++) {
u32 t;
t = ar7240sw_reg_read(as, reg);
if ((t & mask) == val)
return 0;
msleep(1);
}
return -ETIMEDOUT;
}
static u16 ar7240sw_phy_read(struct ar7240sw *as, unsigned phy_addr,
unsigned reg_addr)
{
u32 t;
int err;
if (phy_addr >= AR7240_NUM_PHYS)
return 0xffff;
t = (reg_addr << AR7240_MDIO_CTRL_REG_ADDR_S) |
(phy_addr << AR7240_MDIO_CTRL_PHY_ADDR_S) |
AR7240_MDIO_CTRL_MASTER_EN |
AR7240_MDIO_CTRL_BUSY |
AR7240_MDIO_CTRL_CMD_READ;
ar7240sw_reg_write(as, AR7240_REG_MDIO_CTRL, t);
err = ar7240sw_reg_wait(as, AR7240_REG_MDIO_CTRL,
AR7240_MDIO_CTRL_BUSY, 0, 5);
if (err)
return 0xffff;
t = ar7240sw_reg_read(as, AR7240_REG_MDIO_CTRL);
return (t & AR7240_MDIO_CTRL_DATA_M);
}
static int ar7240sw_phy_write(struct ar7240sw *as, unsigned phy_addr,
unsigned reg_addr, u16 reg_val)
{
u32 t;
int ret;
if (phy_addr >= AR7240_NUM_PHYS)
return -EINVAL;
t = (phy_addr << AR7240_MDIO_CTRL_PHY_ADDR_S) |
(reg_addr << AR7240_MDIO_CTRL_REG_ADDR_S) |
AR7240_MDIO_CTRL_MASTER_EN |
AR7240_MDIO_CTRL_BUSY |
AR7240_MDIO_CTRL_CMD_WRITE |
reg_val;
ar7240sw_reg_write(as, AR7240_REG_MDIO_CTRL, t);
ret = ar7240sw_reg_wait(as, AR7240_REG_MDIO_CTRL,
AR7240_MDIO_CTRL_BUSY, 0, 5);
return ret;
}
static int ar7240sw_capture_stats(struct ar7240sw *as)
{
int ret;
/* Capture the hardware statistics for all ports */
ar7240sw_reg_write(as, AR7240_REG_MIB_FUNCTION0,
(AR7240_MIB_FUNC_CAPTURE << AR7240_MIB_FUNC_S));
/* Wait for the capturing to complete. */
ret = ar7240sw_reg_wait(as, AR7240_REG_MIB_FUNCTION0,
AR7240_MIB_BUSY, 0, 10);
return ret;
}
static void ar7240sw_disable_port(struct ar7240sw *as, unsigned port)
{
ar7240sw_reg_write(as, AR7240_REG_PORT_CTRL(port),
AR7240_PORT_CTRL_STATE_DISABLED);
}
static int ar7240sw_reset(struct ar7240sw *as)
{
int ret;
int i;
/* Set all ports to disabled state. */
for (i = 0; i < AR7240_NUM_PORTS; i++)
ar7240sw_disable_port(as, i);
/* Wait for transmit queues to drain. */
msleep(2);
/* Reset the switch. */
ar7240sw_reg_write(as, AR7240_REG_MASK_CTRL,
AR7240_MASK_CTRL_SOFT_RESET);
ret = ar7240sw_reg_wait(as, AR7240_REG_MASK_CTRL,
AR7240_MASK_CTRL_SOFT_RESET, 0, 1000);
return ret;
}
static void ar7240sw_setup(struct ar7240sw *as)
{
/* Enable CPU port, and disable mirror port */
ar7240sw_reg_write(as, AR7240_REG_CPU_PORT,
AR7240_CPU_PORT_EN |
(15 << AR7240_MIRROR_PORT_S));
/* Setup TAG priority mapping */
ar7240sw_reg_write(as, AR7240_REG_TAG_PRIORITY, 0xfa50);
/* Enable ARP frame acknowledge */
ar7240sw_reg_set(as, AR7240_REG_AT_CTRL, AR7240_AT_CTRL_ARP_EN);
/* Enable Broadcast frames transmitted to the CPU */
ar7240sw_reg_set(as, AR7240_REG_FLOOD_MASK,
AR7240_FLOOD_MASK_BROAD_TO_CPU);
/* setup MTU */
ar7240sw_reg_rmw(as, AR7240_REG_GLOBAL_CTRL, AR7240_GLOBAL_CTRL_MTU_M,
1536);
