1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-08 23:30:14 +02:00
openwrt-xburst/target/linux/package/ieee80211-dscape/src/ieee80211.c
nbd c4d1d77a75 add devicescape 802.11 stack
git-svn-id: svn://svn.openwrt.org/openwrt/trunk/openwrt@2791 3c298f89-4303-0410-b956-a3cf2f4a3e73
2005-12-28 13:22:51 +00:00

4896 lines
135 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef EXPORT_SYMTAB
#define EXPORT_SYMTAB
#endif
#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <net/iw_handler.h>
#include <linux/compiler.h>
#include <net/ieee80211.h>
#include <net/ieee80211_common.h>
#include <net/ieee80211_mgmt.h>
#include "ieee80211_i.h"
#include "ieee80211_proc.h"
#include "rate_control.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
static unsigned char rfc1042_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
static unsigned char bridge_tunnel_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
/* No encapsulation header if EtherType < 0x600 (=length) */
static unsigned char eapol_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
struct rate_control_algs {
struct rate_control_algs *next;
struct rate_control_ops *ops;
};
static struct rate_control_algs *ieee80211_rate_ctrl_algs;
static int rate_control_initialize(struct ieee80211_local *local);
static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len);
struct ieee80211_key_conf *
ieee80211_key_data2conf(struct ieee80211_local *local,
struct ieee80211_key *data)
{
struct ieee80211_key_conf *conf;
conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
if (conf == NULL)
return NULL;
conf->hw_key_idx = data->hw_key_idx;
conf->alg = data->alg;
conf->keylen = data->keylen;
conf->force_sw_encrypt = data->force_sw_encrypt;
conf->keyidx = data->keyidx;
conf->default_tx_key = data->default_tx_key;
conf->default_wep_only = local->default_wep_only;
memcpy(conf->key, data->key, data->keylen);
return conf;
}
static int rate_list_match(int *rate_list, int rate)
{
int i;
if (rate_list == NULL)
return 0;
for (i = 0; rate_list[i] >= 0; i++)
if (rate_list[i] == rate)
return 1;
return 0;
}
void ieee80211_prepare_rates(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
int i;
for (i = 0; i < local->num_curr_rates; i++) {
struct ieee80211_rate *rate = &local->curr_rates[i];
rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
IEEE80211_RATE_BASIC);
if (local->supp_rates[local->conf.phymode]) {
if (!rate_list_match(local->supp_rates
[local->conf.phymode],
rate->rate))
continue;
}
rate->flags |= IEEE80211_RATE_SUPPORTED;
/* Use configured basic rate set if it is available. If not,
* use defaults that are sane for most cases. */
if (local->basic_rates[local->conf.phymode]) {
if (rate_list_match(local->basic_rates
[local->conf.phymode],
rate->rate))
rate->flags |= IEEE80211_RATE_BASIC;
} else switch (local->conf.phymode) {
case MODE_IEEE80211A:
if (rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_IEEE80211B:
if (rate->rate == 10 || rate->rate == 20)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_ATHEROS_TURBO:
if (rate->rate == 120 || rate->rate == 240 ||
rate->rate == 480)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_IEEE80211G:
if (rate->rate == 10 || rate->rate == 20 ||
rate->rate == 55 || rate->rate == 110)
rate->flags |= IEEE80211_RATE_BASIC;
break;
}
/* Set ERP and MANDATORY flags based on phymode */
switch (local->conf.phymode) {
case MODE_IEEE80211A:
if (rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_MANDATORY;
break;
case MODE_IEEE80211B:
if (rate->rate == 10)
rate->flags |= IEEE80211_RATE_MANDATORY;
break;
case MODE_ATHEROS_TURBO:
break;
case MODE_IEEE80211G:
if (rate->rate == 10 || rate->rate == 20 ||
rate->rate == 55 || rate->rate == 110 ||
rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_MANDATORY;
if (rate->rate != 10 && rate->rate != 20 &&
rate->rate != 55 && rate->rate != 110)
rate->flags |= IEEE80211_RATE_ERP;
break;
}
}
}
static void ieee80211_key_threshold_notify(struct net_device *dev,
struct ieee80211_key *key,
struct sta_info *sta)
{
struct sk_buff *skb;
struct ieee80211_msg_key_notification *msg;
skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
sizeof(struct ieee80211_msg_key_notification));
if (skb == NULL)
return;
skb_reserve(skb, sizeof(struct ieee80211_frame_info));
msg = (struct ieee80211_msg_key_notification *)
skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
msg->tx_rx_count = key->tx_rx_count;
memcpy(msg->ifname, dev->name, IFNAMSIZ);
if (sta)
memcpy(msg->addr, sta->addr, ETH_ALEN);
else
memset(msg->addr, 0xff, ETH_ALEN);
key->tx_rx_count = 0;
ieee80211_rx_mgmt(dev, skb, 0,
ieee80211_msg_key_threshold_notification);
}
int ieee80211_get_hdrlen(u16 fc)
{
int hdrlen = 24;
switch (WLAN_FC_GET_TYPE(fc)) {
case WLAN_FC_TYPE_DATA:
if ((fc & WLAN_FC_FROMDS) && (fc & WLAN_FC_TODS))
hdrlen = 30; /* Addr4 */
if (WLAN_FC_GET_STYPE(fc) & 0x08)
hdrlen += 2; /* QoS Control Field */
break;
case WLAN_FC_TYPE_CTRL:
switch (WLAN_FC_GET_STYPE(fc)) {
case WLAN_FC_STYPE_CTS:
case WLAN_FC_STYPE_ACK:
hdrlen = 10;
break;
default:
hdrlen = 16;
break;
}
break;
}
return hdrlen;
}
int ieee80211_get_hdrlen_from_skb(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
if (unlikely(hdrlen > skb->len))
return 0;
return hdrlen;
}
#ifdef IEEE80211_VERBOSE_DEBUG_FRAME_DUMP
static void ieee80211_dump_frame(const char *ifname, const char *title,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
if (skb->len < 4) {
printk("\n");
return;
}
fc = le16_to_cpu(hdr->frame_control);
hdrlen = ieee80211_get_hdrlen(fc);
if (hdrlen > skb->len)
hdrlen = skb->len;
if (hdrlen >= 4)
printk(" FC=0x%04x DUR=0x%04x",
fc, le16_to_cpu(hdr->duration_id));
if (hdrlen >= 10)
printk(" A1=" MACSTR, MAC2STR(hdr->addr1));
if (hdrlen >= 16)
printk(" A2=" MACSTR, MAC2STR(hdr->addr2));
if (hdrlen >= 24)
printk(" A3=" MACSTR, MAC2STR(hdr->addr3));
if (hdrlen >= 30)
printk(" A4=" MACSTR, MAC2STR(hdr->addr4));
printk("\n");
}
#else /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */
static inline void ieee80211_dump_frame(const char *ifname, const char *title,
struct sk_buff *skb)
{
}
#endif /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */
static int ieee80211_is_eapol(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
u16 fc;
int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
return 0;
hdrlen = ieee80211_get_hdrlen(fc);
if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
memcmp(skb->data + hdrlen, eapol_header,
sizeof(eapol_header)) == 0))
return 1;
return 0;
}
static ieee80211_txrx_result
ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
{
struct rate_control_extra extra;
memset(&extra, 0, sizeof(extra));
extra.mgmt_data = tx->sdata &&
tx->sdata->type == IEEE80211_SUB_IF_TYPE_MGMT;
extra.ethertype = tx->ethertype;
extra.startidx = 0;
extra.endidx = tx->local->num_curr_rates;
tx->u.tx.rate = rate_control_get_rate(tx->dev, tx->skb, &extra);
if (unlikely(extra.probe != NULL)) {
tx->u.tx.control->rate_ctrl_probe = 1;
tx->u.tx.probe_last_frag = 1;
// tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
tx->u.tx.rate = extra.probe;
} else {
// tx->u.tx.control->alt_retry_rate = -1;
}
if (!tx->u.tx.rate)
return TXRX_DROP;
if (tx->local->conf.phymode == MODE_IEEE80211G &&
tx->local->cts_protect_erp_frames && tx->fragmented &&
extra.nonerp) {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.last_frag_rateidx = extra.rateidx;
tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
tx->u.tx.rate = extra.nonerp;
// tx->u.tx.control->rateidx = extra.nonerp_idx;
tx->u.tx.control->rate_ctrl_probe = 0;
} else {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.last_frag_rateidx = extra.rateidx;
// tx->u.tx.control->rateidx = extra.rateidx;
}
tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
tx->local->short_preamble &&
(!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
tx->u.tx.short_preamble = 1;
tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
{
if (tx->sta)
tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
else
tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
if (unlikely(tx->u.tx.control->do_not_encrypt))
tx->key = NULL;
else if (tx->sta && tx->sta->key)
tx->key = tx->sta->key;
else if (tx->sdata->default_key)
tx->key = tx->sdata->default_key;
else if (tx->sdata->drop_unencrypted && !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
return TXRX_DROP;
} else
tx->key = NULL;
if (tx->key) {
tx->key->tx_rx_count++;
if (unlikely(tx->local->key_tx_rx_threshold &&
tx->key->tx_rx_count >
tx->local->key_tx_rx_threshold)) {
ieee80211_key_threshold_notify(tx->dev, tx->key,
tx->sta);
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
size_t hdrlen, per_fragm, num_fragm, payload_len, left;
struct sk_buff **frags, *first, *frag;
int i;
u8 *pos;
int frag_threshold = tx->local->fragmentation_threshold;
if (!tx->fragmented)
return TXRX_CONTINUE;
first = tx->skb;
hdrlen = ieee80211_get_hdrlen(tx->fc);
payload_len = first->len - hdrlen;
per_fragm = frag_threshold - hdrlen - 4 /* FCS */;
num_fragm = (payload_len + per_fragm - 1) / per_fragm;
frags = (struct sk_buff **)
kmalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
if (frags == NULL)
goto fail;
memset(frags, 0, num_fragm * sizeof(struct sk_buff *));
hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREFRAG);
pos = first->data + hdrlen + per_fragm;
left = payload_len - per_fragm;
for (i = 0; i < num_fragm - 1; i++) {
struct ieee80211_hdr *fhdr;
size_t copylen;
if (left <= 0)
goto fail;
/* reserve enough extra head and tail room for possible
* encryption */
#define IEEE80211_ENCRYPT_HEADROOM 8
#define IEEE80211_ENCRYPT_TAILROOM 12
frag = frags[i] =
dev_alloc_skb(frag_threshold +
IEEE80211_ENCRYPT_HEADROOM +
IEEE80211_ENCRYPT_TAILROOM);
if (!frag)
goto fail;
/* Make sure that all fragments use the same priority so
* that they end up using the same TX queue */
frag->priority = first->priority;
skb_reserve(frag, IEEE80211_ENCRYPT_HEADROOM);
fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
memcpy(fhdr, first->data, hdrlen);
if (i == num_fragm - 2)
fhdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREFRAG);
fhdr->seq_ctrl = cpu_to_le16(i + 1);
copylen = left > per_fragm ? per_fragm : left;
memcpy(skb_put(frag, copylen), pos, copylen);
pos += copylen;
left -= copylen;
}
skb_trim(first, hdrlen + per_fragm);
tx->u.tx.num_extra_frag = num_fragm - 1;
tx->u.tx.extra_frag = frags;
return TXRX_CONTINUE;
fail:
printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
if (frags) {
for (i = 0; i < num_fragm - 1; i++)
if (frags[i])
dev_kfree_skb(frags[i]);
kfree(frags);
}
I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
return TXRX_DROP;
}
static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
{
if (tx->key->force_sw_encrypt || tx->local->conf.sw_encrypt) {
if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
return -1;
} else {
tx->u.tx.control->key_idx = tx->key->hw_key_idx;
if (tx->local->hw->wep_include_iv) {
if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
NULL)
return -1;
}
}
return 0;
}
void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
hdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP);
if (tx->u.tx.extra_frag) {
struct ieee80211_hdr *fhdr;
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
fhdr = (struct ieee80211_hdr *)
tx->u.tx.extra_frag[i]->data;
fhdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP);
}
}
}
static ieee80211_txrx_result
ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 fc;
fc = le16_to_cpu(hdr->frame_control);
if (!tx->key || tx->key->alg != ALG_WEP ||
(WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA &&
(WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT ||
WLAN_FC_GET_STYPE(fc) != WLAN_FC_STYPE_AUTH)))
return TXRX_CONTINUE;
tx->u.tx.control->iv_len = WEP_IV_LEN;
tx->u.tx.control->icv_len = WEP_ICV_LEN;
ieee80211_tx_set_iswep(tx);
if (wep_encrypt_skb(tx, tx->skb) < 0) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
return TXRX_DROP;
}
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
I802_DEBUG_INC(tx->local->
tx_handlers_drop_wep);
return TXRX_DROP;
}
}
}
return TXRX_CONTINUE;
}
static inline int ceiling_div(int dividend, int divisor)
{
return ((dividend + divisor - 1) / divisor);
}
static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
int rate, int erp, int short_preamble)
{
int dur;
/* calculate duration (in microseconds, rounded up to next higher
* integer if it includes a fractional microsecond) to send frame of
* len bytes (does not include FCS) at the given rate. Duration will
* also include SIFS.
