1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-02-28 21:47:56 +02:00
kaloz 1a29ef8e97 [ubicom32]: move new files out from platform support patch
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@19815 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-02-22 13:54:47 +00:00

550 lines
14 KiB
C

/*
* arch/ubicom32/mach-common/profile.c
* Implementation for Ubicom32 Profiler
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*/
#include <linux/platform_device.h>
#include "profile.h"
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/fs.h>
#include <linux/page-flags.h>
#include <asm/uaccess.h>
#include <asm/devtree.h>
#include <asm/profilesample.h>
#include <asm/memory_map.h>
#include <asm/page.h>
#include <asm/ip5000.h>
/*
* spacs for all memory blocks so we can hold locks for short time when walking tables
*/
#define PROFILE_NUM_MAPS 5000
static struct profile_map profile_pm[PROFILE_NUM_MAPS];
static struct profilenode *node = NULL;
static int profile_first_packet = 1;
static int profile_open(struct inode *inode, struct file *filp)
{
if (!node) {
return -ENOENT;
}
node->busy = 1;
if (!node->enabled) {
node->enabled = 1;
node->busy = 0;
profile_first_packet = 1;
return 0;
}
node->busy = 0;
return -EBUSY;
}
static int profile_sequence_num;
/*
* make a packet full of sample data
*/
static int profile_make_data_packet(char *buf, int count)
{
int samples; /* number of samples requested */
int i;
struct profile_header ph;
char *ptr;
if (count < sizeof(struct profile_header) + sizeof(struct profile_sample)) {
return -EINVAL;
}
/*
* fill in the packet header
*/
memset(&ph, 0, sizeof(struct profile_header));
ph.magic = PROF_MAGIC + PROFILE_VERSION;
ph.header_size = sizeof(struct profile_header);
ph.clocks = node->clocks;
for (i = 0; i < PROFILE_MAX_THREADS; ++i) {
ph.instruction_count[i] = node->inst_count[i];
}
ph.profile_instructions = 0;
ph.enabled = node->enabled_threads;
ph.hrt = node->hrt;
ph.high = 0;
ph.profiler_thread = node->profiler_thread;
ph.clock_freq = node->clock_freq;
ph.seq_num = profile_sequence_num++;
ph.cpu_id = node->cpu_id;
ph.perf_counters[0] = node->stats[0];
ph.perf_counters[1] = node->stats[1];
ph.perf_counters[2] = node->stats[2];
ph.perf_counters[3] = node->stats[3];
ph.ddr_freq = node->ddr_freq;
ptr = buf + sizeof(struct profile_header);
samples = (count - sizeof(struct profile_header)) / sizeof(struct profile_sample);
for (i = 0; i < samples && node->count; ++i) {
if (copy_to_user(ptr, &node->samples[node->tail], sizeof(struct profile_sample)) != 0) {
return -EFAULT;
}
node->count--;
node->tail++;
if (node->tail >= node->max_samples) {
node->tail = 0;
}
ptr += sizeof(struct profile_sample);
}
ph.sample_count = i;
if (copy_to_user(buf, &ph, sizeof(struct profile_header)) != 0) {
return -EFAULT;
}
if (ph.sample_count == 0)
return 0;
else
return sizeof(struct profile_header) + ph.sample_count * sizeof(struct profile_sample);
}
static void profile_get_memory_stats(unsigned int *total_free, unsigned int *max_free)
{
struct list_head *p;
struct zone *zone;
unsigned int size;
*total_free = 0;
*max_free = 0;
/*
* get all the free regions. In each zone, the array of free_area lists contains the first page of each frame of size 1 << order
*/
for_each_zone(zone) {
unsigned long order, flags, i;
if (!populated_zone(zone))
continue;
if (!is_normal(zone))
continue;
spin_lock_irqsave(&zone->lock, flags);
for_each_migratetype_order(order, i) {
size = ((1 << order) << PAGE_SHIFT) >> 10;
list_for_each(p, &(zone->free_area[order].free_list[i])) {
if (size > *max_free) {
*max_free = size;
}
*total_free += size;
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
}
struct profile_counter_pkt profile_builtin_stats[] =
{
{
"Free memory(KB)", 0
},
{
"Max free Block(KB)", 0
}
};
/*
* make a packet full of performance counters
*/
static char prof_pkt[PROFILE_MAX_PACKET_SIZE];
static int profile_make_stats_packet(char *buf, int count)
{
char *ptr = prof_pkt;
struct profile_header_counters hdr;
int stat_count = 0;
int i;
unsigned int total_free, max_free;
int builtin_count = sizeof(profile_builtin_stats) / sizeof(struct profile_counter_pkt);
if (count > PROFILE_MAX_PACKET_SIZE) {
count = PROFILE_MAX_PACKET_SIZE;
}
stat_count = (count - sizeof(struct profile_header_counters)) / sizeof (struct profile_counter_pkt);
stat_count -= builtin_count;
