1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-18 22:15:00 +02:00
openwrt-xburst/target/linux/generic/files/crypto/ocf/cryptocteon/cavium_crypto.c
nbd c5552ad039 rename target/linux/generic-2.6 to generic
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@21952 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-06-26 20:42:58 +00:00

2284 lines
63 KiB
C

/*
* Copyright (c) 2009 David McCullough <david.mccullough@securecomputing.com>
*
* Copyright (c) 2003-2007 Cavium Networks (support@cavium.com). All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Cavium Networks
* 4. Cavium Networks' name may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its
* associated regulations, and may be subject to export or import regulations
* in other countries. You warrant that You will comply strictly in all
* respects with all such regulations and acknowledge that you have the
* responsibility to obtain licenses to export, re-export or import the
* Software.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" AND
* WITH ALL FAULTS AND CAVIUM MAKES NO PROMISES, REPRESENTATIONS OR WARRANTIES,
* EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO THE
* SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*/
/****************************************************************************/
#include <linux/scatterlist.h>
#include <asm/octeon/octeon.h>
#include "octeon-asm.h"
/****************************************************************************/
extern unsigned long octeon_crypto_enable(struct octeon_cop2_state *);
extern void octeon_crypto_disable(struct octeon_cop2_state *, unsigned long);
#define SG_INIT(s, p, i, l) \
{ \
(i) = 0; \
(l) = (s)[0].length; \
(p) = (typeof(p)) sg_virt((s)); \
CVMX_PREFETCH0((p)); \
}
#define SG_CONSUME(s, p, i, l) \
{ \
(p)++; \
(l) -= sizeof(*(p)); \
if ((l) < 0) { \
dprintk("%s, %d: l = %d\n", __FILE__, __LINE__, l); \
} else if ((l) == 0) { \
(i)++; \
(l) = (s)[0].length; \
(p) = (typeof(p)) sg_virt(s); \
CVMX_PREFETCH0((p)); \
} \
}
#define ESP_HEADER_LENGTH 8
#define DES_CBC_IV_LENGTH 8
#define AES_CBC_IV_LENGTH 16
#define ESP_HMAC_LEN 12
#define ESP_HEADER_LENGTH 8
#define DES_CBC_IV_LENGTH 8
/****************************************************************************/
#define CVM_LOAD_SHA_UNIT(dat, next) { \
if (next == 0) { \
next = 1; \
CVMX_MT_HSH_DAT (dat, 0); \
} else if (next == 1) { \
next = 2; \
CVMX_MT_HSH_DAT (dat, 1); \
} else if (next == 2) { \
next = 3; \
CVMX_MT_HSH_DAT (dat, 2); \
} else if (next == 3) { \
next = 4; \
CVMX_MT_HSH_DAT (dat, 3); \
} else if (next == 4) { \
next = 5; \
CVMX_MT_HSH_DAT (dat, 4); \
} else if (next == 5) { \
next = 6; \
CVMX_MT_HSH_DAT (dat, 5); \
} else if (next == 6) { \
next = 7; \
CVMX_MT_HSH_DAT (dat, 6); \
} else { \
CVMX_MT_HSH_STARTSHA (dat); \
next = 0; \
} \
}
#define CVM_LOAD2_SHA_UNIT(dat1, dat2, next) { \
if (next == 0) { \
CVMX_MT_HSH_DAT (dat1, 0); \
CVMX_MT_HSH_DAT (dat2, 1); \
next = 2; \
} else if (next == 1) { \
CVMX_MT_HSH_DAT (dat1, 1); \
CVMX_MT_HSH_DAT (dat2, 2); \
next = 3; \
} else if (next == 2) { \
CVMX_MT_HSH_DAT (dat1, 2); \
CVMX_MT_HSH_DAT (dat2, 3); \
next = 4; \
} else if (next == 3) { \
CVMX_MT_HSH_DAT (dat1, 3); \
CVMX_MT_HSH_DAT (dat2, 4); \
next = 5; \
} else if (next == 4) { \
CVMX_MT_HSH_DAT (dat1, 4); \
CVMX_MT_HSH_DAT (dat2, 5); \
next = 6; \
} else if (next == 5) { \
CVMX_MT_HSH_DAT (dat1, 5); \
CVMX_MT_HSH_DAT (dat2, 6); \
next = 7; \
} else if (next == 6) { \
CVMX_MT_HSH_DAT (dat1, 6); \
CVMX_MT_HSH_STARTSHA (dat2); \
next = 0; \
} else { \
CVMX_MT_HSH_STARTSHA (dat1); \
CVMX_MT_HSH_DAT (dat2, 0); \
next = 1; \
} \
}
/****************************************************************************/