*
* rate is in 100 kbps, so divident is multiplied by 10 in the
* ceiling_div() operations.
*/
if (local->conf.phymode == MODE_IEEE80211A || erp ||
local->conf.phymode == MODE_ATHEROS_TURBO) {
/*
* OFDM:
*
* N_DBPS = DATARATE x 4
* N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
* (16 = SIGNAL time, 6 = tail bits)
* TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
*
* T_SYM = 4 usec
* 802.11a - 17.5.2: aSIFSTime = 16 usec
* 802.11g - 19.8.4: aSIFSTime = 10 usec +
* signal ext = 6 usec
*/
/* FIX: Atheros Turbo may have different (shorter) duration? */
dur = 16; /* SIFS + signal ext */
dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
dur += 4 * ceiling_div((16 + 8 * (len + 4) + 6) * 10,
4 * rate); /* T_SYM x N_SYM */
} else {
/*
* 802.11b or 802.11g with 802.11b compatibility:
* 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
* Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
*
* 802.11 (DS): 15.3.3, 802.11b: 18.3.4
* aSIFSTime = 10 usec
* aPreambleLength = 144 usec or 72 usec with short preamble
* aPLCPHeaderLength = 48 ms or 24 ms with short preamble
*/
dur = 10; /* aSIFSTime = 10 usec */
dur += short_preamble ? (72 + 24) : (144 + 48);
dur += ceiling_div(8 * (len + 4) * 10, rate);
}
return dur;
}
static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
int next_frag_len)
{
int rate, mrate, erp, dur, i;
struct ieee80211_rate *txrate = tx->u.tx.rate;
struct ieee80211_local *local = tx->local;
erp = txrate->flags & IEEE80211_RATE_ERP;
/*
* data and mgmt (except PS Poll):
* - during CFP: 32768
* - during contention period:
* if addr1 is group address: 0
* if more fragments = 0 and addr1 is individual address: time to
* transmit one ACK plus SIFS
* if more fragments = 1 and addr1 is individual address: time to
* transmit next fragment plus 2 x ACK plus 3 x SIFS
*
* IEEE 802.11, 9.6:
* - control response frame (CTS or ACK) shall be transmitted using the
* same rate as the immediately previous frame in the frame exchange
* sequence, if this rate belongs to the PHY mandatory rates, or else
* at the highest possible rate belonging to the PHY rates in the
* BSSBasicRateSet
*/
if (WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_CTRL) {
/* TODO: These control frames are not currently sent by
* 80211.o, but should they be implemented, this function
* needs to be updated to support duration field calculation.
*
* RTS: time needed to transmit pending data/mgmt frame plus
* one CTS frame plus one ACK frame plus 3 x SIFS
* CTS: duration of immediately previous RTS minus time
* required to transmit CTS and its SIFS
* ACK: 0 if immediately previous directed data/mgmt had
* more=0, with more=1 duration in ACK frame is duration
* from previous frame minus time needed to transmit ACK
* and its SIFS
* PS Poll: BIT(15) | BIT(14) | aid
*/
return 0;
}
/* data/mgmt */
if (0 /* FIX: data/mgmt during CFP */)
return 32768;
if (group_addr) /* Group address as the destination - no ACK */
return 0;
/* Individual destination address:
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
* CTS and ACK frames shall be transmitted using the highest rate in
* basic rate set that is less than or equal to the rate of the
* immediately previous frame and that is using the same modulation
* (CCK or OFDM). If no basic rate set matches with these requirements,
* the highest mandatory rate of the PHY that is less than or equal to
* the rate of the previous frame is used.
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
*/
rate = -1;
mrate = 10; /* use 1 Mbps if everything fails */
for (i = 0; i < local->num_curr_rates; i++) {
struct ieee80211_rate *r = &local->curr_rates[i];
if (r->rate > txrate->rate)
break;
if (IEEE80211_RATE_MODULATION(txrate->flags) !=
IEEE80211_RATE_MODULATION(r->flags))
continue;
if (r->flags & IEEE80211_RATE_BASIC)
rate = r->rate;
else if (r->flags & IEEE80211_RATE_MANDATORY)
mrate = r->rate;
}
if (rate == -1) {
/* No matching basic rate found; use highest suitable mandatory
* PHY rate */
rate = mrate;
}
/* Time needed to transmit ACK
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
* to closest integer */
dur = ieee80211_frame_duration(local, 10, rate, erp,
local->short_preamble);
if (next_frag_len) {
/* Frame is fragmented: duration increases with time needed to
* transmit next fragment plus ACK and 2 x SIFS. */
dur *= 2; /* ACK + SIFS */
/* next fragment */
dur += ieee80211_frame_duration(local, next_frag_len,
txrate->rate, erp,
local->short_preamble);
}
return dur;
}
static ieee80211_txrx_result
ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 dur;
struct ieee80211_tx_control *control = tx->u.tx.control;
if (!MULTICAST_ADDR(hdr->addr1)) {
if (tx->skb->len >= tx->local->rts_threshold &&
tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
control->use_rts_cts = 1;
control->retry_limit =
tx->local->long_retry_limit;
} else {
control->retry_limit =
tx->local->short_retry_limit;
}
} else {
control->retry_limit = 1;
}
if (tx->fragmented) {
/* Do not use multiple retry rates when sending fragmented
* frames.
* TODO: The last fragment could still use multiple retry
* rates. */
// control->alt_retry_rate = -1;
}
/* Use CTS protection for unicast frames sent using extended rates if
* there are associated non-ERP stations and RTS/CTS is not configured
* for the frame. */
if (tx->local->conf.phymode == MODE_IEEE80211G &&
(tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
tx->u.tx.unicast &&
tx->local->cts_protect_erp_frames &&
!control->use_rts_cts)
control->use_cts_protect = 1;
/* Setup duration field for the first fragment of the frame. Duration
* for remaining fragments will be updated when they are being sent
* to low-level driver in ieee80211_tx(). */
dur = ieee80211_duration(tx, MULTICAST_ADDR(hdr->addr1),
tx->fragmented ? tx->u.tx.extra_frag[0]->len :
0);
hdr->duration_id = cpu_to_le16(dur);
if (control->use_rts_cts || control->use_cts_protect) {
struct ieee80211_rate *rate;
int erp = tx->u.tx.rate->flags & IEEE80211_RATE_ERP;
/* Do not use multiple retry rates when using RTS/CTS */
// control->alt_retry_rate = -1;
/* Use min(data rate, max base rate) as CTS/RTS rate */
rate = tx->u.tx.rate;
while (rate > tx->local->curr_rates &&
!(rate->flags & IEEE80211_RATE_BASIC))
rate--;
if (control->use_rts_cts)
dur += ieee80211_frame_duration(tx->local, 10,
rate->rate, erp,
tx->local->
short_preamble);
dur += ieee80211_frame_duration(tx->local, tx->skb->len,
tx->u.tx.rate->rate, erp,
tx->u.tx.short_preamble);
control->rts_cts_duration = dur;
control->rts_cts_rate = rate->val;
}
if (tx->sta) {
tx->sta->tx_packets++;
tx->sta->tx_fragments++;
tx->sta->tx_bytes += tx->skb->len;
if (tx->u.tx.extra_frag) {
int i;
tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
tx->sta->tx_bytes +=
tx->u.tx.extra_frag[i]->len;
}
}
}
tx->local->scan.txrx_count++;
return TXRX_CONTINUE;
}
static void ieee80211_rate_limit(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
if (local->rate_limit) {
local->rate_limit_bucket += local->rate_limit;
if (local->rate_limit_bucket > local->rate_limit_burst)
local->rate_limit_bucket = local->rate_limit_burst;
local->rate_limit_timer.expires = jiffies + HZ;
add_timer(&local->rate_limit_timer);
}
}
static ieee80211_txrx_result
ieee80211_tx_h_rate_limit(struct ieee80211_txrx_data *tx)
{
if (likely(!tx->local->rate_limit || tx->u.tx.unicast))
return TXRX_CONTINUE;
/* rate limit */
if (tx->local->rate_limit_bucket) {
tx->local->rate_limit_bucket--;
return TXRX_CONTINUE;
}
I802_DEBUG_INC(tx->local->tx_handlers_drop_rate_limit);
return TXRX_DROP;
}
static ieee80211_txrx_result
ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
{
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
u32 sta_flags;
if (unlikely(tx->local->sta_scanning != 0) &&
(WLAN_FC_GET_TYPE(tx->fc) != WLAN_FC_TYPE_MGMT ||
WLAN_FC_GET_STYPE(tx->fc) != WLAN_FC_STYPE_PROBE_REQ))
return TXRX_DROP;
if (tx->u.tx.ps_buffered)
return TXRX_CONTINUE;
sta_flags = tx->sta ? tx->sta->flags : 0;
if (likely(tx->u.tx.unicast)) {
if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
tx->local->conf.mode != IW_MODE_ADHOC &&
WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA)) {
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: dropped data frame to not "
"associated station " MACSTR "\n",
tx->dev->name, MAC2STR(hdr->addr1));
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
return TXRX_DROP;
}
} else {
if (unlikely(WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA &&
tx->local->num_sta == 0 &&
!tx->local->allow_broadcast_always &&
tx->local->conf.mode != IW_MODE_ADHOC)) {
/*
* No associated STAs - no need to send multicast
* frames.
*/
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
!(sta_flags & WLAN_STA_AUTHORIZED))) {
#ifdef CONFIG_IEEE80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) tx->skb->data;
printk(KERN_DEBUG "%s: dropped frame to " MACSTR
" (unauthorized port)\n", tx->dev->name,
MAC2STR(hdr->addr1));
#endif
I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
/* This function is called whenever the AP is about to exceed the maximum limit
* of buffered frames for power saving STAs. This situation should not really
* happen often during normal operation, so dropping the oldest buffered packet
* from each queue should be OK to make some room for new frames. */
static void purge_old_ps_buffers(struct ieee80211_local *local)
{
int total = 0, purged = 0;
struct sk_buff *skb;
struct list_head *ptr;
spin_lock_bh(&local->sub_if_lock);
list_for_each(ptr, &local->sub_if_list) {
struct ieee80211_if_norm *norm;
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->dev == local->mdev ||
sdata->type != IEEE80211_SUB_IF_TYPE_NORM)
continue;
norm = &sdata->u.norm;
skb = skb_dequeue(&norm->ps_bc_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&norm->ps_bc_buf);
}
spin_unlock_bh(&local->sub_if_lock);
spin_lock_bh(&local->sta_lock);
list_for_each(ptr, &local->sta_list) {
struct sta_info *sta =
list_entry(ptr, struct sta_info, list);
skb = skb_dequeue(&sta->ps_tx_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&sta->ps_tx_buf);
}
spin_unlock_bh(&local->sta_lock);
local->total_ps_buffered = total;
printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
local->mdev->name, purged);
}
static inline ieee80211_txrx_result
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
{
/* broadcast/multicast frame */
/* If any of the associated stations is in power save mode,
* the frame is buffered to be sent after DTIM beacon frame */
if (tx->local->hw->host_broadcast_ps_buffering &&
tx->sdata->type != IEEE80211_SUB_IF_TYPE_WDS &&
tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
!(tx->fc & WLAN_FC_ORDER)) {
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
AP_MAX_BC_BUFFER) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: BC TX buffer full - "
"dropping the oldest frame\n",
tx->dev->name);
}
dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
} else
tx->local->total_ps_buffered++;
skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static inline ieee80211_txrx_result
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
{
struct sta_info *sta = tx->sta;
if (unlikely(!sta ||
(WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_MGMT &&
WLAN_FC_GET_STYPE(tx->fc) == WLAN_FC_STYPE_PROBE_RESP)))
return TXRX_CONTINUE;
if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
struct ieee80211_tx_packet_data *pkt_data;
#ifdef IEEE80211_VERBOSE_DEBUG_PS
printk(KERN_DEBUG "STA " MACSTR " aid %d: PS buffer (entries "
"before %d)\n",
MAC2STR(sta->addr), sta->aid,
skb_queue_len(&sta->ps_tx_buf));
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
sta->flags |= WLAN_STA_TIM;
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: STA " MACSTR " TX "
"buffer full - dropping oldest frame\n",
tx->dev->name, MAC2STR(sta->addr));
}
dev_kfree_skb(old);
} else
tx->local->total_ps_buffered++;
/* Queue frame to be sent after STA sends an PS Poll frame */
if (skb_queue_empty(&sta->ps_tx_buf) && tx->local->hw->set_tim)
tx->local->hw->set_tim(tx->dev, sta->aid, 1);
pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
pkt_data->jiffies = jiffies;
skb_queue_tail(&sta->ps_tx_buf, tx->skb);
return TXRX_QUEUED;
}
#ifdef IEEE80211_VERBOSE_DEBUG_PS
else if (unlikely(sta->flags & WLAN_STA_PS)) {
printk(KERN_DEBUG "%s: STA " MACSTR " in PS mode, but pspoll "
"set -> send frame\n", tx->dev->name,
MAC2STR(sta->addr));
}
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
sta->pspoll = 0;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
{
if (unlikely(tx->u.tx.ps_buffered))
return TXRX_CONTINUE;
if (tx->u.tx.unicast)
return ieee80211_tx_h_unicast_ps_buf(tx);
else
return ieee80211_tx_h_multicast_ps_buf(tx);
}
static void inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
struct sk_buff *skb,
struct net_device *dev,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = dev->priv;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_packet_data *pkt_data;
int hdrlen;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(tx, 0, sizeof(*tx));
tx->skb = skb;
tx->dev = pkt_data->sdata->dev; /* use original interface */
tx->local = local;
tx->sdata = pkt_data->sdata;
tx->sta = sta_info_get(local, hdr->addr1);
tx->fc = le16_to_cpu(hdr->frame_control);
control->power_level = local->conf.power_level;
tx->u.tx.control = control;
tx->u.tx.unicast = !MULTICAST_ADDR(hdr->addr1);
control->no_ack = MULTICAST_ADDR(hdr->addr1);
tx->fragmented = local->fragmentation_threshold <
IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
skb->len + 4 /* FCS */ > local->fragmentation_threshold &&
(local->hw->set_frag_threshold == NULL);
if (tx->sta == NULL)
control->clear_dst_mask = 1;
else if (tx->sta->clear_dst_mask) {
control->clear_dst_mask = 1;
tx->sta->clear_dst_mask = 0;
}
control->antenna_sel = local->conf.antenna_sel;
if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
control->antenna_sel = tx->sta->antenna_sel;
hdrlen = ieee80211_get_hdrlen(tx->fc);
if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
tx->ethertype = (pos[0] << 8) | pos[1];
}
}
static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_tx_control *control, int mgmt)
{
struct ieee80211_local *local = dev->priv;
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP;
int ret, i;
if (unlikely(skb->len < 10)) {
dev_kfree_skb(skb);
return 0;
}
ieee80211_tx_prepare(&tx, skb, dev, control);
sta = tx.sta;
tx.u.tx.mgmt_interface = mgmt;
for (handler = local->tx_handlers; *handler != NULL; handler++) {
res = (*handler)(&tx);
if (res != TXRX_CONTINUE)
break;
}
skb = tx.skb; /* handlers are allowed to change skb */
if (sta)
sta_info_release(local, sta);
if (unlikely(res == TXRX_DROP)) {
I802_DEBUG_INC(local->tx_handlers_drop);
goto drop;
}
if (unlikely(res == TXRX_QUEUED)) {
I802_DEBUG_INC(local->tx_handlers_queued);
return 0;
}
ieee80211_dump_frame(dev->name, "TX to low-level driver", skb);
ret = local->hw->tx(dev, skb, control);
#ifdef IEEE80211_LEDS
if (!ret && local->tx_led_counter++ == 0) {
ieee80211_tx_led(1, dev);
}
#endif /* IEEE80211_LEDS */
if (tx.u.tx.extra_frag) {
if (ret > 0) {
/* Must free all fragments and return 0 since skb data
* has been fragmented into multiple buffers.
