mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2024-12-21 09:29:54 +02:00
453df530fd
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@22129 3c298f89-4303-0410-b956-a3cf2f4a3e73
4960 lines
159 KiB
C
4960 lines
159 KiB
C
/*
|
|
*
|
|
* ETRAX 100LX USB Host Controller Driver
|
|
*
|
|
* Copyright (C) 2005 - 2008 Axis Communications AB
|
|
*
|
|
* Author: Konrad Eriksson <konrad.eriksson@axis.se>
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/arch/dma.h>
|
|
#include <asm/arch/io_interface_mux.h>
|
|
|
|
#include "../core/hcd.h"
|
|
#include "../core/hub.h"
|
|
#include "hc-crisv10.h"
|
|
#include "hc-cris-dbg.h"
|
|
|
|
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/* Host Controller settings */
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
|
|
#define VERSION "1.00-openwrt_diff-v1"
|
|
#define COPYRIGHT "(c) 2005, 2006 Axis Communications AB"
|
|
#define DESCRIPTION "ETRAX 100LX USB Host Controller"
|
|
|
|
#define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR
|
|
#define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR
|
|
#define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR
|
|
|
|
/* Number of physical ports in Etrax 100LX */
|
|
#define USB_ROOT_HUB_PORTS 2
|
|
|
|
const char hc_name[] = "hc-crisv10";
|
|
const char product_desc[] = DESCRIPTION;
|
|
|
|
/* The number of epids is, among other things, used for pre-allocating
|
|
ctrl, bulk and isoc EP descriptors (one for each epid).
|
|
Assumed to be > 1 when initiating the DMA lists. */
|
|
#define NBR_OF_EPIDS 32
|
|
|
|
/* Support interrupt traffic intervals up to 128 ms. */
|
|
#define MAX_INTR_INTERVAL 128
|
|
|
|
/* If periodic traffic (intr or isoc) is to be used, then one entry in the EP
|
|
table must be "invalid". By this we mean that we shouldn't care about epid
|
|
attentions for this epid, or at least handle them differently from epid
|
|
attentions for "valid" epids. This define determines which one to use
|
|
(don't change it). */
|
|
#define INVALID_EPID 31
|
|
/* A special epid for the bulk dummys. */
|
|
#define DUMMY_EPID 30
|
|
|
|
/* Module settings */
|
|
|
|
MODULE_DESCRIPTION(DESCRIPTION);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Konrad Eriksson <konrad.eriksson@axis.se>");
|
|
|
|
|
|
/* Module parameters */
|
|
|
|
/* 0 = No ports enabled
|
|
1 = Only port 1 enabled (on board ethernet on devboard)
|
|
2 = Only port 2 enabled (external connector on devboard)
|
|
3 = Both ports enabled
|
|
*/
|
|
static unsigned int ports = 3;
|
|
module_param(ports, uint, S_IRUGO);
|
|
MODULE_PARM_DESC(ports, "Bitmask indicating USB ports to use");
|
|
|
|
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/* Shared global variables for this module */
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
|
|
/* EP descriptor lists for non period transfers. Must be 32-bit aligned. */
|
|
static volatile struct USB_EP_Desc TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
|
|
static volatile struct USB_EP_Desc TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
|
|
/* EP descriptor lists for period transfers. Must be 32-bit aligned. */
|
|
static volatile struct USB_EP_Desc TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4)));
|
|
static volatile struct USB_SB_Desc TxIntrSB_zout __attribute__ ((aligned (4)));
|
|
|
|
static volatile struct USB_EP_Desc TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
static volatile struct USB_SB_Desc TxIsocSB_zout __attribute__ ((aligned (4)));
|
|
|
|
static volatile struct USB_SB_Desc TxIsocSBList[NBR_OF_EPIDS] __attribute__ ((aligned (4)));
|
|
|
|
/* After each enabled bulk EP IN we put two disabled EP descriptors with the eol flag set,
|
|
causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which
|
|
gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the
|
|
EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors
|
|
in each frame. */
|
|
static volatile struct USB_EP_Desc TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4)));
|
|
|
|
/* List of URB pointers, where each points to the active URB for a epid.
|
|
For Bulk, Ctrl and Intr this means which URB that currently is added to
|
|
DMA lists (Isoc URBs are all directly added to DMA lists). As soon as
|
|
URB has completed is the queue examined and the first URB in queue is
|
|
removed and moved to the activeUrbList while its state change to STARTED and
|
|
its transfer(s) gets added to DMA list (exception Isoc where URBs enter
|
|
state STARTED directly and added transfers added to DMA lists). */
|
|
static struct urb *activeUrbList[NBR_OF_EPIDS];
|
|
|
|
/* Additional software state info for each epid */
|
|
static struct etrax_epid epid_state[NBR_OF_EPIDS];
|
|
|
|
/* Timer handles for bulk traffic timer used to avoid DMA bug where DMA stops
|
|
even if there is new data waiting to be processed */
|
|
static struct timer_list bulk_start_timer = TIMER_INITIALIZER(NULL, 0, 0);
|
|
static struct timer_list bulk_eot_timer = TIMER_INITIALIZER(NULL, 0, 0);
|
|
|
|
/* We want the start timer to expire before the eot timer, because the former
|
|
might start traffic, thus making it unnecessary for the latter to time
|
|
out. */
|
|
#define BULK_START_TIMER_INTERVAL (HZ/50) /* 20 ms */
|
|
#define BULK_EOT_TIMER_INTERVAL (HZ/16) /* 60 ms */
|
|
|
|
/* Delay before a URB completion happen when it's scheduled to be delayed */
|
|
#define LATER_TIMER_DELAY (HZ/50) /* 20 ms */
|
|
|
|
/* Simplifying macros for checking software state info of a epid */
|
|
/* ----------------------------------------------------------------------- */
|
|
#define epid_inuse(epid) epid_state[epid].inuse
|
|
#define epid_out_traffic(epid) epid_state[epid].out_traffic
|
|
#define epid_isoc(epid) (epid_state[epid].type == PIPE_ISOCHRONOUS ? 1 : 0)
|
|
#define epid_intr(epid) (epid_state[epid].type == PIPE_INTERRUPT ? 1 : 0)
|
|
|
|
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/* DEBUG FUNCTIONS */
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/* Note that these functions are always available in their "__" variants,
|
|
for use in error situations. The "__" missing variants are controlled by
|
|
the USB_DEBUG_DESC/USB_DEBUG_URB macros. */
|
|
static void __dump_urb(struct urb* purb)
|
|
{
|
|
struct crisv10_urb_priv *urb_priv = purb->hcpriv;
|
|
int urb_num = -1;
|
|
if(urb_priv) {
|
|
urb_num = urb_priv->urb_num;
|
|
}
|
|
printk("\nURB:0x%x[%d]\n", (unsigned int)purb, urb_num);
|
|
printk("dev :0x%08lx\n", (unsigned long)purb->dev);
|
|
printk("pipe :0x%08x\n", purb->pipe);
|
|
printk("status :%d\n", purb->status);
|
|
printk("transfer_flags :0x%08x\n", purb->transfer_flags);
|
|
printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer);
|
|
printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length);
|
|
printk("actual_length :%d\n", purb->actual_length);
|
|
printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet);
|
|
printk("start_frame :%d\n", purb->start_frame);
|
|
printk("number_of_packets :%d\n", purb->number_of_packets);
|
|
printk("interval :%d\n", purb->interval);
|
|
printk("error_count :%d\n", purb->error_count);
|
|
printk("context :0x%08lx\n", (unsigned long)purb->context);
|
|
printk("complete :0x%08lx\n\n", (unsigned long)purb->complete);
|
|
}
|
|
|
|
static void __dump_in_desc(volatile struct USB_IN_Desc *in)
|
|
{
|
|
printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in);
|
|
printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len);
|
|
printk(" command : 0x%04x\n", in->command);
|
|
printk(" next : 0x%08lx\n", in->next);
|
|
printk(" buf : 0x%08lx\n", in->buf);
|
|
printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len);
|
|
printk(" status : 0x%04x\n\n", in->status);
|
|
}
|
|
|
|
static void __dump_sb_desc(volatile struct USB_SB_Desc *sb)
|
|
{
|
|
char tt = (sb->command & 0x30) >> 4;
|
|
char *tt_string;
|
|
|
|
switch (tt) {
|
|
case 0:
|
|
tt_string = "zout";
|
|
break;
|
|
case 1:
|
|
tt_string = "in";
|
|
break;
|
|
case 2:
|
|
tt_string = "out";
|
|
break;
|
|
case 3:
|
|
tt_string = "setup";
|
|
break;
|
|
default:
|
|
tt_string = "unknown (weird)";
|
|
}
|
|
|
|
printk(" USB_SB_Desc at 0x%08lx ", (unsigned long)sb);
|
|
printk(" command:0x%04x (", sb->command);
|
|
printk("rem:%d ", (sb->command & 0x3f00) >> 8);
|
|
printk("full:%d ", (sb->command & 0x40) >> 6);
|
|
printk("tt:%d(%s) ", tt, tt_string);
|
|
printk("intr:%d ", (sb->command & 0x8) >> 3);
|
|
printk("eot:%d ", (sb->command & 0x2) >> 1);
|
|
printk("eol:%d)", sb->command & 0x1);
|
|
printk(" sw_len:0x%04x(%d)", sb->sw_len, sb->sw_len);
|
|
printk(" next:0x%08lx", sb->next);
|
|
printk(" buf:0x%08lx\n", sb->buf);
|
|
}
|
|
|
|
|
|
static void __dump_ep_desc(volatile struct USB_EP_Desc *ep)
|
|
{
|
|
printk("USB_EP_Desc at 0x%08lx ", (unsigned long)ep);
|
|
printk(" command:0x%04x (", ep->command);
|
|
printk("ep_id:%d ", (ep->command & 0x1f00) >> 8);
|
|
printk("enable:%d ", (ep->command & 0x10) >> 4);
|
|
printk("intr:%d ", (ep->command & 0x8) >> 3);
|
|
printk("eof:%d ", (ep->command & 0x2) >> 1);
|
|
printk("eol:%d)", ep->command & 0x1);
|
|
printk(" hw_len:0x%04x(%d)", ep->hw_len, ep->hw_len);
|
|
printk(" next:0x%08lx", ep->next);
|
|
printk(" sub:0x%08lx\n", ep->sub);
|
|
}
|
|
|
|
static inline void __dump_ep_list(int pipe_type)
|
|
{
|
|
volatile struct USB_EP_Desc *ep;
|
|
volatile struct USB_EP_Desc *first_ep;
|
|
volatile struct USB_SB_Desc *sb;
|
|
|
|
switch (pipe_type)
|
|
{
|
|
case PIPE_BULK:
|
|
first_ep = &TxBulkEPList[0];
|
|
break;
|
|
case PIPE_CONTROL:
|
|
first_ep = &TxCtrlEPList[0];
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
first_ep = &TxIntrEPList[0];
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
first_ep = &TxIsocEPList[0];
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
ep = first_ep;
|
|
|
|
printk("\n\nDumping EP list...\n\n");
|
|
|
|
do {
|
|
__dump_ep_desc(ep);
|
|
/* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */
|
|
sb = ep->sub ? phys_to_virt(ep->sub) : 0;
|
|
while (sb) {
|
|
__dump_sb_desc(sb);
|
|
sb = sb->next ? phys_to_virt(sb->next) : 0;
|
|
}
|
|
ep = (volatile struct USB_EP_Desc *)(phys_to_virt(ep->next));
|
|
|
|
} while (ep != first_ep);
|
|
}
|
|
|
|
static inline void __dump_ept_data(int epid)
|
|
{
|
|
unsigned long flags;
|
|
__u32 r_usb_ept_data;
|
|
|
|
if (epid < 0 || epid > 31) {
|
|
printk("Cannot dump ept data for invalid epid %d\n", epid);
|
|
return;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
r_usb_ept_data = *R_USB_EPT_DATA;
|
|
local_irq_restore(flags);
|
|
|
|
printk(" R_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid);
|
|
if (r_usb_ept_data == 0) {
|
|
/* No need for more detailed printing. */
|
|
return;
|
|
}
|
|
printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31);
|
|
printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30);
|
|
printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28);
|
|
printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27);
|
|
printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26);
|
|
printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24);
|
|
printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22);
|
|
printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21);
|
|
printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19);
|
|
printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11);
|
|
printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7);
|
|
printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f));
|
|
}
|
|
|
|
static inline void __dump_ept_data_iso(int epid)
|
|
{
|
|
unsigned long flags;
|
|
__u32 ept_data;
|
|
|
|
if (epid < 0 || epid > 31) {
|
|
printk("Cannot dump ept data for invalid epid %d\n", epid);
|
|
return;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
ept_data = *R_USB_EPT_DATA_ISO;
|
|
local_irq_restore(flags);
|
|
|
|
printk(" R_USB_EPT_DATA = 0x%x for epid %d :\n", ept_data, epid);
|
|
if (ept_data == 0) {
|
|
/* No need for more detailed printing. */
|
|
return;
|
|
}
|
|
printk(" valid : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, valid,
|
|
ept_data));
|
|
printk(" port : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, port,
|
|
ept_data));
|
|
printk(" error_code : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code,
|
|
ept_data));
|
|
printk(" max_len : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len,
|
|
ept_data));
|
|
printk(" ep : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, ep,
|
|
ept_data));
|
|
printk(" dev : %d\n", IO_EXTRACT(R_USB_EPT_DATA_ISO, dev,
|
|
ept_data));
|
|
}
|
|
|
|
static inline void __dump_ept_data_list(void)
|
|
{
|
|
int i;
|
|
|
|
printk("Dumping the whole R_USB_EPT_DATA list\n");
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
__dump_ept_data(i);
|
|
}
|
|
}
|
|
|
|
static void debug_epid(int epid) {
|
|
int i;
|
|
|
|
if(epid_isoc(epid)) {
|
|
__dump_ept_data_iso(epid);
|
|
} else {
|
|
__dump_ept_data(epid);
|
|
}
|
|
|
|
printk("Bulk:\n");
|
|
for(i = 0; i < 32; i++) {
|
|
if(IO_EXTRACT(USB_EP_command, epid, TxBulkEPList[i].command) ==
|
|
epid) {
|
|
printk("%d: ", i); __dump_ep_desc(&(TxBulkEPList[i]));
|
|
}
|
|
}
|
|
|
|
printk("Ctrl:\n");
|
|
for(i = 0; i < 32; i++) {
|
|
if(IO_EXTRACT(USB_EP_command, epid, TxCtrlEPList[i].command) ==
|
|
epid) {
|
|
printk("%d: ", i); __dump_ep_desc(&(TxCtrlEPList[i]));
|
|
}
|
|
}
|
|
|
|
printk("Intr:\n");
|
|
for(i = 0; i < MAX_INTR_INTERVAL; i++) {
|
|
if(IO_EXTRACT(USB_EP_command, epid, TxIntrEPList[i].command) ==
|
|
epid) {
|
|
printk("%d: ", i); __dump_ep_desc(&(TxIntrEPList[i]));
|
|
}
|
|
}
|
|
|
|
printk("Isoc:\n");
|
|
for(i = 0; i < 32; i++) {
|
|
if(IO_EXTRACT(USB_EP_command, epid, TxIsocEPList[i].command) ==
|
|
epid) {
|
|
printk("%d: ", i); __dump_ep_desc(&(TxIsocEPList[i]));
|
|
}
|
|
}
|
|
|
|
__dump_ept_data_list();
|
|
__dump_ep_list(PIPE_INTERRUPT);
|
|
printk("\n\n");
|
|
}
|
|
|
|
|
|
|
|
char* hcd_status_to_str(__u8 bUsbStatus) {
|
|
static char hcd_status_str[128];
|
|
hcd_status_str[0] = '\0';
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, ourun, yes)) {
|
|
strcat(hcd_status_str, "ourun ");
|
|
}
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, perror, yes)) {
|
|
strcat(hcd_status_str, "perror ");
|
|
}
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, device_mode, yes)) {
|
|
strcat(hcd_status_str, "device_mode ");
|
|
}
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, host_mode, yes)) {
|
|
strcat(hcd_status_str, "host_mode ");
|
|
}
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, started, yes)) {
|
|
strcat(hcd_status_str, "started ");
|
|
}
|
|
if(bUsbStatus & IO_STATE(R_USB_STATUS, running, yes)) {
|
|
strcat(hcd_status_str, "running ");
|
|
}
|
|
return hcd_status_str;
|
|
}
|
|
|
|
|
|
char* sblist_to_str(struct USB_SB_Desc* sb_desc) {
|
|
static char sblist_to_str_buff[128];
|
|
char tmp[32], tmp2[32];
|
|
sblist_to_str_buff[0] = '\0';
|
|
while(sb_desc != NULL) {
|
|
switch(IO_EXTRACT(USB_SB_command, tt, sb_desc->command)) {
|
|
case 0: sprintf(tmp, "zout"); break;
|
|
case 1: sprintf(tmp, "in"); break;
|
|
case 2: sprintf(tmp, "out"); break;
|
|
case 3: sprintf(tmp, "setup"); break;
|
|
}
|
|
sprintf(tmp2, "(%s %d)", tmp, sb_desc->sw_len);
|
|
strcat(sblist_to_str_buff, tmp2);
|
|
if(sb_desc->next != 0) {
|
|
sb_desc = phys_to_virt(sb_desc->next);
|
|
} else {
|
|
sb_desc = NULL;
|
|
}
|
|
}
|
|
return sblist_to_str_buff;
|
|
}
|
|
|
|
char* port_status_to_str(__u16 wPortStatus) {
|
|
static char port_status_str[128];
|
|
port_status_str[0] = '\0';
|
|
if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) {
|
|
strcat(port_status_str, "connected ");
|
|
}
|
|
if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) {
|
|
strcat(port_status_str, "enabled ");
|
|
}
|
|
if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, suspended, yes)) {
|
|
strcat(port_status_str, "suspended ");
|
|
}
|
|
if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)) {
|
|
strcat(port_status_str, "reset ");
|
|
}
|
|
if(wPortStatus & IO_STATE(R_USB_RH_PORT_STATUS_1, speed, full)) {
|
|
strcat(port_status_str, "full-speed ");
|
|
} else {
|
|
strcat(port_status_str, "low-speed ");
|
|
}
|
|
return port_status_str;
|
|
}
|
|
|
|
|
|
char* endpoint_to_str(struct usb_endpoint_descriptor *ed) {
|
|
static char endpoint_to_str_buff[128];
|
|
char tmp[32];
|
|
int epnum = ed->bEndpointAddress & 0x0F;
|
|
int dir = ed->bEndpointAddress & 0x80;
|
|
int type = ed->bmAttributes & 0x03;
|
|
endpoint_to_str_buff[0] = '\0';
|
|
sprintf(endpoint_to_str_buff, "ep:%d ", epnum);
|
|
switch(type) {
|
|
case 0:
|
|
sprintf(tmp, " ctrl");
|
|
break;
|
|
case 1:
|
|
sprintf(tmp, " isoc");
|
|
break;
|
|
case 2:
|
|
sprintf(tmp, " bulk");
|
|
break;
|
|
case 3:
|
|
sprintf(tmp, " intr");
|
|
break;
|
|
}
|
|
strcat(endpoint_to_str_buff, tmp);
|
|
if(dir) {
|
|
sprintf(tmp, " in");
|
|
} else {
|
|
sprintf(tmp, " out");
|
|
}
|
|
strcat(endpoint_to_str_buff, tmp);
|
|
|
|
return endpoint_to_str_buff;
|
|
}
|
|
|
|
/* Debug helper functions for Transfer Controller */
|
|
char* pipe_to_str(unsigned int pipe) {
|
|
static char pipe_to_str_buff[128];
|
|
char tmp[64];
|
|
sprintf(pipe_to_str_buff, "dir:%s", str_dir(pipe));
|
|
sprintf(tmp, " type:%s", str_type(pipe));
|
|
strcat(pipe_to_str_buff, tmp);
|
|
|
|
sprintf(tmp, " dev:%d", usb_pipedevice(pipe));
|
|
strcat(pipe_to_str_buff, tmp);
|
|
sprintf(tmp, " ep:%d", usb_pipeendpoint(pipe));
|
|
strcat(pipe_to_str_buff, tmp);
|
|
return pipe_to_str_buff;
|
|
}
|
|
|
|
|
|
#define USB_DEBUG_DESC 1
|
|
|
|
#ifdef USB_DEBUG_DESC
|
|
#define dump_in_desc(x) __dump_in_desc(x)
|
|
#define dump_sb_desc(...) __dump_sb_desc(...)