#define CVM_LOAD_MD5_UNIT(dat, next) { \
if (next == 0) { \
next = 1; \
CVMX_MT_HSH_DAT (dat, 0); \
} else if (next == 1) { \
next = 2; \
CVMX_MT_HSH_DAT (dat, 1); \
} else if (next == 2) { \
next = 3; \
CVMX_MT_HSH_DAT (dat, 2); \
} else if (next == 3) { \
next = 4; \
CVMX_MT_HSH_DAT (dat, 3); \
} else if (next == 4) { \
next = 5; \
CVMX_MT_HSH_DAT (dat, 4); \
} else if (next == 5) { \
next = 6; \
CVMX_MT_HSH_DAT (dat, 5); \
} else if (next == 6) { \
next = 7; \
CVMX_MT_HSH_DAT (dat, 6); \
} else { \
CVMX_MT_HSH_STARTMD5 (dat); \
next = 0; \
} \
}
#define CVM_LOAD2_MD5_UNIT(dat1, dat2, next) { \
if (next == 0) { \
CVMX_MT_HSH_DAT (dat1, 0); \
CVMX_MT_HSH_DAT (dat2, 1); \
next = 2; \
} else if (next == 1) { \
CVMX_MT_HSH_DAT (dat1, 1); \
CVMX_MT_HSH_DAT (dat2, 2); \
next = 3; \
} else if (next == 2) { \
CVMX_MT_HSH_DAT (dat1, 2); \
CVMX_MT_HSH_DAT (dat2, 3); \
next = 4; \
} else if (next == 3) { \
CVMX_MT_HSH_DAT (dat1, 3); \
CVMX_MT_HSH_DAT (dat2, 4); \
next = 5; \
} else if (next == 4) { \
CVMX_MT_HSH_DAT (dat1, 4); \
CVMX_MT_HSH_DAT (dat2, 5); \
next = 6; \
} else if (next == 5) { \
CVMX_MT_HSH_DAT (dat1, 5); \
CVMX_MT_HSH_DAT (dat2, 6); \
next = 7; \
} else if (next == 6) { \
CVMX_MT_HSH_DAT (dat1, 6); \
CVMX_MT_HSH_STARTMD5 (dat2); \
next = 0; \
} else { \
CVMX_MT_HSH_STARTMD5 (dat1); \
CVMX_MT_HSH_DAT (dat2, 0); \
next = 1; \
} \
}
/****************************************************************************/
static inline uint64_t
swap64(uint64_t a)
{
return ((a >> 56) |
(((a >> 48) & 0xfful) << 8) |
(((a >> 40) & 0xfful) << 16) |
(((a >> 32) & 0xfful) << 24) |
(((a >> 24) & 0xfful) << 32) |
(((a >> 16) & 0xfful) << 40) |
(((a >> 8) & 0xfful) << 48) | (((a >> 0) & 0xfful) << 56));
}
/****************************************************************************/
void
octo_calc_hash(__u8 auth, unsigned char *key, uint64_t *inner, uint64_t *outer)
{
uint8_t hash_key[64];
uint64_t *key1;
register uint64_t xor1 = 0x3636363636363636ULL;
register uint64_t xor2 = 0x5c5c5c5c5c5c5c5cULL;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
memset(hash_key, 0, sizeof(hash_key));
memcpy(hash_key, (uint8_t *) key, (auth ? 20 : 16));
key1 = (uint64_t *) hash_key;
flags = octeon_crypto_enable(&state);
if (auth) {
CVMX_MT_HSH_IV(0x67452301EFCDAB89ULL, 0);
CVMX_MT_HSH_IV(0x98BADCFE10325476ULL, 1);
CVMX_MT_HSH_IV(0xC3D2E1F000000000ULL, 2);
} else {
CVMX_MT_HSH_IV(0x0123456789ABCDEFULL, 0);
CVMX_MT_HSH_IV(0xFEDCBA9876543210ULL, 1);
}
CVMX_MT_HSH_DAT((*key1 ^ xor1), 0);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 1);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 2);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 3);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 4);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 5);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor1), 6);
key1++;
if (auth)
CVMX_MT_HSH_STARTSHA((*key1 ^ xor1));
else
CVMX_MT_HSH_STARTMD5((*key1 ^ xor1));
CVMX_MF_HSH_IV(inner[0], 0);
CVMX_MF_HSH_IV(inner[1], 1);
if (auth) {
inner[2] = 0;
CVMX_MF_HSH_IV(((uint64_t *) inner)[2], 2);
}
memset(hash_key, 0, sizeof(hash_key));
memcpy(hash_key, (uint8_t *) key, (auth ? 20 : 16));
key1 = (uint64_t *) hash_key;
if (auth) {
CVMX_MT_HSH_IV(0x67452301EFCDAB89ULL, 0);
CVMX_MT_HSH_IV(0x98BADCFE10325476ULL, 1);
CVMX_MT_HSH_IV(0xC3D2E1F000000000ULL, 2);
} else {
CVMX_MT_HSH_IV(0x0123456789ABCDEFULL, 0);
CVMX_MT_HSH_IV(0xFEDCBA9876543210ULL, 1);
}
CVMX_MT_HSH_DAT((*key1 ^ xor2), 0);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 1);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 2);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 3);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 4);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 5);