/* setup Service TAG */
ar7240sw_reg_rmw(as, AR7240_REG_SERVICE_TAG, AR7240_SERVICE_TAG_M, 0);
}
static void ar7240sw_setup_port(struct ar7240sw *as, unsigned port, u8 portmask)
{
u32 ctrl;
u32 dest_ports;
u32 vlan;
ctrl = AR7240_PORT_CTRL_STATE_FORWARD | AR7240_PORT_CTRL_LEARN |
AR7240_PORT_CTRL_SINGLE_VLAN;
if (port == AR7240_PORT_CPU) {
ar7240sw_reg_write(as, AR7240_REG_PORT_STATUS(port),
AR7240_PORT_STATUS_SPEED_1000 |
AR7240_PORT_STATUS_TXFLOW |
AR7240_PORT_STATUS_RXFLOW |
AR7240_PORT_STATUS_TXMAC |
AR7240_PORT_STATUS_RXMAC |
AR7240_PORT_STATUS_DUPLEX);
} else {
ar7240sw_reg_write(as, AR7240_REG_PORT_STATUS(port),
AR7240_PORT_STATUS_LINK_AUTO);
}
/* Set the default VID for this port */
if (as->vlan) {
vlan = as->vlan_id[as->pvid[port]];
vlan |= AR7240_PORT_VLAN_MODE_SECURE <<
AR7240_PORT_VLAN_MODE_S;
} else {
vlan = port;
vlan |= AR7240_PORT_VLAN_MODE_PORT_ONLY <<
AR7240_PORT_VLAN_MODE_S;
}
if (as->vlan && (as->vlan_tagged & BIT(port))) {
ctrl |= AR7240_PORT_CTRL_VLAN_MODE_ADD <<
AR7240_PORT_CTRL_VLAN_MODE_S;
} else {
ctrl |= AR7240_PORT_CTRL_VLAN_MODE_STRIP <<
AR7240_PORT_CTRL_VLAN_MODE_S;
}
if (!portmask) {
if (port == AR7240_PORT_CPU)
portmask = AR7240_PORT_MASK_BUT(AR7240_PORT_CPU);
else
portmask = AR7240_PORT_MASK(AR7240_PORT_CPU);
}
/* allow the port to talk to all other ports, but exclude its
* own ID to prevent frames from being reflected back to the
* port that they came from */
dest_ports = AR7240_PORT_MASK_BUT(port);
/* set default VID and and destination ports for this VLAN */
vlan |= (portmask << AR7240_PORT_VLAN_DEST_PORTS_S);
ar7240sw_reg_write(as, AR7240_REG_PORT_CTRL(port), ctrl);
ar7240sw_reg_write(as, AR7240_REG_PORT_VLAN(port), vlan);
}
static int ar7240_set_addr(struct ar7240sw *as, u8 *addr)
{
u32 t;
t = (addr[4] << 8) | addr[5];
ar7240sw_reg_write(as, AR7240_REG_MAC_ADDR0, t);
t = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
ar7240sw_reg_write(as, AR7240_REG_MAC_ADDR1, t);
return 0;
}
static int
ar7240_set_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
as->vlan_id[val->port_vlan] = val->value.i;
return 0;
}
static int
ar7240_get_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
val->value.i = as->vlan_id[val->port_vlan];
return 0;
}
static int
ar7240_set_pvid(struct switch_dev *dev, int port, int vlan)
{
struct ar7240sw *as = sw_to_ar7240(dev);
/* make sure no invalid PVIDs get set */
if (vlan >= dev->vlans)
return -EINVAL;
as->pvid[port] = vlan;
return 0;
}
static int
ar7240_get_pvid(struct switch_dev *dev, int port, int *vlan)
{
struct ar7240sw *as = sw_to_ar7240(dev);
*vlan = as->pvid[port];
return 0;
}
static int
ar7240_get_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
u8 ports = as->vlan_table[val->port_vlan];
int i;