if (stat_count <= 0) {
return 0;
}
if (stat_count > node->num_counters) {
stat_count = node->num_counters;
}
hdr.magic = PROF_MAGIC_COUNTERS;
hdr.ultra_sample_time = node->clocks;
hdr.ultra_count = stat_count;
hdr.linux_sample_time = UBICOM32_IO_TIMER->sysval;
hdr.linux_count = builtin_count;
memcpy(ptr, (void *)&hdr, sizeof(struct profile_header_counters));
ptr += sizeof(struct profile_header_counters);
for (i = 0; i < stat_count; ++i) {
memcpy(ptr, (void *)(&(node->counters[i])), sizeof(struct profile_counter));
ptr += sizeof(struct profile_counter);
}
/*
* built in statistics
*/
profile_get_memory_stats(&total_free, &max_free);
profile_builtin_stats[0].value = total_free;
profile_builtin_stats[1].value = max_free;
memcpy(ptr, (void *)profile_builtin_stats, sizeof(profile_builtin_stats));
ptr += sizeof(profile_builtin_stats);
if (copy_to_user(buf, prof_pkt, ptr - prof_pkt) != 0) {
return -EFAULT;
}
return ptr - prof_pkt;
}
/*
* return a udp packet ready to send to the profiler tool
* when there are no packets left to make, return 0
*/
static int profile_read(struct file *filp, char *buf, size_t count, loff_t *f_pos)
{
int result = 0;
if (!node) {
return -ENOENT;
}
node->busy = 1;
if (!node->enabled) {
node->busy = 0;
return -EPERM;
}
if (!node->samples) {
node->busy = 0;
return -ENOMEM;
}
if (profile_first_packet) {
result = profile_make_stats_packet(buf, count);
profile_first_packet = 0;
}
if (result == 0) {
result = profile_make_data_packet(buf, count);
if (result == 0) {
profile_first_packet = 1;
}
}
node->busy = 0;
return result;
}
static int profile_release(struct inode *inode, struct file *filp)
{
if (!node) {
return -ENOENT;
}
node->busy = 1;
if (node->enabled) {
node->enabled = 0;
node->count = 0;
node->tail = node->head;
node->busy = 0;
return 0;
}
node->busy = 0;
profile_first_packet = 1;
return -EBADF;
}
static const struct file_operations profile_fops = {
.open = profile_open,
.read = profile_read,
.release = profile_release,
};
static int page_aligned(void *x)
{
return !((unsigned int)x & ((1 << PAGE_SHIFT) - 1));
}
static int profile_maps_open(struct inode *inode, struct file *filp)
{
struct rb_node *rb;
int num = 0;
int slab_start;
struct vm_area_struct *vma;
int type = PROFILE_MAP_TYPE_UNKNOWN;
int flags, i;
struct list_head *p;
struct zone *zone;
/*
* get the slab data (first so dups will show up as vmas)
*/
slab_start = num;
num += kmem_cache_block_info("size-512", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("size-1024", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("size-2048", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("size-4096", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("size-8192", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
for (i = slab_start; i < num; ++i) {
profile_pm[i].type_size |= PROFILE_MAP_TYPE_SMALL << PROFILE_MAP_TYPE_SHIFT;
}
slab_start = num;
num += kmem_cache_block_info("dentry", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("inode_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("sysfs_dir_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
num += kmem_cache_block_info("proc_inode_cache", (struct kmem_cache_size_info *)&profile_pm[num], PROFILE_NUM_MAPS - num);
for (i = slab_start; i < num; ++i) {
profile_pm[i].type_size |= PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT;
}
/*
* get all the vma regions (allocated by mmap, most likely
*/
#if 0
down_read(&nommu_vma_sem);
for (rb = rb_first(&nommu_vma_tree); rb && num < PROFILE_NUM_MAPS; rb = rb_next(rb)) {
vma = rb_entry(rb, struct vm_area_struct, vm_rb);
profile_pm[num].start = (vma->vm_start - SDRAMSTART) >> PAGE_SHIFT;
profile_pm[num].type_size = (vma->vm_end - vma->vm_start + (1 << PAGE_SHIFT) - 1) >> PAGE_SHIFT;
flags = vma->vm_flags & 0xf;
if (flags == (VM_READ | VM_EXEC)) {
type = PROFILE_MAP_TYPE_TEXT;
} else if (flags == (VM_READ | VM_WRITE | VM_EXEC)) {
type = PROFILE_MAP_TYPE_STACK;
} else if (flags == (VM_READ | VM_WRITE)) {
type = PROFILE_MAP_TYPE_APP_DATA;
}
profile_pm[num].type_size |= type << PROFILE_MAP_TYPE_SHIFT;
num++;
}
up_read(&nommu_vma_sem);
if (rb) {
return -ENOMEM;
}
#endif
/*
* get all the free regions. In each zone, the array of free_area lists contains the first page of each frame of size 1 << order
*/
for_each_zone(zone) {
unsigned long order, flags, i;
struct page *page;
if (!populated_zone(zone))