key1++;
CVMX_MT_HSH_DAT((*key1 ^ xor2), 6);
key1++;
if (auth)
CVMX_MT_HSH_STARTSHA((*key1 ^ xor2));
else
CVMX_MT_HSH_STARTMD5((*key1 ^ xor2));
CVMX_MF_HSH_IV(outer[0], 0);
CVMX_MF_HSH_IV(outer[1], 1);
if (auth) {
outer[2] = 0;
CVMX_MF_HSH_IV(outer[2], 2);
}
octeon_crypto_disable(&state, flags);
return;
}
/****************************************************************************/
/* DES functions */
int
octo_des_cbc_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
uint64_t *data;
int data_i, data_l;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x7) || (crypt_off + crypt_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
while (crypt_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
crypt_off -= 8;
}
while (crypt_len > 0) {
CVMX_MT_3DES_ENC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
SG_CONSUME(sg, data, data_i, data_l);
crypt_len -= 8;
}
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_des_cbc_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
uint64_t *data;
int data_i, data_l;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x7) || (crypt_off + crypt_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
while (crypt_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
crypt_off -= 8;
}
while (crypt_len > 0) {
CVMX_MT_3DES_DEC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
SG_CONSUME(sg, data, data_i, data_l);
crypt_len -= 8;
}
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* AES functions */
int
octo_aes_cbc_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
uint64_t *data, *pdata;
int data_i, data_l;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x7) || (crypt_off + crypt_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
while (crypt_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
crypt_off -= 8;
}
while (crypt_len > 0) {
pdata = data;
CVMX_MT_AES_ENC_CBC0(*data);
SG_CONSUME(sg, data, data_i, data_l);
CVMX_MT_AES_ENC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
SG_CONSUME(sg, data, data_i, data_l);
crypt_len -= 16;
}
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_aes_cbc_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
uint64_t *data, *pdata;
int data_i, data_l;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x7) || (crypt_off + crypt_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
while (crypt_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
crypt_off -= 8;
}
while (crypt_len > 0) {
pdata = data;
CVMX_MT_AES_DEC_CBC0(*data);
SG_CONSUME(sg, data, data_i, data_l);
CVMX_MT_AES_DEC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
SG_CONSUME(sg, data, data_i, data_l);
crypt_len -= 16;
}
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* MD5 */
int
octo_null_md5_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
uint64_t *data;
uint64_t tmp1, tmp2;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 ||
(auth_off & 0x7) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
flags = octeon_crypto_enable(&state);
/* Load MD5 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
while (auth_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
auth_off -= 8;
}
while (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*data, next);
auth_len -= 8;
SG_CONSUME(sg, data, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_MD5_UNIT(((uint64_t) 0x0ULL), next);
}
CVMX_ES64(tmp1, ((alen + 64) << 3));
CVM_LOAD_MD5_UNIT(tmp1, next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
CVMX_MT_HSH_DAT(0x8000000000000000ULL, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_ES64(tmp1, ((64 + 16) << 3));