|
|
#define dump_ep_desc(x) __dump_ep_desc(x)
|
|
#define dump_ept_data(x) __dump_ept_data(x)
|
|
#else
|
|
#define dump_in_desc(...) do {} while (0)
|
|
#define dump_sb_desc(...) do {} while (0)
|
|
#define dump_ep_desc(...) do {} while (0)
|
|
#endif
|
|
|
|
|
|
/* Uncomment this to enable massive function call trace
|
|
#define USB_DEBUG_TRACE */
|
|
|
|
#ifdef USB_DEBUG_TRACE
|
|
#define DBFENTER (printk(": Entering: %s\n", __FUNCTION__))
|
|
#define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__))
|
|
#else
|
|
#define DBFENTER do {} while (0)
|
|
#define DBFEXIT do {} while (0)
|
|
#endif
|
|
|
|
#define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \
|
|
{panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);}
|
|
|
|
/* Most helpful debugging aid */
|
|
#define ASSERT(expr) ((void) ((expr) ? 0 : (err("assert failed at: %s %d",__FUNCTION__, __LINE__))))
|
|
|
|
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
/* Forward declarations */
|
|
/***************************************************************************/
|
|
/***************************************************************************/
|
|
void crisv10_hcd_epid_attn_irq(struct crisv10_irq_reg *reg);
|
|
void crisv10_hcd_port_status_irq(struct crisv10_irq_reg *reg);
|
|
void crisv10_hcd_ctl_status_irq(struct crisv10_irq_reg *reg);
|
|
void crisv10_hcd_isoc_eof_irq(struct crisv10_irq_reg *reg);
|
|
|
|
void rh_port_status_change(__u16[]);
|
|
int rh_clear_port_feature(__u8, __u16);
|
|
int rh_set_port_feature(__u8, __u16);
|
|
static void rh_disable_port(unsigned int port);
|
|
|
|
static void check_finished_bulk_tx_epids(struct usb_hcd *hcd,
|
|
int timer);
|
|
|
|
static int tc_setup_epid(struct usb_host_endpoint *ep, struct urb *urb,
|
|
int mem_flags);
|
|
static void tc_free_epid(struct usb_host_endpoint *ep);
|
|
static int tc_allocate_epid(void);
|
|
static void tc_finish_urb(struct usb_hcd *hcd, struct urb *urb, int status);
|
|
static void tc_finish_urb_later(struct usb_hcd *hcd, struct urb *urb,
|
|
int status);
|
|
|
|
static int urb_priv_create(struct usb_hcd *hcd, struct urb *urb, int epid,
|
|
int mem_flags);
|
|
static void urb_priv_free(struct usb_hcd *hcd, struct urb *urb);
|
|
|
|
static int crisv10_usb_check_bandwidth(struct usb_device *dev,struct urb *urb);
|
|
static void crisv10_usb_claim_bandwidth(
|
|
struct usb_device *dev, struct urb *urb, int bustime, int isoc);
|
|
static void crisv10_usb_release_bandwidth(
|
|
struct usb_hcd *hcd, int isoc, int bandwidth);
|
|
|
|
static inline struct urb *urb_list_first(int epid);
|
|
static inline void urb_list_add(struct urb *urb, int epid,
|
|
int mem_flags);
|
|
static inline urb_entry_t *urb_list_entry(struct urb *urb, int epid);
|
|
static inline void urb_list_del(struct urb *urb, int epid);
|
|
static inline void urb_list_move_last(struct urb *urb, int epid);
|
|
static inline struct urb *urb_list_next(struct urb *urb, int epid);
|
|
|
|
int create_sb_for_urb(struct urb *urb, int mem_flags);
|
|
int init_intr_urb(struct urb *urb, int mem_flags);
|
|
|
|
static inline void etrax_epid_set(__u8 index, __u32 data);
|
|
static inline void etrax_epid_clear_error(__u8 index);
|
|
static inline void etrax_epid_set_toggle(__u8 index, __u8 dirout,
|
|
__u8 toggle);
|
|
static inline __u8 etrax_epid_get_toggle(__u8 index, __u8 dirout);
|
|
static inline __u32 etrax_epid_get(__u8 index);
|
|
|
|
/* We're accessing the same register position in Etrax so
|
|
when we do full access the internal difference doesn't matter */
|
|
#define etrax_epid_iso_set(index, data) etrax_epid_set(index, data)
|
|
#define etrax_epid_iso_get(index) etrax_epid_get(index)
|
|
|
|
|
|
static void tc_dma_process_isoc_urb(struct urb *urb);
|
|
static void tc_dma_process_queue(int epid);
|
|
static void tc_dma_unlink_intr_urb(struct urb *urb);
|
|
static irqreturn_t tc_dma_tx_interrupt(int irq, void *vhc);
|
|
static irqreturn_t tc_dma_rx_interrupt(int irq, void *vhc);
|
|
|
|
static void tc_bulk_start_timer_func(unsigned long dummy);
|
|
static void tc_bulk_eot_timer_func(unsigned long dummy);
|
|
|
|
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
/* Host Controler Driver block */
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
|
|
/* HCD operations */
|
|
static irqreturn_t crisv10_hcd_top_irq(int irq, void*);
|
|
static int crisv10_hcd_reset(struct usb_hcd *);
|
|
static int crisv10_hcd_start(struct usb_hcd *);
|
|
static void crisv10_hcd_stop(struct usb_hcd *);
|
|
#ifdef CONFIG_PM
|
|
static int crisv10_hcd_suspend(struct device *, u32, u32);
|
|
static int crisv10_hcd_resume(struct device *, u32);
|
|
#endif /* CONFIG_PM */
|
|
static int crisv10_hcd_get_frame(struct usb_hcd *);
|
|
|
|
static int tc_urb_enqueue(struct usb_hcd *, struct urb *, gfp_t mem_flags);
|
|
static int tc_urb_dequeue(struct usb_hcd *, struct urb *, int);
|
|
static void tc_endpoint_disable(struct usb_hcd *, struct usb_host_endpoint *ep);
|
|
|
|
static int rh_status_data_request(struct usb_hcd *, char *);
|
|
static int rh_control_request(struct usb_hcd *, u16, u16, u16, char*, u16);
|
|
|
|
#ifdef CONFIG_PM
|
|
static int crisv10_hcd_hub_suspend(struct usb_hcd *);
|
|
static int crisv10_hcd_hub_resume(struct usb_hcd *);
|
|
#endif /* CONFIG_PM */
|
|
#ifdef CONFIG_USB_OTG
|
|
static int crisv10_hcd_start_port_reset(struct usb_hcd *, unsigned);
|
|
#endif /* CONFIG_USB_OTG */
|
|
|
|
/* host controller driver interface */
|
|
static const struct hc_driver crisv10_hc_driver =
|
|
{
|
|
.description = hc_name,
|
|
.product_desc = product_desc,
|
|
.hcd_priv_size = sizeof(struct crisv10_hcd),
|
|
|
|
/* Attaching IRQ handler manualy in probe() */
|
|
/* .irq = crisv10_hcd_irq, */
|
|
|
|
.flags = HCD_USB11,
|
|
|
|
/* called to init HCD and root hub */
|
|
.reset = crisv10_hcd_reset,
|
|
.start = crisv10_hcd_start,
|
|
|
|
/* cleanly make HCD stop writing memory and doing I/O */
|
|
.stop = crisv10_hcd_stop,
|
|
|
|
/* return current frame number */
|
|
.get_frame_number = crisv10_hcd_get_frame,
|
|
|
|
|
|
/* Manage i/o requests via the Transfer Controller */
|
|
.urb_enqueue = tc_urb_enqueue,
|
|
.urb_dequeue = tc_urb_dequeue,
|
|
|
|
/* hw synch, freeing endpoint resources that urb_dequeue can't */
|
|
.endpoint_disable = tc_endpoint_disable,
|
|
|
|
|
|
/* Root Hub support */
|
|
.hub_status_data = rh_status_data_request,
|
|
.hub_control = rh_control_request,
|
|
#ifdef CONFIG_PM
|
|
.hub_suspend = rh_suspend_request,
|
|
.hub_resume = rh_resume_request,
|
|
#endif /* CONFIG_PM */
|
|
#ifdef CONFIG_USB_OTG
|
|
.start_port_reset = crisv10_hcd_start_port_reset,
|
|
#endif /* CONFIG_USB_OTG */
|
|
};
|
|
|
|
|
|
/*
|
|
* conversion between pointers to a hcd and the corresponding
|
|
* crisv10_hcd
|
|
*/
|
|
|
|
static inline struct crisv10_hcd *hcd_to_crisv10_hcd(struct usb_hcd *hcd)
|
|
{
|
|
return (struct crisv10_hcd *) hcd->hcd_priv;
|
|
}
|
|
|
|
static inline struct usb_hcd *crisv10_hcd_to_hcd(struct crisv10_hcd *hcd)
|
|
{
|
|
return container_of((void *) hcd, struct usb_hcd, hcd_priv);
|
|
}
|
|
|
|
/* check if specified port is in use */
|
|
static inline int port_in_use(unsigned int port)
|
|
{
|
|
return ports & (1 << port);
|
|
}
|
|
|
|
/* number of ports in use */
|
|
static inline unsigned int num_ports(void)
|
|
{
|
|
unsigned int i, num = 0;
|
|
for (i = 0; i < USB_ROOT_HUB_PORTS; i++)
|
|
if (port_in_use(i))
|
|
num++;
|
|
return num;
|
|
}
|
|
|
|
/* map hub port number to the port number used internally by the HC */
|
|
static inline unsigned int map_port(unsigned int port)
|
|
{
|
|
unsigned int i, num = 0;
|
|
for (i = 0; i < USB_ROOT_HUB_PORTS; i++)
|
|
if (port_in_use(i))
|
|
if (++num == port)
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
/* size of descriptors in slab cache */
|
|
#ifndef MAX
|
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
#endif
|
|
|
|
|
|
/******************************************************************/
|
|
/* Hardware Interrupt functions */
|
|
/******************************************************************/
|
|
|
|
/* Fast interrupt handler for HC */
|
|
static irqreturn_t crisv10_hcd_top_irq(int irq, void *vcd)
|
|
{
|
|
struct usb_hcd *hcd = vcd;
|
|
struct crisv10_irq_reg reg;
|
|
__u32 irq_mask;
|
|
unsigned long flags;
|
|
|
|
DBFENTER;
|
|
|
|
ASSERT(hcd != NULL);
|
|
reg.hcd = hcd;
|
|
|
|
/* Turn of other interrupts while handling these sensitive cases */
|
|
local_irq_save(flags);
|
|
|
|
/* Read out which interrupts that are flaged */
|
|
irq_mask = *R_USB_IRQ_MASK_READ;
|
|
reg.r_usb_irq_mask_read = irq_mask;
|
|
|
|
/* Reading R_USB_STATUS clears the ctl_status interrupt. Note that
|
|
R_USB_STATUS must be read before R_USB_EPID_ATTN since reading the latter
|
|
clears the ourun and perror fields of R_USB_STATUS. */
|
|
reg.r_usb_status = *R_USB_STATUS;
|
|
|
|
/* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn
|
|
interrupts. */
|
|
reg.r_usb_epid_attn = *R_USB_EPID_ATTN;
|
|
|
|
/* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the
|
|
port_status interrupt. */
|
|
reg.r_usb_rh_port_status_1 = *R_USB_RH_PORT_STATUS_1;
|
|
reg.r_usb_rh_port_status_2 = *R_USB_RH_PORT_STATUS_2;
|
|
|
|
/* Reading R_USB_FM_NUMBER clears the sof interrupt. */
|
|
/* Note: the lower 11 bits contain the actual frame number, sent with each
|
|
sof. */
|
|
reg.r_usb_fm_number = *R_USB_FM_NUMBER;
|
|
|
|
/* Interrupts are handled in order of priority. */
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) {
|
|
crisv10_hcd_port_status_irq(®);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) {
|
|
crisv10_hcd_epid_attn_irq(®);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) {
|
|
crisv10_hcd_ctl_status_irq(®);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) {
|
|
crisv10_hcd_isoc_eof_irq(®);
|
|
}
|
|
if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) {
|
|
/* Update/restart the bulk start timer since obviously the channel is
|
|
running. */
|
|
mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL);
|
|
/* Update/restart the bulk eot timer since we just received an bulk eot
|
|
interrupt. */
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
|
|
/* Check for finished bulk transfers on epids */
|
|
check_finished_bulk_tx_epids(hcd, 0);
|
|
}
|
|
local_irq_restore(flags);
|
|
|
|
DBFEXIT;
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
void crisv10_hcd_epid_attn_irq(struct crisv10_irq_reg *reg) {
|
|
struct usb_hcd *hcd = reg->hcd;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
int epid;
|
|
DBFENTER;
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if (test_bit(epid, (void *)®->r_usb_epid_attn)) {
|
|
struct urb *urb;
|
|
__u32 ept_data;
|
|
int error_code;
|
|
|
|
if (epid == DUMMY_EPID || epid == INVALID_EPID) {
|
|
/* We definitely don't care about these ones. Besides, they are
|
|
always disabled, so any possible disabling caused by the
|
|
epid attention interrupt is irrelevant. */
|
|
continue;
|
|
}
|
|
|
|
if(!epid_inuse(epid)) {
|
|
irq_err("Epid attention on epid:%d that isn't in use\n", epid);
|
|
printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status);
|
|
debug_epid(epid);
|
|
continue;
|
|
}
|
|
|
|
/* Note that although there are separate R_USB_EPT_DATA and
|
|
R_USB_EPT_DATA_ISO registers, they are located at the same address and
|
|
are of the same size. In other words, this read should be ok for isoc
|
|
also. */
|
|
ept_data = etrax_epid_get(epid);
|
|
error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, ept_data);
|
|
|
|
/* Get the active URB for this epid. We blatantly assume
|
|
that only this URB could have caused the epid attention. */
|
|
urb = activeUrbList[epid];
|
|
if (urb == NULL) {
|
|
irq_err("Attention on epid:%d error:%d with no active URB.\n",
|
|
epid, error_code);
|
|
printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status);
|
|
debug_epid(epid);
|
|
continue;
|
|
}
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
/* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */
|
|
if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
|
|
/* Isoc traffic doesn't have error_count_in/error_count_out. */
|
|
if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA, error_count_in, ept_data) == 3 ||
|
|
IO_EXTRACT(R_USB_EPT_DATA, error_count_out, ept_data) == 3)) {
|
|
/* Check if URB allready is marked for late-finish, we can get
|
|
several 3rd error for Intr traffic when a device is unplugged */
|
|
if(urb_priv->later_data == NULL) {
|
|
/* 3rd error. */
|
|
irq_warn("3rd error for epid:%d (%s %s) URB:0x%x[%d]\n", epid,
|
|
str_dir(urb->pipe), str_type(urb->pipe),
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
|
|
tc_finish_urb_later(hcd, urb, -EPROTO);
|
|
}
|
|
|
|
} else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) {
|
|
irq_warn("Perror for epid:%d\n", epid);
|
|
printk("FM_NUMBER: %d\n", reg->r_usb_fm_number & 0x7ff);
|
|
printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status);
|
|
__dump_urb(urb);
|
|
debug_epid(epid);
|
|
|
|
if (!(ept_data & IO_MASK(R_USB_EPT_DATA, valid))) {
|
|
/* invalid ep_id */
|
|
panic("Perror because of invalid epid."
|
|
" Deconfigured too early?");
|
|
} else {
|
|
/* past eof1, near eof, zout transfer, setup transfer */
|
|
/* Dump the urb and the relevant EP descriptor. */
|
|
panic("Something wrong with DMA descriptor contents."
|
|
" Too much traffic inserted?");
|
|
}
|
|
} else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) {
|
|
/* buffer ourun */
|
|
printk("FM_NUMBER: %d\n", reg->r_usb_fm_number & 0x7ff);
|
|
printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status);
|
|
__dump_urb(urb);
|
|
debug_epid(epid);
|
|
|
|
panic("Buffer overrun/underrun for epid:%d. DMA too busy?", epid);
|
|
} else {
|
|
irq_warn("Attention on epid:%d (%s %s) with no error code\n", epid,
|
|
str_dir(urb->pipe), str_type(urb->pipe));
|
|
printk("R_USB_STATUS: 0x%x\n", reg->r_usb_status);
|
|
__dump_urb(urb);
|
|
debug_epid(epid);
|
|
}
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code,
|
|
stall)) {
|
|
/* Not really a protocol error, just says that the endpoint gave
|
|
a stall response. Note that error_code cannot be stall for isoc. */
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
panic("Isoc traffic cannot stall");
|
|
}
|
|
|
|
tc_dbg("Stall for epid:%d (%s %s) URB:0x%x\n", epid,
|
|
str_dir(urb->pipe), str_type(urb->pipe), (unsigned int)urb);
|
|
tc_finish_urb(hcd, urb, -EPIPE);
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code,
|
|
bus_error)) {
|
|
/* Two devices responded to a transaction request. Must be resolved
|
|
by software. FIXME: Reset ports? */
|
|
panic("Bus error for epid %d."
|
|
" Two devices responded to transaction request\n",
|
|
epid);
|
|
|
|
} else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code,
|
|
buffer_error)) {
|
|
/* DMA overrun or underrun. */
|
|
irq_warn("Buffer overrun/underrun for epid:%d (%s %s)\n", epid,
|
|
str_dir(urb->pipe), str_type(urb->pipe));
|
|
|
|
/* It seems that error_code = buffer_error in
|
|
R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS
|
|
are the same error. */
|
|
tc_finish_urb(hcd, urb, -EPROTO);
|
|
} else {
|
|
irq_warn("Unknown attention on epid:%d (%s %s)\n", epid,
|
|
str_dir(urb->pipe), str_type(urb->pipe));
|
|
dump_ept_data(epid);
|
|
}
|
|
}
|
|
}
|
|
DBFEXIT;
|
|
}
|
|
|
|
void crisv10_hcd_port_status_irq(struct crisv10_irq_reg *reg)
|
|
{
|
|
__u16 port_reg[USB_ROOT_HUB_PORTS];
|
|
DBFENTER;
|
|
port_reg[0] = reg->r_usb_rh_port_status_1;
|
|
port_reg[1] = reg->r_usb_rh_port_status_2;
|
|
rh_port_status_change(port_reg);
|
|
DBFEXIT;
|
|
}
|
|
|
|
void crisv10_hcd_isoc_eof_irq(struct crisv10_irq_reg *reg)
|
|
{
|
|
int epid;
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
|
|
DBFENTER;
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
|
|
/* Only check epids that are in use, is valid and has SB list */
|
|
if (!epid_inuse(epid) || epid == INVALID_EPID ||
|
|
TxIsocEPList[epid].sub == 0 || epid == DUMMY_EPID) {
|
|
/* Nothing here to see. */
|
|
continue;
|
|
}
|
|
ASSERT(epid_isoc(epid));
|
|
|
|
/* Get the active URB for this epid (if any). */
|
|
urb = activeUrbList[epid];
|
|
if (urb == 0) {
|
|
isoc_warn("Ignoring NULL urb for epid:%d\n", epid);
|
|
continue;
|
|
}
|
|
if(!epid_out_traffic(epid)) {
|
|
/* Sanity check. */
|
|
ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS);
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
if (urb_priv->urb_state == NOT_STARTED) {
|
|
/* If ASAP is not set and urb->start_frame is the current frame,
|
|
start the transfer. */
|
|
if (!(urb->transfer_flags & URB_ISO_ASAP) &&
|
|
(urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) {
|
|
/* EP should not be enabled if we're waiting for start_frame */
|
|
ASSERT((TxIsocEPList[epid].command &
|
|
IO_STATE(USB_EP_command, enable, yes)) == 0);
|
|
|
|
isoc_warn("Enabling isoc IN EP descr for epid %d\n", epid);
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
/* This urb is now active. */
|
|
urb_priv->urb_state = STARTED;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
void crisv10_hcd_ctl_status_irq(struct crisv10_irq_reg *reg)
|
|
{
|
|
struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(reg->hcd);
|
|
|
|
DBFENTER;
|
|
ASSERT(crisv10_hcd);
|
|
|
|
/* irq_dbg("ctr_status_irq, controller status: %s\n",
|
|
hcd_status_to_str(reg->r_usb_status));*/
|
|
|
|
/* FIXME: What should we do if we get ourun or perror? Dump the EP and SB
|
|
list for the corresponding epid? */
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) {
|
|
panic("USB controller got ourun.");
|
|
}
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) {
|
|
|
|
/* Before, etrax_usb_do_intr_recover was called on this epid if it was
|
|
an interrupt pipe. I don't see how re-enabling all EP descriptors
|
|
will help if there was a programming error. */
|
|
panic("USB controller got perror.");
|
|
}
|
|
|
|
/* Keep track of USB Controller, if it's running or not */
|
|
if(reg->r_usb_status & IO_STATE(R_USB_STATUS, running, yes)) {
|
|
crisv10_hcd->running = 1;
|
|
} else {
|
|
crisv10_hcd->running = 0;
|
|
}
|
|
|
|
if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) {
|
|
/* We should never operate in device mode. */
|
|
panic("USB controller in device mode.");
|
|
}
|
|
|
|
/* Set the flag to avoid getting "Unlink after no-IRQ? Controller is probably
|
|
using the wrong IRQ" from hcd_unlink_urb() in drivers/usb/core/hcd.c */
|
|
set_bit(HCD_FLAG_SAW_IRQ, ®->hcd->flags);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
|
|
/******************************************************************/
|
|
/* Host Controller interface functions */
|
|
/******************************************************************/
|
|
|
|
static inline void crisv10_ready_wait(void) {
|
|
volatile int timeout = 10000;
|
|
/* Check the busy bit of USB controller in Etrax */
|
|
while((*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)) &&
|
|
(timeout-- > 0));
|
|
}
|
|
|
|
/* reset host controller */
|
|
static int crisv10_hcd_reset(struct usb_hcd *hcd)
|
|
{
|
|
DBFENTER;
|
|
hcd_dbg(hcd, "reset\n");
|
|
|
|
|
|
/* Reset the USB interface. */
|
|
/*
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, reset);
|
|
nop();
|
|
*/
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
/* start host controller */
|
|
static int crisv10_hcd_start(struct usb_hcd *hcd)
|
|
{
|
|
DBFENTER;
|
|
hcd_dbg(hcd, "start\n");
|
|
|
|
crisv10_ready_wait();
|
|
|
|
/* Start processing of USB traffic. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
|
|
nop();
|
|
|
|
hcd->state = HC_STATE_RUNNING;
|
|
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
/* stop host controller */
|
|
static void crisv10_hcd_stop(struct usb_hcd *hcd)
|
|
{
|
|
DBFENTER;
|
|
hcd_dbg(hcd, "stop\n");
|
|
crisv10_hcd_reset(hcd);
|
|
DBFEXIT;
|
|
}
|
|
|
|
/* return the current frame number */
|
|
static int crisv10_hcd_get_frame(struct usb_hcd *hcd)
|
|
{
|
|
DBFENTER;
|
|
DBFEXIT;
|
|
return (*R_USB_FM_NUMBER & 0x7ff);
|
|
}
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
static int crisv10_hcd_start_port_reset(struct usb_hcd *hcd, unsigned port)
|
|
{
|
|
return 0; /* no-op for now */
|
|
}
|
|
|
|
#endif /* CONFIG_USB_OTG */
|
|
|
|
|
|
/******************************************************************/
|
|
/* Root Hub functions */
|
|
/******************************************************************/
|
|
|
|
/* root hub status */
|
|
static const struct usb_hub_status rh_hub_status =
|
|
{
|
|
.wHubStatus = 0,
|
|
.wHubChange = 0,
|
|
};
|
|
|
|
/* root hub descriptor */
|
|
static const u8 rh_hub_descr[] =
|
|
{
|
|
0x09, /* bDescLength */
|
|
0x29, /* bDescriptorType */
|
|
USB_ROOT_HUB_PORTS, /* bNbrPorts */
|
|
0x00, /* wHubCharacteristics */
|
|
0x00,
|
|
0x01, /* bPwrOn2pwrGood */
|
|
0x00, /* bHubContrCurrent */
|
|
0x00, /* DeviceRemovable */
|
|
0xff /* PortPwrCtrlMask */
|
|
};
|
|
|
|
/* Actual holder of root hub status*/
|
|
struct crisv10_rh rh;
|
|
|
|
/* Initialize root hub data structures (called from dvdrv_hcd_probe()) */
|
|
int rh_init(void) {
|
|
int i;
|
|
/* Reset port status flags */
|
|
for (i = 0; i < USB_ROOT_HUB_PORTS; i++) {
|
|
rh.wPortChange[i] = 0;
|
|
rh.wPortStatusPrev[i] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RH_FEAT_MASK ((1<<USB_PORT_FEAT_CONNECTION)|\
|
|
(1<<USB_PORT_FEAT_ENABLE)|\
|
|
(1<<USB_PORT_FEAT_SUSPEND)|\
|
|
(1<<USB_PORT_FEAT_RESET))
|
|
|
|
/* Handle port status change interrupt (called from bottom part interrupt) */
|
|
void rh_port_status_change(__u16 port_reg[]) {
|
|
int i;
|
|
__u16 wChange;
|
|
|
|
for(i = 0; i < USB_ROOT_HUB_PORTS; i++) {
|
|
/* Xor out changes since last read, masked for important flags */
|
|
wChange = (port_reg[i] & RH_FEAT_MASK) ^ rh.wPortStatusPrev[i];
|
|
/* Or changes together with (if any) saved changes */
|
|
rh.wPortChange[i] |= wChange;
|
|
/* Save new status */
|
|
rh.wPortStatusPrev[i] = port_reg[i];
|
|
|
|
if(wChange) {
|
|
rh_dbg("Interrupt port_status change port%d: %s Current-status:%s\n", i+1,
|
|
port_status_to_str(wChange),
|
|
port_status_to_str(port_reg[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Construct port status change bitmap for the root hub */
|
|
static int rh_status_data_request(struct usb_hcd *hcd, char *buf)
|
|
{
|
|
struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd);
|
|
unsigned int i;
|
|
|
|
DBFENTER;
|
|
/*
|
|
* corresponds to hub status change EP (USB 2.0 spec section 11.13.4)
|
|
* return bitmap indicating ports with status change
|
|
*/
|
|
*buf = 0;
|
|
spin_lock(&crisv10_hcd->lock);
|
|
for (i = 1; i <= crisv10_hcd->num_ports; i++) {
|
|
if (rh.wPortChange[map_port(i)]) {
|
|
*buf |= (1 << i);
|
|
rh_dbg("rh_status_data_request, change on port %d: %s Current Status: %s\n", i,
|
|
port_status_to_str(rh.wPortChange[map_port(i)]),
|
|
port_status_to_str(rh.wPortStatusPrev[map_port(i)]));
|
|
}
|
|
}
|
|
spin_unlock(&crisv10_hcd->lock);
|
|
DBFEXIT;
|
|
return *buf == 0 ? 0 : 1;
|
|
}
|
|
|
|
/* Handle a control request for the root hub (called from hcd_driver) */
|
|
static int rh_control_request(struct usb_hcd *hcd,
|
|
u16 typeReq,
|
|
u16 wValue,
|
|
u16 wIndex,
|
|
char *buf,
|
|
u16 wLength) {
|
|
|
|
struct crisv10_hcd *crisv10_hcd = hcd_to_crisv10_hcd(hcd);
|
|
int retval = 0;
|
|
int len;
|
|
DBFENTER;
|
|
|
|
switch (typeReq) {
|
|
case GetHubDescriptor:
|
|
rh_dbg("GetHubDescriptor\n");
|
|
len = min_t(unsigned int, sizeof rh_hub_descr, wLength);
|
|
memcpy(buf, rh_hub_descr, len);
|
|
buf[2] = crisv10_hcd->num_ports;
|
|
break;
|
|
case GetHubStatus:
|
|
rh_dbg("GetHubStatus\n");
|
|
len = min_t(unsigned int, sizeof rh_hub_status, wLength);
|
|
memcpy(buf, &rh_hub_status, len);
|
|
break;
|
|
case GetPortStatus:
|
|
if (!wIndex || wIndex > crisv10_hcd->num_ports)
|
|
goto error;
|
|
rh_dbg("GetportStatus, port:%d change:%s status:%s\n", wIndex,
|
|
port_status_to_str(rh.wPortChange[map_port(wIndex)]),
|
|
port_status_to_str(rh.wPortStatusPrev[map_port(wIndex)]));
|
|
*(u16 *) buf = cpu_to_le16(rh.wPortStatusPrev[map_port(wIndex)]);
|
|
*(u16 *) (buf + 2) = cpu_to_le16(rh.wPortChange[map_port(wIndex)]);
|
|
break;
|
|
case SetHubFeature:
|
|
rh_dbg("SetHubFeature\n");
|
|
case ClearHubFeature:
|
|
rh_dbg("ClearHubFeature\n");
|
|
switch (wValue) {
|
|
case C_HUB_OVER_CURRENT:
|
|
case C_HUB_LOCAL_POWER:
|
|
rh_warn("Not implemented hub request:%d \n", typeReq);
|
|
/* not implemented */
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case SetPortFeature:
|
|
if (!wIndex || wIndex > crisv10_hcd->num_ports)
|
|
goto error;
|
|
if(rh_set_port_feature(map_port(wIndex), wValue))
|
|
goto error;
|
|
break;
|
|
case ClearPortFeature:
|
|
if (!wIndex || wIndex > crisv10_hcd->num_ports)
|
|
goto error;
|
|
if(rh_clear_port_feature(map_port(wIndex), wValue))
|
|
goto error;
|
|
break;
|
|
default:
|
|
rh_warn("Unknown hub request: %d\n", typeReq);
|
|
error:
|
|
retval = -EPIPE;
|
|
}
|
|
DBFEXIT;
|
|
return retval;
|
|
}
|
|
|
|
int rh_set_port_feature(__u8 bPort, __u16 wFeature) {
|
|
__u8 bUsbCommand = 0;
|
|
__u8 reset_cnt;
|
|
switch(wFeature) {
|
|
case USB_PORT_FEAT_RESET:
|
|
rh_dbg("SetPortFeature: reset\n");
|
|
|
|
if (rh.wPortStatusPrev[bPort] &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))
|
|
{
|
|
__u8 restart_controller = 0;
|
|
|
|
if ( (rh.wPortStatusPrev[0] &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) &&
|
|
(rh.wPortStatusPrev[1] &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)) )
|
|
{
|
|
/* Both ports is enabled. The USB controller will not change state. */
|
|
restart_controller = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Only ports is enabled. The USB controller will change state and
|
|
must be restarted. */
|
|
restart_controller = 1;
|
|
}
|
|
/*
|
|
In ETRAX 100LX it's not possible to reset an enabled root hub port.