val->len = 0;
for (i = 0; i < AR7240_NUM_PORTS; i++) {
struct switch_port *p;
if (!(ports & (1 << i)))
continue;
p = &val->value.ports[val->len++];
p->id = i;
if (as->vlan_tagged & (1 << i))
p->flags = (1 << SWITCH_PORT_FLAG_TAGGED);
else
p->flags = 0;
}
return 0;
}
static int
ar7240_set_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
u8 *vt = &as->vlan_table[val->port_vlan];
int i, j;
*vt = 0;
for (i = 0; i < val->len; i++) {
struct switch_port *p = &val->value.ports[i];
if (p->flags & (1 << SWITCH_PORT_FLAG_TAGGED))
as->vlan_tagged |= (1 << p->id);
else {
as->vlan_tagged &= ~(1 << p->id);
as->pvid[p->id] = val->port_vlan;
/* make sure that an untagged port does not
* appear in other vlans */
for (j = 0; j < AR7240_MAX_VLANS; j++) {
if (j == val->port_vlan)
continue;
as->vlan_table[j] &= ~(1 << p->id);
}
}
*vt |= 1 << p->id;
}
return 0;
}
static int
ar7240_set_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
as->vlan = !!val->value.i;
return 0;
}
static int
ar7240_get_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar7240sw *as = sw_to_ar7240(dev);
val->value.i = as->vlan;
return 0;
}
static void
ar7240_vtu_op(struct ar7240sw *as, u32 op, u32 val)
{
if (ar7240sw_reg_wait(as, AR7240_REG_VTU, AR7240_VTU_ACTIVE, 0, 5))
return;
if ((op & AR7240_VTU_OP) == AR7240_VTU_OP_LOAD) {
val &= AR7240_VTUDATA_MEMBER;
val |= AR7240_VTUDATA_VALID;
ar7240sw_reg_write(as, AR7240_REG_VTU_DATA, val);
}
op |= AR7240_VTU_ACTIVE;
ar7240sw_reg_write(as, AR7240_REG_VTU, op);
}
static int
ar7240_hw_apply(struct switch_dev *dev)
{
struct ar7240sw *as = sw_to_ar7240(dev);
u8 portmask[AR7240_NUM_PORTS];
int i, j;
/* flush all vlan translation unit entries */
ar7240_vtu_op(as, AR7240_VTU_OP_FLUSH, 0);
memset(portmask, 0, sizeof(portmask));
if (as->vlan) {
/* calculate the port destination masks and load vlans
* into the vlan translation unit */
for (j = 0; j < AR7240_MAX_VLANS; j++) {
u8 vp = as->vlan_table[j];
if (!vp)
continue;
for (i = 0; i < AR7240_NUM_PORTS; i++) {
u8 mask = (1 << i);
if (vp & mask)
portmask[i] |= vp & ~mask;
}
ar7240_vtu_op(as,
AR7240_VTU_OP_LOAD |
(as->vlan_id[j] << AR7240_VTU_VID_S),
as->vlan_table[j]);
}
} else {
/* vlan disabled:
* isolate all ports, but connect them to the cpu port */
for (i = 0; i < AR7240_NUM_PORTS; i++) {
if (i == AR7240_PORT_CPU)
continue;
portmask[i] = 1 << AR7240_PORT_CPU;
portmask[AR7240_PORT_CPU] |= (1 << i);
}
}
/* update the port destination mask registers and tag settings */
for (i = 0; i < AR7240_NUM_PORTS; i++)
ar7240sw_setup_port(as, i, portmask[i]);
return 0;
}
static int
ar7240_reset_switch(struct switch_dev *dev)
{
struct ar7240sw *as = sw_to_ar7240(dev);
ar7240sw_reset(as);
return 0;
}
static struct switch_attr ar7240_globals[] = {