CVMX_MT_HSH_STARTMD5(tmp1);
/* save the HMAC */
SG_INIT(sg, data, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
icv_off -= 8;
}
CVMX_MF_HSH_IV(*data, 0);
SG_CONSUME(sg, data, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*(uint32_t *)data = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* SHA1 */
int
octo_null_sha1_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
uint64_t *data;
uint64_t tmp1, tmp2, tmp3;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 ||
(auth_off & 0x7) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data, data_i, data_l);
flags = octeon_crypto_enable(&state);
/* Load SHA1 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
CVMX_MT_HSH_IV(od->octo_hminner[2], 2);
while (auth_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
auth_off -= 8;
}
while (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*data, next);
auth_len -= 8;
SG_CONSUME(sg, data, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_SHA_UNIT(((uint64_t) 0x0ULL), next);
}
CVM_LOAD_SHA_UNIT((uint64_t) ((alen + 64) << 3), next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
tmp3 = 0;
CVMX_MF_HSH_IV(tmp3, 2);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_IV(od->octo_hmouter[2], 2);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
tmp3 |= 0x0000000080000000;
CVMX_MT_HSH_DAT(tmp3, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_MT_HSH_STARTSHA((uint64_t) ((64 + 20) << 3));
/* save the HMAC */
SG_INIT(sg, data, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data, data_i, data_l);
icv_off -= 8;
}
CVMX_MF_HSH_IV(*data, 0);
SG_CONSUME(sg, data, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*(uint32_t *)data = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* DES MD5 */
int
octo_des_cbc_md5_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata;
uint64_t *data = &mydata.data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
/* Load MD5 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
while (crypt_len > 0 || auth_len > 0) {
uint32_t *first = data32;
mydata.data32[0] = *first;
SG_CONSUME(sg, data32, data_i, data_l);
mydata.data32[1] = *data32;
if (crypt_off <= 0) {
if (crypt_len > 0) {
CVMX_MT_3DES_ENC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
crypt_len -= 8;
}
} else
crypt_off -= 8;
if (auth_off <= 0) {
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*data, next);
auth_len -= 8;
}
} else
auth_off -= 8;
*first = mydata.data32[0];
*data32 = mydata.data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_MD5_UNIT(((uint64_t) 0x0ULL), next);
}
CVMX_ES64(tmp1, ((alen + 64) << 3));
CVM_LOAD_MD5_UNIT(tmp1, next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
CVMX_MT_HSH_DAT(0x8000000000000000ULL, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_ES64(tmp1, ((64 + 16) << 3));
CVMX_MT_HSH_STARTMD5(tmp1);
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_des_cbc_md5_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata;
uint64_t *data = &mydata.data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
/* Load MD5 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
while (crypt_len > 0 || auth_len > 0) {
uint32_t *first = data32;
mydata.data32[0] = *first;
SG_CONSUME(sg, data32, data_i, data_l);
mydata.data32[1] = *data32;
if (auth_off <= 0) {
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*data, next);
auth_len -= 8;
}
} else
auth_off -= 8;
if (crypt_off <= 0) {
if (crypt_len > 0) {
CVMX_MT_3DES_DEC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
crypt_len -= 8;
}
} else
crypt_off -= 8;
*first = mydata.data32[0];
*data32 = mydata.data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_MD5_UNIT(((uint64_t) 0x0ULL), next);