* TODO: could free extra fragments and restore skb to
* the original form since the data is still there and
* then return nonzero so that Linux netif would
* retry. */
goto drop;
}
skb = NULL; /* skb is now owned by low-level driver */
control->use_rts_cts = 0;
control->use_cts_protect = 0;
control->clear_dst_mask = 0;
for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
int next_len, dur;
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *)
tx.u.tx.extra_frag[i]->data;
if (i + 1 < tx.u.tx.num_extra_frag)
next_len = tx.u.tx.extra_frag[i + 1]->len;
else {
next_len = 0;
tx.u.tx.rate = tx.u.tx.last_frag_rate;
tx.u.tx.control->tx_rate = tx.u.tx.rate->val;
// tx.u.tx.control->rateidx =
// tx.u.tx.last_frag_rateidx;
tx.u.tx.control->rate_ctrl_probe =
tx.u.tx.probe_last_frag;
}
dur = ieee80211_duration(&tx, 0, next_len);
hdr->duration_id = cpu_to_le16(dur);
ieee80211_dump_frame(dev->name,
"TX to low-level driver", skb);
ret = local->hw->tx(dev, tx.u.tx.extra_frag[i],
control);
if (ret > 0)
goto drop;
#ifdef IEEE80211_LEDS
if (local->tx_led_counter++ == 0) {
ieee80211_tx_led(1, dev);
}
#endif /* IEEE80211_LEDS */
tx.u.tx.extra_frag[i] = NULL;
}
kfree(tx.u.tx.extra_frag);
}
if (ret == -1)
ret = 0;
return ret;
drop:
if (skb)
dev_kfree_skb(skb);
for (i = 0; i < tx.u.tx.num_extra_frag; i++)
if (tx.u.tx.extra_frag[i])
dev_kfree_skb(tx.u.tx.extra_frag[i]);
kfree(tx.u.tx.extra_frag);
return 0;
}
static int ieee80211_master_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_tx_control control;
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_sub_if_data *sdata;
int ret = 1;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/*
* copy control out of the skb so other people can use skb->cb
*/
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
if (unlikely(pkt_data->magic != IEEE80211_CB_MAGIC)) {
printk(KERN_WARNING "%s: Someone messed with our skb->cb\n",
dev->name);
dev_kfree_skb(skb);
return 0;
}
memcpy(&control, &pkt_data->control,
sizeof(struct ieee80211_tx_control));
ret = ieee80211_tx(dev, skb, &control,
pkt_data->sdata->type ==
IEEE80211_SUB_IF_TYPE_MGMT);
return ret;
}
/**
* ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
* subinterfaces (wlan#, WDS, and VLAN interfaces)
* @skb: packet to be sent
* @dev: incoming interface
*
* Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
* not be freed, and caller is responsible for either retrying later or freeing
* skb).
*
* This function takes in an Ethernet header and encapsulates it with suitable
* IEEE 802.11 header based on which interface the packet is coming in. The
* encapsulated packet will then be passed to master interface, wlan#.11, for
* transmission (through low-level driver).
*/
static int ieee80211_subif_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = (struct ieee80211_local *) dev->priv;
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_sub_if_data *sdata;
int ret = 1, head_need;
u16 ethertype, hdrlen, fc;
struct ieee80211_hdr hdr;
u8 *encaps_data;
int encaps_len, skip_header_bytes;
int nh_pos, h_pos, no_encrypt = 0;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (unlikely(skb->len < ETH_HLEN)) {
printk(KERN_DEBUG "%s: short skb (len=%d)\n",
dev->name, skb->len);
ret = 0;
goto fail;
}
nh_pos = skb->nh.raw - skb->data;
h_pos = skb->h.raw - skb->data;
/* convert Ethernet header to proper 802.11 header (based on
* operation mode) */
ethertype = (skb->data[12] << 8) | skb->data[13];
/* TODO: handling for 802.1x authorized/unauthorized port */
fc = (WLAN_FC_TYPE_DATA << 2) | (WLAN_FC_STYPE_DATA << 4);
if (likely(sdata->type == IEEE80211_SUB_IF_TYPE_NORM ||
sdata->type == IEEE80211_SUB_IF_TYPE_VLAN)) {
if (local->conf.mode == IW_MODE_MASTER) {
fc |= WLAN_FC_FROMDS;
/* DA BSSID SA */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
} else if (local->conf.mode == IW_MODE_INFRA) {
fc |= WLAN_FC_TODS;
/* BSSID SA DA */
memcpy(hdr.addr1, local->bssid, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
} else if (local->conf.mode == IW_MODE_ADHOC) {
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, local->bssid, ETH_ALEN);
}
hdrlen = 24;
} else if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS) {
fc |= WLAN_FC_FROMDS | WLAN_FC_TODS;
/* RA TA DA SA */
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
} else if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) {
if (local->conf.mode == IW_MODE_INFRA) {
fc |= WLAN_FC_TODS;
/* BSSID SA DA */
memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
} else {
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
}
hdrlen = 24;
} else {
ret = 0;
goto fail;
}
/* receiver is QoS enabled, use a QoS type frame */
sta = sta_info_get(local, hdr.addr1);
if (sta) {
if (sta->flags & WLAN_STA_WME) {
fc |= WLAN_FC_STYPE_QOS_DATA << 4;
hdrlen += 2;
}
sta_info_release(local, sta);
}
hdr.frame_control = cpu_to_le16(fc);
hdr.duration_id = 0;
hdr.seq_ctrl = 0;
skip_header_bytes = ETH_HLEN;
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
encaps_data = bridge_tunnel_header;
encaps_len = sizeof(bridge_tunnel_header);
skip_header_bytes -= 2;
} else if (ethertype >= 0x600) {
encaps_data = rfc1042_header;
encaps_len = sizeof(rfc1042_header);
skip_header_bytes -= 2;
} else {
encaps_data = NULL;
encaps_len = 0;
}
skb_pull(skb, skip_header_bytes);
nh_pos -= skip_header_bytes;
h_pos -= skip_header_bytes;
/* TODO: implement support for fragments so that there is no need to
* reallocate and copy payload; it might be enough to support one
* extra fragment that would be copied in the beginning of the frame
* data.. anyway, it would be nice to include this into skb structure
* somehow
*
* There are few options for this:
* use skb->cb as an extra space for 802.11 header
* allocate new buffer if not enough headroom
* make sure that there is enough headroom in every skb by increasing
* build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
* alloc_skb() (net/core/skbuff.c)
*/
head_need = hdrlen + encaps_len + (local->hw->extra_hdr_room ? 2 : 0);
head_need -= skb_headroom(skb);
/* We are going to modify skb data, so make a copy of it if happens to
* be cloned. This could happen, e.g., with Linux bridge code passing
* us broadcast frames. */
if (head_need > 0 || skb_cloned(skb)) {
#if 0
printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
"of headroom\n", dev->name, head_need);
#endif
if (skb_cloned(skb))
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
else
I802_DEBUG_INC(local->tx_expand_skb_head);
/* Since we have to reallocate the buffer, make sure that there
* is enough room for possible WEP IV/ICV and TKIP (8 bytes
* before payload and 12 after). */
if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
12, GFP_ATOMIC)) {
printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
"\n", dev->name);
goto fail;
}
}
if (encaps_data) {
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
nh_pos += encaps_len;
h_pos += encaps_len;
}
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
nh_pos += hdrlen;
h_pos += hdrlen;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->magic = IEEE80211_CB_MAGIC;
pkt_data->sdata = sdata;
pkt_data->control.do_not_encrypt = no_encrypt;
skb->dev = sdata->master;
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
/* Update skb pointers to various headers since this modified frame
* is going to go through Linux networking code that may potentially
* need things like pointer to IP header. */
skb->mac.raw = skb->data;
skb->nh.raw = skb->data + nh_pos;
skb->h.raw = skb->data + h_pos;
dev_queue_xmit(skb);
return 0;
fail:
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* This is the transmit routine for the 802.11 type interfaces
* called by upper layers of the linux networking
* stack when it has a frame to transmit
*/
static int
ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_hdr *hdr;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (skb->len < 10) {
dev_kfree_skb(skb);
return 0;
}
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->magic = IEEE80211_CB_MAGIC;
pkt_data->sdata = sdata;
if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT &&
WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PROBE_RESP)
pkt_data->control.pkt_type = PKT_PROBE_RESP;
skb->priority = 20; /* use hardcode priority for mgmt TX queue */
skb->dev = sdata->master;
/*
* We're using the protocol field of the the frame control header
* to request TX callback for hostapd. BIT(1) is checked.
