1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-01 06:59:44 +02:00
openwrt-xburst/package/uboot-lantiq/files/drivers/net/ifx_etop.c
ralph 05c930e80a [uboot-lantiq] add preliminary AR9 support
attention: if caches enabled the network is broken
attention: the network of the flash image doesn't work because of enabled caches



git-svn-id: svn://svn.openwrt.org/openwrt/trunk@20606 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-03-30 13:56:30 +00:00

402 lines
9.6 KiB
C

/*
* Lantiq CPE device ethernet driver.
* Supposed to work on Twinpass/Danube.
*
* Based on INCA-IP driver:
* (C) Copyright 2003-2004
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2010
* Thomas Langer, Ralph Hempel
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <asm/types.h>
#include <asm/io.h>
#include <asm/addrspace.h>
#include <config.h>
#include "ifx_etop.h"
#if defined(CONFIG_AR9)
#define TX_CHAN_NO 1
#define RX_CHAN_NO 0
#else
#define TX_CHAN_NO 7
#define RX_CHAN_NO 6
#endif
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 8
#define TOUT_LOOP 100
typedef struct
{
union
{
struct
{
volatile u32 OWN :1;
volatile u32 C :1;
volatile u32 Sop :1;
volatile u32 Eop :1;
volatile u32 reserved :3;
volatile u32 Byteoffset :2;
volatile u32 reserve :7;
volatile u32 DataLen :16;
}field;
volatile u32 word;
}status;
volatile u32 DataPtr;
} dma_rx_descriptor_t;
typedef struct
{
union
{
struct
{
volatile u32 OWN :1;
volatile u32 C :1;
volatile u32 Sop :1;
volatile u32 Eop :1;
volatile u32 Byteoffset :5;
volatile u32 reserved :7;
volatile u32 DataLen :16;
}field;
volatile u32 word;
}status;
volatile u32 DataPtr;
} dma_tx_descriptor_t;
static volatile dma_rx_descriptor_t rx_des_ring[NUM_RX_DESC] __attribute__ ((aligned(8)));
static volatile dma_tx_descriptor_t tx_des_ring[NUM_TX_DESC] __attribute__ ((aligned(8)));
static int tx_num, rx_num;
static volatile IfxDMA_t *pDma = (IfxDMA_t *)CKSEG1ADDR(DANUBE_DMA_BASE);
static int lq_eth_init(struct eth_device *dev, bd_t * bis);
static int lq_eth_send(struct eth_device *dev, volatile void *packet,int length);
static int lq_eth_recv(struct eth_device *dev);
static void lq_eth_halt(struct eth_device *dev);
static void lq_eth_init_chip(void);
static void lq_eth_init_dma(void);
static int lq_eth_miiphy_read(char *devname, u8 phyAddr, u8 regAddr, u16 * retVal)
{
u32 timeout = 50000;
u32 phy, reg;
if ((phyAddr > 0x1F) || (regAddr > 0x1F) || (retVal == NULL))
return -1;
phy = (phyAddr & 0x1F) << 21;
reg = (regAddr & 0x1F) << 16;
*ETOP_MDIO_ACC = 0xC0000000 | phy | reg;
while ((timeout--) && (*ETOP_MDIO_ACC & 0x80000000))
udelay(10);
if (timeout==0) {
*retVal = 0;
return -1;
}
*retVal = *ETOP_MDIO_ACC & 0xFFFF;
return 0;
}
static int lq_eth_miiphy_write(char *devname, u8 phyAddr, u8 regAddr, u16 data)
{
u32 timeout = 50000;
u32 phy, reg;
if ((phyAddr > 0x1F) || (regAddr > 0x1F))
return -1;
phy = (phyAddr & 0x1F) << 21;
reg = (regAddr & 0x1F) << 16;
*ETOP_MDIO_ACC = 0x80000000 | phy | reg | data;
while ((timeout--) && (*ETOP_MDIO_ACC & 0x80000000))
udelay(10);