}
CVMX_ES64(tmp1, ((alen + 64) << 3));
CVM_LOAD_MD5_UNIT(tmp1, next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
CVMX_MT_HSH_DAT(0x8000000000000000ULL, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_ES64(tmp1, ((64 + 16) << 3));
CVMX_MT_HSH_STARTMD5(tmp1);
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* DES SHA */
int
octo_des_cbc_sha1_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata;
uint64_t *data = &mydata.data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2, tmp3;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
/* Load SHA1 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
CVMX_MT_HSH_IV(od->octo_hminner[2], 2);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
while (crypt_len > 0 || auth_len > 0) {
uint32_t *first = data32;
mydata.data32[0] = *first;
SG_CONSUME(sg, data32, data_i, data_l);
mydata.data32[1] = *data32;
if (crypt_off <= 0) {
if (crypt_len > 0) {
CVMX_MT_3DES_ENC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
crypt_len -= 8;
}
} else
crypt_off -= 8;
if (auth_off <= 0) {
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*data, next);
auth_len -= 8;
}
} else
auth_off -= 8;
*first = mydata.data32[0];
*data32 = mydata.data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_SHA_UNIT(tmp, next);
} else {
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_SHA_UNIT(((uint64_t) 0x0ULL), next);
}
CVM_LOAD_SHA_UNIT((uint64_t) ((alen + 64) << 3), next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
tmp3 = 0;
CVMX_MF_HSH_IV(tmp3, 2);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_IV(od->octo_hmouter[2], 2);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
tmp3 |= 0x0000000080000000;
CVMX_MT_HSH_DAT(tmp3, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_MT_HSH_STARTSHA((uint64_t) ((64 + 20) << 3));
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_des_cbc_sha1_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata;
uint64_t *data = &mydata.data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2, tmp3;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load 3DES Key */
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
if (od->octo_encklen == 24) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
} else if (od->octo_encklen == 8) {
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 1);
CVMX_MT_3DES_KEY(((uint64_t *) od->octo_enckey)[0], 2);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_3DES_IV(* (uint64_t *) ivp);
/* Load SHA1 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
CVMX_MT_HSH_IV(od->octo_hminner[2], 2);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
while (crypt_len > 0 || auth_len > 0) {
uint32_t *first = data32;
mydata.data32[0] = *first;
SG_CONSUME(sg, data32, data_i, data_l);
mydata.data32[1] = *data32;
if (auth_off <= 0) {
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*data, next);
auth_len -= 8;
}
} else
auth_off -= 8;
if (crypt_off <= 0) {
if (crypt_len > 0) {
CVMX_MT_3DES_DEC_CBC(*data);
CVMX_MF_3DES_RESULT(*data);
crypt_len -= 8;
}
} else
crypt_off -= 8;
*first = mydata.data32[0];
*data32 = mydata.data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_SHA_UNIT(tmp, next);
} else {
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_SHA_UNIT(((uint64_t) 0x0ULL), next);
}
CVM_LOAD_SHA_UNIT((uint64_t) ((alen + 64) << 3), next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
tmp3 = 0;
CVMX_MF_HSH_IV(tmp3, 2);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_IV(od->octo_hmouter[2], 2);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
tmp3 |= 0x0000000080000000;
CVMX_MT_HSH_DAT(tmp3, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_MT_HSH_STARTSHA((uint64_t) ((64 + 20) << 3));