|
|
The workaround is to disable and enable the port before resetting it.
|
|
Disabling the port can, if both ports are disabled at once, cause the
|
|
USB controller to change state to HOST_MODE state.
|
|
The USB controller state transition causes a lot of unwanted
|
|
interrupts that must be avoided.
|
|
Disabling the USB controller status and port status interrupts before
|
|
disabling/resetting the port stops these interrupts.
|
|
|
|
These actions are performed:
|
|
1. Disable USB controller status and port status interrupts.
|
|
2. Disable the port
|
|
3. Wait for the port to be disabled.
|
|
4. Enable the port.
|
|
5. Wait for the port to be enabled.
|
|
6. Reset the port.
|
|
7. Wait for for the reset to end.
|
|
8. Wait for the USB controller entering started state.
|
|
9. Order the USB controller to running state.
|
|
10. Wait for the USB controller reaching running state.
|
|
11. Clear all interrupts generated during the disable/enable/reset
|
|
procedure.
|
|
12. Enable the USB controller status and port status interrupts.
|
|
*/
|
|
|
|
/* 1. Disable USB controller status and USB port status interrupts. */
|
|
*R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, ctl_status, clr);
|
|
__asm__ __volatile__ (" nop");
|
|
*R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, port_status, clr);
|
|
__asm__ __volatile__ (" nop");
|
|
|
|
{
|
|
|
|
/* Since an root hub port reset shall be 50 ms and the ETRAX 100LX
|
|
root hub port reset is 10 ms we must perform 5 port resets to
|
|
achieve a proper root hub port reset. */
|
|
for (reset_cnt = 0; reset_cnt < 5; reset_cnt ++)
|
|
{
|
|
rh_dbg("Disable Port %d\n", bPort + 1);
|
|
|
|
/* 2. Disable the port*/
|
|
if (bPort == 0)
|
|
{
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes);
|
|
}
|
|
else
|
|
{
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes);
|
|
}
|
|
|
|
/* 3. Wait for the port to be disabled. */
|
|
while ( (bPort == 0) ?
|
|
*R_USB_RH_PORT_STATUS_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes) :
|
|
*R_USB_RH_PORT_STATUS_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes) ) {}
|
|
|
|
rh_dbg("Port %d is disabled. Enable it!\n", bPort + 1);
|
|
|
|
/* 4. Enable the port. */
|
|
if (bPort == 0)
|
|
{
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no);
|
|
}
|
|
else
|
|
{
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no);
|
|
}
|
|
|
|
/* 5. Wait for the port to be enabled again. */
|
|
while (!( (bPort == 0) ?
|
|
*R_USB_RH_PORT_STATUS_1 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes) :
|
|
*R_USB_RH_PORT_STATUS_2 &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes) ) ) {}
|
|
|
|
rh_dbg("Port %d is enabled.\n", bPort + 1);
|
|
|
|
/* 6. Reset the port */
|
|
crisv10_ready_wait();
|
|
*R_USB_COMMAND =
|
|
( (bPort == 0) ?
|
|
IO_STATE(R_USB_COMMAND, port_sel, port1):
|
|
IO_STATE(R_USB_COMMAND, port_sel, port2) ) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, busy, no) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, nop);
|
|
rh_dbg("Port %d is resetting.\n", bPort + 1);
|
|
|
|
/* 7. The USB specification says that we should wait for at least
|
|
10ms for device recover */
|
|
udelay(10500); /* 10,5ms blocking wait */
|
|
|
|
crisv10_ready_wait();
|
|
}
|
|
}
|
|
|
|
|
|
/* Check if the USB controller needs to be restarted. */
|
|
if (restart_controller)
|
|
{
|
|
/* 8. Wait for the USB controller entering started state. */
|
|
while (!(*R_USB_STATUS & IO_STATE(R_USB_STATUS, started, yes))) {}
|
|
|
|
/* 9. Order the USB controller to running state. */
|
|
crisv10_ready_wait();
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, busy, no) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
|
|
/* 10. Wait for the USB controller reaching running state. */
|
|
while (!(*R_USB_STATUS & IO_STATE(R_USB_STATUS, running, yes))) {}
|
|
}
|
|
|
|
/* 11. Clear any controller or port satus interrupts before enabling
|
|
the interrupts. */
|
|
{
|
|
u16 dummy;
|
|
|
|
/* Clear the port status interrupt of the reset port. */
|
|
if (bPort == 0)
|
|
{
|
|
rh_dbg("Clearing port 1 interrupts\n");
|
|
dummy = *R_USB_RH_PORT_STATUS_1;
|
|
}
|
|
else
|
|
{
|
|
rh_dbg("Clearing port 2 interrupts\n");
|
|
dummy = *R_USB_RH_PORT_STATUS_2;
|
|
}
|
|
|
|
if (restart_controller)
|
|
{
|
|
/* The USB controller is restarted. Clear all interupts. */
|
|
rh_dbg("Clearing all interrupts\n");
|
|
dummy = *R_USB_STATUS;
|
|
dummy = *R_USB_RH_PORT_STATUS_1;
|
|
dummy = *R_USB_RH_PORT_STATUS_2;
|
|
}
|
|
}
|
|
|
|
/* 12. Enable USB controller status and USB port status interrupts. */
|
|
*R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set);
|
|
__asm__ __volatile__ (" nop");
|
|
*R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, port_status, set);
|
|
__asm__ __volatile__ (" nop");
|
|
|
|
}
|
|
else
|
|
{
|
|
|
|
bUsbCommand |= IO_STATE(R_USB_COMMAND, port_cmd, reset);
|
|
/* Select which port via the port_sel field */
|
|
bUsbCommand |= IO_FIELD(R_USB_COMMAND, port_sel, bPort+1);
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
crisv10_ready_wait();
|
|
/* Send out the actual command to the USB controller */
|
|
*R_USB_COMMAND = bUsbCommand;
|
|
|
|
/* Wait a while for controller to first become started after port reset */
|
|
udelay(12000); /* 12ms blocking wait */
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
crisv10_ready_wait();
|
|
|
|
/* If all enabled ports were disabled the host controller goes down into
|
|
started mode, so we need to bring it back into the running state.
|
|
(This is safe even if it's already in the running state.) */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
}
|
|
|
|
break;
|
|
case USB_PORT_FEAT_SUSPEND:
|
|
rh_dbg("SetPortFeature: suspend\n");
|
|
bUsbCommand |= IO_STATE(R_USB_COMMAND, port_cmd, suspend);
|
|
goto set;
|
|
break;
|
|
case USB_PORT_FEAT_POWER:
|
|
rh_dbg("SetPortFeature: power\n");
|
|
break;
|
|
case USB_PORT_FEAT_C_CONNECTION:
|
|
rh_dbg("SetPortFeature: c_connection\n");
|
|
break;
|
|
case USB_PORT_FEAT_C_RESET:
|
|
rh_dbg("SetPortFeature: c_reset\n");
|
|
break;
|
|
case USB_PORT_FEAT_C_OVER_CURRENT:
|
|
rh_dbg("SetPortFeature: c_over_current\n");
|
|
break;
|
|
|
|
set:
|
|
/* Select which port via the port_sel field */
|
|
bUsbCommand |= IO_FIELD(R_USB_COMMAND, port_sel, bPort+1);
|
|
|
|
/* Make sure the controller isn't busy. */
|
|
crisv10_ready_wait();
|
|
/* Send out the actual command to the USB controller */
|
|
*R_USB_COMMAND = bUsbCommand;
|
|
break;
|
|
default:
|
|
rh_dbg("SetPortFeature: unknown feature\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int rh_clear_port_feature(__u8 bPort, __u16 wFeature) {
|
|
switch(wFeature) {
|
|
case USB_PORT_FEAT_ENABLE:
|
|
rh_dbg("ClearPortFeature: enable\n");
|
|
rh_disable_port(bPort);
|
|
break;
|
|
case USB_PORT_FEAT_SUSPEND:
|
|
rh_dbg("ClearPortFeature: suspend\n");
|
|
break;
|
|
case USB_PORT_FEAT_POWER:
|
|
rh_dbg("ClearPortFeature: power\n");
|
|
break;
|
|
|
|
case USB_PORT_FEAT_C_ENABLE:
|
|
rh_dbg("ClearPortFeature: c_enable\n");
|
|
goto clear;
|
|
case USB_PORT_FEAT_C_SUSPEND:
|
|
rh_dbg("ClearPortFeature: c_suspend\n");
|
|
goto clear;
|
|
case USB_PORT_FEAT_C_CONNECTION:
|
|
rh_dbg("ClearPortFeature: c_connection\n");
|
|
goto clear;
|
|
case USB_PORT_FEAT_C_OVER_CURRENT:
|
|
rh_dbg("ClearPortFeature: c_over_current\n");
|
|
goto clear;
|
|
case USB_PORT_FEAT_C_RESET:
|
|
rh_dbg("ClearPortFeature: c_reset\n");
|
|
goto clear;
|
|
clear:
|
|
rh.wPortChange[bPort] &= ~(1 << (wFeature - 16));
|
|
break;
|
|
default:
|
|
rh_dbg("ClearPortFeature: unknown feature\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
/* Handle a suspend request for the root hub (called from hcd_driver) */
|
|
static int rh_suspend_request(struct usb_hcd *hcd)
|
|
{
|
|
return 0; /* no-op for now */
|
|
}
|
|
|
|
/* Handle a resume request for the root hub (called from hcd_driver) */
|
|
static int rh_resume_request(struct usb_hcd *hcd)
|
|
{
|
|
return 0; /* no-op for now */
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
|
|
/* Wrapper function for workaround port disable registers in USB controller */
|
|
static void rh_disable_port(unsigned int port) {
|
|
volatile int timeout = 10000;
|
|
volatile char* usb_portx_disable;
|
|
switch(port) {
|
|
case 0:
|
|
usb_portx_disable = R_USB_PORT1_DISABLE;
|
|
break;
|
|
case 1:
|
|
usb_portx_disable = R_USB_PORT2_DISABLE;
|
|
break;
|
|
default:
|
|
/* Invalid port index */
|
|
return;
|
|
}
|
|
/* Set disable flag in special register */
|
|
*usb_portx_disable = IO_STATE(R_USB_PORT1_DISABLE, disable, yes);
|
|
/* Wait until not enabled anymore */
|
|
while((rh.wPortStatusPrev[port] &
|
|
IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)) &&
|
|
(timeout-- > 0));
|
|
|
|
/* clear disable flag in special register */
|
|
*usb_portx_disable = IO_STATE(R_USB_PORT1_DISABLE, disable, no);
|
|
rh_info("Physical port %d disabled\n", port+1);
|
|
}
|
|
|
|
|
|
/******************************************************************/
|
|
/* Transfer Controller (TC) functions */
|
|
/******************************************************************/
|
|
|
|
/* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it
|
|
dynamically?
|
|
To adjust it dynamically we would have to get an interrupt when we reach
|
|
the end of the rx descriptor list, or when we get close to the end, and
|
|
then allocate more descriptors. */
|
|
#define NBR_OF_RX_DESC 512
|
|
#define RX_DESC_BUF_SIZE 1024
|
|
#define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE)
|
|
|
|
|
|
/* Local variables for Transfer Controller */
|
|
/* --------------------------------------- */
|
|
|
|
/* This is a circular (double-linked) list of the active urbs for each epid.
|
|
The head is never removed, and new urbs are linked onto the list as
|
|
urb_entry_t elements. Don't reference urb_list directly; use the wrapper
|
|
functions instead (which includes spin_locks) */
|
|
static struct list_head urb_list[NBR_OF_EPIDS];
|
|
|
|
/* Read about the need and usage of this lock in submit_ctrl_urb. */
|
|
/* Lock for URB lists for each EPID */
|
|
static spinlock_t urb_list_lock;
|
|
|
|
/* Lock for EPID array register (R_USB_EPT_x) in Etrax */
|
|
static spinlock_t etrax_epid_lock;
|
|
|
|
/* Lock for dma8 sub0 handling */
|
|
static spinlock_t etrax_dma8_sub0_lock;
|
|
|
|
/* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line.
|
|
Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be
|
|
cache aligned. */
|
|
static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32)));
|
|
static volatile struct USB_IN_Desc RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4)));
|
|
|
|
/* Pointers into RxDescList. */
|
|
static volatile struct USB_IN_Desc *myNextRxDesc;
|
|
static volatile struct USB_IN_Desc *myLastRxDesc;
|
|
|
|
/* A zout transfer makes a memory access at the address of its buf pointer,
|
|
which means that setting this buf pointer to 0 will cause an access to the
|
|
flash. In addition to this, setting sw_len to 0 results in a 16/32 bytes
|
|
(depending on DMA burst size) transfer.
|
|
Instead, we set it to 1, and point it to this buffer. */
|
|
static int zout_buffer[4] __attribute__ ((aligned (4)));
|
|
|
|
/* Cache for allocating new EP and SB descriptors. */
|
|
static struct kmem_cache *usb_desc_cache;
|
|
|
|
/* Cache for the data allocated in the isoc descr top half. */
|
|
static struct kmem_cache *isoc_compl_cache;
|
|
|
|
/* Cache for the data allocated when delayed finishing of URBs */
|
|
static struct kmem_cache *later_data_cache;
|
|
|
|
|
|
/* Counter to keep track of how many Isoc EP we have sat up. Used to enable
|
|
and disable iso_eof interrupt. We only need these interrupts when we have
|
|
Isoc data endpoints (consumes CPU cycles).
|
|
FIXME: This could be more fine granular, so this interrupt is only enabled
|
|
when we have a In Isoc URB not URB_ISO_ASAP flaged queued. */
|
|
static int isoc_epid_counter;
|
|
|
|
/* Protecting wrapper functions for R_USB_EPT_x */
|
|
/* -------------------------------------------- */
|
|
static inline void etrax_epid_set(__u8 index, __u32 data) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index);
|
|
nop();
|
|
*R_USB_EPT_DATA = data;
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
}
|
|
|
|
static inline void etrax_epid_clear_error(__u8 index) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index);
|
|
nop();
|
|
*R_USB_EPT_DATA &=
|
|
~(IO_MASK(R_USB_EPT_DATA, error_count_in) |
|
|
IO_MASK(R_USB_EPT_DATA, error_count_out) |
|
|
IO_MASK(R_USB_EPT_DATA, error_code));
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
}
|
|
|
|
static inline void etrax_epid_set_toggle(__u8 index, __u8 dirout,
|
|
__u8 toggle) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index);
|
|
nop();
|
|
if(dirout) {
|
|
*R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out);
|
|
*R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle);
|
|
} else {
|
|
*R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in);
|
|
*R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle);
|
|
}
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
}
|
|
|
|
static inline __u8 etrax_epid_get_toggle(__u8 index, __u8 dirout) {
|
|
unsigned long flags;
|
|
__u8 toggle;
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index);
|
|
nop();
|
|
if (dirout) {
|
|
toggle = IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA);
|
|
} else {
|
|
toggle = IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA);
|
|
}
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
return toggle;
|
|
}
|
|
|
|
|
|
static inline __u32 etrax_epid_get(__u8 index) {
|
|
unsigned long flags;
|
|
__u32 data;
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, index);
|
|
nop();
|
|
data = *R_USB_EPT_DATA;
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
return data;
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Main functions for Transfer Controller */
|
|
/* -------------------------------------- */
|
|
|
|
/* Init structs, memories and lists used by Transfer Controller */
|
|
int tc_init(struct usb_hcd *hcd) {
|
|
int i;
|
|
/* Clear software state info for all epids */
|
|
memset(epid_state, 0, sizeof(struct etrax_epid) * NBR_OF_EPIDS);
|
|
|
|
/* Set Invalid and Dummy as being in use and disabled */
|
|
epid_state[INVALID_EPID].inuse = 1;
|
|
epid_state[DUMMY_EPID].inuse = 1;
|
|
epid_state[INVALID_EPID].disabled = 1;
|
|
epid_state[DUMMY_EPID].disabled = 1;
|
|
|
|
/* Clear counter for how many Isoc epids we have sat up */
|
|
isoc_epid_counter = 0;
|
|
|
|
/* Initialize the urb list by initiating a head for each list.
|
|
Also reset list hodling active URB for each epid */
|
|
for (i = 0; i < NBR_OF_EPIDS; i++) {
|
|
INIT_LIST_HEAD(&urb_list[i]);
|
|
activeUrbList[i] = NULL;
|
|
}
|
|
|
|
/* Init lock for URB lists */
|
|
spin_lock_init(&urb_list_lock);
|
|
/* Init lock for Etrax R_USB_EPT register */
|
|
spin_lock_init(&etrax_epid_lock);
|
|
/* Init lock for Etrax dma8 sub0 handling */
|
|
spin_lock_init(&etrax_dma8_sub0_lock);
|
|
|
|
/* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */
|
|
|
|
/* Note that we specify sizeof(struct USB_EP_Desc) as the size, but also
|
|
allocate SB descriptors from this cache. This is ok since
|
|
sizeof(struct USB_EP_Desc) == sizeof(struct USB_SB_Desc). */
|
|
usb_desc_cache = kmem_cache_create("usb_desc_cache",
|
|
sizeof(struct USB_EP_Desc), 0,
|
|
SLAB_HWCACHE_ALIGN, 0);
|
|
if(usb_desc_cache == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Create slab cache for speedy allocation of memory for isoc bottom-half
|
|
interrupt handling */
|
|
isoc_compl_cache =
|
|
kmem_cache_create("isoc_compl_cache",
|
|
sizeof(struct crisv10_isoc_complete_data),
|
|
0, SLAB_HWCACHE_ALIGN, 0);
|
|
if(isoc_compl_cache == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Create slab cache for speedy allocation of memory for later URB finish
|
|
struct */
|
|
later_data_cache =
|
|
kmem_cache_create("later_data_cache",
|
|
sizeof(struct urb_later_data),
|
|
0, SLAB_HWCACHE_ALIGN, 0);
|
|
if(later_data_cache == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
/* Initiate the bulk start timer. */
|
|
init_timer(&bulk_start_timer);
|
|
bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL;
|
|
bulk_start_timer.function = tc_bulk_start_timer_func;
|
|
add_timer(&bulk_start_timer);
|
|
|
|
|
|
/* Initiate the bulk eot timer. */
|
|
init_timer(&bulk_eot_timer);
|
|
bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL;
|
|
bulk_eot_timer.function = tc_bulk_eot_timer_func;
|
|
bulk_eot_timer.data = (unsigned long)hcd;
|
|
add_timer(&bulk_eot_timer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Uninitialize all resources used by Transfer Controller */
|
|
void tc_destroy(void) {
|
|
|
|
/* Destroy all slab cache */
|
|
kmem_cache_destroy(usb_desc_cache);
|
|
kmem_cache_destroy(isoc_compl_cache);
|
|
kmem_cache_destroy(later_data_cache);
|
|
|
|
/* Remove timers */
|
|
del_timer(&bulk_start_timer);
|
|
del_timer(&bulk_eot_timer);
|
|
}
|
|
|
|
static void restart_dma8_sub0(void) {
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&etrax_dma8_sub0_lock, flags);
|
|
/* Verify that the dma is not running */
|
|
if ((*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)) == 0) {
|
|
struct USB_EP_Desc *ep = (struct USB_EP_Desc *)phys_to_virt(*R_DMA_CH8_SUB0_EP);
|
|
while (DUMMY_EPID == IO_EXTRACT(USB_EP_command, epid, ep->command)) {
|
|
ep = (struct USB_EP_Desc *)phys_to_virt(ep->next);
|
|
}
|
|
/* Advance the DMA to the next EP descriptor that is not a DUMMY_EPID. */
|
|
*R_DMA_CH8_SUB0_EP = virt_to_phys(ep);
|
|
/* Restart the DMA */
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start);
|
|
}
|
|
spin_unlock_irqrestore(&etrax_dma8_sub0_lock, flags);
|
|
}
|
|
|
|
/* queue an URB with the transfer controller (called from hcd_driver) */
|
|
static int tc_urb_enqueue(struct usb_hcd *hcd,
|
|
struct urb *urb,
|
|
gfp_t mem_flags) {
|
|
int epid;
|
|
int retval;
|
|
int bustime = 0;
|
|
int maxpacket;
|
|
unsigned long flags;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd);
|
|
DBFENTER;
|
|
|
|
if(!(crisv10_hcd->running)) {
|
|
/* The USB Controller is not running, probably because no device is
|
|
attached. No idea to enqueue URBs then */
|
|
tc_warn("Rejected enqueueing of URB:0x%x because no dev attached\n",
|
|
(unsigned int)urb);
|
|
return -ENOENT;
|
|
}
|
|
|
|
maxpacket = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
/* Special case check for In Isoc transfers. Specification states that each
|
|
In Isoc transfer consists of one packet and therefore it should fit into
|
|
the transfer-buffer of an URB.