*/
if ((fc & BIT(1)) == BIT(1)) {
pkt_data->control.req_tx_status = 1;
fc &= ~BIT(1);
hdr->frame_control = cpu_to_le16(fc);
}
pkt_data->control.do_not_encrypt = !(fc & WLAN_FC_ISWEP);
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
dev_queue_xmit(skb);
return 0;
}
static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
struct ieee80211_if_norm *bss,
struct sk_buff *skb)
{
u8 *pos, *tim;
int aid0 = 0;
int i, num_bits = 0, n1, n2;
u8 bitmap[251];
/* Generate bitmap for TIM only if there are any STAs in power save
* mode. */
if (atomic_read(&bss->num_sta_ps) > 0 && bss->max_aid > 0) {
memset(bitmap, 0, sizeof(bitmap));
spin_lock_bh(&local->sta_lock);
for (i = 0; i < bss->max_aid; i++) {
if (bss->sta_aid[i] &&
(!skb_queue_empty(&bss->sta_aid[i]->ps_tx_buf) ||
!skb_queue_empty(&bss->sta_aid[i]->tx_filtered)))
{
bitmap[(i + 1) / 8] |= 1 << (i + 1) % 8;
num_bits++;
}
}
spin_unlock_bh(&local->sta_lock);
}
if (bss->dtim_count == 0)
bss->dtim_count = bss->dtim_period - 1;
else
bss->dtim_count--;
tim = pos = (u8 *) skb_put(skb, 6);
*pos++ = WLAN_EID_TIM;
*pos++ = 4;
*pos++ = bss->dtim_count;
*pos++ = bss->dtim_period;
if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) {
aid0 = 1;
}
if (num_bits) {
/* Find largest even number N1 so that bits numbered 1 through
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
* (N2 + 1) x 8 through 2007 are 0. */
n1 = 0;
for (i = 0; i < sizeof(bitmap); i++) {
if (bitmap[i]) {
n1 = i & 0xfe;
break;
}
}
n2 = n1;
for (i = sizeof(bitmap) - 1; i >= n1; i--) {
if (bitmap[i]) {
n2 = i;
break;
}
}
/* Bitmap control */
*pos++ = n1 | (aid0 ? 1 : 0);
/* Part Virt Bitmap */
memcpy(pos, bitmap + n1, n2 - n1 + 1);
tim[1] = n2 - n1 + 4;
skb_put(skb, n2 - n1);
} else {
*pos++ = aid0 ? 1 : 0; /* Bitmap control */
*pos++ = 0; /* Part Virt Bitmap */
}
}
struct sk_buff * ieee80211_beacon_get(struct net_device *dev, int bss_idx,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = dev->priv;
struct sk_buff *skb;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata = NULL;
struct ieee80211_if_norm *norm = NULL;
struct ieee80211_rate *rate;
struct rate_control_extra extra;
u8 *b_head, *b_tail;
int bh_len, bt_len;
spin_lock_bh(&local->sub_if_lock);
if (bss_idx < 0 || bss_idx >= local->bss_dev_count)
bdev = NULL;
else {
bdev = local->bss_devs[bss_idx];
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
norm = &sdata->u.norm;
}
spin_unlock_bh(&local->sub_if_lock);
if (bdev == NULL || norm == NULL || norm->beacon_head == NULL) {
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "no beacon data avail for idx=%d "
"(%s)\n", bss_idx, bdev ? bdev->name : "N/A");
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
return NULL;
}
/* Assume we are generating the normal beacon locally */
b_head = norm->beacon_head;
b_tail = norm->beacon_tail;
bh_len = norm->beacon_head_len;
bt_len = norm->beacon_tail_len;
skb = dev_alloc_skb(bh_len + bt_len + 256 /* maximum TIM len */);
if (!skb)
return NULL;
memcpy(skb_put(skb, bh_len), b_head, bh_len);
ieee80211_beacon_add_tim(local, norm, skb);
if (b_tail) {
memcpy(skb_put(skb, bt_len), b_tail, bt_len);
}
memset(&extra, 0, sizeof(extra));
extra.endidx = local->num_curr_rates;
rate = rate_control_get_rate(dev, skb, &extra);
if (rate == NULL) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
"found\n", dev->name);
}
dev_kfree_skb(skb);
return NULL;
}
control->tx_rate = (local->short_preamble &&
(rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
rate->val2 : rate->val;
control->antenna_sel = local->conf.antenna_sel;
control->power_level = local->conf.power_level;
control->no_ack = 1;
control->retry_limit = 1;
control->rts_cts_duration = 0;
control->clear_dst_mask = 1;
norm->num_beacons++;
return skb;
}
struct sk_buff *
ieee80211_get_buffered_bc(struct net_device *dev, int bss_idx,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = dev->priv;
struct sk_buff *skb;
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_norm *bss;
spin_lock_bh(&local->sub_if_lock);
if (bss_idx < 0 || bss_idx >= local->bss_dev_count) {
bdev = NULL;
bss = NULL;
} else {
bdev = local->bss_devs[bss_idx];
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
bss = &sdata->u.norm;
}
spin_unlock_bh(&local->sub_if_lock);
if (bdev == NULL || bss == NULL || bss->beacon_head == NULL)
return NULL;
if (bss->dtim_count != 0)
return NULL; /* send buffered bc/mc only after DTIM beacon */
skb = skb_dequeue(&bss->ps_bc_buf);
memset(control, 0, sizeof(*control));
if (skb == NULL)
return NULL;
local->total_ps_buffered--;
if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
/* more buffered multicast/broadcast frames ==> set MoreData
* flag in IEEE 802.11 header to inform PS STAs */
hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA);
}
ieee80211_tx_prepare(&tx, skb, dev, control);
sta = tx.sta;
tx.u.tx.ps_buffered = 1;
for (handler = local->tx_handlers; *handler != NULL; handler++) {
res = (*handler)(&tx);
if (res == TXRX_DROP || res == TXRX_QUEUED)
break;
}
if (res == TXRX_DROP) {
I802_DEBUG_INC(local->tx_handlers_drop);
dev_kfree_skb(skb);
skb = NULL;
} else if (res == TXRX_QUEUED) {
I802_DEBUG_INC(local->tx_handlers_queued);
skb = NULL;
}
if (sta)
sta_info_release(local, sta);
return skb;
}
int ieee80211_hw_config(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
int i, ret = 0;
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d mode=%d "
"phymode=%d\n", local->conf.channel, local->conf.freq,
local->conf.mode, local->conf.phymode);
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
if (local->hw->config)
ret = local->hw->config(dev, &local->conf);
for (i = 0; i < local->hw->num_modes; i++) {
struct ieee80211_hw_modes *mode = &local->hw->modes[i];
if (mode->mode == local->conf.phymode) {
if (local->curr_rates != mode->rates) {
rate_control_clear(local);
}
local->curr_rates = mode->rates;
local->num_curr_rates = mode->num_rates;
ieee80211_prepare_rates(dev);
break;
}
}
return ret;
}
struct ieee80211_conf *ieee80211_get_hw_conf(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
return &local->conf;
}
static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
{
/* FIX: what would be proper limits for MTU?
* This interface uses 802.3 frames. */
if (new_mtu < 256 || new_mtu > 2304 - 24 - 6) {
printk(KERN_WARNING "%s: invalid MTU %d\n",
dev->name, new_mtu);
return -EINVAL;
}
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
dev->mtu = new_mtu;
return 0;
}
static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
{
/* FIX: what would be proper limits for MTU?
* This interface uses 802.11 frames. */
if (new_mtu < 256 || new_mtu > 2304) {
printk(KERN_WARNING "%s: invalid MTU %d\n",
dev->name, new_mtu);
return -EINVAL;
}
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
dev->mtu = new_mtu;
return 0;
}
static void ieee80211_tx_timeout(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
printk(KERN_WARNING "%s: resetting interface.\n", dev->name);
if (local->hw->reset(dev))
printk(KERN_ERR "%s: failed to reset interface.\n", dev->name);
else
netif_wake_queue(dev);
}
static int ieee80211_set_mac_address(struct net_device *dev, void *addr)
{
struct ieee80211_local *local = dev->priv;
struct sockaddr *a = addr;
struct list_head *ptr;
int res;
if (!local->hw->set_mac_address)
return -EOPNOTSUPP;
res = local->hw->set_mac_address(dev, addr);
if (res)
return res;
list_for_each(ptr, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
memcpy(sdata->dev->dev_addr, a->sa_data, ETH_ALEN);
}
return 0;
}
static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
return &(sdata->stats);
}
static int ieee80211_open(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = dev->priv;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (local->open_count == 0) {
res = local->hw->open(sdata->master);
if (res)
return res;
ieee80211_init_scan(sdata->master);
}
local->open_count++;
netif_start_queue(dev);
return 0;
}
static int ieee80211_stop(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = dev->priv;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
netif_stop_queue(dev);
local->open_count--;
if (local->open_count == 0) {
ieee80211_stop_scan(sdata->master);
res = local->hw->stop(sdata->master);
if (res)
return res;
}
return 0;
}
static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
{
memcpy(haddr, skb->mac.raw + 10, ETH_ALEN); /* addr2 */
return ETH_ALEN;
}
static struct net_device *
ieee80211_get_wds_dev(struct ieee80211_local *local, u8 *addr)
{
struct list_head *ptr;
list_for_each(ptr, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS &&
memcmp(addr, sdata->u.wds.remote_addr, ETH_ALEN) == 0)
return sdata->dev;
}
return NULL;
}
static struct net_device * ieee80211_own_bssid(struct ieee80211_local *local,
u8 *addr)
{
int i;
struct net_device *dev = NULL;
spin_lock_bh(&local->sub_if_lock);
for (i = 0; i < local->bss_dev_count; i++) {
if ((memcmp(local->bss_devs[i]->dev_addr, addr, ETH_ALEN) == 0)
) {
dev = local->bss_devs[i];
break;
}
}
spin_unlock_bh(&local->sub_if_lock);
return dev;
}
static struct net_device * ieee80211_sta_bssid(struct ieee80211_local *local,
u8 *addr, u8 *a1,
int *sta_multicast)
{
struct list_head *ptr;
int multicast;
u8 *own_addr = local->mdev->dev_addr;
multicast = a1[0] & 0x01;
/* Try O(1) lookup for a common case of only one AP being used. */
if (own_addr[0] == a1[0] && own_addr[1] == a1[1] &&
own_addr[2] == a1[2]) {
int index = (((int) a1[3] << 16) | ((int) a1[4] << 8) | a1[5])
- (((int) own_addr[3] << 16) |
((int) own_addr[4] << 8) | own_addr[5]);
if (index >= 0 && index < local->conf.bss_count &&
local->sta_devs[index]) {
struct net_device *dev = local->sta_devs[index];
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0) {
*sta_multicast = multicast;
return dev;
}
}
}
if (!multicast)
return NULL;
/* Could not find station interface, resort to O(n) lookup. */
list_for_each(ptr, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->type != IEEE80211_SUB_IF_TYPE_STA)
continue;
if (!multicast &&
memcmp(a1, sdata->dev->dev_addr, ETH_ALEN) != 0)
continue;
if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0 ||
(memcmp(addr, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0 &&
local->conf.mode == IW_MODE_ADHOC)) {
*sta_multicast = multicast;
return sdata->dev;
}
}
return NULL;
}
static int ieee80211_own_addr(struct net_device *dev, u8 *addr)
{
struct ieee80211_local *local = dev->priv;
u8 *own = dev->dev_addr;
int index;
/* Optimization: assume that BSSID mask does not change for first
* three octets. */
if (own[0] != addr[0] || own[1] != addr[1] || own[2] != addr[2])
return 0;
index = (((int) addr[3] << 16) | ((int) addr[4] << 8) | addr[5]) -
(((int) own[3] << 16) | ((int) own[4] << 8) | own[5]);
if (index >= 0 && index < local->conf.bss_count &&
local->sta_devs[index])
return 1;
return 0;
}
static ieee80211_txrx_result
ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
{
struct net_device *dev = rx->dev;
struct ieee80211_local *local = rx->local;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
u16 fc, hdrlen, ethertype;
u8 *payload;
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
struct sk_buff *skb = rx->skb, *skb2;
struct ieee80211_sub_if_data *sdata;
fc = rx->fc;
if (unlikely(WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA))
return TXRX_CONTINUE;
if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
return TXRX_DROP;
hdrlen = ieee80211_get_hdrlen(fc);
/* convert IEEE 802.11 header + possible LLC headers into Ethernet
* header
* IEEE 802.11 address fields:
* ToDS FromDS Addr1 Addr2 Addr3 Addr4
* 0 0 DA SA BSSID n/a
* 0 1 DA BSSID SA n/a
* 1 0 BSSID SA DA n/a
* 1 1 RA TA DA SA
*/
switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) {
case WLAN_FC_TODS:
/* BSSID SA DA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (unlikely(local->conf.mode != IW_MODE_MASTER ||
!ieee80211_own_bssid(local, hdr->addr1))) {
printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID="
MACSTR " SA=" MACSTR " DA=" MACSTR ")\n",
dev->name, MAC2STR(hdr->addr1),
MAC2STR(hdr->addr2), MAC2STR(hdr->addr3));
return TXRX_DROP;
}
break;
case (WLAN_FC_TODS | WLAN_FC_FROMDS):
/* RA TA DA SA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr4, ETH_ALEN);
dev = ieee80211_get_wds_dev(local, hdr->addr2);
if (!dev || memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA="
MACSTR " TA=" MACSTR " DA=" MACSTR " SA="
MACSTR ")\n",
rx->dev->name, MAC2STR(hdr->addr1),
MAC2STR(hdr->addr2), MAC2STR(hdr->addr3),
MAC2STR(hdr->addr4));
return TXRX_DROP;
}
break;
case WLAN_FC_FROMDS:
/* DA BSSID SA */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr3, ETH_ALEN);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type != IEEE80211_SUB_IF_TYPE_STA ||
memcmp(hdr->addr3, dev->dev_addr, ETH_ALEN) == 0 ||
memcmp(hdr->addr2, sdata->u.sta.bssid, ETH_ALEN) != 0) {
return TXRX_DROP;
}
break;
case 0:
/* DA SA BSSID */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (local->conf.mode != IW_MODE_ADHOC ||
memcmp(hdr->addr3, local->bssid, ETH_ALEN) != 0) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
MACSTR " SA=" MACSTR " BSSID=" MACSTR
")\n",
dev->name, MAC2STR(hdr->addr1),
MAC2STR(hdr->addr2),
MAC2STR(hdr->addr3));
}
return TXRX_DROP;
}
break;
}
payload = skb->data + hdrlen;
if (unlikely(skb->len - hdrlen < 8)) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: RX too short data frame "
"payload\n", dev->name);
}
return TXRX_DROP;
}
ethertype = (payload[6] << 8) | payload[7];
if (likely((memcmp(payload, rfc1042_header, 6) == 0 &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
memcmp(payload, bridge_tunnel_header, 6) == 0)) {
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
skb_pull(skb, hdrlen + 6);
memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
} else {
struct ethhdr *ehdr;
unsigned short len;
skb_pull(skb, hdrlen);
len = htons(skb->len);
ehdr = (struct ethhdr *)skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr->h_dest, dst, ETH_ALEN);
memcpy(ehdr->h_source, src, ETH_ALEN);
ehdr->h_proto = len;
}
if (rx->sta && !rx->sta->assoc_ap &&
!(rx->sta && (rx->sta->flags & WLAN_STA_WDS)))
skb->dev = rx->sta->dev;
else
skb->dev = dev;
skb2 = NULL;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/*
* don't count the master since the low level code
* counts it already for us.