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* AES MD5 */
int
octo_aes_cbc_md5_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata[2];
uint64_t *pdata = &mydata[0].data64[0];
uint64_t *data = &mydata[1].data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
/* Load MD5 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
/* align auth and crypt */
while (crypt_off > 0 && auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_MD5_UNIT(*pdata, next);
crypt_off -= 8;
auth_len -= 8;
}
while (crypt_len > 0) {
uint32_t *pdata32[3];
pdata32[0] = data32;
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[1] = data32;
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[2] = data32;
mydata[1].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[1].data32[1] = *data32;
CVMX_MT_AES_ENC_CBC0(*pdata);
CVMX_MT_AES_ENC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
crypt_len -= 16;
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*pdata, next);
auth_len -= 8;
}
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*data, next);
auth_len -= 8;
}
*pdata32[0] = mydata[0].data32[0];
*pdata32[1] = mydata[0].data32[1];
*pdata32[2] = mydata[1].data32[0];
*data32 = mydata[1].data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish any left over hashing */
while (auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_MD5_UNIT(*pdata, next);
auth_len -= 8;
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_MD5_UNIT(((uint64_t) 0x0ULL), next);
}
CVMX_ES64(tmp1, ((alen + 64) << 3));
CVM_LOAD_MD5_UNIT(tmp1, next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
CVMX_MT_HSH_DAT(0x8000000000000000ULL, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_ES64(tmp1, ((64 + 16) << 3));
CVMX_MT_HSH_STARTMD5(tmp1);
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_aes_cbc_md5_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata[2];
uint64_t *pdata = &mydata[0].data64[0];
uint64_t *data = &mydata[1].data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s()\n", __FUNCTION__);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
/* Load MD5 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
/* align auth and crypt */
while (crypt_off > 0 && auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_MD5_UNIT(*pdata, next);
crypt_off -= 8;
auth_len -= 8;
}
while (crypt_len > 0) {
uint32_t *pdata32[3];
pdata32[0] = data32;
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[1] = data32;
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[2] = data32;
mydata[1].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[1].data32[1] = *data32;
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*pdata, next);
auth_len -= 8;
}
if (auth_len > 0) {
CVM_LOAD_MD5_UNIT(*data, next);
auth_len -= 8;
}
CVMX_MT_AES_DEC_CBC0(*pdata);
CVMX_MT_AES_DEC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
crypt_len -= 16;
*pdata32[0] = mydata[0].data32[0];
*pdata32[1] = mydata[0].data32[1];
*pdata32[2] = mydata[1].data32[0];
*data32 = mydata[1].data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish left over hash if any */
while (auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_MD5_UNIT(*pdata, next);
auth_len -= 8;
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_MD5_UNIT(((uint64_t) 0x0ULL), next);
}
CVMX_ES64(tmp1, ((alen + 64) << 3));
CVM_LOAD_MD5_UNIT(tmp1, next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
CVMX_MT_HSH_DAT(0x8000000000000000ULL, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_ES64(tmp1, ((64 + 16) << 3));
CVMX_MT_HSH_STARTMD5(tmp1);
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/
/* AES SHA1 */
int