|
|
We do the check here to be sure (an invalid scenario can be produced with
|
|
parameters to the usbtest suite) */
|
|
if(usb_pipeisoc(urb->pipe) && usb_pipein(urb->pipe) &&
|
|
(urb->transfer_buffer_length < maxpacket)) {
|
|
tc_err("Submit In Isoc URB with buffer length:%d to pipe with maxpacketlen: %d\n", urb->transfer_buffer_length, maxpacket);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
/* Check if there is a epid for URBs destination, if not this function
|
|
set up one. */
|
|
epid = tc_setup_epid(urb->ep, urb, mem_flags);
|
|
if (epid < 0) {
|
|
tc_err("Failed setup epid:%d for URB:0x%x\n", epid, (unsigned int)urb);
|
|
DBFEXIT;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if(urb == activeUrbList[epid]) {
|
|
tc_err("Resubmition of allready active URB:0x%x\n", (unsigned int)urb);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if(urb_list_entry(urb, epid)) {
|
|
tc_err("Resubmition of allready queued URB:0x%x\n", (unsigned int)urb);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* If we actively have flaged endpoint as disabled then refuse submition */
|
|
if(epid_state[epid].disabled) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Allocate and init HC-private data for URB */
|
|
if(urb_priv_create(hcd, urb, epid, mem_flags) != 0) {
|
|
DBFEXIT;
|
|
return -ENOMEM;
|
|
}
|
|
urb_priv = urb->hcpriv;
|
|
|
|
/* Check if there is enough bandwidth for periodic transfer */
|
|
if(usb_pipeint(urb->pipe) || usb_pipeisoc(urb->pipe)) {
|
|
/* only check (and later claim) if not already claimed */
|
|
if (urb_priv->bandwidth == 0) {
|
|
bustime = crisv10_usb_check_bandwidth(urb->dev, urb);
|
|
if (bustime < 0) {
|
|
tc_err("Not enough periodic bandwidth\n");
|
|
urb_priv_free(hcd, urb);
|
|
DBFEXIT;
|
|
return -ENOSPC;
|
|
}
|
|
}
|
|
}
|
|
|
|
tc_dbg("Enqueue URB:0x%x[%d] epid:%d (%s) bufflen:%d\n",
|
|
(unsigned int)urb, urb_priv->urb_num, epid,
|
|
pipe_to_str(urb->pipe), urb->transfer_buffer_length);
|
|
|
|
/* Create and link SBs required for this URB */
|
|
retval = create_sb_for_urb(urb, mem_flags);
|
|
if(retval != 0) {
|
|
tc_err("Failed to create SBs for URB:0x%x[%d]\n", (unsigned int)urb,
|
|
urb_priv->urb_num);
|
|
urb_priv_free(hcd, urb);
|
|
DBFEXIT;
|
|
return retval;
|
|
}
|
|
|
|
/* Init intr EP pool if this URB is a INTR transfer. This pool is later
|
|
used when inserting EPs in the TxIntrEPList. We do the alloc here
|
|
so we can't run out of memory later */
|
|
if(usb_pipeint(urb->pipe)) {
|
|
retval = init_intr_urb(urb, mem_flags);
|
|
if(retval != 0) {
|
|
tc_warn("Failed to init Intr URB\n");
|
|
urb_priv_free(hcd, urb);
|
|
DBFEXIT;
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/* Disable other access when inserting USB */
|
|
local_irq_save(flags);
|
|
|
|
/* Claim bandwidth, if needed */
|
|
if(bustime) {
|
|
crisv10_usb_claim_bandwidth(urb->dev,
|
|
urb,
|
|
bustime,
|
|
(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS));
|
|
}
|
|
|
|
/* Add URB to EP queue */
|
|
urb_list_add(urb, epid, mem_flags);
|
|
|
|
if(usb_pipeisoc(urb->pipe)) {
|
|
/* Special processing of Isoc URBs. */
|
|
tc_dma_process_isoc_urb(urb);
|
|
} else {
|
|
/* Process EP queue for rest of the URB types (Bulk, Ctrl, Intr) */
|
|
tc_dma_process_queue(epid);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
/* remove an URB from the transfer controller queues (called from hcd_driver)*/
|
|
static int tc_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) {
|
|
struct crisv10_urb_priv *urb_priv;
|
|
unsigned long flags;
|
|
int epid;
|
|
|
|
DBFENTER;
|
|
/* Disable interrupts here since a descriptor interrupt for the isoc epid
|
|
will modify the sb list. This could possibly be done more granular, but
|
|
urb_dequeue should not be used frequently anyway.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
urb->status = status;
|
|
urb_priv = urb->hcpriv;
|
|
|
|
if (!urb_priv) {
|
|
/* This happens if a device driver calls unlink on an urb that
|
|
was never submitted (lazy driver) or if the urb was completed
|
|
while dequeue was being called. */
|
|
tc_warn("Dequeing of not enqueued URB:0x%x\n", (unsigned int)urb);
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
epid = urb_priv->epid;
|
|
|
|
tc_warn("Dequeing %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n",
|
|
(urb == activeUrbList[epid]) ? "active" : "queued",
|
|
(unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), epid, urb->status,
|
|
(urb_priv->later_data) ? "later-sched" : "");
|
|
|
|
/* For Bulk, Ctrl and Intr are only one URB active at a time. So any URB
|
|
that isn't active can be dequeued by just removing it from the queue */
|
|
if(usb_pipebulk(urb->pipe) || usb_pipecontrol(urb->pipe) ||
|
|
usb_pipeint(urb->pipe)) {
|
|
|
|
/* Check if URB haven't gone further than the queue */
|
|
if(urb != activeUrbList[epid]) {
|
|
ASSERT(urb_priv->later_data == NULL);
|
|
tc_warn("Dequeing URB:0x%x[%d] (%s %s epid:%d) from queue"
|
|
" (not active)\n", (unsigned int)urb, urb_priv->urb_num,
|
|
str_dir(urb->pipe), str_type(urb->pipe), epid);
|
|
|
|
/* Finish the URB with error status from USB core */
|
|
tc_finish_urb(hcd, urb, urb->status);
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Set URB status to Unlink for handling when interrupt comes. */
|
|
urb_priv->urb_state = UNLINK;
|
|
|
|
/* Differentiate dequeing of Bulk and Ctrl from Isoc and Intr */
|
|
switch(usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
/* Check if EP still is enabled */
|
|
if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it. */
|
|
TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
}
|
|
/* Kicking dummy list out of the party. */
|
|
TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]);
|
|
break;
|
|
case PIPE_CONTROL:
|
|
/* Check if EP still is enabled */
|
|
if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it. */
|
|
TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
}
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
/* Disabling, busy-wait and unlinking of Isoc SBs will be done in
|
|
finish_isoc_urb(). Because there might the case when URB is dequeued
|
|
but there are other valid URBs waiting */
|
|
|
|
/* Check if In Isoc EP still is enabled */
|
|
if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it. */
|
|
TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
}
|
|
break;
|
|
case PIPE_INTERRUPT:
|
|
/* Special care is taken for interrupt URBs. EPs are unlinked in
|
|
tc_finish_urb */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Asynchronous unlink, finish the URB later from scheduled or other
|
|
event (data finished, error) */
|
|
tc_finish_urb_later(hcd, urb, urb->status);
|
|
|
|
local_irq_restore(flags);
|
|
DBFEXIT;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void tc_sync_finish_epid(struct usb_hcd *hcd, int epid) {
|
|
volatile int timeout = 10000;
|
|
struct urb* urb;
|
|
struct crisv10_urb_priv* urb_priv;
|
|
unsigned long flags;
|
|
|
|
volatile struct USB_EP_Desc *first_ep; /* First EP in the list. */
|
|
volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */
|
|
volatile struct USB_EP_Desc *next_ep; /* The EP after current. */
|
|
|
|
int type = epid_state[epid].type;
|
|
|
|
/* Setting this flag will cause enqueue() to return -ENOENT for new
|
|
submitions on this endpoint and finish_urb() wont process queue further */
|
|
epid_state[epid].disabled = 1;
|
|
|
|
switch(type) {
|
|
case PIPE_BULK:
|
|
/* Check if EP still is enabled */
|
|
if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it. */
|
|
TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
tc_warn("sync_finish: Disabling EP for epid:%d\n", epid);
|
|
|
|
/* Do busy-wait until DMA not using this EP descriptor anymore */
|
|
while((*R_DMA_CH8_SUB0_EP ==
|
|
virt_to_phys(&TxBulkEPList[epid])) &&
|
|
(timeout-- > 0));
|
|
|
|
}
|
|
break;
|
|
|
|
case PIPE_CONTROL:
|
|
/* Check if EP still is enabled */
|
|
if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
/* The EP was enabled, disable it. */
|
|
TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
tc_warn("sync_finish: Disabling EP for epid:%d\n", epid);
|
|
|
|
/* Do busy-wait until DMA not using this EP descriptor anymore */
|
|
while((*R_DMA_CH8_SUB1_EP ==
|
|
virt_to_phys(&TxCtrlEPList[epid])) &&
|
|
(timeout-- > 0));
|
|
}
|
|
break;
|
|
|
|
case PIPE_INTERRUPT:
|
|
local_irq_save(flags);
|
|
/* Disable all Intr EPs belonging to epid */
|
|
first_ep = &TxIntrEPList[0];
|
|
curr_ep = first_ep;
|
|
do {
|
|
next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next);
|
|
if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) {
|
|
/* Disable EP */
|
|
next_ep->command &= ~IO_MASK(USB_EP_command, enable);
|
|
}
|
|
curr_ep = phys_to_virt(curr_ep->next);
|
|
} while (curr_ep != first_ep);
|
|
|
|
local_irq_restore(flags);
|
|
break;
|
|
|
|
case PIPE_ISOCHRONOUS:
|
|
/* Check if EP still is enabled */
|
|
if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
tc_warn("sync_finish: Disabling Isoc EP for epid:%d\n", epid);
|
|
/* The EP was enabled, disable it. */
|
|
TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
while((*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])) &&
|
|
(timeout-- > 0));
|
|
}
|
|
break;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Finish if there is active URB for this endpoint */
|
|
if(activeUrbList[epid] != NULL) {
|
|
urb = activeUrbList[epid];
|
|
urb_priv = urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
tc_warn("Sync finish %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n",
|
|
(urb == activeUrbList[epid]) ? "active" : "queued",
|
|
(unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), epid, urb->status,
|
|
(urb_priv->later_data) ? "later-sched" : "");
|
|
|
|
tc_finish_urb(hcd, activeUrbList[epid], -ENOENT);
|
|
ASSERT(activeUrbList[epid] == NULL);
|
|
}
|
|
|
|
/* Finish any queued URBs for this endpoint. There won't be any resubmitions
|
|
because epid_disabled causes enqueue() to fail for this endpoint */
|
|
while((urb = urb_list_first(epid)) != NULL) {
|
|
urb_priv = urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
tc_warn("Sync finish %s URB:0x%x[%d] (%s %s epid:%d) status:%d %s\n",
|
|
(urb == activeUrbList[epid]) ? "active" : "queued",
|
|
(unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), epid, urb->status,
|
|
(urb_priv->later_data) ? "later-sched" : "");
|
|
|
|
tc_finish_urb(hcd, urb, -ENOENT);
|
|
}
|
|
epid_state[epid].disabled = 0;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* free resources associated with an endpoint (called from hcd_driver) */
|
|
static void tc_endpoint_disable(struct usb_hcd *hcd,
|
|
struct usb_host_endpoint *ep) {
|
|
DBFENTER;
|
|
/* Only free epid if it has been allocated. We get two endpoint_disable
|
|
requests for ctrl endpoints so ignore the second one */
|
|
if(ep->hcpriv != NULL) {
|
|
struct crisv10_ep_priv *ep_priv = ep->hcpriv;
|
|
int epid = ep_priv->epid;
|
|
tc_warn("endpoint_disable ep:0x%x ep-priv:0x%x (%s) (epid:%d freed)\n",
|
|
(unsigned int)ep, (unsigned int)ep->hcpriv,
|
|
endpoint_to_str(&(ep->desc)), epid);
|
|
|
|
tc_sync_finish_epid(hcd, epid);
|
|
|
|
ASSERT(activeUrbList[epid] == NULL);
|
|
ASSERT(list_empty(&urb_list[epid]));
|
|
|
|
tc_free_epid(ep);
|
|
} else {
|
|
tc_dbg("endpoint_disable ep:0x%x ep-priv:0x%x (%s)\n", (unsigned int)ep,
|
|
(unsigned int)ep->hcpriv, endpoint_to_str(&(ep->desc)));
|
|
}
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void tc_finish_urb_later_proc(struct work_struct* work) {
|
|
unsigned long flags;
|
|
struct urb_later_data* uld;
|
|
|
|
local_irq_save(flags);
|
|
uld = container_of(work, struct urb_later_data, dws.work);
|
|
if(uld->urb == NULL) {
|
|
late_dbg("Later finish of URB = NULL (allready finished)\n");
|
|
} else {
|
|
struct crisv10_urb_priv* urb_priv = uld->urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
if(urb_priv->urb_num == uld->urb_num) {
|
|
late_dbg("Later finish of URB:0x%x[%d]\n", (unsigned int)(uld->urb),
|
|
urb_priv->urb_num);
|
|
if(uld->status != uld->urb->status) {
|
|
errno_dbg("Later-finish URB with status:%d, later-status:%d\n",
|
|
uld->urb->status, uld->status);
|
|
}
|
|
if(uld != urb_priv->later_data) {
|
|
panic("Scheduled uld not same as URBs uld\n");
|
|
}
|
|
tc_finish_urb(uld->hcd, uld->urb, uld->status);
|
|
} else {
|
|
late_warn("Ignoring later finish of URB:0x%x[%d]"
|
|
", urb_num doesn't match current URB:0x%x[%d]",
|
|
(unsigned int)(uld->urb), uld->urb_num,
|
|
(unsigned int)(uld->urb), urb_priv->urb_num);
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
kmem_cache_free(later_data_cache, uld);
|
|
}
|
|
|
|
static void tc_finish_urb_later(struct usb_hcd *hcd, struct urb *urb,
|
|
int status) {
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
struct urb_later_data* uld;
|
|
|
|
ASSERT(urb_priv);
|
|
|
|
if(urb_priv->later_data != NULL) {
|
|
/* Later-finish allready scheduled for this URB, just update status to
|
|
return when finishing later */
|
|
errno_dbg("Later-finish schedule change URB status:%d with new"
|
|
" status:%d\n", urb_priv->later_data->status, status);
|
|
|
|
urb_priv->later_data->status = status;
|
|
return;
|
|
}
|
|
|
|
uld = kmem_cache_alloc(later_data_cache, GFP_ATOMIC);
|
|
ASSERT(uld);
|
|
|
|
uld->hcd = hcd;
|
|
uld->urb = urb;
|
|
uld->urb_num = urb_priv->urb_num;
|
|
uld->status = status;
|
|
|
|
INIT_DELAYED_WORK(&uld->dws, tc_finish_urb_later_proc);
|
|
urb_priv->later_data = uld;
|
|
|
|
/* Schedule the finishing of the URB to happen later */
|
|
schedule_delayed_work(&uld->dws, LATER_TIMER_DELAY);
|
|
}
|
|
|
|
static void tc_finish_isoc_urb(struct usb_hcd *hcd, struct urb *urb,
|
|
int status);
|
|
|
|
static void tc_finish_urb(struct usb_hcd *hcd, struct urb *urb, int status) {
|
|
struct crisv10_hcd* crisv10_hcd = hcd_to_crisv10_hcd(hcd);
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
int epid;
|
|
char toggle;
|
|
int urb_num;
|
|
|
|
DBFENTER;
|
|
ASSERT(urb_priv != NULL);
|
|
epid = urb_priv->epid;
|
|
urb_num = urb_priv->urb_num;
|
|
|
|
if(urb != activeUrbList[epid]) {
|
|
if(urb_list_entry(urb, epid)) {
|
|
/* Remove this URB from the list. Only happens when URB are finished
|
|
before having been processed (dequeing) */
|
|
urb_list_del(urb, epid);
|
|
} else {
|
|
tc_warn("Finishing of URB:0x%x[%d] neither active or in queue for"
|
|
" epid:%d\n", (unsigned int)urb, urb_num, epid);
|
|
}
|
|
}
|
|
|
|
/* Cancel any pending later-finish of this URB */
|
|
if(urb_priv->later_data) {
|
|
urb_priv->later_data->urb = NULL;
|
|
}
|
|
|
|
/* For an IN pipe, we always set the actual length, regardless of whether
|
|
there was an error or not (which means the device driver can use the data
|
|
if it wants to). */
|
|
if(usb_pipein(urb->pipe)) {
|
|
urb->actual_length = urb_priv->rx_offset;
|
|
} else {
|
|
/* Set actual_length for OUT urbs also; the USB mass storage driver seems
|
|
to want that. */
|
|
if (status == 0 && urb->status == -EINPROGRESS) {
|
|
urb->actual_length = urb->transfer_buffer_length;
|
|
} else {
|
|
/* We wouldn't know of any partial writes if there was an error. */
|
|
urb->actual_length = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* URB status mangling */
|
|
if(urb->status == -EINPROGRESS) {
|
|
/* The USB core hasn't changed the status, let's set our finish status */
|
|
urb->status = status;
|
|
|
|
if ((status == 0) && (urb->transfer_flags & URB_SHORT_NOT_OK) &&
|
|
usb_pipein(urb->pipe) &&
|
|
(urb->actual_length != urb->transfer_buffer_length)) {
|
|
/* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's
|
|
max length) is to be treated as an error. */
|
|
errno_dbg("Finishing URB:0x%x[%d] with SHORT_NOT_OK flag and short"
|
|
" data:%d\n", (unsigned int)urb, urb_num,
|
|
urb->actual_length);
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
|
|
if(urb_priv->urb_state == UNLINK) {
|
|
/* URB has been requested to be unlinked asynchronously */
|
|
urb->status = -ECONNRESET;
|
|
errno_dbg("Fixing unlink status of URB:0x%x[%d] to:%d\n",
|
|
(unsigned int)urb, urb_num, urb->status);
|
|
}
|
|
} else {
|
|
/* The USB Core wants to signal some error via the URB, pass it through */
|
|
}
|
|
|
|
/* use completely different finish function for Isoc URBs */
|
|
if(usb_pipeisoc(urb->pipe)) {
|
|
tc_finish_isoc_urb(hcd, urb, status);
|
|
return;
|
|
}
|
|
|
|
/* Do special unlinking of EPs for Intr traffic */
|
|
if(usb_pipeint(urb->pipe)) {
|
|
tc_dma_unlink_intr_urb(urb);
|
|
}
|
|
|
|
/* Release allocated bandwidth for periodic transfers */
|
|
if(usb_pipeint(urb->pipe) || usb_pipeisoc(urb->pipe))
|
|
crisv10_usb_release_bandwidth(hcd,
|
|
usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS,
|
|
urb_priv->bandwidth);
|
|
|
|
/* This URB is active on EP */
|
|
if(urb == activeUrbList[epid]) {
|
|
/* We need to fiddle with the toggle bits because the hardware doesn't do
|
|
it for us. */
|
|
toggle = etrax_epid_get_toggle(epid, usb_pipeout(urb->pipe));
|
|
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe), toggle);
|
|
|
|
/* Checks for Ctrl and Bulk EPs */
|
|
switch(usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
/* Check so Bulk EP realy is disabled before finishing active URB */
|
|
ASSERT((TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) ==
|
|
IO_STATE(USB_EP_command, enable, no));
|
|
/* Disable sub-pointer for EP to avoid next tx_interrupt() to
|
|
process Bulk EP. */
|
|
TxBulkEPList[epid].sub = 0;
|
|
/* No need to wait for the DMA before changing the next pointer.
|
|
The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use
|
|
the last one (INVALID_EPID) for actual traffic. */
|
|
TxBulkEPList[epid].next =
|
|
virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]);
|
|
break;
|
|
case PIPE_CONTROL:
|
|
/* Check so Ctrl EP realy is disabled before finishing active URB */
|
|
ASSERT((TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) ==
|
|
IO_STATE(USB_EP_command, enable, no));
|
|
/* Disable sub-pointer for EP to avoid next tx_interrupt() to
|
|
process Ctrl EP. */
|
|
TxCtrlEPList[epid].sub = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Free HC-private URB data*/
|
|
urb_priv_free(hcd, urb);
|
|
|
|
if(urb->status) {
|
|
errno_dbg("finish_urb (URB:0x%x[%d] %s %s) (data:%d) status:%d\n",
|
|
(unsigned int)urb, urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), urb->actual_length, urb->status);
|
|
} else {
|
|
tc_dbg("finish_urb (URB:0x%x[%d] %s %s) (data:%d) status:%d\n",
|
|
(unsigned int)urb, urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), urb->actual_length, urb->status);
|
|
}
|
|
|
|
/* If we just finished an active URB, clear active pointer. */
|
|
if (urb == activeUrbList[epid]) {
|
|
/* Make URB not active on EP anymore */
|
|
activeUrbList[epid] = NULL;
|
|
|
|
if(urb->status == 0) {
|
|
/* URB finished sucessfully, process queue to see if there are any more
|
|
URBs waiting before we call completion function.*/
|
|
if(crisv10_hcd->running) {
|
|
/* Only process queue if USB controller is running */
|
|
tc_dma_process_queue(epid);
|
|
} else {
|
|
tc_warn("No processing of queue for epid:%d, USB Controller not"
|
|
" running\n", epid);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Hand the URB from HCD to its USB device driver, using its completion
|
|
functions */
|
|
usb_hcd_giveback_urb (hcd, urb, status);
|
|
|
|
/* Check the queue once more if the URB returned with error, because we
|
|
didn't do it before the completion function because the specification
|
|
states that the queue should not restart until all it's unlinked
|
|
URBs have been fully retired, with the completion functions run */
|
|
if(crisv10_hcd->running) {
|
|
/* Only process queue if USB controller is running */
|
|
tc_dma_process_queue(epid);
|
|
} else {
|
|
tc_warn("No processing of queue for epid:%d, USB Controller not running\n",
|
|
epid);
|
|
}
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static void tc_finish_isoc_urb(struct usb_hcd *hcd, struct urb *urb,
|
|
int status) {
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
int epid, i;
|
|
volatile int timeout = 10000;
|
|
int bandwidth = 0;
|
|
|
|
ASSERT(urb_priv);
|
|
epid = urb_priv->epid;
|
|
|
|
ASSERT(usb_pipeisoc(urb->pipe));
|
|
|
|
/* Set that all isoc packets have status and length set before
|
|
completing the urb. */
|
|
for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++){
|
|
urb->iso_frame_desc[i].actual_length = 0;
|
|
urb->iso_frame_desc[i].status = -EPROTO;
|
|
}
|
|
|
|
/* Check if the URB is currently active (done or error) */
|
|
if(urb == activeUrbList[epid]) {
|
|
/* Check if there are another In Isoc URB queued for this epid */
|
|
if (!list_empty(&urb_list[epid])&& !epid_state[epid].disabled) {
|
|
/* Move it from queue to active and mark it started so Isoc transfers
|
|
won't be interrupted.