continue;
if (!is_normal(zone))
continue;
spin_lock_irqsave(&zone->lock, flags);
for_each_migratetype_order(order, i) {
list_for_each(p, &(zone->free_area[order].free_list[i])) {
page = list_entry(p, struct page, lru);
profile_pm[num].start = ((page_to_phys(page) - SDRAMSTART) >> PAGE_SHIFT) - 0x40;
profile_pm[num].type_size = (PROFILE_MAP_TYPE_FREE << PROFILE_MAP_TYPE_SHIFT) | order;
num++;
if (num >= PROFILE_NUM_MAPS) {
spin_unlock_irqrestore(&zone->lock, flags);
return -ENOMEM;
}
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
/*
* get the filesystem inodes
*/
list_for_each(p, &(super_blocks)) {
struct super_block *sb;
struct list_head *q;
if (num >= PROFILE_NUM_MAPS)
break;
sb = list_entry(p, struct super_block, s_list);
if (page_aligned(sb)) {
profile_pm[num].start = ((unsigned int)sb - SDRAMSTART) >> PAGE_SHIFT;
profile_pm[num].type_size = (PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT);
num++;
}
list_for_each(q, &(sb->s_inodes)) {
struct inode *in;
if (num >= PROFILE_NUM_MAPS)
break;
in = list_entry(q, struct inode, i_sb_list);
if (page_aligned(in)) {
profile_pm[num].start = ((unsigned int)in - SDRAMSTART) >> PAGE_SHIFT;
profile_pm[num].type_size = (PROFILE_MAP_TYPE_FS << PROFILE_MAP_TYPE_SHIFT);
num++;
}
}
}
/*
* get the buffer cache pages
*/
for (i = 0; i < num_physpages && num < PROFILE_NUM_MAPS; ++i) {
if ((mem_map + i)->flags & (1 << PG_lru)) {
int start = i;
while ((mem_map + i)->flags & (1 << PG_lru) && i < num_physpages)
i++;
profile_pm[num].start = start;
profile_pm[num].type_size = (i - start) | (PROFILE_MAP_TYPE_CACHE << PROFILE_MAP_TYPE_SHIFT);
num++;
}
}
filp->private_data = (void *)num;
return 0;
}
/*
* return one packet of map data, or 0 if all maps have been returned already
*/
static int profile_maps_read(struct file *filp, char *buf, size_t count, loff_t *f_pos)
{
struct profile_header_maps header;
char *p = buf + sizeof(header);
int total = (int)filp->private_data;
header.count = (count - sizeof(header)) / sizeof(struct profile_map);
if (header.count > PROFILE_MAX_MAPS) {
header.count = PROFILE_MAX_MAPS;;
}
if (header.count > total - *f_pos) {
header.count = total - *f_pos;
}
if (header.count == 0) {
return 0;
}
header.magic = PROF_MAGIC_MAPS;
header.page_shift = PAGE_SHIFT;
if (copy_to_user(buf, &header, sizeof(header)) != 0) {
return -EFAULT;
}
if (copy_to_user(p, (void *)&profile_pm[*f_pos], sizeof(struct profile_map) * header.count) != 0) {
return -EFAULT;
}
*f_pos += header.count;
return sizeof(header) + sizeof(struct profile_map) * header.count;
}
static int profile_maps_release(struct inode *inode, struct file *filp)
{
return 0;
}
static const struct file_operations profile_maps_fops = {
.open = profile_maps_open,
.read = profile_maps_read,
.release = profile_maps_release,
};
static int profile_rate_show(struct seq_file *m, void *v)
{
if (node) {
seq_printf(m, "%d samples per second. %d virtual counters.\n", node->rate, node->num_counters);
} else {
seq_printf(m, "Profiler is not initialized.\n");
}
return 0;
}
static int profile_rate_open(struct inode *inode, struct file *filp)
{
return single_open(filp, profile_rate_show, NULL);
}
static int profile_rate_write(struct file *filp, const char *buf, size_t len, loff_t *off)
{
*off = 0;
return 0;
}
static const struct file_operations profile_rate_fops = {
.open = profile_rate_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = profile_rate_write,
};
int ubi32_profile_init_module(void)
{
struct proc_dir_entry *pdir;
/*
* find the device
*/
node = (struct profilenode *)devtree_find_node("profiler");
if (!node) {
printk(KERN_INFO "Profiler does not exist.\n");
return -ENODEV;
}
/*
* allocate the sample buffer
*/
node->max_samples = PROFILE_MAX_SAMPLES;
node->samples = kmalloc(node->max_samples * sizeof(struct profile_sample), GFP_KERNEL);
if (!node->samples) {
printk(KERN_INFO "Profiler sample buffer kmalloc failed.\n");
return -ENOMEM;
}
/*
* connect to the file system
*/
pdir = proc_mkdir("profile", NULL);
if (!pdir) {
return -ENOMEM;
}
if (!proc_create("data", 0, pdir, &profile_fops)) {
return -ENOMEM;
}
if (!proc_create("rate", 0, pdir, &profile_rate_fops)) {
return -ENOMEM;
}
if (!proc_create("maps", 0, pdir, &profile_maps_fops)) {
return -ENOMEM;
}
return 0;
}
module_init(ubi32_profile_init_module);
MODULE_AUTHOR("David Fotland");
MODULE_LICENSE("GPL");