octo_aes_cbc_sha1_encrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata[2];
uint64_t *pdata = &mydata[0].data64[0];
uint64_t *data = &mydata[1].data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2, tmp3;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s(a_off=%d a_len=%d c_off=%d c_len=%d icv_off=%d)\n",
__FUNCTION__, auth_off, auth_len, crypt_off, crypt_len, icv_off);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
/* Load SHA IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
CVMX_MT_HSH_IV(od->octo_hminner[2], 2);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
/* align auth and crypt */
while (crypt_off > 0 && auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_SHA_UNIT(*pdata, next);
crypt_off -= 8;
auth_len -= 8;
}
while (crypt_len > 0) {
uint32_t *pdata32[3];
pdata32[0] = data32;
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[1] = data32;
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[2] = data32;
mydata[1].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[1].data32[1] = *data32;
CVMX_MT_AES_ENC_CBC0(*pdata);
CVMX_MT_AES_ENC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
crypt_len -= 16;
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*pdata, next);
auth_len -= 8;
}
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*data, next);
auth_len -= 8;
}
*pdata32[0] = mydata[0].data32[0];
*pdata32[1] = mydata[0].data32[1];
*pdata32[2] = mydata[1].data32[0];
*data32 = mydata[1].data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish and hashing */
while (auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_SHA_UNIT(*pdata, next);
auth_len -= 8;
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_SHA_UNIT(tmp, next);
} else {
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_SHA_UNIT(((uint64_t) 0x0ULL), next);
}
CVM_LOAD_SHA_UNIT((uint64_t) ((alen + 64) << 3), next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
tmp3 = 0;
CVMX_MF_HSH_IV(tmp3, 2);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_IV(od->octo_hmouter[2], 2);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
tmp3 |= 0x0000000080000000;
CVMX_MT_HSH_DAT(tmp3, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_MT_HSH_STARTSHA((uint64_t) ((64 + 20) << 3));
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
int
octo_aes_cbc_sha1_decrypt(
struct octo_sess *od,
struct scatterlist *sg, int sg_len,
int auth_off, int auth_len,
int crypt_off, int crypt_len,
int icv_off, uint8_t *ivp)
{
register int next = 0;
union {
uint32_t data32[2];
uint64_t data64[1];
} mydata[2];
uint64_t *pdata = &mydata[0].data64[0];
uint64_t *data = &mydata[1].data64[0];
uint32_t *data32;
uint64_t tmp1, tmp2, tmp3;
int data_i, data_l, alen = auth_len;
struct octeon_cop2_state state;
unsigned long flags;
dprintk("%s(a_off=%d a_len=%d c_off=%d c_len=%d icv_off=%d)\n",
__FUNCTION__, auth_off, auth_len, crypt_off, crypt_len, icv_off);
if (unlikely(od == NULL || sg==NULL || sg_len==0 || ivp==NULL ||
(crypt_off & 0x3) || (crypt_off + crypt_len > sg_len) ||
(crypt_len & 0x7) ||
(auth_len & 0x7) ||
(auth_off & 0x3) || (auth_off + auth_len > sg_len))) {
dprintk("%s: Bad parameters od=%p sg=%p sg_len=%d "
"auth_off=%d auth_len=%d crypt_off=%d crypt_len=%d "
"icv_off=%d ivp=%p\n", __FUNCTION__, od, sg, sg_len,
auth_off, auth_len, crypt_off, crypt_len, icv_off, ivp);
return -EINVAL;
}
SG_INIT(sg, data32, data_i, data_l);
CVMX_PREFETCH0(ivp);
CVMX_PREFETCH0(od->octo_enckey);
flags = octeon_crypto_enable(&state);
/* load AES Key */
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[0], 0);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[1], 1);
if (od->octo_encklen == 16) {