|
|
All Isoc URBs data transfers are already added to DMA lists so we
|
|
don't have to insert anything in DMA lists here. */
|
|
activeUrbList[epid] = urb_list_first(epid);
|
|
((struct crisv10_urb_priv *)(activeUrbList[epid]->hcpriv))->urb_state =
|
|
STARTED;
|
|
urb_list_del(activeUrbList[epid], epid);
|
|
|
|
if(urb->status) {
|
|
errno_dbg("finish_isoc_urb (URB:0x%x[%d] %s %s) (%d of %d packets)"
|
|
" status:%d, new waiting URB:0x%x[%d]\n",
|
|
(unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), urb_priv->isoc_packet_counter,
|
|
urb->number_of_packets, urb->status,
|
|
(unsigned int)activeUrbList[epid],
|
|
((struct crisv10_urb_priv *)(activeUrbList[epid]->hcpriv))->urb_num);
|
|
}
|
|
|
|
} else { /* No other URB queued for this epid */
|
|
if(urb->status) {
|
|
errno_dbg("finish_isoc_urb (URB:0x%x[%d] %s %s) (%d of %d packets)"
|
|
" status:%d, no new URB waiting\n",
|
|
(unsigned int)urb, urb_priv->urb_num, str_dir(urb->pipe),
|
|
str_type(urb->pipe), urb_priv->isoc_packet_counter,
|
|
urb->number_of_packets, urb->status);
|
|
}
|
|
|
|
/* Check if EP is still enabled, then shut it down. */
|
|
if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
isoc_dbg("Isoc EP enabled for epid:%d, disabling it\n", epid);
|
|
|
|
/* Should only occur for In Isoc EPs where SB isn't consumed. */
|
|
ASSERT(usb_pipein(urb->pipe));
|
|
|
|
/* Disable it and wait for it to stop */
|
|
TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Ah, the luxury of busy-wait. */
|
|
while((*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])) &&
|
|
(timeout-- > 0));
|
|
}
|
|
|
|
/* Unlink SB to say that epid is finished. */
|
|
TxIsocEPList[epid].sub = 0;
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
|
|
/* No URB active for EP anymore */
|
|
activeUrbList[epid] = NULL;
|
|
}
|
|
} else { /* Finishing of not active URB (queued up with SBs thought) */
|
|
isoc_warn("finish_isoc_urb (URB:0x%x %s) (%d of %d packets) status:%d,"
|
|
" SB queued but not active\n",
|
|
(unsigned int)urb, str_dir(urb->pipe),
|
|
urb_priv->isoc_packet_counter, urb->number_of_packets,
|
|
urb->status);
|
|
if(usb_pipeout(urb->pipe)) {
|
|
/* Finishing of not yet active Out Isoc URB needs unlinking of SBs. */
|
|
struct USB_SB_Desc *iter_sb, *prev_sb, *next_sb;
|
|
|
|
iter_sb = TxIsocEPList[epid].sub ?
|
|
phys_to_virt(TxIsocEPList[epid].sub) : 0;
|
|
prev_sb = 0;
|
|
|
|
/* SB that is linked before this URBs first SB */
|
|
while (iter_sb && (iter_sb != urb_priv->first_sb)) {
|
|
prev_sb = iter_sb;
|
|
iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
}
|
|
|
|
if (iter_sb == 0) {
|
|
/* Unlink of the URB currently being transmitted. */
|
|
prev_sb = 0;
|
|
iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0;
|
|
}
|
|
|
|
while (iter_sb && (iter_sb != urb_priv->last_sb)) {
|
|
iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
}
|
|
|
|
if (iter_sb) {
|
|
next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0;
|
|
} else {
|
|
/* This should only happen if the DMA has completed
|
|
processing the SB list for this EP while interrupts
|
|
are disabled. */
|
|
isoc_dbg("Isoc urb not found, already sent?\n");
|
|
next_sb = 0;
|
|
}
|
|
if (prev_sb) {
|
|
prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0;
|
|
} else {
|
|
TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free HC-private URB data*/
|
|
bandwidth = urb_priv->bandwidth;
|
|
urb_priv_free(hcd, urb);
|
|
|
|
crisv10_usb_release_bandwidth(hcd, usb_pipeisoc(urb->pipe), bandwidth);
|
|
|
|
/* Hand the URB from HCD to its USB device driver, using its completion
|
|
functions */
|
|
usb_hcd_giveback_urb (hcd, urb, status);
|
|
}
|
|
|
|
static __u32 urb_num = 0;
|
|
|
|
/* allocate and initialize URB private data */
|
|
static int urb_priv_create(struct usb_hcd *hcd, struct urb *urb, int epid,
|
|
int mem_flags) {
|
|
struct crisv10_urb_priv *urb_priv;
|
|
|
|
urb_priv = kmalloc(sizeof *urb_priv, mem_flags);
|
|
if (!urb_priv)
|
|
return -ENOMEM;
|
|
memset(urb_priv, 0, sizeof *urb_priv);
|
|
|
|
urb_priv->epid = epid;
|
|
urb_priv->urb_state = NOT_STARTED;
|
|
|
|
urb->hcpriv = urb_priv;
|
|
/* Assign URB a sequence number, and increment counter */
|
|
urb_priv->urb_num = urb_num;
|
|
urb_num++;
|
|
urb_priv->bandwidth = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* free URB private data */
|
|
static void urb_priv_free(struct usb_hcd *hcd, struct urb *urb) {
|
|
int i;
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
ASSERT(urb_priv != 0);
|
|
|
|
/* Check it has any SBs linked that needs to be freed*/
|
|
if(urb_priv->first_sb != NULL) {
|
|
struct USB_SB_Desc *next_sb, *first_sb, *last_sb;
|
|
int i = 0;
|
|
first_sb = urb_priv->first_sb;
|
|
last_sb = urb_priv->last_sb;
|
|
ASSERT(last_sb);
|
|
while(first_sb != last_sb) {
|
|
next_sb = (struct USB_SB_Desc *)phys_to_virt(first_sb->next);
|
|
kmem_cache_free(usb_desc_cache, first_sb);
|
|
first_sb = next_sb;
|
|
i++;
|
|
}
|
|
kmem_cache_free(usb_desc_cache, last_sb);
|
|
i++;
|
|
}
|
|
|
|
/* Check if it has any EPs in its Intr pool that also needs to be freed */
|
|
if(urb_priv->intr_ep_pool_length > 0) {
|
|
for(i = 0; i < urb_priv->intr_ep_pool_length; i++) {
|
|
kfree(urb_priv->intr_ep_pool[i]);
|
|
}
|
|
/*
|
|
tc_dbg("Freed %d EPs from URB:0x%x EP pool\n",
|
|
urb_priv->intr_ep_pool_length, (unsigned int)urb);
|
|
*/
|
|
}
|
|
|
|
kfree(urb_priv);
|
|
urb->hcpriv = NULL;
|
|
}
|
|
|
|
static int ep_priv_create(struct usb_host_endpoint *ep, int mem_flags) {
|
|
struct crisv10_ep_priv *ep_priv;
|
|
|
|
ep_priv = kmalloc(sizeof *ep_priv, mem_flags);
|
|
if (!ep_priv)
|
|
return -ENOMEM;
|
|
memset(ep_priv, 0, sizeof *ep_priv);
|
|
|
|
ep->hcpriv = ep_priv;
|
|
return 0;
|
|
}
|
|
|
|
static void ep_priv_free(struct usb_host_endpoint *ep) {
|
|
struct crisv10_ep_priv *ep_priv = ep->hcpriv;
|
|
ASSERT(ep_priv);
|
|
kfree(ep_priv);
|
|
ep->hcpriv = NULL;
|
|
}
|
|
|
|
/*
|
|
* usb_check_bandwidth():
|
|
*
|
|
* old_alloc is from host_controller->bandwidth_allocated in microseconds;
|
|
* bustime is from calc_bus_time(), but converted to microseconds.
|
|
*
|
|
* returns <bustime in us> if successful,
|
|
* or -ENOSPC if bandwidth request fails.
|
|
*
|
|
* FIXME:
|
|
* This initial implementation does not use Endpoint.bInterval
|
|
* in managing bandwidth allocation.
|
|
* It probably needs to be expanded to use Endpoint.bInterval.
|
|
* This can be done as a later enhancement (correction).
|
|
*
|
|
* This will also probably require some kind of
|
|
* frame allocation tracking...meaning, for example,
|
|
* that if multiple drivers request interrupts every 10 USB frames,
|
|
* they don't all have to be allocated at
|
|
* frame numbers N, N+10, N+20, etc. Some of them could be at
|
|
* N+11, N+21, N+31, etc., and others at
|
|
* N+12, N+22, N+32, etc.
|
|
*
|
|
* Similarly for isochronous transfers...
|
|
*
|
|
* Individual HCDs can schedule more directly ... this logic
|
|
* is not correct for high speed transfers.
|
|
*/
|
|
static int crisv10_usb_check_bandwidth(
|
|
struct usb_device *dev,
|
|
struct urb *urb)
|
|
{
|
|
unsigned int pipe = urb->pipe;
|
|
long bustime;
|
|
int is_in = usb_pipein (pipe);
|
|
int is_iso = usb_pipeisoc (pipe);
|
|
int old_alloc = dev->bus->bandwidth_allocated;
|
|
int new_alloc;
|
|
|
|
bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso,
|
|
usb_maxpacket (dev, pipe, !is_in)));
|
|
if (is_iso)
|
|
bustime /= urb->number_of_packets;
|
|
|
|
new_alloc = old_alloc + (int) bustime;
|
|
if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) {
|
|
dev_dbg (&dev->dev, "usb_check_bandwidth FAILED: %d + %ld = %d usec\n",
|
|
old_alloc, bustime, new_alloc);
|
|
bustime = -ENOSPC; /* report error */
|
|
}
|
|
|
|
return bustime;
|
|
}
|
|
|
|
/**
|
|
* usb_claim_bandwidth - records bandwidth for a periodic transfer
|
|
* @dev: source/target of request
|
|
* @urb: request (urb->dev == dev)
|
|
* @bustime: bandwidth consumed, in (average) microseconds per frame
|
|
* @isoc: true iff the request is isochronous
|
|
*
|
|
* HCDs are expected not to overcommit periodic bandwidth, and to record such
|
|
* reservations whenever endpoints are added to the periodic schedule.
|
|
*
|
|
* FIXME averaging per-frame is suboptimal. Better to sum over the HCD's
|
|
* entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable
|
|
* for EHCI (256/512/1024 frames, default 1024) and have the bus expose how
|
|
* large its periodic schedule is.
|
|
*/
|
|
static void crisv10_usb_claim_bandwidth(
|
|
struct usb_device *dev,
|
|
struct urb *urb, int bustime, int isoc)
|
|
{
|
|
dev->bus->bandwidth_allocated += bustime;
|
|
if (isoc)
|
|
dev->bus->bandwidth_isoc_reqs++;
|
|
else
|
|
dev->bus->bandwidth_int_reqs++;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
urb_priv = urb->hcpriv;
|
|
urb_priv->bandwidth = bustime;
|
|
}
|
|
|
|
/**
|
|
* usb_release_bandwidth - reverses effect of usb_claim_bandwidth()
|
|
* @hcd: host controller
|
|
* @isoc: true iff the request is isochronous
|
|
* @bandwidth: bandwidth returned
|
|
*
|
|
* This records that previously allocated bandwidth has been released.
|
|
* Bandwidth is released when endpoints are removed from the host controller's
|
|
* periodic schedule.
|
|
*/
|
|
static void crisv10_usb_release_bandwidth(
|
|
struct usb_hcd *hcd,
|
|
int isoc,
|
|
int bandwidth)
|
|
{
|
|
hcd_to_bus(hcd)->bandwidth_allocated -= bandwidth;
|
|
if (isoc)
|
|
hcd_to_bus(hcd)->bandwidth_isoc_reqs--;
|
|
else
|
|
hcd_to_bus(hcd)->bandwidth_int_reqs--;
|
|
}
|
|
|
|
|
|
/* EPID handling functions, managing EP-list in Etrax through wrappers */
|
|
/* ------------------------------------------------------------------- */
|
|
|
|
/* Sets up a new EPID for an endpoint or returns existing if found */
|
|
static int tc_setup_epid(struct usb_host_endpoint *ep, struct urb *urb,
|
|
int mem_flags) {
|
|
int epid;
|
|
char devnum, endpoint, out_traffic, slow;
|
|
int maxlen;
|
|
__u32 epid_data;
|
|
struct crisv10_ep_priv *ep_priv = ep->hcpriv;
|
|
|
|
DBFENTER;
|
|
|
|
/* Check if a valid epid already is setup for this endpoint */
|
|
if(ep_priv != NULL) {
|
|
return ep_priv->epid;
|
|
}
|
|
|
|
/* We must find and initiate a new epid for this urb. */
|
|
epid = tc_allocate_epid();
|
|
|
|
if (epid == -1) {
|
|
/* Failed to allocate a new epid. */
|
|
DBFEXIT;
|
|
return epid;
|
|
}
|
|
|
|
/* We now have a new epid to use. Claim it. */
|
|
epid_state[epid].inuse = 1;
|
|
|
|
/* Init private data for new endpoint */
|
|
if(ep_priv_create(ep, mem_flags) != 0) {
|
|
return -ENOMEM;
|
|
}
|
|
ep_priv = ep->hcpriv;
|
|
ep_priv->epid = epid;
|
|
|
|
devnum = usb_pipedevice(urb->pipe);
|
|
endpoint = usb_pipeendpoint(urb->pipe);
|
|
slow = (urb->dev->speed == USB_SPEED_LOW);
|
|
maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe));
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_CONTROL) {
|
|
/* We want both IN and OUT control traffic to be put on the same
|
|
EP/SB list. */
|
|
out_traffic = 1;
|
|
} else {
|
|
out_traffic = usb_pipeout(urb->pipe);
|
|
}
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
epid_data = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) |
|
|
/* FIXME: Change any to the actual port? */
|
|
IO_STATE(R_USB_EPT_DATA_ISO, port, any) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) |
|
|
IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum);
|
|
etrax_epid_iso_set(epid, epid_data);
|
|
} else {
|
|
epid_data = IO_STATE(R_USB_EPT_DATA, valid, yes) |
|
|
IO_FIELD(R_USB_EPT_DATA, low_speed, slow) |
|
|
/* FIXME: Change any to the actual port? */
|
|
IO_STATE(R_USB_EPT_DATA, port, any) |
|
|
IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) |
|
|
IO_FIELD(R_USB_EPT_DATA, ep, endpoint) |
|
|
IO_FIELD(R_USB_EPT_DATA, dev, devnum);
|
|
etrax_epid_set(epid, epid_data);
|
|
}
|
|
|
|
epid_state[epid].out_traffic = out_traffic;
|
|
epid_state[epid].type = usb_pipetype(urb->pipe);
|
|
|
|
tc_warn("Setting up ep:0x%x epid:%d (addr:%d endp:%d max_len:%d %s %s %s)\n",
|
|
(unsigned int)ep, epid, devnum, endpoint, maxlen,
|
|
str_type(urb->pipe), out_traffic ? "out" : "in",
|
|
slow ? "low" : "full");
|
|
|
|
/* Enable Isoc eof interrupt if we set up the first Isoc epid */
|
|
if(usb_pipeisoc(urb->pipe)) {
|
|
isoc_epid_counter++;
|
|
if(isoc_epid_counter == 1) {
|
|
isoc_warn("Enabled Isoc eof interrupt\n");
|
|
*R_USB_IRQ_MASK_SET = IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set);
|
|
}
|
|
}
|
|
|
|
DBFEXIT;
|
|
return epid;
|
|
}
|
|
|
|
static void tc_free_epid(struct usb_host_endpoint *ep) {
|
|
unsigned long flags;
|
|
struct crisv10_ep_priv *ep_priv = ep->hcpriv;
|
|
int epid;
|
|
volatile int timeout = 10000;
|
|
|
|
DBFENTER;
|
|
|
|
if (ep_priv == NULL) {
|
|
tc_warn("Trying to free unused epid on ep:0x%x\n", (unsigned int)ep);
|
|
DBFEXIT;
|
|
return;
|
|
}
|
|
|
|
epid = ep_priv->epid;
|
|
|
|
/* Disable Isoc eof interrupt if we free the last Isoc epid */
|
|
if(epid_isoc(epid)) {
|
|
ASSERT(isoc_epid_counter > 0);
|
|
isoc_epid_counter--;
|
|
if(isoc_epid_counter == 0) {
|
|
*R_USB_IRQ_MASK_CLR = IO_STATE(R_USB_IRQ_MASK_CLR, iso_eof, clr);
|
|
isoc_warn("Disabled Isoc eof interrupt\n");
|
|
}
|
|
}
|
|
|
|
/* Take lock manualy instead of in epid_x_x wrappers,
|
|
because we need to be polling here */
|
|
spin_lock_irqsave(&etrax_epid_lock, flags);
|
|
|
|
*R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid);
|
|
nop();
|
|
while((*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) &&
|
|
(timeout-- > 0));
|
|
/* This will, among other things, set the valid field to 0. */
|
|
*R_USB_EPT_DATA = 0;
|
|
spin_unlock_irqrestore(&etrax_epid_lock, flags);
|
|
|
|
/* Free resource in software state info list */
|
|
epid_state[epid].inuse = 0;
|
|
|
|
/* Free private endpoint data */
|
|
ep_priv_free(ep);
|
|
|
|
DBFEXIT;
|
|
}
|
|
|
|
static int tc_allocate_epid(void) {
|
|
int i;
|
|
DBFENTER;
|
|
for (i = 0; i < NBR_OF_EPIDS; i++) {
|
|
if (!epid_inuse(i)) {
|
|
DBFEXIT;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
tc_warn("Found no free epids\n");
|
|
DBFEXIT;
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Wrappers around the list functions (include/linux/list.h). */
|
|
/* ---------------------------------------------------------- */
|
|
static inline int __urb_list_empty(int epid) {
|
|
int retval;
|
|
retval = list_empty(&urb_list[epid]);
|
|
return retval;
|
|
}
|
|
|
|
/* Returns first urb for this epid, or NULL if list is empty. */
|
|
static inline struct urb *urb_list_first(int epid) {
|
|
unsigned long flags;
|
|
struct urb *first_urb = 0;
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
if (!__urb_list_empty(epid)) {
|
|
/* Get the first urb (i.e. head->next). */
|
|
urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list);
|
|
first_urb = urb_entry->urb;
|
|
}
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return first_urb;
|
|
}
|
|
|
|
/* Adds an urb_entry last in the list for this epid. */
|
|
static inline void urb_list_add(struct urb *urb, int epid, int mem_flags) {
|
|
unsigned long flags;
|
|
urb_entry_t *urb_entry = (urb_entry_t *)kmalloc(sizeof(urb_entry_t), mem_flags);
|
|
ASSERT(urb_entry);
|
|
|
|
urb_entry->urb = urb;
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
list_add_tail(&urb_entry->list, &urb_list[epid]);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
}
|
|
|
|
/* Search through the list for an element that contains this urb. (The list
|
|
is expected to be short and the one we are about to delete will often be
|
|
the first in the list.)