if (timeout==0)
return -1;
return 0;
}
int lq_eth_initialize(bd_t * bis)
{
struct eth_device *dev;
debug("Entered lq_eth_initialize()\n");
if (!(dev = malloc (sizeof *dev))) {
printf("Failed to allocate memory\n");
return -1;
}
memset(dev, 0, sizeof(*dev));
sprintf(dev->name, "lq_cpe_eth");
dev->init = lq_eth_init;
dev->halt = lq_eth_halt;
dev->send = lq_eth_send;
dev->recv = lq_eth_recv;
eth_register(dev);
#if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
/* register mii command access routines */
miiphy_register(dev->name,
lq_eth_miiphy_read, lq_eth_miiphy_write);
#endif
lq_eth_init_dma();
lq_eth_init_chip();
return 0;
}
static int lq_eth_init(struct eth_device *dev, bd_t * bis)
{
int i;
uchar *enetaddr = dev->enetaddr;
debug("lq_eth_init %x:%x:%x:%x:%x:%x\n",
enetaddr[0], enetaddr[1], enetaddr[2], enetaddr[3], enetaddr[4], enetaddr[5]);
*ENET_MAC_DA0 = (enetaddr[0]<<24) + (enetaddr[1]<<16) + (enetaddr[2]<< 8) + enetaddr[3];
*ENET_MAC_DA1 = (enetaddr[4]<<24) + (enetaddr[5]<<16);
*ENETS_CFG |= 1<<28; /* enable filter for unicast packets */
tx_num=0;
rx_num=0;
for(i=0;i < NUM_RX_DESC; i++) {
dma_rx_descriptor_t * rx_desc = (dma_rx_descriptor_t *)CKSEG1ADDR(&rx_des_ring[i]);
rx_desc->status.word=0;
rx_desc->status.field.OWN=1;
rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */
rx_desc->DataPtr=(u32)CKSEG1ADDR(NetRxPackets[i]);
NetRxPackets[i][0] = 0xAA;
}
/* Reset DMA */
dma_writel(dma_cs, RX_CHAN_NO);
dma_writel(dma_cctrl, 0x2);/*fix me, need to reset this channel first?*/
dma_writel(dma_cpoll, 0x80000040);
/*set descriptor base*/
dma_writel(dma_cdba, (u32)rx_des_ring);
dma_writel(dma_cdlen, NUM_RX_DESC);
dma_writel(dma_cie, 0);
dma_writel(dma_cctrl, 0x30000);
for(i=0;i < NUM_TX_DESC; i++) {
dma_tx_descriptor_t * tx_desc = (dma_tx_descriptor_t *)CKSEG1ADDR(&tx_des_ring[i]);
memset(tx_desc, 0, sizeof(tx_des_ring[0]));
}
dma_writel(dma_cs, TX_CHAN_NO);
dma_writel(dma_cctrl, 0x2);/*fix me, need to reset this channel first?*/
dma_writel(dma_cpoll, 0x80000040);
dma_writel(dma_cdba, (u32)tx_des_ring);
dma_writel(dma_cdlen, NUM_TX_DESC);
dma_writel(dma_cie, 0);
dma_writel(dma_cctrl, 0x30100);
/* turn on DMA rx & tx channel
*/
dma_writel(dma_cs, RX_CHAN_NO);
dma_writel(dma_cctrl, dma_readl(dma_cctrl) | 1); /*reset and turn on the channel*/
return 0;
}
static void lq_eth_halt(struct eth_device *dev)
{
int i;
debug("lq_eth_halt()\n");
for(i=0;i<8;i++) {
dma_writel(dma_cs, i);
dma_writel(dma_cctrl, dma_readl(dma_cctrl) & ~1);/*stop the dma channel*/
}
}
#ifdef DEBUG
static void lq_dump(const u8 *data, const u32 length)
{
u32 i;
debug("\n");
for(i=0;i<length;i++) {
debug("%02x ", data[i]);
}
debug("\n");
}
#endif
static int lq_eth_send(struct eth_device *dev, volatile void *packet, int length)
{
int i;
int res = -1;
volatile dma_tx_descriptor_t * tx_desc = (dma_tx_descriptor_t *)CKSEG1ADDR(&tx_des_ring[tx_num]);
if (length <= 0) {
printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
for(i=0; tx_desc->status.field.OWN==1; i++) {
if (i>=TOUT_LOOP) {
printf("NO Tx Descriptor...");