CVMX_MT_AES_KEY(0x0, 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 24) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(0x0, 3);
} else if (od->octo_encklen == 32) {
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[2], 2);
CVMX_MT_AES_KEY(((uint64_t *) od->octo_enckey)[3], 3);
} else {
octeon_crypto_disable(&state, flags);
dprintk("%s: Bad key length %d\n", __FUNCTION__, od->octo_encklen);
return -EINVAL;
}
CVMX_MT_AES_KEYLENGTH(od->octo_encklen / 8 - 1);
CVMX_MT_AES_IV(((uint64_t *) ivp)[0], 0);
CVMX_MT_AES_IV(((uint64_t *) ivp)[1], 1);
/* Load SHA1 IV */
CVMX_MT_HSH_IV(od->octo_hminner[0], 0);
CVMX_MT_HSH_IV(od->octo_hminner[1], 1);
CVMX_MT_HSH_IV(od->octo_hminner[2], 2);
while (crypt_off > 0 && auth_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
crypt_off -= 4;
auth_off -= 4;
}
/* align auth and crypt */
while (crypt_off > 0 && auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_SHA_UNIT(*pdata, next);
crypt_off -= 8;
auth_len -= 8;
}
while (crypt_len > 0) {
uint32_t *pdata32[3];
pdata32[0] = data32;
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[1] = data32;
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
pdata32[2] = data32;
mydata[1].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[1].data32[1] = *data32;
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*pdata, next);
auth_len -= 8;
}
if (auth_len > 0) {
CVM_LOAD_SHA_UNIT(*data, next);
auth_len -= 8;
}
CVMX_MT_AES_DEC_CBC0(*pdata);
CVMX_MT_AES_DEC_CBC1(*data);
CVMX_MF_AES_RESULT(*pdata, 0);
CVMX_MF_AES_RESULT(*data, 1);
crypt_len -= 16;
*pdata32[0] = mydata[0].data32[0];
*pdata32[1] = mydata[0].data32[1];
*pdata32[2] = mydata[1].data32[0];
*data32 = mydata[1].data32[1];
SG_CONSUME(sg, data32, data_i, data_l);
}
/* finish and leftover hashing */
while (auth_len > 0) {
mydata[0].data32[0] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
mydata[0].data32[1] = *data32;
SG_CONSUME(sg, data32, data_i, data_l);
CVM_LOAD_SHA_UNIT(*pdata, next);
auth_len -= 8;
}
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_SHA_UNIT(tmp, next);
} else {
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_SHA_UNIT(0x8000000000000000ULL, next);
#endif
/* Finish Inner hash */
while (next != 7) {
CVM_LOAD_SHA_UNIT(((uint64_t) 0x0ULL), next);
}
CVM_LOAD_SHA_UNIT((uint64_t) ((alen + 64) << 3), next);
/* Get the inner hash of HMAC */
CVMX_MF_HSH_IV(tmp1, 0);
CVMX_MF_HSH_IV(tmp2, 1);
tmp3 = 0;
CVMX_MF_HSH_IV(tmp3, 2);
/* Initialize hash unit */
CVMX_MT_HSH_IV(od->octo_hmouter[0], 0);
CVMX_MT_HSH_IV(od->octo_hmouter[1], 1);
CVMX_MT_HSH_IV(od->octo_hmouter[2], 2);
CVMX_MT_HSH_DAT(tmp1, 0);
CVMX_MT_HSH_DAT(tmp2, 1);
tmp3 |= 0x0000000080000000;
CVMX_MT_HSH_DAT(tmp3, 2);
CVMX_MT_HSH_DATZ(3);
CVMX_MT_HSH_DATZ(4);
CVMX_MT_HSH_DATZ(5);
CVMX_MT_HSH_DATZ(6);
CVMX_MT_HSH_STARTSHA((uint64_t) ((64 + 20) << 3));
/* finish the hash */
CVMX_PREFETCH0(od->octo_hmouter);
#if 0
if (unlikely(inplen)) {
uint64_t tmp = 0;
uint8_t *p = (uint8_t *) & tmp;
p[inplen] = 0x80;
do {
inplen--;
p[inplen] = ((uint8_t *) data)[inplen];
} while (inplen);
CVM_LOAD_MD5_UNIT(tmp, next);
} else {
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
}
#else
CVM_LOAD_MD5_UNIT(0x8000000000000000ULL, next);
#endif
/* save the HMAC */
SG_INIT(sg, data32, data_i, data_l);
while (icv_off > 0) {
SG_CONSUME(sg, data32, data_i, data_l);
icv_off -= 4;
}
CVMX_MF_HSH_IV(tmp1, 0);
*data32 = (uint32_t) (tmp1 >> 32);
SG_CONSUME(sg, data32, data_i, data_l);
*data32 = (uint32_t) tmp1;
SG_CONSUME(sg, data32, data_i, data_l);
CVMX_MF_HSH_IV(tmp1, 1);
*data32 = (uint32_t) (tmp1 >> 32);
octeon_crypto_disable(&state, flags);
return 0;
}
/****************************************************************************/