|
|
Should be protected by spin_locks in calling function */
|
|
static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) {
|
|
struct list_head *entry;
|
|
struct list_head *tmp;
|
|
urb_entry_t *urb_entry;
|
|
|
|
list_for_each_safe(entry, tmp, &urb_list[epid]) {
|
|
urb_entry = list_entry(entry, urb_entry_t, list);
|
|
ASSERT(urb_entry);
|
|
ASSERT(urb_entry->urb);
|
|
|
|
if (urb_entry->urb == urb) {
|
|
return urb_entry;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Same function as above but for global use. Protects list by spinlock */
|
|
static inline urb_entry_t *urb_list_entry(struct urb *urb, int epid) {
|
|
unsigned long flags;
|
|
urb_entry_t *urb_entry;
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
urb_entry = __urb_list_entry(urb, epid);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return (urb_entry);
|
|
}
|
|
|
|
/* Delete an urb from the list. */
|
|
static inline void urb_list_del(struct urb *urb, int epid) {
|
|
unsigned long flags;
|
|
urb_entry_t *urb_entry;
|
|
|
|
/* Delete entry and free. */
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
urb_entry = __urb_list_entry(urb, epid);
|
|
ASSERT(urb_entry);
|
|
|
|
list_del(&urb_entry->list);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
kfree(urb_entry);
|
|
}
|
|
|
|
/* Move an urb to the end of the list. */
|
|
static inline void urb_list_move_last(struct urb *urb, int epid) {
|
|
unsigned long flags;
|
|
urb_entry_t *urb_entry;
|
|
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
urb_entry = __urb_list_entry(urb, epid);
|
|
ASSERT(urb_entry);
|
|
|
|
list_del(&urb_entry->list);
|
|
list_add_tail(&urb_entry->list, &urb_list[epid]);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
}
|
|
|
|
/* Get the next urb in the list. */
|
|
static inline struct urb *urb_list_next(struct urb *urb, int epid) {
|
|
unsigned long flags;
|
|
urb_entry_t *urb_entry;
|
|
|
|
spin_lock_irqsave(&urb_list_lock, flags);
|
|
urb_entry = __urb_list_entry(urb, epid);
|
|
ASSERT(urb_entry);
|
|
|
|
if (urb_entry->list.next != &urb_list[epid]) {
|
|
struct list_head *elem = urb_entry->list.next;
|
|
urb_entry = list_entry(elem, urb_entry_t, list);
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return urb_entry->urb;
|
|
} else {
|
|
spin_unlock_irqrestore(&urb_list_lock, flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
struct USB_EP_Desc* create_ep(int epid, struct USB_SB_Desc* sb_desc,
|
|
int mem_flags) {
|
|
struct USB_EP_Desc *ep_desc;
|
|
ep_desc = (struct USB_EP_Desc *) kmem_cache_alloc(usb_desc_cache, mem_flags);
|
|
if(ep_desc == NULL)
|
|
return NULL;
|
|
memset(ep_desc, 0, sizeof(struct USB_EP_Desc));
|
|
|
|
ep_desc->hw_len = 0;
|
|
ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) |
|
|
IO_STATE(USB_EP_command, enable, yes));
|
|
if(sb_desc == NULL) {
|
|
ep_desc->sub = 0;
|
|
} else {
|
|
ep_desc->sub = virt_to_phys(sb_desc);
|
|
}
|
|
return ep_desc;
|
|
}
|
|
|
|
#define TT_ZOUT 0
|
|
#define TT_IN 1
|
|
#define TT_OUT 2
|
|
#define TT_SETUP 3
|
|
|
|
#define CMD_EOL IO_STATE(USB_SB_command, eol, yes)
|
|
#define CMD_INTR IO_STATE(USB_SB_command, intr, yes)
|
|
#define CMD_FULL IO_STATE(USB_SB_command, full, yes)
|
|
|
|
/* Allocation and setup of a generic SB. Used to create SETUP, OUT and ZOUT
|
|
SBs. Also used by create_sb_in() to avoid same allocation procedure at two
|
|
places */
|
|
struct USB_SB_Desc* create_sb(struct USB_SB_Desc* sb_prev, int tt, void* data,
|
|
int datalen, int mem_flags) {
|
|
struct USB_SB_Desc *sb_desc;
|
|
sb_desc = (struct USB_SB_Desc*)kmem_cache_alloc(usb_desc_cache, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return NULL;
|
|
memset(sb_desc, 0, sizeof(struct USB_SB_Desc));
|
|
|
|
sb_desc->command = IO_FIELD(USB_SB_command, tt, tt) |
|
|
IO_STATE(USB_SB_command, eot, yes);
|
|
|
|
sb_desc->sw_len = datalen;
|
|
if(data != NULL) {
|
|
sb_desc->buf = virt_to_phys(data);
|
|
} else {
|
|
sb_desc->buf = 0;
|
|
}
|
|
if(sb_prev != NULL) {
|
|
sb_prev->next = virt_to_phys(sb_desc);
|
|
}
|
|
return sb_desc;
|
|
}
|
|
|
|
/* Creates a copy of an existing SB by allocation space for it and copy
|
|
settings */
|
|
struct USB_SB_Desc* create_sb_copy(struct USB_SB_Desc* sb_orig, int mem_flags) {
|
|
struct USB_SB_Desc *sb_desc;
|
|
sb_desc = (struct USB_SB_Desc*)kmem_cache_alloc(usb_desc_cache, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return NULL;
|
|
|
|
memcpy(sb_desc, sb_orig, sizeof(struct USB_SB_Desc));
|
|
return sb_desc;
|
|
}
|
|
|
|
/* A specific create_sb function for creation of in SBs. This is due to
|
|
that datalen in In SBs shows how many packets we are expecting. It also
|
|
sets up the rem field to show if how many bytes we expect in last packet
|
|
if it's not a full one */
|
|
struct USB_SB_Desc* create_sb_in(struct USB_SB_Desc* sb_prev, int datalen,
|
|
int maxlen, int mem_flags) {
|
|
struct USB_SB_Desc *sb_desc;
|
|
sb_desc = create_sb(sb_prev, TT_IN, NULL,
|
|
datalen ? (datalen - 1) / maxlen + 1 : 0, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return NULL;
|
|
sb_desc->command |= IO_FIELD(USB_SB_command, rem, datalen % maxlen);
|
|
return sb_desc;
|
|
}
|
|
|
|
void set_sb_cmds(struct USB_SB_Desc *sb_desc, __u16 flags) {
|
|
sb_desc->command |= flags;
|
|
}
|
|
|
|
int create_sb_for_urb(struct urb *urb, int mem_flags) {
|
|
int is_out = !usb_pipein(urb->pipe);
|
|
int type = usb_pipetype(urb->pipe);
|
|
int maxlen = usb_maxpacket(urb->dev, urb->pipe, is_out);
|
|
int buf_len = urb->transfer_buffer_length;
|
|
void *buf = buf_len > 0 ? urb->transfer_buffer : NULL;
|
|
struct USB_SB_Desc *sb_desc = NULL;
|
|
|
|
struct crisv10_urb_priv *urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv != NULL);
|
|
|
|
switch(type) {
|
|
case PIPE_CONTROL:
|
|
/* Setup stage */
|
|
sb_desc = create_sb(NULL, TT_SETUP, urb->setup_packet, 8, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
|
|
/* Attach first SB to URB */
|
|
urb_priv->first_sb = sb_desc;
|
|
|
|
if (is_out) { /* Out Control URB */
|
|
/* If this Control OUT transfer has an optional data stage we add
|
|
an OUT token before the mandatory IN (status) token */
|
|
if ((buf_len > 0) && buf) {
|
|
sb_desc = create_sb(sb_desc, TT_OUT, buf, buf_len, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
}
|
|
|
|
/* Status stage */
|
|
/* The data length has to be exactly 1. This is due to a requirement
|
|
of the USB specification that a host must be prepared to receive
|
|
data in the status phase */
|
|
sb_desc = create_sb(sb_desc, TT_IN, NULL, 1, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
} else { /* In control URB */
|
|
/* Data stage */
|
|
sb_desc = create_sb_in(sb_desc, buf_len, maxlen, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Status stage */
|
|
/* Read comment at zout_buffer declaration for an explanation to this. */
|
|
sb_desc = create_sb(sb_desc, TT_ZOUT, &zout_buffer[0], 1, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
/* Set descriptor interrupt flag for in URBs so we can finish URB after
|
|
zout-packet has been sent */
|
|
set_sb_cmds(sb_desc, CMD_INTR | CMD_FULL);
|
|
}
|
|
/* Set end-of-list flag in last SB */
|
|
set_sb_cmds(sb_desc, CMD_EOL);
|
|
/* Attach last SB to URB */
|
|
urb_priv->last_sb = sb_desc;
|
|
break;
|
|
|
|
case PIPE_BULK:
|
|
if (is_out) { /* Out Bulk URB */
|
|
sb_desc = create_sb(NULL, TT_OUT, buf, buf_len, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
/* The full field is set to yes, even if we don't actually check that
|
|
this is a full-length transfer (i.e., that transfer_buffer_length %
|
|
maxlen = 0).
|
|
Setting full prevents the USB controller from sending an empty packet
|
|
in that case. However, if URB_ZERO_PACKET was set we want that. */
|
|
if (!(urb->transfer_flags & URB_ZERO_PACKET)) {
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
}
|
|
} else { /* In Bulk URB */
|
|
sb_desc = create_sb_in(NULL, buf_len, maxlen, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
/* Set end-of-list flag for last SB */
|
|
set_sb_cmds(sb_desc, CMD_EOL);
|
|
|
|
/* Attach SB to URB */
|
|
urb_priv->first_sb = sb_desc;
|
|
urb_priv->last_sb = sb_desc;
|
|
break;
|
|
|
|
case PIPE_INTERRUPT:
|
|
if(is_out) { /* Out Intr URB */
|
|
sb_desc = create_sb(NULL, TT_OUT, buf, buf_len, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* The full field is set to yes, even if we don't actually check that
|
|
this is a full-length transfer (i.e., that transfer_buffer_length %
|
|
maxlen = 0).
|
|
Setting full prevents the USB controller from sending an empty packet
|
|
in that case. However, if URB_ZERO_PACKET was set we want that. */
|
|
if (!(urb->transfer_flags & URB_ZERO_PACKET)) {
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
}
|
|
/* Only generate TX interrupt if it's a Out URB*/
|
|
set_sb_cmds(sb_desc, CMD_INTR);
|
|
|
|
} else { /* In Intr URB */
|
|
sb_desc = create_sb_in(NULL, buf_len, maxlen, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
/* Set end-of-list flag for last SB */
|
|
set_sb_cmds(sb_desc, CMD_EOL);
|
|
|
|
/* Attach SB to URB */
|
|
urb_priv->first_sb = sb_desc;
|
|
urb_priv->last_sb = sb_desc;
|
|
|
|
break;
|
|
case PIPE_ISOCHRONOUS:
|
|
if(is_out) { /* Out Isoc URB */
|
|
int i;
|
|
if(urb->number_of_packets == 0) {
|
|
tc_err("Can't create SBs for Isoc URB with zero packets\n");
|
|
return -EPIPE;
|
|
}
|
|
/* Create one SB descriptor for each packet and link them together. */
|
|
for(i = 0; i < urb->number_of_packets; i++) {
|
|
if (urb->iso_frame_desc[i].length > 0) {
|
|
|
|
sb_desc = create_sb(sb_desc, TT_OUT, urb->transfer_buffer +
|
|
urb->iso_frame_desc[i].offset,
|
|
urb->iso_frame_desc[i].length, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Check if it's a full length packet */
|
|
if (urb->iso_frame_desc[i].length ==
|
|
usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) {
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
}
|
|
|
|
} else { /* zero length packet */
|
|
sb_desc = create_sb(sb_desc, TT_ZOUT, &zout_buffer[0], 1, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
set_sb_cmds(sb_desc, CMD_FULL);
|
|
}
|
|
/* Attach first SB descriptor to URB */
|
|
if (i == 0) {
|
|
urb_priv->first_sb = sb_desc;
|
|
}
|
|
}
|
|
/* Set interrupt and end-of-list flags in last SB */
|
|
set_sb_cmds(sb_desc, CMD_INTR | CMD_EOL);
|
|
/* Attach last SB descriptor to URB */
|
|
urb_priv->last_sb = sb_desc;
|
|
tc_dbg("Created %d out SBs for Isoc URB:0x%x\n",
|
|
urb->number_of_packets, (unsigned int)urb);
|
|
} else { /* In Isoc URB */
|
|
/* Actual number of packets is not relevant for periodic in traffic as
|
|
long as it is more than zero. Set to 1 always. */
|
|
sb_desc = create_sb(sb_desc, TT_IN, NULL, 1, mem_flags);
|
|
if(sb_desc == NULL)
|
|
return -ENOMEM;
|
|
/* Set end-of-list flags for SB */
|
|
set_sb_cmds(sb_desc, CMD_EOL);
|
|
|
|
/* Attach SB to URB */
|
|
urb_priv->first_sb = sb_desc;
|
|
urb_priv->last_sb = sb_desc;
|
|
}
|
|
break;
|
|
default:
|
|
tc_err("Unknown pipe-type\n");
|
|
return -EPIPE;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int init_intr_urb(struct urb *urb, int mem_flags) {
|
|
struct crisv10_urb_priv *urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
struct USB_EP_Desc* ep_desc;
|
|
int interval;
|
|
int i;
|
|
int ep_count;
|
|
|
|
ASSERT(urb_priv != NULL);
|
|
ASSERT(usb_pipeint(urb->pipe));
|
|
/* We can't support interval longer than amount of eof descriptors in
|
|
TxIntrEPList */
|
|
if(urb->interval > MAX_INTR_INTERVAL) {
|
|
tc_err("Interrupt interval %dms too big (max: %dms)\n", urb->interval,
|
|
MAX_INTR_INTERVAL);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We assume that the SB descriptors already have been setup */
|
|
ASSERT(urb_priv->first_sb != NULL);
|
|
|
|
/* Round of the interval to 2^n, it is obvious that this code favours
|
|
smaller numbers, but that is actually a good thing */
|
|
/* FIXME: The "rounding error" for larger intervals will be quite
|
|
large. For in traffic this shouldn't be a problem since it will only
|
|
mean that we "poll" more often. */
|
|
interval = urb->interval;
|
|
for (i = 0; interval; i++) {
|
|
interval = interval >> 1;
|
|
}
|
|
urb_priv->interval = 1 << (i - 1);
|
|
|
|
/* We can only have max interval for Out Interrupt due to that we can only
|
|
handle one linked in EP for a certain epid in the Intr descr array at the
|
|
time. The USB Controller in the Etrax 100LX continues to process Intr EPs
|
|
so we have no way of knowing which one that caused the actual transfer if
|
|
we have several linked in. */
|
|
if(usb_pipeout(urb->pipe)) {
|
|
urb_priv->interval = MAX_INTR_INTERVAL;
|
|
}
|
|
|
|
/* Calculate amount of EPs needed */
|
|
ep_count = MAX_INTR_INTERVAL / urb_priv->interval;
|
|
|
|
for(i = 0; i < ep_count; i++) {
|
|
ep_desc = create_ep(urb_priv->epid, urb_priv->first_sb, mem_flags);
|
|
if(ep_desc == NULL) {
|
|
/* Free any descriptors that we may have allocated before failure */
|
|
while(i > 0) {
|
|
i--;
|
|
kfree(urb_priv->intr_ep_pool[i]);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
urb_priv->intr_ep_pool[i] = ep_desc;
|
|
}
|
|
urb_priv->intr_ep_pool_length = ep_count;
|
|
return 0;
|
|
}
|
|
|
|
/* DMA RX/TX functions */
|
|
/* ----------------------- */
|
|
|
|
static void tc_dma_init_rx_list(void) {
|
|
int i;
|
|
|
|
/* Setup descriptor list except last one */
|
|
for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) {
|
|
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
|
|
RxDescList[i].command = 0;
|
|
RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]);
|
|
RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE));
|
|
RxDescList[i].hw_len = 0;
|
|
RxDescList[i].status = 0;
|
|
|
|
/* DMA IN cache bug. (struct etrax_dma_descr has the same layout as
|
|
USB_IN_Desc for the relevant fields.) */
|
|
prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]);
|
|
|
|
}
|
|
/* Special handling of last descriptor */
|
|
RxDescList[i].sw_len = RX_DESC_BUF_SIZE;
|
|
RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes);
|
|
RxDescList[i].next = virt_to_phys(&RxDescList[0]);
|
|
RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE));
|
|
RxDescList[i].hw_len = 0;
|
|
RxDescList[i].status = 0;
|
|
|
|
/* Setup list pointers that show progress in list */
|
|
myNextRxDesc = &RxDescList[0];
|
|
myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
|
|
|
|
flush_etrax_cache();
|
|
/* Point DMA to first descriptor in list and start it */
|
|
*R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc);
|
|
*R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start);
|
|
}
|
|
|
|
|
|
static void tc_dma_init_tx_bulk_list(void) {
|
|
int i;
|
|
volatile struct USB_EP_Desc *epDescr;
|
|
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
epDescr = &(TxBulkEPList[i]);
|
|
CHECK_ALIGN(epDescr);
|
|
epDescr->hw_len = 0;
|
|
epDescr->command = IO_FIELD(USB_EP_command, epid, i);
|
|
epDescr->sub = 0;
|
|
epDescr->next = virt_to_phys(&TxBulkEPList[i + 1]);
|
|
|
|
/* Initiate two EPs, disabled and with the eol flag set. No need for any
|
|
preserved epid. */
|
|
|
|
/* The first one has the intr flag set so we get an interrupt when the DMA
|
|
channel is about to become disabled. */
|
|
CHECK_ALIGN(&TxBulkDummyEPList[i][0]);
|
|
TxBulkDummyEPList[i][0].hw_len = 0;
|
|
TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_STATE(USB_EP_command, intr, yes));
|
|
TxBulkDummyEPList[i][0].sub = 0;
|
|
TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]);
|
|
|
|
/* The second one. */
|
|
CHECK_ALIGN(&TxBulkDummyEPList[i][1]);
|
|
TxBulkDummyEPList[i][1].hw_len = 0;
|
|
TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) |
|
|
IO_STATE(USB_EP_command, eol, yes));
|
|
TxBulkDummyEPList[i][1].sub = 0;
|
|
/* The last dummy's next pointer is the same as the current EP's next pointer. */
|
|
TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]);
|
|
}
|
|
|
|
/* Special handling of last descr in list, make list circular */
|
|
epDescr = &TxBulkEPList[i];
|
|
CHECK_ALIGN(epDescr);
|
|
epDescr->hw_len = 0;
|
|
epDescr->command = IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, i);
|
|
epDescr->sub = 0;
|
|
epDescr->next = virt_to_phys(&TxBulkEPList[0]);
|
|
|
|
/* Init DMA sub-channel pointers to last item in each list */
|
|
*R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]);
|
|
/* No point in starting the bulk channel yet.
|
|
*R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */
|
|
}
|
|
|
|
static void tc_dma_init_tx_ctrl_list(void) {
|
|
int i;
|
|
volatile struct USB_EP_Desc *epDescr;
|
|
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
epDescr = &(TxCtrlEPList[i]);
|
|
CHECK_ALIGN(epDescr);
|
|
epDescr->hw_len = 0;
|
|
epDescr->command = IO_FIELD(USB_EP_command, epid, i);
|
|
epDescr->sub = 0;
|
|
epDescr->next = virt_to_phys(&TxCtrlEPList[i + 1]);
|
|
}
|
|
/* Special handling of last descr in list, make list circular */
|
|
epDescr = &TxCtrlEPList[i];
|
|
CHECK_ALIGN(epDescr);
|
|
epDescr->hw_len = 0;
|
|
epDescr->command = IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, i);
|
|
epDescr->sub = 0;
|
|
epDescr->next = virt_to_phys(&TxCtrlEPList[0]);
|
|
|
|
/* Init DMA sub-channel pointers to last item in each list */
|
|
*R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[i]);
|
|
/* No point in starting the ctrl channel yet.
|
|
*R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */
|
|
}
|
|
|
|
|
|
static void tc_dma_init_tx_intr_list(void) {
|
|
int i;
|
|
|
|
TxIntrSB_zout.sw_len = 1;
|
|
TxIntrSB_zout.next = 0;
|
|
TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]);
|
|
TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) {
|
|
CHECK_ALIGN(&TxIntrEPList[i]);
|
|
TxIntrEPList[i].hw_len = 0;
|
|
TxIntrEPList[i].command =
|
|
(IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout);
|
|
TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]);
|
|
}
|
|
|
|
/* Special handling of last descr in list, make list circular */
|
|
CHECK_ALIGN(&TxIntrEPList[i]);
|
|
TxIntrEPList[i].hw_len = 0;
|
|
TxIntrEPList[i].command =
|
|
(IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout);
|
|
TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]);
|
|
|
|
intr_dbg("Initiated Intr EP descriptor list\n");
|
|
|
|
|
|
/* Connect DMA 8 sub-channel 2 to first in list */
|
|
*R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]);
|
|
}
|
|
|
|
static void tc_dma_init_tx_isoc_list(void) {
|
|
int i;
|
|
|
|
DBFENTER;
|
|
|
|
/* Read comment at zout_buffer declaration for an explanation to this. */
|
|
TxIsocSB_zout.sw_len = 1;
|
|
TxIsocSB_zout.next = 0;
|
|
TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]);
|
|
TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) |
|
|
IO_STATE(USB_SB_command, tt, zout) |
|
|
IO_STATE(USB_SB_command, full, yes) |
|
|
IO_STATE(USB_SB_command, eot, yes) |
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
|
|
/* The last isochronous EP descriptor is a dummy. */
|
|
for (i = 0; i < (NBR_OF_EPIDS - 1); i++) {
|
|
CHECK_ALIGN(&TxIsocEPList[i]);
|
|
TxIsocEPList[i].hw_len = 0;
|
|
TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i);
|
|
TxIsocEPList[i].sub = 0;
|
|
TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]);
|
|
}
|
|
|
|
CHECK_ALIGN(&TxIsocEPList[i]);
|
|
TxIsocEPList[i].hw_len = 0;
|
|
|
|
/* Must enable the last EP descr to get eof interrupt. */
|
|
TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) |
|
|
IO_STATE(USB_EP_command, eof, yes) |
|
|
IO_STATE(USB_EP_command, eol, yes) |
|
|
IO_FIELD(USB_EP_command, epid, INVALID_EPID));
|
|
TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout);
|
|
TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]);
|
|
|
|
*R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]);
|
|
*R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start);
|
|
}
|
|
|
|
static int tc_dma_init(struct usb_hcd *hcd) {
|
|
tc_dma_init_rx_list();
|
|
tc_dma_init_tx_bulk_list();
|
|
tc_dma_init_tx_ctrl_list();
|
|
tc_dma_init_tx_intr_list();
|
|
tc_dma_init_tx_isoc_list();
|
|
|
|
if (cris_request_dma(USB_TX_DMA_NBR,
|
|
"ETRAX 100LX built-in USB (Tx)",
|
|
DMA_VERBOSE_ON_ERROR,
|
|
dma_usb)) {
|
|
err("Could not allocate DMA ch 8 for USB");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (cris_request_dma(USB_RX_DMA_NBR,
|
|
"ETRAX 100LX built-in USB (Rx)",
|
|
DMA_VERBOSE_ON_ERROR,
|
|
dma_usb)) {
|
|
err("Could not allocate DMA ch 9 for USB");
|
|
return -EBUSY;
|
|
}
|
|
|
|
*R_IRQ_MASK2_SET =
|
|
/* Note that these interrupts are not used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) |
|
|
/* Sub channel 1 (ctrl) descr. interrupts are used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) |
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) |
|
|
/* Sub channel 3 (isoc) descr. interrupts are used. */
|
|
IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set);
|
|
|
|
/* Note that the dma9_descr interrupt is not used. */
|
|
*R_IRQ_MASK2_SET =
|
|
IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) |
|
|
IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set);
|
|
|
|
if (request_irq(ETRAX_USB_RX_IRQ, tc_dma_rx_interrupt, 0,
|
|
"ETRAX 100LX built-in USB (Rx)", hcd)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (request_irq(ETRAX_USB_TX_IRQ, tc_dma_tx_interrupt, 0,
|
|
"ETRAX 100LX built-in USB (Tx)", hcd)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tc_dma_destroy(void) {
|
|
free_irq(ETRAX_USB_RX_IRQ, NULL);
|
|
free_irq(ETRAX_USB_TX_IRQ, NULL);
|
|
|
|
cris_free_dma(USB_TX_DMA_NBR, "ETRAX 100LX built-in USB (Tx)");
|
|
cris_free_dma(USB_RX_DMA_NBR, "ETRAX 100LX built-in USB (Rx)");
|
|
|
|
}
|
|
|
|
static void tc_dma_link_intr_urb(struct urb *urb);
|
|
|
|
/* Handle processing of Bulk, Ctrl and Intr queues */
|
|
static void tc_dma_process_queue(int epid) {
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
unsigned long flags;
|
|
char toggle;
|
|
|
|
if(epid_state[epid].disabled) {
|
|
/* Don't process any URBs on a disabled endpoint */
|
|
return;
|
|
}
|
|
|
|
/* Do not disturb us while fiddling with EPs and epids */
|
|
local_irq_save(flags);
|
|
|
|
/* For bulk, Ctrl and Intr can we only have one URB active at a time for
|
|
a specific EP. */
|
|
if(activeUrbList[epid] != NULL) {
|
|
/* An URB is already active on EP, skip checking queue */
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
|
|
urb = urb_list_first(epid);
|
|
if(urb == NULL) {
|
|
/* No URB waiting in EP queue. Nothing do to */
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
|
|
urb_priv = urb->hcpriv;
|
|
ASSERT(urb_priv != NULL);
|
|
ASSERT(urb_priv->urb_state == NOT_STARTED);
|
|
ASSERT(!usb_pipeisoc(urb->pipe));
|
|
|
|
/* Remove this URB from the queue and move it to active */
|
|
activeUrbList[epid] = urb;
|
|
urb_list_del(urb, epid);
|
|
|
|
urb_priv->urb_state = STARTED;
|
|
|
|
/* Reset error counters (regardless of which direction this traffic is). */
|
|
etrax_epid_clear_error(epid);
|
|
|
|
/* Special handling of Intr EP lists */
|
|
if(usb_pipeint(urb->pipe)) {
|
|
tc_dma_link_intr_urb(urb);
|
|
local_irq_restore(flags);
|
|
return;
|
|
}
|
|
|
|
/* Software must preset the toggle bits for Bulk and Ctrl */
|
|
if(usb_pipecontrol(urb->pipe)) {
|
|
/* Toggle bits are initialized only during setup transaction in a
|
|
CTRL transfer */
|
|
etrax_epid_set_toggle(epid, 0, 0);
|
|
etrax_epid_set_toggle(epid, 1, 0);
|
|
} else {
|
|
toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe));
|
|
etrax_epid_set_toggle(epid, usb_pipeout(urb->pipe), toggle);
|
|
}
|
|
|
|
tc_dbg("Added SBs from (URB:0x%x %s %s) to epid %d: %s\n",
|
|
(unsigned int)urb, str_dir(urb->pipe), str_type(urb->pipe), epid,
|
|
sblist_to_str(urb_priv->first_sb));
|
|
|
|
/* We start the DMA sub channel without checking if it's running or not,
|
|
because:
|
|
1) If it's already running, issuing the start command is a nop.