{
.type = SWITCH_TYPE_INT,
.name = "enable_vlan",
.description = "Enable VLAN mode",
.set = ar7240_set_vlan,
.get = ar7240_get_vlan,
.max = 1
},
};
static struct switch_attr ar7240_port[] = {
};
static struct switch_attr ar7240_vlan[] = {
{
.type = SWITCH_TYPE_INT,
.name = "vid",
.description = "VLAN ID",
.set = ar7240_set_vid,
.get = ar7240_get_vid,
.max = 4094,
},
};
static const struct switch_dev_ops ar7240_ops = {
.attr_global = {
.attr = ar7240_globals,
.n_attr = ARRAY_SIZE(ar7240_globals),
},
.attr_port = {
.attr = ar7240_port,
.n_attr = ARRAY_SIZE(ar7240_port),
},
.attr_vlan = {
.attr = ar7240_vlan,
.n_attr = ARRAY_SIZE(ar7240_vlan),
},
.get_port_pvid = ar7240_get_pvid,
.set_port_pvid = ar7240_set_pvid,
.get_vlan_ports = ar7240_get_ports,
.set_vlan_ports = ar7240_set_ports,
.apply_config = ar7240_hw_apply,
.reset_switch = ar7240_reset_switch,
};
static struct ar7240sw *ar7240_probe(struct ag71xx *ag)
{
struct mii_bus *mii = ag->mii_bus;
struct ar7240sw *as;
struct switch_dev *swdev;
u32 ctrl;
u16 phy_id1;
u16 phy_id2;
u8 ver;
int i;
as = kzalloc(sizeof(*as), GFP_KERNEL);
if (!as)
return NULL;
ar7240sw_init(as, mii);
ctrl = ar7240sw_reg_read(as, AR7240_REG_MASK_CTRL);
ver = (ctrl >> AR7240_MASK_CTRL_VERSION_S) & AR7240_MASK_CTRL_VERSION_M;
if (ver != 1) {
pr_err("%s: unsupported chip, ctrl=%08x\n", ag->dev->name, ctrl);
return NULL;
}
phy_id1 = ar7240sw_phy_read(as, 0, MII_PHYSID1);
phy_id2 = ar7240sw_phy_read(as, 0, MII_PHYSID2);
if (phy_id1 != AR7240_PHY_ID1 || phy_id2 != AR7240_PHY_ID2) {
pr_err("%s: unknown phy id '%04x:%04x'\n",
ag->dev->name, phy_id1, phy_id2);
return NULL;
}
swdev = &as->swdev;
swdev->name = "AR7240 built-in switch";
swdev->ports = AR7240_NUM_PORTS;
swdev->cpu_port = AR7240_PORT_CPU;
swdev->vlans = AR7240_MAX_VLANS;
swdev->ops = &ar7240_ops;
if (register_switch(&as->swdev, ag->dev) < 0) {
kfree(as);
return NULL;
}
printk("%s: Found an AR7240 built-in switch\n", ag->dev->name);
/* initialize defaults */
for (i = 0; i < AR7240_MAX_VLANS; i++)
as->vlan_id[i] = i;
as->vlan_table[0] = AR7240_PORT_MASK_ALL;
return as;
}
void ag71xx_ar7240_start(struct ag71xx *ag)
{
struct ar7240sw *as = ag->phy_priv;
ar7240sw_reset(as);
ar7240sw_setup(as);
ag->speed = SPEED_1000;
ag->link = 1;
ag->duplex = 1;
ar7240_set_addr(as, ag->dev->dev_addr);
ar7240_hw_apply(&as->swdev);
}
void ag71xx_ar7240_stop(struct ag71xx *ag)
{
}
int __init ag71xx_ar7240_init(struct ag71xx *ag)
{
struct ar7240sw *as;
as = ar7240_probe(ag);
if (!as)
return -ENODEV;
ag->phy_priv = as;
ar7240sw_reset(as);
return 0;
}
void __exit ag71xx_ar7240_cleanup(struct ag71xx *ag)
{
struct ar7240sw *as = ag->phy_priv;
if (!as)
return;
unregister_switch(&as->swdev);
kfree(as);
ag->phy_priv = NULL;
}