*/
if (skb->dev != sdata->master) {
sdata->stats.rx_packets++;
sdata->stats.rx_bytes += skb->len;
}
if (local->bridge_packets && sdata->type != IEEE80211_SUB_IF_TYPE_WDS
&& sdata->type != IEEE80211_SUB_IF_TYPE_STA) {
if (MULTICAST_ADDR(skb->data)) {
/* send multicast frames both to higher layers in
* local net stack and back to the wireless media */
skb2 = skb_copy(skb, GFP_ATOMIC);
if (skb2 == NULL)
printk(KERN_DEBUG "%s: failed to clone "
"multicast frame\n", dev->name);
} else {
struct sta_info *dsta;
dsta = sta_info_get(local, skb->data);
if (dsta && dsta->dev == NULL) {
printk(KERN_DEBUG "Station with null dev "
"structure!\n");
} else if (dsta && dsta->dev == dev) {
/* Destination station is associated to this
* AP, so send the frame directly to it and
* do not pass the frame to local net stack.
*/
skb2 = skb;
skb = NULL;
}
if (dsta)
sta_info_release(local, dsta);
}
}
if (skb) {
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
if (skb2) {
/* send to wireless media */
skb2->protocol = __constant_htons(ETH_P_802_3);
skb2->mac.raw = skb2->nh.raw = skb2->data;
dev_queue_xmit(skb2);
}
return TXRX_QUEUED;
}
static struct ieee80211_rate *
ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
{
int m, r;
for (m = 0; m < local->hw->num_modes; m++) {
struct ieee80211_hw_modes *mode = &local->hw->modes[m];
if (mode->mode != phymode)
continue;
for (r = 0; r < mode->num_rates; r++) {
struct ieee80211_rate *rate = &mode->rates[r];
if (rate->val == hw_rate ||
(rate->flags & IEEE80211_RATE_PREAMBLE2 &&
rate->val2 == hw_rate))
return rate;
}
}
return NULL;
}
void
ieee80211_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *status, u32 msg_type)
{
struct ieee80211_local *local = dev->priv;
struct ieee80211_frame_info *fi;
size_t hlen;
struct ieee80211_sub_if_data *sdata;
dev = local->apdev;
skb->dev = dev;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (skb_headroom(skb) < sizeof(struct ieee80211_frame_info)) {
I802_DEBUG_INC(local->rx_expand_skb_head);
if (pskb_expand_head(skb, sizeof(struct ieee80211_frame_info),
0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return;
}
}
hlen = sizeof(struct ieee80211_frame_info);
if (msg_type == ieee80211_msg_monitor)
hlen -= sizeof(fi->msg_type);
fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
memset(fi, 0, hlen);
if (msg_type != ieee80211_msg_monitor)
fi->msg_type = htonl(msg_type);
fi->version = htonl(IEEE80211_FI_VERSION);
fi->length = htonl(hlen);
if (status) {
// struct timespec ts;
struct ieee80211_rate *rate;
#if 0
jiffies_to_timespec(status->hosttime, &ts);
fi->hosttime = cpu_to_be64(ts.tv_sec * 1000000 +
ts.tv_nsec / 1000);
fi->mactime = cpu_to_be64(status->mactime);
#endif
switch (status->phymode) {
case MODE_IEEE80211A:
fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
break;
case MODE_IEEE80211B:
fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
break;
case MODE_IEEE80211G:
fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
break;
case MODE_ATHEROS_TURBO:
fi->phytype =
htonl(ieee80211_phytype_dsss_dot11_turbo);
break;
default:
fi->phytype = 0xAAAAAAAA;
break;
}
fi->channel = htonl(status->channel);
rate = ieee80211_get_rate(local, status->phymode,
status->rate);
if (rate) {
fi->datarate = htonl(rate->rate);
if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
if (status->rate == rate->val)
fi->preamble = htonl(2); /* long */
else if (status->rate == rate->val2)
fi->preamble = htonl(1); /* short */
} else
fi->preamble = htonl(0);
} else {
fi->datarate = htonl(0);
fi->preamble = htonl(0);
}
fi->antenna = htonl(status->antenna);
fi->priority = 0xffffffff; /* no clue */
fi->ssi_type = htonl(ieee80211_ssi_raw);
fi->ssi_signal = htonl(status->ssi);
fi->ssi_noise = 0x00000000;
fi->encoding = 0;
} else {
fi->ssi_type = htonl(ieee80211_ssi_none);
}
sdata->stats.rx_packets++;
sdata->stats.rx_bytes += skb->len;
skb->mac.raw = skb->data;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = __constant_htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
int ieee80211_radar_status(struct net_device *dev, int channel, int radar,
int radar_type)
{
struct sk_buff *skb;
struct ieee80211_radar_info *msg;
skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
sizeof(struct ieee80211_radar_info));
if (skb == NULL)
return -ENOMEM;
skb_reserve(skb, sizeof(struct ieee80211_frame_info));
msg = (struct ieee80211_radar_info *)
skb_put(skb, sizeof(struct ieee80211_radar_info));
msg->channel = channel;
msg->radar = radar;
msg->radar_type = radar_type;
ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_radar);
return 0;
}
int ieee80211_set_aid_for_sta(struct net_device *dev, u8 *peer_address,
u16 aid)
{
struct sk_buff *skb;
struct ieee80211_msg_set_aid_for_sta *msg;
skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
sizeof(struct ieee80211_msg_set_aid_for_sta));
if (skb == NULL)
return -ENOMEM;
skb_reserve(skb, sizeof(struct ieee80211_frame_info));
msg = (struct ieee80211_msg_set_aid_for_sta *)
skb_put(skb, sizeof(struct ieee80211_msg_set_aid_for_sta));
memcpy(msg->sta_address, peer_address, ETH_ALEN);
msg->aid = aid;
ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_set_aid_for_sta);
return 0;
}
static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_inc(&sdata->bss->num_sta_ps);
sta->flags |= WLAN_STA_PS;
sta->pspoll = 0;
#ifdef IEEE80211_VERBOSE_DEBUG_PS
printk(KERN_DEBUG "%s: STA " MACSTR " aid %d enters power "
"save mode\n", dev->name, MAC2STR(sta->addr), sta->aid);
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
}
static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_local *local = dev->priv;
struct sk_buff *skb;
int sent = 0;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_dec(&sdata->bss->num_sta_ps);
sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
sta->pspoll = 0;
if (!skb_queue_empty(&sta->ps_tx_buf) && local->hw->set_tim)
local->hw->set_tim(dev, sta->aid, 0);
#ifdef IEEE80211_VERBOSE_DEBUG_PS
printk(KERN_DEBUG "%s: STA " MACSTR " aid %d exits power "
"save mode\n", dev->name, MAC2STR(sta->addr), sta->aid);
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
/* Send all buffered frames to the station */
while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
sent++;
pkt_data->control.requeue = 1;
dev_queue_xmit(skb);
}
while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
local->total_ps_buffered--;
sent++;
#ifdef IEEE80211_VERBOSE_DEBUG_PS
printk(KERN_DEBUG "%s: STA " MACSTR " aid %d send PS frame "
"since STA not sleeping anymore\n", dev->name,
MAC2STR(sta->addr), sta->aid);
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
pkt_data->control.requeue = 1;
dev_queue_xmit(skb);
}
return sent;
}
static ieee80211_txrx_result
ieee80211_rx_h_ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
{
struct sk_buff *skb;
int no_pending_pkts;
if (likely(!rx->sta || WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_CTRL ||
WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_PSPOLL))
return TXRX_CONTINUE;
skb = skb_dequeue(&rx->sta->tx_filtered);
if (skb == NULL) {
skb = skb_dequeue(&rx->sta->ps_tx_buf);
if (skb)
rx->local->total_ps_buffered--;
}
no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
skb_queue_empty(&rx->sta->ps_tx_buf);
if (skb) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* tell TX path to send one frame even though the STA may
* still remain is PS mode after this frame exchange */
rx->sta->pspoll = 1;
#ifdef IEEE80211_VERBOSE_DEBUG_PS
printk(KERN_DEBUG "STA " MACSTR " aid %d: PS Poll (entries "
"after %d)\n",
MAC2STR(rx->sta->addr), rx->sta->aid,
skb_queue_len(&rx->sta->ps_tx_buf));
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
/* Use MoreData flag to indicate whether there are more
* buffered frames for this STA */
if (no_pending_pkts) {
hdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREDATA);
rx->sta->flags &= ~WLAN_STA_TIM;
} else
hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA);
dev_queue_xmit(skb);
if (no_pending_pkts && rx->local->hw->set_tim)
rx->local->hw->set_tim(rx->dev, rx->sta->aid, 0);
#ifdef IEEE80211_VERBOSE_DEBUG_PS
} else if (!rx->u.rx.sent_ps_buffered) {
printk(KERN_DEBUG "%s: STA " MACSTR " sent PS Poll even "
"though there is no buffered frames for it\n",
rx->dev->name, MAC2STR(rx->sta->addr));
#endif /* IEEE80211_VERBOSE_DEBUG_PS */
}
/* Free PS Poll skb here instead of returning TXRX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_local *local,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
int idx;
idx = local->fragment_next;
entry = &local->fragments[local->fragment_next++];
if (local->fragment_next >= IEEE80211_FRAGMENT_MAX)
local->fragment_next = 0;
if (entry->skb) {
#ifdef CONFIG_IEEE80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) entry->skb->data;
printk(KERN_DEBUG "%s: RX reassembly removed oldest "
"fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
"addr1=" MACSTR " addr2=" MACSTR "\n",
local->mdev->name, idx,
jiffies - entry->first_frag_time, entry->seq,
entry->last_frag, MAC2STR(hdr->addr1),
MAC2STR(hdr->addr2));
#endif /* CONFIG_IEEE80211_DEBUG */
dev_kfree_skb(entry->skb);
}
entry->skb = *skb;
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->ccmp = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_local *local,
u16 fc, unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = local->fragment_next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
u16 f_fc;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &local->fragments[idx];
if (!entry->skb || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_hdr = (struct ieee80211_hdr *) entry->skb->data;
f_fc = le16_to_cpu(f_hdr->frame_control);
if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_GET_TYPE(f_fc) ||
memcmp(hdr->addr1, f_hdr->addr1, ETH_ALEN) != 0 ||
memcmp(hdr->addr2, f_hdr->addr2, ETH_ALEN) != 0)
continue;
if (entry->first_frag_time + 2 * HZ < jiffies) {
dev_kfree_skb(entry->skb);
entry->skb = NULL;
continue;
}
return entry;
}
return NULL;
}
static ieee80211_txrx_result
ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
u16 sc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
hdr = (struct ieee80211_hdr *) rx->skb->data;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = WLAN_GET_SEQ_FRAG(sc);
if (likely((!(rx->fc & WLAN_FC_MOREFRAG) && frag == 0) ||
(rx->skb)->len < 24 || MULTICAST_ADDR(hdr->addr1))) {
/* not fragmented */
goto out;
}
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
seq = WLAN_GET_SEQ_SEQ(sc);
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(rx->local, frag, seq,
rx->u.rx.queue, &(rx->skb));
if (rx->key && rx->key->alg == ALG_CCMP &&
(rx->fc & WLAN_FC_ISWEP)) {
/* Store CCMP PN so that we can verify that the next
* fragment has a sequential PN value. */
entry->ccmp = 1;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
CCMP_PN_LEN);
}
return TXRX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(rx->local, rx->fc, frag, seq,
rx->u.rx.queue, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return TXRX_DROP;
}
/* Verify that MPDUs within one MSDU have sequential PN values.