goto Done;
}
}
tx_desc->status.field.Sop=1;
tx_desc->status.field.Eop=1;
tx_desc->status.field.C=0;
tx_desc->DataPtr = (u32)CKSEG1ADDR(packet);
if (length<60)
tx_desc->status.field.DataLen = 60;
else
tx_desc->status.field.DataLen = (u32)length;
flush_cache((u32)packet, tx_desc->status.field.DataLen);
asm("SYNC");
tx_desc->status.field.OWN=1;
res=length;
tx_num++;
if (tx_num==NUM_TX_DESC) tx_num=0;
#ifdef DEBUG
lq_dump(tx_desc->DataPtr, tx_desc->status.field.DataLen);
#endif
dma_writel(dma_cs, TX_CHAN_NO);
if (!(dma_readl(dma_cctrl) & 1)) {
dma_writel(dma_cctrl, dma_readl(dma_cctrl) | 1);
}
Done:
return res;
}
static int lq_eth_recv(struct eth_device *dev)
{
int length = 0;
volatile dma_rx_descriptor_t * rx_desc;
rx_desc = (dma_rx_descriptor_t *)CKSEG1ADDR(&rx_des_ring[rx_num]);
if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1)) {
return 0;
}
debug("rx");
#ifdef DEBUG
lq_dump(rx_desc->DataPtr, rx_desc->status.field.DataLen);
#endif
length = rx_desc->status.field.DataLen;
if (length > 4) {
invalidate_dcache_range((u32)CKSEG0ADDR(rx_desc->DataPtr), (u32) CKSEG0ADDR(rx_desc->DataPtr) + length);
NetReceive(NetRxPackets[rx_num], length);
} else {
printf("ERROR: Invalid rx packet length.\n");
}
rx_desc->status.field.Sop=0;
rx_desc->status.field.Eop=0;
rx_desc->status.field.C=0;
rx_desc->status.field.DataLen=PKTSIZE_ALIGN;
rx_desc->status.field.OWN=1;
rx_num++;
if (rx_num == NUM_RX_DESC)
rx_num=0;
return length;
}
static void lq_eth_init_chip(void)
{
*ETOP_MDIO_CFG &= ~0x6;
*ENET_MAC_CFG = 0x187;
// turn on port0, set to rmii and turn off port1.
#ifdef CONFIG_RMII
*ETOP_CFG = (*ETOP_CFG & 0xFFFFFFFC) | 0x0000000A;
#else
*ETOP_CFG = (*ETOP_CFG & 0xFFFFFFFC) | 0x00000008;
#endif
*ETOP_IG_PLEN_CTRL = 0x004005EE; // set packetlen.
*ENET_MAC_CFG |= 1<<11; /*enable the crc*/
return;
}
static void lq_eth_init_dma(void)
{
/* Reset DMA */
dma_writel(dma_ctrl, dma_readl(dma_ctrl) | 1);
dma_writel(dma_irnen, 0);/*disable all the interrupts first*/
/* Clear Interrupt Status Register */
dma_writel(dma_irncr, 0xfffff);
/*disable all the dma interrupts*/
dma_writel(dma_irnen, 0);
/*disable channel 0 and channel 1 interrupts*/
dma_writel(dma_cs, RX_CHAN_NO);
dma_writel(dma_cctrl, 0x2);/*fix me, need to reset this channel first?*/
dma_writel(dma_cpoll, 0x80000040);
/*set descriptor base*/
dma_writel(dma_cdba, (u32)rx_des_ring);
dma_writel(dma_cdlen, NUM_RX_DESC);
dma_writel(dma_cie, 0);
dma_writel(dma_cctrl, 0x30000);
dma_writel(dma_cs, TX_CHAN_NO);
dma_writel(dma_cctrl, 0x2);/*fix me, need to reset this channel first?*/
dma_writel(dma_cpoll, 0x80000040);
dma_writel(dma_cdba, (u32)tx_des_ring);
dma_writel(dma_cdlen, NUM_TX_DESC);
dma_writel(dma_cie, 0);
dma_writel(dma_cctrl, 0x30100);
/*enable the poll function and set the poll counter*/
//dma_writel(DMA_CPOLL=DANUBE_DMA_POLL_EN | (DANUBE_DMA_POLL_COUNT<<4);
/*set port properties, enable endian conversion for switch*/
dma_writel(dma_ps, 0);
dma_writel(dma_pctrl, dma_readl(dma_pctrl) | (0xf<<8));/*enable 32 bit endian conversion*/
return;
}