|
|
2) We avoid a test-and-set race condition. */
|
|
switch(usb_pipetype(urb->pipe)) {
|
|
case PIPE_BULK:
|
|
/* Assert that the EP descriptor is disabled. */
|
|
ASSERT(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
|
|
/* Set up and enable the EP descriptor. */
|
|
TxBulkEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
TxBulkEPList[epid].hw_len = 0;
|
|
TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
/* Check if the dummy list is already with us (if several urbs were queued). */
|
|
if (usb_pipein(urb->pipe) && (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0]))) {
|
|
tc_dbg("Inviting dummy list to the party for urb 0x%lx, epid %d",
|
|
(unsigned long)urb, epid);
|
|
|
|
/* We don't need to check if the DMA is at this EP or not before changing the
|
|
next pointer, since we will do it in one 32-bit write (EP descriptors are
|
|
32-bit aligned). */
|
|
TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]);
|
|
}
|
|
|
|
restart_dma8_sub0();
|
|
|
|
/* Update/restart the bulk start timer since we just started the channel.*/
|
|
mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL);
|
|
/* Update/restart the bulk eot timer since we just inserted traffic. */
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
break;
|
|
case PIPE_CONTROL:
|
|
/* Assert that the EP descriptor is disabled. */
|
|
ASSERT(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)));
|
|
|
|
/* Set up and enable the EP descriptor. */
|
|
TxCtrlEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
TxCtrlEPList[epid].hw_len = 0;
|
|
TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
*R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start);
|
|
break;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void tc_dma_link_intr_urb(struct urb *urb) {
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
volatile struct USB_EP_Desc *tmp_ep;
|
|
struct USB_EP_Desc *ep_desc;
|
|
int i = 0, epid;
|
|
int pool_idx = 0;
|
|
|
|
ASSERT(urb_priv != NULL);
|
|
epid = urb_priv->epid;
|
|
ASSERT(urb_priv->interval > 0);
|
|
ASSERT(urb_priv->intr_ep_pool_length > 0);
|
|
|
|
tmp_ep = &TxIntrEPList[0];
|
|
|
|
/* Only insert one EP descriptor in list for Out Intr URBs.
|
|
We can only handle Out Intr with interval of 128ms because
|
|
it's not possible to insert several Out Intr EPs because they
|
|
are not consumed by the DMA. */
|
|
if(usb_pipeout(urb->pipe)) {
|
|
ep_desc = urb_priv->intr_ep_pool[0];
|
|
ASSERT(ep_desc);
|
|
ep_desc->next = tmp_ep->next;
|
|
tmp_ep->next = virt_to_phys(ep_desc);
|
|
i++;
|
|
} else {
|
|
/* Loop through Intr EP descriptor list and insert EP for URB at
|
|
specified interval */
|
|
do {
|
|
/* Each EP descriptor with eof flag sat signals a new frame */
|
|
if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) {
|
|
/* Insert a EP from URBs EP pool at correct interval */
|
|
if ((i % urb_priv->interval) == 0) {
|
|
ep_desc = urb_priv->intr_ep_pool[pool_idx];
|
|
ASSERT(ep_desc);
|
|
ep_desc->next = tmp_ep->next;
|
|
tmp_ep->next = virt_to_phys(ep_desc);
|
|
pool_idx++;
|
|
ASSERT(pool_idx <= urb_priv->intr_ep_pool_length);
|
|
}
|
|
i++;
|
|
}
|
|
tmp_ep = (struct USB_EP_Desc *)phys_to_virt(tmp_ep->next);
|
|
} while(tmp_ep != &TxIntrEPList[0]);
|
|
}
|
|
|
|
intr_dbg("Added SBs to intr epid %d: %s interval:%d (%d EP)\n", epid,
|
|
sblist_to_str(urb_priv->first_sb), urb_priv->interval, pool_idx);
|
|
|
|
/* We start the DMA sub channel without checking if it's running or not,
|
|
because:
|
|
1) If it's already running, issuing the start command is a nop.
|
|
2) We avoid a test-and-set race condition. */
|
|
*R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start);
|
|
}
|
|
|
|
static void tc_dma_process_isoc_urb(struct urb *urb) {
|
|
unsigned long flags;
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
int epid;
|
|
|
|
/* Do not disturb us while fiddling with EPs and epids */
|
|
local_irq_save(flags);
|
|
|
|
ASSERT(urb_priv);
|
|
ASSERT(urb_priv->first_sb);
|
|
epid = urb_priv->epid;
|
|
|
|
if(activeUrbList[epid] == NULL) {
|
|
/* EP is idle, so make this URB active */
|
|
activeUrbList[epid] = urb;
|
|
urb_list_del(urb, epid);
|
|
ASSERT(TxIsocEPList[epid].sub == 0);
|
|
ASSERT(!(TxIsocEPList[epid].command &
|
|
IO_STATE(USB_EP_command, enable, yes)));
|
|
|
|
/* Differentiate between In and Out Isoc. Because In SBs are not consumed*/
|
|
if(usb_pipein(urb->pipe)) {
|
|
/* Each EP for In Isoc will have only one SB descriptor, setup when
|
|
submitting the first active urb. We do it here by copying from URBs
|
|
pre-allocated SB. */
|
|
memcpy((void *)&(TxIsocSBList[epid]), urb_priv->first_sb,
|
|
sizeof(TxIsocSBList[epid]));
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].sub = virt_to_phys(&(TxIsocSBList[epid]));
|
|
} else {
|
|
/* For Out Isoc we attach the pre-allocated list of SBs for the URB */
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
|
|
isoc_dbg("Attached first URB:0x%x[%d] to epid:%d first_sb:0x%x"
|
|
" last_sb::0x%x\n",
|
|
(unsigned int)urb, urb_priv->urb_num, epid,
|
|
(unsigned int)(urb_priv->first_sb),
|
|
(unsigned int)(urb_priv->last_sb));
|
|
}
|
|
|
|
if (urb->transfer_flags & URB_ISO_ASAP) {
|
|
/* The isoc transfer should be started as soon as possible. The
|
|
start_frame field is a return value if URB_ISO_ASAP was set. Comparing
|
|
R_USB_FM_NUMBER with a USB Chief trace shows that the first isoc IN
|
|
token is sent 2 frames later. I'm not sure how this affects usage of
|
|
the start_frame field by the device driver, or how it affects things
|
|
when USB_ISO_ASAP is not set, so therefore there's no compensation for
|
|
the 2 frame "lag" here. */
|
|
urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff);
|
|
TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes);
|
|
urb_priv->urb_state = STARTED;
|
|
isoc_dbg("URB_ISO_ASAP set, urb->start_frame set to %d\n",
|
|
urb->start_frame);
|
|
} else {
|
|
/* Not started yet. */
|
|
urb_priv->urb_state = NOT_STARTED;
|
|
isoc_warn("urb_priv->urb_state set to NOT_STARTED for URB:0x%x\n",
|
|
(unsigned int)urb);
|
|
}
|
|
|
|
} else {
|
|
/* An URB is already active on the EP. Leave URB in queue and let
|
|
finish_isoc_urb process it after current active URB */
|
|
ASSERT(TxIsocEPList[epid].sub != 0);
|
|
|
|
if(usb_pipein(urb->pipe)) {
|
|
/* Because there already is a active In URB on this epid we do nothing
|
|
and the finish_isoc_urb() function will handle switching to next URB*/
|
|
|
|
} else { /* For Out Isoc, insert new URBs traffic last in SB-list. */
|
|
struct USB_SB_Desc *temp_sb_desc;
|
|
|
|
/* Set state STARTED to all Out Isoc URBs added to SB list because we
|
|
don't know how many of them that are finished before descr interrupt*/
|
|
urb_priv->urb_state = STARTED;
|
|
|
|
/* Find end of current SB list by looking for SB with eol flag sat */
|
|
temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub);
|
|
while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) !=
|
|
IO_STATE(USB_SB_command, eol, yes)) {
|
|
ASSERT(temp_sb_desc->next);
|
|
temp_sb_desc = phys_to_virt(temp_sb_desc->next);
|
|
}
|
|
|
|
isoc_dbg("Appended URB:0x%x[%d] (first:0x%x last:0x%x) to epid:%d"
|
|
" sub:0x%x eol:0x%x\n",
|
|
(unsigned int)urb, urb_priv->urb_num,
|
|
(unsigned int)(urb_priv->first_sb),
|
|
(unsigned int)(urb_priv->last_sb), epid,
|
|
(unsigned int)phys_to_virt(TxIsocEPList[epid].sub),
|
|
(unsigned int)temp_sb_desc);
|
|
|
|
/* Next pointer must be set before eol is removed. */
|
|
temp_sb_desc->next = virt_to_phys(urb_priv->first_sb);
|
|
/* Clear the previous end of list flag since there is a new in the
|
|
added SB descriptor list. */
|
|
temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol);
|
|
|
|
if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) {
|
|
__u32 epid_data;
|
|
/* 8.8.5 in Designer's Reference says we should check for and correct
|
|
any errors in the EP here. That should not be necessary if
|
|
epid_attn is handled correctly, so we assume all is ok. */
|
|
epid_data = etrax_epid_iso_get(epid);
|
|
if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) !=
|
|
IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
isoc_err("Disabled Isoc EP with error:%d on epid:%d when appending"
|
|
" URB:0x%x[%d]\n",
|
|
IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data), epid,
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
}
|
|
|
|
/* The SB list was exhausted. */
|
|
if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) {
|
|
/* The new sublist did not get processed before the EP was
|
|
disabled. Setup the EP again. */
|
|
|
|
if(virt_to_phys(temp_sb_desc) == TxIsocEPList[epid].sub) {
|
|
isoc_dbg("EP for epid:%d stoped at SB:0x%x before newly inserted"
|
|
", restarting from this URBs SB:0x%x\n",
|
|
epid, (unsigned int)temp_sb_desc,
|
|
(unsigned int)(urb_priv->first_sb));
|
|
TxIsocEPList[epid].hw_len = 0;
|
|
TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb);
|
|
urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff);
|
|
/* Enable the EP again so data gets processed this time */
|
|
TxIsocEPList[epid].command |=
|
|
IO_STATE(USB_EP_command, enable, yes);
|
|
|
|
} else {
|
|
/* The EP has been disabled but not at end this URB (god knows
|
|
where). This should generate an epid_attn so we should not be
|
|
here */
|
|
isoc_warn("EP was disabled on sb:0x%x before SB list for"
|
|
" URB:0x%x[%d] got processed\n",
|
|
(unsigned int)phys_to_virt(TxIsocEPList[epid].sub),
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
}
|
|
} else {
|
|
/* This might happend if we are slow on this function and isn't
|
|
an error. */
|
|
isoc_dbg("EP was disabled and finished with SBs from appended"
|
|
" URB:0x%x[%d]\n", (unsigned int)urb, urb_priv->urb_num);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Start the DMA sub channel */
|
|
*R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void tc_dma_unlink_intr_urb(struct urb *urb) {
|
|
struct crisv10_urb_priv *urb_priv = urb->hcpriv;
|
|
volatile struct USB_EP_Desc *first_ep; /* First EP in the list. */
|
|
volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */
|
|
volatile struct USB_EP_Desc *next_ep; /* The EP after current. */
|
|
volatile struct USB_EP_Desc *unlink_ep; /* The one we should remove from
|
|
the list. */
|
|
int count = 0;
|
|
volatile int timeout = 10000;
|
|
int epid;
|
|
|
|
/* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the
|
|
List". */
|
|
ASSERT(urb_priv);
|
|
ASSERT(urb_priv->intr_ep_pool_length > 0);
|
|
epid = urb_priv->epid;
|
|
|
|
/* First disable all Intr EPs belonging to epid for this URB */
|
|
first_ep = &TxIntrEPList[0];
|
|
curr_ep = first_ep;
|
|
do {
|
|
next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next);
|
|
if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) {
|
|
/* Disable EP */
|
|
next_ep->command &= ~IO_MASK(USB_EP_command, enable);
|
|
}
|
|
curr_ep = phys_to_virt(curr_ep->next);
|
|
} while (curr_ep != first_ep);
|
|
|
|
|
|
/* Now unlink all EPs belonging to this epid from Descr list */
|
|
first_ep = &TxIntrEPList[0];
|
|
curr_ep = first_ep;
|
|
do {
|
|
next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next);
|
|
if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) {
|
|
/* This is the one we should unlink. */
|
|
unlink_ep = next_ep;
|
|
|
|
/* Actually unlink the EP from the DMA list. */
|
|
curr_ep->next = unlink_ep->next;
|
|
|
|
/* Wait until the DMA is no longer at this descriptor. */
|
|
while((*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)) &&
|
|
(timeout-- > 0));
|
|
|
|
count++;
|
|
}
|
|
curr_ep = phys_to_virt(curr_ep->next);
|
|
} while (curr_ep != first_ep);
|
|
|
|
if(count != urb_priv->intr_ep_pool_length) {
|
|
intr_warn("Unlinked %d of %d Intr EPs for URB:0x%x[%d]\n", count,
|
|
urb_priv->intr_ep_pool_length, (unsigned int)urb,
|
|
urb_priv->urb_num);
|
|
} else {
|
|
intr_dbg("Unlinked %d of %d interrupt EPs for URB:0x%x\n", count,
|
|
urb_priv->intr_ep_pool_length, (unsigned int)urb);
|
|
}
|
|
}
|
|
|
|
static void check_finished_bulk_tx_epids(struct usb_hcd *hcd,
|
|
int timer) {
|
|
unsigned long flags;
|
|
int epid;
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv * urb_priv;
|
|
__u32 epid_data;
|
|
|
|
/* Protect TxEPList */
|
|
local_irq_save(flags);
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
/* A finished EP descriptor is disabled and has a valid sub pointer */
|
|
if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) &&
|
|
(TxBulkEPList[epid].sub != 0)) {
|
|
|
|
/* Get the active URB for this epid */
|
|
urb = activeUrbList[epid];
|
|
/* Sanity checks */
|
|
ASSERT(urb);
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
/* Only handle finished out Bulk EPs here,
|
|
and let RX interrupt take care of the rest */
|
|
if(!epid_out_traffic(epid)) {
|
|
continue;
|
|
}
|
|
|
|
if(timer) {
|
|
tc_warn("Found finished %s Bulk epid:%d URB:0x%x[%d] from timeout\n",
|
|
epid_out_traffic(epid) ? "Out" : "In", epid, (unsigned int)urb,
|
|
urb_priv->urb_num);
|
|
} else {
|
|
tc_dbg("Found finished %s Bulk epid:%d URB:0x%x[%d] from interrupt\n",
|
|
epid_out_traffic(epid) ? "Out" : "In", epid, (unsigned int)urb,
|
|
urb_priv->urb_num);
|
|
}
|
|
|
|
if(urb_priv->urb_state == UNLINK) {
|
|
/* This Bulk URB is requested to be unlinked, that means that the EP
|
|
has been disabled and we might not have sent all data */
|
|
tc_finish_urb(hcd, urb, urb->status);
|
|
continue;
|
|
}
|
|
|
|
ASSERT(urb_priv->urb_state == STARTED);
|
|
if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) {
|
|
tc_err("Endpoint got disabled before reaching last sb\n");
|
|
}
|
|
|
|
epid_data = etrax_epid_get(epid);
|
|
if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) ==
|
|
IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
/* This means that the endpoint has no error, is disabled
|
|
and had inserted traffic, i.e. transfer successfully completed. */
|
|
tc_finish_urb(hcd, urb, 0);
|
|
} else {
|
|
/* Shouldn't happen. We expect errors to be caught by epid
|
|
attention. */
|
|
tc_err("Found disabled bulk EP desc (epid:%d error:%d)\n",
|
|
epid, IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data));
|
|
}
|
|
} else {
|
|
tc_dbg("Ignoring In Bulk epid:%d, let RX interrupt handle it\n", epid);
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void check_finished_ctrl_tx_epids(struct usb_hcd *hcd) {
|
|
unsigned long flags;
|
|
int epid;
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv * urb_priv;
|
|
__u32 epid_data;
|
|
|
|
/* Protect TxEPList */
|
|
local_irq_save(flags);
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if(epid == DUMMY_EPID)
|
|
continue;
|
|
|
|
/* A finished EP descriptor is disabled and has a valid sub pointer */
|
|
if (!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) &&
|
|
(TxCtrlEPList[epid].sub != 0)) {
|
|
|
|
/* Get the active URB for this epid */
|
|
urb = activeUrbList[epid];
|
|
|
|
if(urb == NULL) {
|
|
tc_warn("Found finished Ctrl epid:%d with no active URB\n", epid);
|
|
continue;
|
|
}
|
|
|
|
/* Sanity checks */
|
|
ASSERT(usb_pipein(urb->pipe));
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
if (phys_to_virt(TxCtrlEPList[epid].sub) != urb_priv->last_sb) {
|
|
tc_err("Endpoint got disabled before reaching last sb\n");
|
|
}
|
|
|
|
epid_data = etrax_epid_get(epid);
|
|
if (IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data) ==
|
|
IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) {
|
|
/* This means that the endpoint has no error, is disabled
|
|
and had inserted traffic, i.e. transfer successfully completed. */
|
|
|
|
/* Check if RX-interrupt for In Ctrl has been processed before
|
|
finishing the URB */
|
|
if(urb_priv->ctrl_rx_done) {
|
|
tc_dbg("Finishing In Ctrl URB:0x%x[%d] in tx_interrupt\n",
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
tc_finish_urb(hcd, urb, 0);
|
|
} else {
|
|
/* If we get zout descriptor interrupt before RX was done for a
|
|
In Ctrl transfer, then we flag that and it will be finished
|
|
in the RX-Interrupt */
|
|
urb_priv->ctrl_zout_done = 1;
|
|
tc_dbg("Got zout descr interrupt before RX interrupt\n");
|
|
}
|
|
} else {
|
|
/* Shouldn't happen. We expect errors to be caught by epid
|
|
attention. */
|
|
tc_err("Found disabled Ctrl EP desc (epid:%d URB:0x%x[%d]) error_code:%d\n", epid, (unsigned int)urb, urb_priv->urb_num, IO_EXTRACT(R_USB_EPT_DATA, error_code, epid_data));
|
|
__dump_ep_desc(&(TxCtrlEPList[epid]));
|
|
__dump_ept_data(epid);
|
|
}
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* This function goes through all epids that are setup for Out Isoc transfers
|
|
and marks (isoc_out_done) all queued URBs that the DMA has finished
|
|
transfer for.
|
|
No URB completetion is done here to make interrupt routine return quickly.
|
|
URBs are completed later with help of complete_isoc_bottom_half() that
|
|
becomes schedules when this functions is finished. */
|
|
static void check_finished_isoc_tx_epids(void) {
|
|
unsigned long flags;
|
|
int epid;
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv * urb_priv;
|
|
struct USB_SB_Desc* sb_desc;
|
|
int epid_done;
|
|
|
|
/* Protect TxIsocEPList */
|
|
local_irq_save(flags);
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if (TxIsocEPList[epid].sub == 0 || epid == INVALID_EPID ||
|
|
!epid_out_traffic(epid)) {
|
|
/* Nothing here to see. */
|
|
continue;
|
|
}
|
|
ASSERT(epid_inuse(epid));
|
|
ASSERT(epid_isoc(epid));
|
|
|
|
sb_desc = phys_to_virt(TxIsocEPList[epid].sub);
|
|
/* Find the last descriptor of the currently active URB for this ep.