* (IEEE 802.11i, 8.3.3.4.5) */
if (entry->ccmp) {
int i;
u8 pn[CCMP_PN_LEN], *rpn;
if (rx->key == NULL || rx->key->alg != ALG_CCMP)
return TXRX_DROP;
memcpy(pn, entry->last_pn, CCMP_PN_LEN);
for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential"
" A2=" MACSTR " PN=%02x%02x%02x%02x%02x%02x "
"(expected %02x%02x%02x%02x%02x%02x)\n",
rx->dev->name, MAC2STR(hdr->addr2),
rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5],
pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]);
return TXRX_DROP;
}
memcpy(entry->last_pn, pn, CCMP_PN_LEN);
}
/* TODO: could gather list of skb's and reallocate data buffer only
* after finding out the total length of the frame */
skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
if (skb_tailroom(entry->skb) < rx->skb->len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
if (unlikely(pskb_expand_head(entry->skb, 0, rx->skb->len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return TXRX_DROP;
}
}
memcpy(skb_put(entry->skb, rx->skb->len), rx->skb->data, rx->skb->len);
entry->last_frag = frag;
dev_kfree_skb(rx->skb);
if (rx->fc & WLAN_FC_MOREFRAG) {
rx->skb = NULL;
return TXRX_QUEUED;
}
/* Complete frame has been reassembled - process it now */
rx->skb = entry->skb;
rx->fragmented = 1;
entry->skb = NULL;
out:
if (rx->sta)
rx->sta->rx_packets++;
if (MULTICAST_ADDR(hdr->addr1))
rx->local->dot11MulticastReceivedFrameCount++;
#ifdef IEEE80211_LEDS
else
ieee80211_rx_led(2, rx->dev);
#endif /* IEEE80211_LEDS */
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
{
if (rx->local->conf.mode == IW_MODE_MONITOR) {
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_monitor);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
int always_sta_key;
hdr = (struct ieee80211_hdr *) rx->skb->data;
/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
if (rx->sta && !MULTICAST_ADDR(hdr->addr1)) {
if (unlikely(rx->fc & WLAN_FC_RETRY &&
rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
hdr->seq_ctrl)) {
rx->local->dot11FrameDuplicateCount++;
rx->sta->num_duplicates++;
return TXRX_DROP;
} else
rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
}
if (rx->local->hw->rx_includes_fcs && rx->skb->len > FCS_LEN)
skb_trim(rx->skb, rx->skb->len - FCS_LEN);
if (unlikely(rx->skb->len < 16)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
return TXRX_DROP;
}
/* Filter out foreign unicast packets when in promiscuous mode.
* FIX: Filter out multicast to foreign BSSID. */
if (rx->local->conf.mode == IW_MODE_INFRA &&
!MULTICAST_ADDR(hdr->addr1) &&
!ieee80211_own_addr(rx->dev, hdr->addr1))
return TXRX_DROP;
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* 80211.o does filtering only based on association state, i.e., it
* drops Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (unlikely((WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA ||
(WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_CTRL &&
WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_PSPOLL)) &&
rx->local->conf.mode != IW_MODE_ADHOC &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
if (!(rx->fc & WLAN_FC_FROMDS) && !(rx->fc & WLAN_FC_TODS)) {
/* Drop IBSS frames silently. */
return TXRX_DROP;
}
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_sta_not_assoc);
return TXRX_QUEUED;
}
if (rx->local->conf.mode == IW_MODE_INFRA)
always_sta_key = 0;
else
always_sta_key = 1;
if (rx->sta && rx->sta->key && always_sta_key) {
rx->key = rx->sta->key;
} else {
if (!rx->sdata) {
printk(KERN_DEBUG "%s: sdata was null in packet!!\n",
rx->dev->name);
printk(KERN_DEBUG "%s: Addr1: " MACSTR "\n",
rx->dev->name, MAC2STR(hdr->addr1));
printk(KERN_DEBUG "%s: Addr2: " MACSTR "\n",
rx->dev->name, MAC2STR(hdr->addr2));
printk(KERN_DEBUG "%s: Addr3: " MACSTR "\n",
rx->dev->name, MAC2STR(hdr->addr3));
return TXRX_DROP;
}
if (rx->sta && rx->sta->key)
rx->key = rx->sta->key;
else
rx->key = rx->sdata->default_key;
if (rx->local->hw->wep_include_iv &&
rx->fc & WLAN_FC_ISWEP) {
int keyidx = ieee80211_wep_get_keyidx(rx->skb);
if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS &&
(rx->sta == NULL || rx->sta->key == NULL ||
keyidx > 0)) {
rx->key = rx->sdata->keys[keyidx];
}
if (!rx->key) {
printk(KERN_DEBUG "%s: RX WEP frame with "
"unknown keyidx %d (A1=" MACSTR " A2="
MACSTR " A3=" MACSTR ")\n",
rx->dev->name, keyidx,
MAC2STR(hdr->addr1),
MAC2STR(hdr->addr2),
MAC2STR(hdr->addr3));
ieee80211_rx_mgmt(
rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_wep_frame_unknown_key);
return TXRX_QUEUED;
}
}
}
if (rx->fc & WLAN_FC_ISWEP && rx->key) {
rx->key->tx_rx_count++;
if (unlikely(rx->local->key_tx_rx_threshold &&
rx->key->tx_rx_count >
rx->local->key_tx_rx_threshold)) {
ieee80211_key_threshold_notify(rx->dev, rx->key,
rx->sta);
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
{
struct sta_info *sta = rx->sta;
struct net_device *dev = rx->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
if (!sta)
return TXRX_CONTINUE;
/* Update last_rx only for IBSS packets which are for the current
* BSSID to avoid keeping the current IBSS network alive in cases where
* other STAs are using different BSSID. */
if (rx->local->conf.mode == IW_MODE_ADHOC) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
if (memcmp(bssid, rx->local->bssid, ETH_ALEN) == 0)
sta->last_rx = jiffies;
} else
if (!MULTICAST_ADDR(hdr->addr1) ||
rx->local->conf.mode == IW_MODE_INFRA) {
/* Update last_rx only for unicast frames in order to prevent
* the Probe Request frames (the only broadcast frames from a
* STA in infrastructure mode) from keeping a connection alive.
*/
sta->last_rx = jiffies;
}
sta->rx_fragments++;
sta->rx_bytes += rx->skb->len;
sta->last_rssi = rx->u.rx.status->ssi;
if (!(rx->fc & WLAN_FC_MOREFRAG)) {
/* Change STA power saving mode only in the end of a frame
* exchange sequence */
if ((sta->flags & WLAN_STA_PS) && !(rx->fc & WLAN_FC_PWRMGT))
rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
else if (!(sta->flags & WLAN_STA_PS) &&
(rx->fc & WLAN_FC_PWRMGT))
ap_sta_ps_start(dev, sta);
}
/* Drop data::nullfunc frames silently, since they are used only to
* control station power saving mode. */
if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_NULLFUNC) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/* Update counter and free packet here to avoid counting this
* as a dropped packed. */
sta->rx_packets++;
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
{
if (!rx->sta || !(rx->fc & WLAN_FC_ISWEP) ||
WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA || !rx->key ||
rx->key->alg != ALG_WEP)
return TXRX_CONTINUE;
/* Check for weak IVs, if hwaccel did not remove IV from the frame */
if (rx->local->hw->wep_include_iv ||
rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) {
u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key);
if (iv) {
rx->sta->wep_weak_iv_count++;
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
{
/* If the device handles decryption totally, skip this test */
if (rx->local->hw->device_hides_wep)
return TXRX_CONTINUE;
if ((rx->key && rx->key->alg != ALG_WEP) ||
!(rx->fc & WLAN_FC_ISWEP) ||
(WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA &&
(WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT ||
WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH)))
return TXRX_CONTINUE;
if (!rx->key) {
printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
rx->dev->name);
return TXRX_DROP;
}
if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) {
if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
"failed\n", rx->dev->name);
return TXRX_DROP;
}
} else if (rx->local->hw->wep_include_iv) {
ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
/* remove ICV */
skb_trim(rx->skb, rx->skb->len - 4);
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
{
if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
rx->local->conf.mode != IW_MODE_INFRA) {
/* Pass both encrypted and unencrypted EAPOL frames to user
* space for processing. */
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
return TXRX_QUEUED;
}
if (unlikely(rx->sdata->ieee802_1x &&
WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
!ieee80211_is_eapol(rx->skb))) {
#ifdef CONFIG_IEEE80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) rx->skb->data;
printk(KERN_DEBUG "%s: dropped frame from " MACSTR
" (unauthorized port)\n", rx->dev->name,
MAC2STR(hdr->addr2));
#endif /* CONFIG_IEEE80211_DEBUG */
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
{
/* If the device handles decryption totally, skip this test */
if (rx->local->hw->device_hides_wep)
return TXRX_CONTINUE;
/* Drop unencrypted frames if key is set. */
if (unlikely(!(rx->fc & WLAN_FC_ISWEP) &&
WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC &&
(rx->key || rx->sdata->drop_unencrypted) &&
(rx->sdata->eapol == 0 ||
!ieee80211_is_eapol(rx->skb)))) {
printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
"encryption\n", rx->dev->name);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) {
ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
} else {
/* Management frames are sent to hostapd for processing */
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
}
return TXRX_QUEUED;
}
static ieee80211_txrx_result
ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
if (unlikely(local->sta_scanning != 0)) {
ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
return TXRX_QUEUED;
}
if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA)
local->scan.txrx_count++;
if (unlikely(local->scan.in_scan != 0 &&
rx->u.rx.status->freq == local->scan.freq)) {
struct ieee80211_hdr *hdr;
u16 fc;
local->scan.rx_packets++;
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT &&
WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_BEACON) {
local->scan.rx_beacon++;
/* Need to trim FCS here because it is normally
* removed only after this passive scan handler. */
if (rx->local->hw->rx_includes_fcs &&
rx->skb->len > FCS_LEN)
skb_trim(rx->skb, rx->skb->len - FCS_LEN);
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_passive_scan);
return TXRX_QUEUED;
} else {
I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
return TXRX_DROP;
}
}
return TXRX_CONTINUE;
}
static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
{
u16 fc;
if (len < 24)
return NULL;
fc = le16_to_cpu(hdr->frame_control);
switch (WLAN_FC_GET_TYPE(fc)) {
case WLAN_FC_TYPE_DATA:
switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) {
case WLAN_FC_TODS:
return hdr->addr1;
case (WLAN_FC_TODS | WLAN_FC_FROMDS):
return NULL;
case WLAN_FC_FROMDS:
return hdr->addr2;
case 0:
return hdr->addr3;
}
break;
case WLAN_FC_TYPE_MGMT:
return hdr->addr3;
case WLAN_FC_TYPE_CTRL:
if (WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PSPOLL)
return hdr->addr1;
else
return NULL;
}
return NULL;
}
static struct net_device * ieee80211_get_rx_dev(struct ieee80211_local *local,
struct ieee80211_hdr *hdr,
size_t len, int *sta_broadcast)
{
u8 *bssid;
struct net_device *dev;
u16 fc;
bssid = ieee80211_get_bssid(hdr, len);
if (bssid) {
dev = ieee80211_own_bssid(local, bssid);
if (!dev && (local->conf.mode == IW_MODE_INFRA ||
local->conf.mode == IW_MODE_ADHOC))
dev = ieee80211_sta_bssid(local, bssid, hdr->addr1,
sta_broadcast);
if (dev)
return dev;
}
if (len >= 30) {
fc = le16_to_cpu(hdr->frame_control);
if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_DATA &&
(fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) ==
(WLAN_FC_TODS | WLAN_FC_FROMDS)) {
dev = ieee80211_get_wds_dev(local, hdr->addr2);
if (dev)
return dev;
}
}
/* Default to default device if nothing else matches */
return local->wdev;
}
static void ieee80211_rx_michael_mic_report(struct net_device *dev,
struct ieee80211_hdr *hdr,
struct sta_info *sta,
struct ieee80211_txrx_data *rx)
{
int keyidx, hdrlen;
hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
if (rx->skb->len >= hdrlen + 4)
keyidx = rx->skb->data[hdrlen + 3] >> 6;
else
keyidx = -1;
/* TODO: verify that this is not triggered by fragmented
* frames (hw does not verify MIC for them). */
printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
"failure from " MACSTR " to " MACSTR " keyidx=%d\n",
dev->name, MAC2STR(hdr->addr2), MAC2STR(hdr->addr1), keyidx);
if (sta == NULL) {
/* Some hardware versions seem to generate incorrect
* Michael MIC reports; ignore them to avoid triggering
* countermeasures. */
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for unknown address " MACSTR "\n",
dev->name, MAC2STR(hdr->addr2));
goto ignore;
}
if (!(rx->fc & WLAN_FC_ISWEP)) {
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame with no ISWEP flag (src "
MACSTR ")\n", dev->name, MAC2STR(hdr->addr2));
goto ignore;
}
if (rx->local->hw->wep_include_iv &&
rx->local->conf.mode == IW_MODE_MASTER) {
int keyidx = ieee80211_wep_get_keyidx(rx->skb);
/* AP with Pairwise keys support should never receive Michael
* MIC errors for non-zero keyidx because these are reserved
* for group keys and only the AP is sending real multicast
* frames in BSS. */
if (keyidx) {
printk(KERN_DEBUG "%s: ignored Michael MIC error for "
"a frame with non-zero keyidx (%d) (src " MACSTR
")\n", dev->name, keyidx, MAC2STR(hdr->addr2));
goto ignore;
}
}
if (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA &&
(WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT ||
WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH)) {
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame that cannot be encrypted "
"(fc=0x%04x) (src " MACSTR ")\n",
dev->name, rx->fc, MAC2STR(hdr->addr2));
goto ignore;
}
do {
union iwreq_data wrqu;
char *buf = kmalloc(128, GFP_ATOMIC);
if (buf == NULL)
break;
/* TODO: needed parameters: count, key type, TSC */
sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
"keyid=%d %scast addr=" MACSTR ")",
keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni",
MAC2STR(hdr->addr2));
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
} while (0);
/* TODO: consider verifying the MIC error report with software
* implementation if we get too many spurious reports from the
* hardware. */
ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
ieee80211_msg_michael_mic_failure);
return;
ignore:
dev_kfree_skb(rx->skb);
rx->skb = NULL;
}
static void ieee80211_sta_rx_broadcast(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->dev->priv;
u8 *_bssid, bssid[ETH_ALEN];
struct sk_buff *orig_skb = rx->skb, *skb;
struct ieee80211_hdr *hdr;
ieee80211_rx_handler *handler;
ieee80211_txrx_result res;
struct list_head *ptr;
hdr = (struct ieee80211_hdr *) orig_skb->data;
_bssid = ieee80211_get_bssid(hdr, orig_skb->len);
if (_bssid == NULL) {
dev_kfree_skb(orig_skb);
return;
}
memcpy(bssid, _bssid, ETH_ALEN);
list_for_each(ptr, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->type != IEEE80211_SUB_IF_TYPE_STA ||
(memcmp(bssid, sdata->u.sta.bssid, ETH_ALEN) != 0 &&
!(bssid[0] & 0x01)))
continue;
skb = skb_copy(orig_skb, GFP_ATOMIC);
if (skb == NULL) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: failed to copy "
"multicast frame for %s",
rx->dev->name, sdata->dev->name);
}
continue;
}
hdr = (struct ieee80211_hdr *) skb->data;
rx->skb = skb;
rx->dev = sdata->dev;
rx->sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
res = TXRX_DROP;
for (handler = local->rx_handlers; *handler != NULL; handler++)
{
res = (*handler)(rx);
if (res == TXRX_DROP || res == TXRX_QUEUED)
break;
}
if (res == TXRX_DROP || *handler == NULL)
dev_kfree_skb(skb);
}
dev_kfree_skb(orig_skb);
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void ieee80211_rx(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = dev->priv;
struct sta_info *sta;
struct ieee80211_hdr *hdr;
ieee80211_rx_handler *handler;
struct ieee80211_txrx_data rx;
ieee80211_txrx_result res = TXRX_DROP;
u16 type;
int sta_broadcast = 0;
hdr = (struct ieee80211_hdr *) skb->data;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
if (skb->len >= 16) {
sta = rx.sta = sta_info_get(local, hdr->addr2);
if (unlikely(sta == NULL &&
local->conf.mode == IW_MODE_ADHOC)) {
u8 *bssid = ieee80211_get_bssid(hdr, skb->len);
if (bssid &&
memcmp(bssid, local->bssid, ETH_ALEN) == 0)
sta = rx.sta =
ieee80211_ibss_add_sta(dev, skb, bssid,
hdr->addr2);
}
} else
sta = rx.sta = NULL;
if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS))
rx.dev = sta->dev;
else
rx.dev = ieee80211_get_rx_dev(local, hdr, skb->len,
&sta_broadcast);
rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
rx.u.rx.status = status;
rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
type = WLAN_FC_GET_TYPE(rx.fc);
if (type == WLAN_FC_TYPE_DATA || type == WLAN_FC_TYPE_MGMT)
local->dot11ReceivedFragmentCount++;
if (sta_broadcast) {
ieee80211_sta_rx_broadcast(&rx);
goto end;
}
if ((status->flag & RX_FLAG_MMIC_ERROR)) {
ieee80211_rx_michael_mic_report(dev, hdr, sta, &rx);
goto end;
}
for (handler = local->rx_handlers; *handler != NULL; handler++) {
res = (*handler)(&rx);
if (res != TXRX_CONTINUE) {
if (res == TXRX_DROP) {
I802_DEBUG_INC(local->rx_handlers_drop);
if (sta)
sta->rx_dropped++;
}
if (res == TXRX_QUEUED)
I802_DEBUG_INC(local->rx_handlers_queued);
break;
}
}
if (res == TXRX_DROP || *handler == NULL)
dev_kfree_skb(skb);
end:
if (sta)
sta_info_release(local, sta);
}
static ieee80211_txrx_result
ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
{
struct ieee80211_local *local = tx->local;
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
/* TODO: this could be part of tx_status handling, so that the number
* of retries would be known; TX rate should in that case be stored
* somewhere with the packet */
/* Estimate total channel use caused by this frame */
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (local->conf.phymode == MODE_IEEE80211A ||
local->conf.phymode == MODE_ATHEROS_TURBO ||
local->conf.phymode == MODE_ATHEROS_TURBOG ||
(local->conf.phymode == MODE_IEEE80211G &&
tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!MULTICAST_ADDR(hdr->addr1))
load += hdrtime;
if (tx->u.tx.control->use_rts_cts)
load += 2 * hdrtime;
else if (tx->u.tx.control->use_cts_protect)
load += hdrtime;
load += skb->len * tx->u.tx.rate->rate_inv;
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
load += 2 * hdrtime;
load += tx->u.tx.extra_frag[i]->len *
tx->u.tx.rate->rate;
}
}
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
if (tx->sta)
tx->sta->channel_use_raw += load;
tx->sdata->channel_use_raw += load;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
struct ieee80211_rate *rate;
int i;
/* Estimate total channel use caused by this frame */
if (unlikely(local->num_curr_rates < 0))
return TXRX_CONTINUE;
rate = &local->curr_rates[0];
for (i = 0; i < local->num_curr_rates; i++) {
if (local->curr_rates[i].val == rx->u.rx.status->rate) {
rate = &local->curr_rates[i];
break;
}
}
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (local->conf.phymode == MODE_IEEE80211A ||
local->conf.phymode == MODE_ATHEROS_TURBO ||
local->conf.phymode == MODE_ATHEROS_TURBOG ||
(local->conf.phymode == MODE_IEEE80211G &&
rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!MULTICAST_ADDR(hdr->addr1))
load += hdrtime;
load += skb->len * rate->rate_inv;
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
if (rx->sta)
rx->sta->channel_use_raw += load;
rx->sdata->channel_use_raw += load;
return TXRX_CONTINUE;
}
static void ieee80211_stat_refresh(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct list_head *ptr, *n;
if (!local->stat_time)
return;
/* go through all stations */
spin_lock_bh(&local->sta_lock);
list_for_each(ptr, &local->sta_list) {
struct sta_info *sta =
list_entry(ptr, struct sta_info, list);
sta->channel_use = (sta->channel_use_raw / local->stat_time) /
CHAN_UTIL_PER_10MS;
sta->channel_use_raw = 0;
}
spin_unlock_bh(&local->sta_lock);
/* go through all subinterfaces */
list_for_each_safe(ptr, n, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
sdata->channel_use = (sdata->channel_use_raw /
local->stat_time) / CHAN_UTIL_PER_10MS;
sdata->channel_use_raw = 0;
}
/* hardware interface */
local->channel_use = (local->channel_use_raw /
local->stat_time) / CHAN_UTIL_PER_10MS;
local->channel_use_raw = 0;
local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
add_timer(&local->stat_timer);
}
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = dev->priv;
skb->dev = dev;
memcpy(skb->cb, status, sizeof(struct ieee80211_rx_status));
skb->pkt_type = ieee80211_rx_msg;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
void ieee80211_tx_status_irqsafe(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_tx_status *status)
{
struct ieee80211_local *local = dev->priv;
int tmp;
if (status->tx_filtered || status->excessive_retries) {
/* Need to save a copy of skb->cb somewhere. Storing it in the
* end of the data might not be the most efficient way of doing
* this (since it may require reallocation of packet data), but
* should be good enough for now since tx_filtered or
* excessive_retries should not be triggered that often. */
if (skb_is_nonlinear(skb)) {
if (skb_linearize(skb, GFP_ATOMIC)) {
printk(KERN_DEBUG "%s: Failed to linearize "
"skb\n", dev->name);
dev_kfree_skb_irq(skb);
return;
}
}
if (skb_tailroom(skb) < sizeof(skb->cb) &&
pskb_expand_head(skb, 0, sizeof(skb->cb), GFP_ATOMIC)) {
printk(KERN_DEBUG "%s: Failed to store skb->cb "
"in skb->data for TX filtered frame\n",
dev->name);
dev_kfree_skb_irq(skb);
return;
}
memcpy(skb_put(skb, sizeof(skb->cb)), skb->cb,
sizeof(skb->cb));
}
skb->dev = dev;
memcpy(skb->cb, status, sizeof(struct ieee80211_tx_status));
skb->pkt_type = ieee80211_tx_status_msg;
skb_queue_tail(status->req_tx_status ?
&local->skb_queue : &local->skb_queue_unreliable, skb);
tmp = skb_queue_len(&local->skb_queue) +
skb_queue_len(&local->skb_queue_unreliable);
while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
dev_kfree_skb_irq(skb);
tmp--;
I802_DEBUG_INC(local->tx_status_drop);
}
tasklet_schedule(&local->tasklet);
}
static void ieee80211_tasklet_handler(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct sk_buff *skb;
struct ieee80211_rx_status rx_status;
struct ieee80211_tx_status tx_status;
while ((skb = skb_dequeue(&local->skb_queue)) ||
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
switch (skb->pkt_type) {
case ieee80211_rx_msg:
/* Make a copy of the RX status because the original
* skb may be freed during processing. Clear skb->type
* in order to not confuse kernel netstack. */
memcpy(&rx_status, skb->cb, sizeof(rx_status));
skb->pkt_type = 0;
ieee80211_rx(skb->dev, skb, &rx_status);
break;
case ieee80211_tx_status_msg:
/* Make a copy of the TX status because the original
* skb may be freed during processing. */
memcpy(&tx_status, skb->cb, sizeof(tx_status));
skb->pkt_type = 0;
if ((tx_status.tx_filtered ||
tx_status.excessive_retries) &&
skb->len >= sizeof(skb->cb)) {
/* Restore skb->cb from the copy that was made
* in ieee80211_tx_status_irqsafe() */
memcpy(skb->cb,
skb->data + skb->len - sizeof(skb->cb),
sizeof(skb->cb));
skb_trim(skb, skb->len - sizeof(skb->cb));
}
ieee80211_tx_status(skb->dev, skb, &tx_status);
break;
default: /* should never get here! */
printk(KERN_ERR "%s: Unknown message type (%d)\n",
local->wdev->name, skb->pkt_type);
dev_kfree_skb(skb);
break;
}
}
}
/* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
* make a prepared TX frame (one that has been given to hw) to look like brand
* new IEEE 802.11 frame that is ready to go through TX processing again. */
static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
struct ieee80211_key *key,
struct sk_buff *skb)
{
int hdrlen, iv_len, mic_len;
if (key == NULL)
return;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
switch (key->alg) {
case ALG_WEP:
iv_len = WEP_IV_LEN;
mic_len = WEP_ICV_LEN;
break;
case ALG_TKIP:
iv_len = TKIP_IV_LEN;
mic_len = TKIP_ICV_LEN;
break;
case ALG_CCMP:
iv_len = CCMP_HDR_LEN;
mic_len = CCMP_MIC_LEN;
break;
default:
return;
}
if (skb->len >= mic_len && key->force_sw_encrypt)
skb_trim(skb, skb->len - mic_len);
if (skb->len >= iv_len && skb->len > hdrlen) {
memmove(skb->data + iv_len, skb->data, hdrlen);
skb_pull(skb, iv_len);
}
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc = le16_to_cpu(hdr->frame_control);
if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
fc &= ~(WLAN_FC_STYPE_QOS_DATA << 4);
hdr->frame_control = cpu_to_le16(fc);
memmove(skb->data + 2, skb->data, hdrlen - 2);
skb_pull(skb, 2);
}
}
}
void ieee80211_tx_status(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_tx_status *status)
{
struct sk_buff *skb2;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_local *local = dev->priv;
struct ieee80211_tx_packet_data *pkt_data =
(struct ieee80211_tx_packet_data *) skb->cb;
u16 frag, type;
u32 msg_type;
if (!status) {
printk(KERN_ERR
"%s: ieee80211_tx_status called with NULL status\n",
dev->name);
dev_kfree_skb(skb);
return;
}
if (status->excessive_retries) {
struct sta_info *sta;
sta = sta_info_get(local, hdr->addr1);
if (sta) {
if (sta->flags & WLAN_STA_PS) {
/* The STA is in power save mode, so assume
* that this TX packet failed because of that.