|
|
This is the first descriptor in the sub list marked for a descriptor
|
|
interrupt. */
|
|
while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) {
|
|
sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0;
|
|
}
|
|
ASSERT(sb_desc);
|
|
|
|
isoc_dbg("Descr IRQ checking epid:%d sub:0x%x intr:0x%x\n",
|
|
epid, (unsigned int)phys_to_virt(TxIsocEPList[epid].sub),
|
|
(unsigned int)sb_desc);
|
|
|
|
urb = activeUrbList[epid];
|
|
if(urb == NULL) {
|
|
isoc_err("Isoc Descr irq on epid:%d with no active URB\n", epid);
|
|
continue;
|
|
}
|
|
|
|
epid_done = 0;
|
|
while(urb && !epid_done) {
|
|
/* Sanity check. */
|
|
ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS);
|
|
ASSERT(usb_pipeout(urb->pipe));
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
ASSERT(urb_priv->urb_state == STARTED ||
|
|
urb_priv->urb_state == UNLINK);
|
|
|
|
if (sb_desc != urb_priv->last_sb) {
|
|
/* This urb has been sent. */
|
|
urb_priv->isoc_out_done = 1;
|
|
|
|
} else { /* Found URB that has last_sb as the interrupt reason */
|
|
|
|
/* Check if EP has been disabled, meaning that all transfers are done*/
|
|
if(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) {
|
|
ASSERT((sb_desc->command & IO_MASK(USB_SB_command, eol)) ==
|
|
IO_STATE(USB_SB_command, eol, yes));
|
|
ASSERT(sb_desc->next == 0);
|
|
urb_priv->isoc_out_done = 1;
|
|
} else {
|
|
isoc_dbg("Skipping URB:0x%x[%d] because EP not disabled yet\n",
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
}
|
|
/* Stop looking any further in queue */
|
|
epid_done = 1;
|
|
}
|
|
|
|
if (!epid_done) {
|
|
if(urb == activeUrbList[epid]) {
|
|
urb = urb_list_first(epid);
|
|
} else {
|
|
urb = urb_list_next(urb, epid);
|
|
}
|
|
}
|
|
} /* END: while(urb && !epid_done) */
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
/* This is where the Out Isoc URBs are realy completed. This function is
|
|
scheduled from tc_dma_tx_interrupt() when one or more Out Isoc transfers
|
|
are done. This functions completes all URBs earlier marked with
|
|
isoc_out_done by fast interrupt routine check_finished_isoc_tx_epids() */
|
|
|
|
static void complete_isoc_bottom_half(struct work_struct* work) {
|
|
struct crisv10_isoc_complete_data *comp_data;
|
|
struct usb_iso_packet_descriptor *packet;
|
|
struct crisv10_urb_priv * urb_priv;
|
|
unsigned long flags;
|
|
struct urb* urb;
|
|
int epid_done;
|
|
int epid;
|
|
int i;
|
|
|
|
comp_data = container_of(work, struct crisv10_isoc_complete_data, usb_bh);
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) {
|
|
if(!epid_inuse(epid) || !epid_isoc(epid) || !epid_out_traffic(epid) || epid == DUMMY_EPID) {
|
|
/* Only check valid Out Isoc epids */
|
|
continue;
|
|
}
|
|
|
|
isoc_dbg("Isoc bottom-half checking epid:%d, sub:0x%x\n", epid,
|
|
(unsigned int)phys_to_virt(TxIsocEPList[epid].sub));
|
|
|
|
/* The descriptor interrupt handler has marked all transmitted Out Isoc
|
|
URBs with isoc_out_done. Now we traverse all epids and for all that
|
|
have out Isoc traffic we traverse its URB list and complete the
|
|
transmitted URBs. */
|
|
epid_done = 0;
|
|
while (!epid_done) {
|
|
|
|
/* Get the active urb (if any) */
|
|
urb = activeUrbList[epid];
|
|
if (urb == 0) {
|
|
isoc_dbg("No active URB on epid:%d anymore\n", epid);
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
/* Sanity check. */
|
|
ASSERT(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS);
|
|
ASSERT(usb_pipeout(urb->pipe));
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
if (!(urb_priv->isoc_out_done)) {
|
|
/* We have reached URB that isn't flaged done yet, stop traversing. */
|
|
isoc_dbg("Stoped traversing Out Isoc URBs on epid:%d"
|
|
" before not yet flaged URB:0x%x[%d]\n",
|
|
epid, (unsigned int)urb, urb_priv->urb_num);
|
|
epid_done = 1;
|
|
continue;
|
|
}
|
|
|
|
/* This urb has been sent. */
|
|
isoc_dbg("Found URB:0x%x[%d] that is flaged isoc_out_done\n",
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
|
|
/* Set ok on transfered packets for this URB and finish it */
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
packet = &urb->iso_frame_desc[i];
|
|
packet->status = 0;
|
|
packet->actual_length = packet->length;
|
|
}
|
|
urb_priv->isoc_packet_counter = urb->number_of_packets;
|
|
tc_finish_urb(comp_data->hcd, urb, 0);
|
|
|
|
} /* END: while(!epid_done) */
|
|
} /* END: for(epid...) */
|
|
|
|
local_irq_restore(flags);
|
|
kmem_cache_free(isoc_compl_cache, comp_data);
|
|
}
|
|
|
|
|
|
static void check_finished_intr_tx_epids(struct usb_hcd *hcd) {
|
|
unsigned long flags;
|
|
int epid;
|
|
struct urb *urb;
|
|
struct crisv10_urb_priv * urb_priv;
|
|
volatile struct USB_EP_Desc *curr_ep; /* Current EP, the iterator. */
|
|
volatile struct USB_EP_Desc *next_ep; /* The EP after current. */
|
|
|
|
/* Protect TxintrEPList */
|
|
local_irq_save(flags);
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if(!epid_inuse(epid) || !epid_intr(epid) || !epid_out_traffic(epid)) {
|
|
/* Nothing to see on this epid. Only check valid Out Intr epids */
|
|
continue;
|
|
}
|
|
|
|
urb = activeUrbList[epid];
|
|
if(urb == 0) {
|
|
intr_warn("Found Out Intr epid:%d with no active URB\n", epid);
|
|
continue;
|
|
}
|
|
|
|
/* Sanity check. */
|
|
ASSERT(usb_pipetype(urb->pipe) == PIPE_INTERRUPT);
|
|
ASSERT(usb_pipeout(urb->pipe));
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
|
|
/* Go through EPs between first and second sof-EP. It's here Out Intr EPs
|
|
are inserted.*/
|
|
curr_ep = &TxIntrEPList[0];
|
|
do {
|
|
next_ep = (struct USB_EP_Desc *)phys_to_virt(curr_ep->next);
|
|
if(next_ep == urb_priv->intr_ep_pool[0]) {
|
|
/* We found the Out Intr EP for this epid */
|
|
|
|
/* Disable it so it doesn't get processed again */
|
|
next_ep->command &= ~IO_MASK(USB_EP_command, enable);
|
|
|
|
/* Finish the active Out Intr URB with status OK */
|
|
tc_finish_urb(hcd, urb, 0);
|
|
}
|
|
curr_ep = phys_to_virt(curr_ep->next);
|
|
} while (curr_ep != &TxIntrEPList[1]);
|
|
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/* Interrupt handler for DMA8/IRQ24 with subchannels (called from hardware intr) */
|
|
static irqreturn_t tc_dma_tx_interrupt(int irq, void *vhc) {
|
|
struct usb_hcd *hcd = (struct usb_hcd*)vhc;
|
|
ASSERT(hcd);
|
|
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) {
|
|
/* Clear this interrupt */
|
|
*R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do);
|
|
restart_dma8_sub0();
|
|
}
|
|
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) {
|
|
/* Clear this interrupt */
|
|
*R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do);
|
|
check_finished_ctrl_tx_epids(hcd);
|
|
}
|
|
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) {
|
|
/* Clear this interrupt */
|
|
*R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do);
|
|
check_finished_intr_tx_epids(hcd);
|
|
}
|
|
|
|
if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) {
|
|
struct crisv10_isoc_complete_data* comp_data;
|
|
|
|
/* Flag done Out Isoc for later completion */
|
|
check_finished_isoc_tx_epids();
|
|
|
|
/* Clear this interrupt */
|
|
*R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do);
|
|
/* Schedule bottom half of Out Isoc completion function. This function
|
|
finishes the URBs marked with isoc_out_done */
|
|
comp_data = (struct crisv10_isoc_complete_data*)
|
|
kmem_cache_alloc(isoc_compl_cache, GFP_ATOMIC);
|
|
ASSERT(comp_data != NULL);
|
|
comp_data ->hcd = hcd;
|
|
|
|
INIT_WORK(&comp_data->usb_bh, complete_isoc_bottom_half);
|
|
schedule_work(&comp_data->usb_bh);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Interrupt handler for DMA9/IRQ25 (called from hardware intr) */
|
|
static irqreturn_t tc_dma_rx_interrupt(int irq, void *vhc) {
|
|
unsigned long flags;
|
|
struct urb *urb;
|
|
struct usb_hcd *hcd = (struct usb_hcd*)vhc;
|
|
struct crisv10_urb_priv *urb_priv;
|
|
int epid = 0;
|
|
int real_error;
|
|
|
|
ASSERT(hcd);
|
|
|
|
/* Clear this interrupt. */
|
|
*R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do);
|
|
|
|
/* Custom clear interrupt for this interrupt */
|
|
/* The reason we cli here is that we call the driver's callback functions. */
|
|
local_irq_save(flags);
|
|
|
|
/* Note that this while loop assumes that all packets span only
|
|
one rx descriptor. */
|
|
while(myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) {
|
|
epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status);
|
|
/* Get the active URB for this epid */
|
|
urb = activeUrbList[epid];
|
|
|
|
ASSERT(epid_inuse(epid));
|
|
if (!urb) {
|
|
dma_err("No urb for epid %d in rx interrupt\n", epid);
|
|
goto skip_out;
|
|
}
|
|
|
|
/* Check if any errors on epid */
|
|
real_error = 0;
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) {
|
|
__u32 r_usb_ept_data;
|
|
|
|
if (usb_pipeisoc(urb->pipe)) {
|
|
r_usb_ept_data = etrax_epid_iso_get(epid);
|
|
if((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) &&
|
|
(IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) &&
|
|
(myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) {
|
|
/* Not an error, just a failure to receive an expected iso
|
|
in packet in this frame. This is not documented
|
|
in the designers reference. Continue processing.
|
|
*/
|
|
} else real_error = 1;
|
|
} else real_error = 1;
|
|
}
|
|
|
|
if(real_error) {
|
|
dma_err("Error in RX descr on epid:%d for URB 0x%x",
|
|
epid, (unsigned int)urb);
|
|
dump_ept_data(epid);
|
|
dump_in_desc(myNextRxDesc);
|
|
goto skip_out;
|
|
}
|
|
|
|
urb_priv = (struct crisv10_urb_priv *)urb->hcpriv;
|
|
ASSERT(urb_priv);
|
|
ASSERT(urb_priv->urb_state == STARTED ||
|
|
urb_priv->urb_state == UNLINK);
|
|
|
|
if ((usb_pipetype(urb->pipe) == PIPE_BULK) ||
|
|
(usb_pipetype(urb->pipe) == PIPE_CONTROL) ||
|
|
(usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) {
|
|
|
|
/* We get nodata for empty data transactions, and the rx descriptor's
|
|
hw_len field is not valid in that case. No data to copy in other
|
|
words. */
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) {
|
|
/* No data to copy */
|
|
} else {
|
|
/*
|
|
dma_dbg("Processing RX for URB:0x%x epid:%d (data:%d ofs:%d)\n",
|
|
(unsigned int)urb, epid, myNextRxDesc->hw_len,
|
|
urb_priv->rx_offset);
|
|
*/
|
|
/* Only copy data if URB isn't flaged to be unlinked*/
|
|
if(urb_priv->urb_state != UNLINK) {
|
|
/* Make sure the data fits in the buffer. */
|
|
if(urb_priv->rx_offset + myNextRxDesc->hw_len
|
|
<= urb->transfer_buffer_length) {
|
|
|
|
/* Copy the data to URBs buffer */
|
|
memcpy(urb->transfer_buffer + urb_priv->rx_offset,
|
|
phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len);
|
|
urb_priv->rx_offset += myNextRxDesc->hw_len;
|
|
} else {
|
|
/* Signal overflow when returning URB */
|
|
urb->status = -EOVERFLOW;
|
|
tc_finish_urb_later(hcd, urb, urb->status);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check if it was the last packet in the transfer */
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) {
|
|
/* Special handling for In Ctrl URBs. */
|
|
if(usb_pipecontrol(urb->pipe) && usb_pipein(urb->pipe) &&
|
|
!(urb_priv->ctrl_zout_done)) {
|
|
/* Flag that RX part of Ctrl transfer is done. Because zout descr
|
|
interrupt hasn't happend yet will the URB be finished in the
|
|
TX-Interrupt. */
|
|
urb_priv->ctrl_rx_done = 1;
|
|
tc_dbg("Not finishing In Ctrl URB:0x%x from rx_interrupt, waiting"
|
|
" for zout\n", (unsigned int)urb);
|
|
} else {
|
|
tc_finish_urb(hcd, urb, 0);
|
|
}
|
|
}
|
|
} else { /* ISOC RX */
|
|
/*
|
|
isoc_dbg("Processing RX for epid:%d (URB:0x%x) ISOC pipe\n",
|
|
epid, (unsigned int)urb);
|
|
*/
|
|
|
|
struct usb_iso_packet_descriptor *packet;
|
|
|
|
if (urb_priv->urb_state == UNLINK) {
|
|
isoc_warn("Ignoring Isoc Rx data for urb being unlinked.\n");
|
|
goto skip_out;
|
|
} else if (urb_priv->urb_state == NOT_STARTED) {
|
|
isoc_err("What? Got Rx data for Isoc urb that isn't started?\n");
|
|
goto skip_out;
|
|
}
|
|
|
|
packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter];
|
|
ASSERT(packet);
|
|
packet->status = 0;
|
|
|
|
if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) {
|
|
/* We get nodata for empty data transactions, and the rx descriptor's
|
|
hw_len field is not valid in that case. We copy 0 bytes however to
|
|
stay in synch. */
|
|
packet->actual_length = 0;
|
|
} else {
|
|
packet->actual_length = myNextRxDesc->hw_len;
|
|
/* Make sure the data fits in the buffer. */
|
|
ASSERT(packet->actual_length <= packet->length);
|
|
memcpy(urb->transfer_buffer + packet->offset,
|
|
phys_to_virt(myNextRxDesc->buf), packet->actual_length);
|
|
if(packet->actual_length > 0)
|
|
isoc_dbg("Copied %d bytes, packet %d for URB:0x%x[%d]\n",
|
|
packet->actual_length, urb_priv->isoc_packet_counter,
|
|
(unsigned int)urb, urb_priv->urb_num);
|
|
}
|
|
|
|
/* Increment the packet counter. */
|
|
urb_priv->isoc_packet_counter++;
|
|
|
|
/* Note that we don't care about the eot field in the rx descriptor's
|
|
status. It will always be set for isoc traffic. */
|
|
if (urb->number_of_packets == urb_priv->isoc_packet_counter) {
|
|
/* Complete the urb with status OK. */
|
|
tc_finish_urb(hcd, urb, 0);
|
|
}
|
|
}
|
|
|
|
skip_out:
|
|
myNextRxDesc->status = 0;
|
|
myNextRxDesc->command |= IO_MASK(USB_IN_command, eol);
|
|
myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol);
|
|
myLastRxDesc = myNextRxDesc;
|
|
myNextRxDesc = phys_to_virt(myNextRxDesc->next);
|
|
flush_etrax_cache();
|
|
*R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, restart);
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void tc_bulk_start_timer_func(unsigned long dummy) {
|
|
/* We might enable an EP descriptor behind the current DMA position when
|
|
it's about to decide that there are no more bulk traffic and it should
|
|
stop the bulk channel.
|
|
Therefore we periodically check if the bulk channel is stopped and there
|
|
is an enabled bulk EP descriptor, in which case we start the bulk
|
|
channel. */
|
|
|
|
if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) {
|
|
int epid;
|
|
|
|
timer_dbg("bulk_start_timer: Bulk DMA channel not running.\n");
|
|
|
|
for (epid = 0; epid < NBR_OF_EPIDS; epid++) {
|
|
if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) {
|
|
timer_warn("Found enabled EP for epid %d, starting bulk channel.\n",
|
|
epid);
|
|
restart_dma8_sub0();
|
|
|
|
/* Restart the bulk eot timer since we just started the bulk channel.*/
|
|
mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL);
|
|
|
|
/* No need to search any further. */
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
timer_dbg("bulk_start_timer: Bulk DMA channel running.\n");
|
|
}
|
|
}
|
|
|
|
static void tc_bulk_eot_timer_func(unsigned long dummy) {
|
|
struct usb_hcd *hcd = (struct usb_hcd*)dummy;
|
|
ASSERT(hcd);
|
|
/* Because of a race condition in the top half, we might miss a bulk eot.
|
|
This timer "simulates" a bulk eot if we don't get one for a while,
|
|
hopefully correcting the situation. */
|
|
timer_dbg("bulk_eot_timer timed out.\n");
|
|
check_finished_bulk_tx_epids(hcd, 1);
|
|
}
|
|
|
|
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
/* Device driver block */
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
|
|
/* Forward declarations for device driver functions */
|
|
static int devdrv_hcd_probe(struct device *);
|
|
static int devdrv_hcd_remove(struct device *);
|
|
#ifdef CONFIG_PM
|
|
static int devdrv_hcd_suspend(struct device *, u32, u32);
|
|
static int devdrv_hcd_resume(struct device *, u32);
|
|
#endif /* CONFIG_PM */
|
|
|
|
/* the device */
|
|
static struct platform_device *devdrv_hc_platform_device;
|
|
|
|
/* device driver interface */
|
|
static struct device_driver devdrv_hc_device_driver = {
|
|
.name = (char *) hc_name,
|
|
.bus = &platform_bus_type,
|
|
|
|
.probe = devdrv_hcd_probe,
|
|
.remove = devdrv_hcd_remove,
|
|
|
|
#ifdef CONFIG_PM
|
|
.suspend = devdrv_hcd_suspend,
|
|
.resume = devdrv_hcd_resume,
|
|
#endif /* CONFIG_PM */
|
|
};
|
|
|
|
/* initialize the host controller and driver */
|
|
static int __init_or_module devdrv_hcd_probe(struct device *dev)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct crisv10_hcd *crisv10_hcd;
|
|
int retval;
|
|
|
|
/* Check DMA burst length */
|
|
if(IO_EXTRACT(R_BUS_CONFIG, dma_burst, *R_BUS_CONFIG) !=
|
|
IO_STATE(R_BUS_CONFIG, dma_burst, burst32)) {
|
|
devdrv_err("Invalid DMA burst length in Etrax 100LX,"
|
|
" needs to be 32\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
hcd = usb_create_hcd(&crisv10_hc_driver, dev, dev_name(dev));
|
|
if (!hcd)
|
|
return -ENOMEM;
|
|
|
|
crisv10_hcd = hcd_to_crisv10_hcd(hcd);
|
|
spin_lock_init(&crisv10_hcd->lock);
|
|
crisv10_hcd->num_ports = num_ports();
|
|
crisv10_hcd->running = 0;
|
|
|
|
dev_set_drvdata(dev, crisv10_hcd);
|
|
|
|
devdrv_dbg("ETRAX USB IRQs HC:%d RX:%d TX:%d\n", ETRAX_USB_HC_IRQ,
|
|
ETRAX_USB_RX_IRQ, ETRAX_USB_TX_IRQ);
|
|
|
|
/* Print out chip version read from registers */
|
|
int rev_maj = *R_USB_REVISION & IO_MASK(R_USB_REVISION, major);
|
|
int rev_min = *R_USB_REVISION & IO_MASK(R_USB_REVISION, minor);
|
|
if(rev_min == 0) {
|
|
devdrv_info("Etrax 100LX USB Revision %d v1,2\n", rev_maj);
|
|
} else {
|
|
devdrv_info("Etrax 100LX USB Revision %d v%d\n", rev_maj, rev_min);
|
|
}
|
|
|
|
devdrv_info("Bulk timer interval, start:%d eot:%d\n",
|
|
BULK_START_TIMER_INTERVAL,
|
|
BULK_EOT_TIMER_INTERVAL);
|
|
|
|
|
|
/* Init root hub data structures */
|
|
if(rh_init()) {
|
|
devdrv_err("Failed init data for Root Hub\n");
|
|
retval = -ENOMEM;
|
|
}
|
|
|
|
if(port_in_use(0)) {
|
|
if (cris_request_io_interface(if_usb_1, "ETRAX100LX USB-HCD")) {
|
|
printk(KERN_CRIT "usb-host: request IO interface usb1 failed");
|
|
retval = -EBUSY;
|
|
goto out;
|
|
}
|
|
devdrv_info("Claimed interface for USB physical port 1\n");
|
|
}
|
|
if(port_in_use(1)) {
|
|
if (cris_request_io_interface(if_usb_2, "ETRAX100LX USB-HCD")) {
|
|
/* Free first interface if second failed to be claimed */
|
|
if(port_in_use(0)) {
|
|
cris_free_io_interface(if_usb_1);
|
|
}
|
|
printk(KERN_CRIT "usb-host: request IO interface usb2 failed");
|
|
retval = -EBUSY;
|
|
goto out;
|
|
}
|
|
devdrv_info("Claimed interface for USB physical port 2\n");
|
|
}
|
|
|
|
/* Init transfer controller structs and locks */
|
|
if((retval = tc_init(hcd)) != 0) {
|
|
goto out;
|
|
}
|
|
|
|
/* Attach interrupt functions for DMA and init DMA controller */
|
|
if((retval = tc_dma_init(hcd)) != 0) {
|
|
goto out;
|
|
}
|
|
|
|
/* Attach the top IRQ handler for USB controller interrupts */
|
|
if (request_irq(ETRAX_USB_HC_IRQ, crisv10_hcd_top_irq, 0,
|
|
"ETRAX 100LX built-in USB (HC)", hcd)) {
|
|
err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ);
|
|
retval = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/* iso_eof is only enabled when isoc traffic is running. */
|
|
*R_USB_IRQ_MASK_SET =
|
|
/* IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | */
|
|
IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) |
|
|
IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set);
|
|
|
|
|
|
crisv10_ready_wait();
|
|
/* Reset the USB interface. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, reset);
|
|
|
|
/* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to
|
|
0x2A30 (10800), to guarantee that control traffic gets 10% of the
|
|
bandwidth, and periodic transfer may allocate the rest (90%).
|
|
This doesn't work though.
|
|
The value 11960 is chosen to be just after the SOF token, with a couple
|
|
of bit times extra for possible bit stuffing. */
|
|
*R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960);
|
|
|
|
crisv10_ready_wait();
|
|
/* Configure the USB interface as a host controller. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config);
|
|
|
|
|
|
/* Check so controller not busy before enabling ports */
|
|
crisv10_ready_wait();
|
|
|
|
/* Enable selected USB ports */
|
|
if(port_in_use(0)) {
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no);
|
|
} else {
|
|
*R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes);
|
|
}
|
|
if(port_in_use(1)) {
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no);
|
|
} else {
|
|
*R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes);
|
|
}
|
|
|
|
crisv10_ready_wait();
|
|
/* Start processing of USB traffic. */
|
|
*R_USB_COMMAND =
|
|
IO_STATE(R_USB_COMMAND, port_sel, nop) |
|
|
IO_STATE(R_USB_COMMAND, port_cmd, reset) |
|
|
IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run);
|
|
|
|
/* Do not continue probing initialization before USB interface is done */
|
|
crisv10_ready_wait();
|
|
|
|
/* Register our Host Controller to USB Core
|
|
* Finish the remaining parts of generic HCD initialization: allocate the
|
|
* buffers of consistent memory, register the bus
|
|
* and call the driver's reset() and start() routines. */
|
|
retval = usb_add_hcd(hcd, ETRAX_USB_HC_IRQ, IRQF_DISABLED);
|
|
if (retval != 0) {
|
|
devdrv_err("Failed registering HCD driver\n");
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
devdrv_hcd_remove(dev);
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* cleanup after the host controller and driver */
|
|
static int __init_or_module devdrv_hcd_remove(struct device *dev)
|
|
{
|
|
struct crisv10_hcd *crisv10_hcd = dev_get_drvdata(dev);
|
|
struct usb_hcd *hcd;
|
|
|
|
if (!crisv10_hcd)
|
|
return 0;
|
|
hcd = crisv10_hcd_to_hcd(crisv10_hcd);
|
|
|
|
|
|
/* Stop USB Controller in Etrax 100LX */
|
|
crisv10_hcd_reset(hcd);
|
|
|
|
usb_remove_hcd(hcd);
|
|
devdrv_dbg("Removed HCD from USB Core\n");
|
|
|
|
/* Free USB Controller IRQ */
|
|
free_irq(ETRAX_USB_HC_IRQ, NULL);
|
|
|
|
/* Free resources */
|
|
tc_dma_destroy();
|
|
tc_destroy();
|
|
|
|
|
|
if(port_in_use(0)) {
|
|
cris_free_io_interface(if_usb_1);
|
|
}
|
|
if(port_in_use(1)) {
|
|
cris_free_io_interface(if_usb_2);
|
|
}
|
|
|
|
devdrv_dbg("Freed all claimed resources\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int devdrv_hcd_suspend(struct usb_hcd *hcd, u32 state, u32 level)
|
|
{
|
|
return 0; /* no-op for now */
|
|
}
|
|
|
|
static int devdrv_hcd_resume(struct usb_hcd *hcd, u32 level)
|
|
{
|
|
return 0; /* no-op for now */
|
|
}
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
/* Module block */
|
|
/*************************************************************/
|
|
/*************************************************************/
|
|
|
|
/* register driver */
|
|
static int __init module_hcd_init(void)
|
|
{
|
|
|
|
if (usb_disabled())
|
|
return -ENODEV;
|
|
|
|
/* Here we select enabled ports by following defines created from
|
|
menuconfig */
|
|
#ifndef CONFIG_ETRAX_USB_HOST_PORT1
|
|
ports &= ~(1<<0);
|
|
#endif
|
|
#ifndef CONFIG_ETRAX_USB_HOST_PORT2
|
|
ports &= ~(1<<1);
|
|
#endif
|
|
|
|
printk(KERN_INFO "%s version "VERSION" "COPYRIGHT"\n", product_desc);
|
|
|
|
devdrv_hc_platform_device =
|
|
platform_device_register_simple((char *) hc_name, 0, NULL, 0);
|
|
|
|
if (IS_ERR(devdrv_hc_platform_device))
|
|
return PTR_ERR(devdrv_hc_platform_device);
|
|
return driver_register(&devdrv_hc_device_driver);
|
|
/*
|
|
* Note that we do not set the DMA mask for the device,
|
|
* i.e. we pretend that we will use PIO, since no specific
|
|
* allocation routines are needed for DMA buffers. This will
|
|
* cause the HCD buffer allocation routines to fall back to
|
|
* kmalloc().
|
|
*/
|
|
}
|
|
|
|
/* unregister driver */
|
|
static void __exit module_hcd_exit(void)
|
|
{
|
|
driver_unregister(&devdrv_hc_device_driver);
|
|
}
|
|
|
|
|
|
/* Module hooks */
|
|
module_init(module_hcd_init);
|
|
module_exit(module_hcd_exit);
|
|
|