*/
status->excessive_retries = 0;
status->tx_filtered = 1;
}
sta_info_release(local, sta);
}
}
if (status->tx_filtered) {
struct sta_info *sta;
sta = sta_info_get(local, hdr->addr1);
if (sta) {
sta->tx_filtered_count++;
/* Clear the TX filter mask for this STA when sending
* the next packet. If the STA went to power save mode,
* this will happen when it is waking up for the next
* time. */
sta->clear_dst_mask = 1;
/* TODO: Is the WLAN_STA_PS flag always set here or is
* the race between RX and TX status causing some
* packets to be filtered out before 80211.o gets an
* update for PS status? This seems to be the case, so
* no changes are likely to be needed. */
if (sta->flags & WLAN_STA_PS &&
skb_queue_len(&sta->tx_filtered) <
STA_MAX_TX_BUFFER) {
ieee80211_remove_tx_extra(local, sta->key,
skb);
skb_queue_tail(&sta->tx_filtered, skb);
} else if (!(sta->flags & WLAN_STA_PS) &&
!pkt_data->control.requeue) {
/* Software retry the packet once */
pkt_data->control.requeue = 1;
ieee80211_remove_tx_extra(local, sta->key,
skb);
dev_queue_xmit(skb);
} else {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: dropped TX "
"filtered frame queue_len=%d "
"PS=%d @%lu\n",
dev->name,
skb_queue_len(
&sta->tx_filtered),
!!(sta->flags & WLAN_STA_PS),
jiffies);
}
dev_kfree_skb(skb);
}
sta_info_release(local, sta);
return;
}
} else {
rate_control_tx_status(dev, skb, status);
}
#ifdef IEEE80211_LEDS
if (local->tx_led_counter && (local->tx_led_counter-- == 1)) {
ieee80211_tx_led(0, dev);
}
#endif /* IEEE80211_LEDS */
/* SNMP counters
* Fragments are passed to low-level drivers as separate skbs, so these
* are actually fragments, not frames. Update frame counters only for
* the first fragment of the frame. */
frag = WLAN_GET_SEQ_FRAG(le16_to_cpu(hdr->seq_ctrl));
type = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_control));
if (status->ack) {
if (frag == 0) {
local->dot11TransmittedFrameCount++;
if (MULTICAST_ADDR(hdr->addr1))
local->dot11MulticastTransmittedFrameCount++;
if (status->retry_count > 0)
local->dot11RetryCount++;
if (status->retry_count > 1)
local->dot11MultipleRetryCount++;
}
/* This counter shall be incremented for an acknowledged MPDU
* with an individual address in the address 1 field or an MPDU
* with a multicast address in the address 1 field of type Data
* or Management. */
if (!MULTICAST_ADDR(hdr->addr1) || type == WLAN_FC_TYPE_DATA ||
type == WLAN_FC_TYPE_MGMT)
local->dot11TransmittedFragmentCount++;
} else {
if (frag == 0)
local->dot11FailedCount++;
}
if (!status->req_tx_status) {
dev_kfree_skb(skb);
return;
}
msg_type = status->ack ? ieee80211_msg_tx_callback_ack :
ieee80211_msg_tx_callback_fail;
/* skb was the original skb used for TX. Clone it and give the clone
* to netif_rx(). Free original skb. */
skb2 = skb_copy(skb, GFP_ATOMIC);
if (!skb2) {
dev_kfree_skb(skb);
return;
}
dev_kfree_skb(skb);
skb = skb2;
/* Send frame to hostapd */
ieee80211_rx_mgmt(dev, skb, NULL, msg_type);
}
/* TODO: implement register/unregister functions for adding TX/RX handlers
* into ordered list */
static ieee80211_rx_handler ieee80211_rx_handlers[] =
{
ieee80211_rx_h_parse_qos,
ieee80211_rx_h_load_stats,
ieee80211_rx_h_monitor,
ieee80211_rx_h_passive_scan,
ieee80211_rx_h_check,
ieee80211_rx_h_sta_process,
ieee80211_rx_h_ccmp_decrypt,
ieee80211_rx_h_tkip_decrypt,
ieee80211_rx_h_wep_weak_iv_detection,
ieee80211_rx_h_wep_decrypt,
ieee80211_rx_h_defragment,
ieee80211_rx_h_ieee80211_rx_h_ps_poll,
ieee80211_rx_h_michael_mic_verify,
/* this must be after decryption - so header is counted in MPDU mic
* must be before pae and data, so QOS_DATA format frames
* are not passed to user space by these functions
*/
ieee80211_rx_h_remove_qos_control,
ieee80211_rx_h_802_1x_pae,
ieee80211_rx_h_drop_unencrypted,
ieee80211_rx_h_data,
ieee80211_rx_h_mgmt,
NULL
};
static ieee80211_tx_handler ieee80211_tx_handlers[] =
{
ieee80211_tx_h_rate_limit,
ieee80211_tx_h_check_assoc,
ieee80211_tx_h_ps_buf,
ieee80211_tx_h_select_key,
ieee80211_tx_h_michael_mic_add,
ieee80211_tx_h_fragment,
ieee80211_tx_h_tkip_encrypt,
ieee80211_tx_h_ccmp_encrypt,
ieee80211_tx_h_wep_encrypt,
ieee80211_tx_h_rate_ctrl,
ieee80211_tx_h_misc,
ieee80211_tx_h_load_stats,
NULL
};
static void ieee80211_if_sdata_init(struct ieee80211_sub_if_data *sdata)
{
/* Default values for sub-interface parameters */
sdata->drop_unencrypted = 0;
sdata->eapol = 1;
}
static struct net_device *ieee80211_if_add(struct net_device *dev,
char *name, int locked)
{
struct net_device *wds_dev = NULL, *tmp_dev;
struct ieee80211_local *local = dev->priv;
struct ieee80211_sub_if_data *sdata = NULL, *sdata_parent;
int alloc_size;
int ret;
int i;
/* ensure 32-bit alignment of our private data and hw private data */
alloc_size = sizeof(struct net_device) + 3 +
sizeof(struct ieee80211_sub_if_data) + 3;
wds_dev = (struct net_device *) kmalloc(alloc_size, GFP_KERNEL);
if (wds_dev == NULL)
return NULL;
memset(wds_dev, 0, alloc_size);
wds_dev->priv = local;
ether_setup(wds_dev);
if (strlen(name) == 0) {
i = 0;
do {
sprintf(wds_dev->name, "%s.%d", dev->name, i++);
tmp_dev = dev_get_by_name(wds_dev->name);
if (tmp_dev == NULL)
break;
dev_put(tmp_dev);
} while (i < 10000);
} else {
snprintf(wds_dev->name, IFNAMSIZ, "%s", name);
}
memcpy(wds_dev->dev_addr, dev->dev_addr, ETH_ALEN);
wds_dev->hard_start_xmit = ieee80211_subif_start_xmit;
wds_dev->do_ioctl = ieee80211_ioctl;
wds_dev->change_mtu = ieee80211_change_mtu;
wds_dev->tx_timeout = ieee80211_tx_timeout;
wds_dev->get_stats = ieee80211_get_stats;
wds_dev->open = ieee80211_open;
wds_dev->stop = ieee80211_stop;
wds_dev->base_addr = dev->base_addr;
wds_dev->irq = dev->irq;
wds_dev->mem_start = dev->mem_start;
wds_dev->mem_end = dev->mem_end;
wds_dev->tx_queue_len = 0;
sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev);
sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
sdata->master = local->mdev;
sdata->dev = wds_dev;
sdata->local = local;
memset(&sdata->stats, 0, sizeof(struct net_device_stats));
sdata_parent = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata_parent->type == IEEE80211_SUB_IF_TYPE_NORM)
sdata->bss = &sdata_parent->u.norm;
else {
printk(KERN_DEBUG "%s: could not set BSS pointer for new "
"interface %s\n", dev->name, wds_dev->name);
}
ieee80211_if_sdata_init(sdata);
if (locked)
ret = register_netdevice(wds_dev);
else
ret = register_netdev(wds_dev);
if (ret) {
kfree(wds_dev);
return NULL;
}
list_add(&sdata->list, &local->sub_if_list);
strcpy(name, wds_dev->name);
return wds_dev;
}
int ieee80211_if_add_wds(struct net_device *dev, char *name,
struct ieee80211_if_wds *wds, int locked)
{
struct net_device *wds_dev = NULL;
struct ieee80211_sub_if_data *sdata = NULL;
if (strlen(name) != 0) {
wds_dev = dev_get_by_name(name);
if (wds_dev) {
dev_put(wds_dev);
return -EEXIST;
}
}
wds_dev = ieee80211_if_add(dev, name, locked);
if (wds_dev == NULL)
return -ENOANO;
sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev);
sdata->type = IEEE80211_SUB_IF_TYPE_WDS;
memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds));
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG
"%s: Added WDS Link to " MACSTR "\n",
wds_dev->name, MAC2STR(sdata->u.wds.remote_addr));
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
ieee80211_proc_init_virtual(wds_dev);
return 0;
}
int ieee80211_if_update_wds(struct net_device *dev, char *name,
struct ieee80211_if_wds *wds, int locked)
{
struct net_device *wds_dev = NULL;
struct ieee80211_local *local = dev->priv;
struct ieee80211_sub_if_data *sdata = NULL;
struct sta_info *sta;
struct list_head *ptr;
list_for_each(ptr, &local->sub_if_list) {
sdata = list_entry(ptr, struct ieee80211_sub_if_data, list);
if (strcmp(name, sdata->dev->name) == 0) {
wds_dev = sdata->dev;
break;
}
}
if (wds_dev == NULL || sdata->type != IEEE80211_SUB_IF_TYPE_WDS)
return -ENODEV;
/* Remove STA entry for the old peer */
sta = sta_info_get(local, sdata->u.wds.remote_addr);
if (sta) {
sta_info_release(local, sta);
sta_info_free(local, sta, 0);
} else {
printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
"%s peer " MACSTR "\n",
dev->name, wds_dev->name,
MAC2STR(sdata->u.wds.remote_addr));
}
/* Update WDS link data */
memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds));
return 0;
}
static void ieee80211_if_init(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
spin_lock_init(&local->sub_if_lock);
INIT_LIST_HEAD(&local->sub_if_list);
}
int ieee80211_if_add_vlan(struct net_device *dev,
char *name,
struct ieee80211_if_vlan *vlan,
int locked)
{
struct net_device *vlan_dev = NULL;
struct ieee80211_sub_if_data *sdata = NULL;
if (strlen(name) != 0) {
vlan_dev = dev_get_by_name(name);
if (vlan_dev) {
dev_put(vlan_dev);
return -EEXIST;
}
}
vlan_dev = ieee80211_if_add(dev, name, locked);
if (vlan_dev == NULL)
return -ENOANO;
sdata = IEEE80211_DEV_TO_SUB_IF(vlan_dev);
sdata->type = IEEE80211_SUB_IF_TYPE_VLAN;
ieee80211_proc_init_virtual(vlan_dev);
return 0;
}
static void ieee80211_if_norm_init(struct ieee80211_sub_if_data *sdata)
{
sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
sdata->u.norm.dtim_period = 2;
sdata->u.norm.force_unicast_rateidx = -1;
sdata->u.norm.max_ratectrl_rateidx = -1;
skb_queue_head_init(&sdata->u.norm.ps_bc_buf);
sdata->bss = &sdata->u.norm;
}
int ieee80211_if_add_norm(struct net_device *dev, char *name, u8 *bssid,
int locked)
{
struct ieee80211_local *local = dev->priv;
struct net_device *norm_dev = NULL;
struct ieee80211_sub_if_data *sdata = NULL;
if (local->bss_dev_count >= local->conf.bss_count)
return -ENOBUFS;
if (strlen(name) != 0) {
norm_dev = dev_get_by_name(name);
if (norm_dev) {
dev_put(norm_dev);
return -EEXIST;
}
}
norm_dev = ieee80211_if_add(dev, name, locked);
if (norm_dev == NULL)
return -ENOANO;
memcpy(norm_dev->dev_addr, bssid, ETH_ALEN);
sdata = IEEE80211_DEV_TO_SUB_IF(norm_dev);
ieee80211_if_norm_init(sdata);
ieee80211_proc_init_virtual(norm_dev);
spin_lock_bh(&local->sub_if_lock);
local->bss_devs[local->bss_dev_count] = norm_dev;
local->bss_dev_count++;
spin_unlock_bh(&local->sub_if_lock);
return 0;
}
static void ieee80211_addr_inc(u8 *addr)
{
int pos = 5;
while (pos >= 0) {
addr[pos]++;
if (addr[pos] != 0)
break;
pos--;
}
}
int ieee80211_if_add_sta(struct net_device *dev, char *name, int locked)
{
struct ieee80211_local *local = dev->priv;
struct net_device *sta_dev;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
int i;
if (local->sta_dev_count >= local->conf.bss_count)
return -ENOBUFS;
if (strlen(name) != 0) {
sta_dev = dev_get_by_name(name);
if (sta_dev) {
dev_put(sta_dev);
return -EEXIST;
}
}
sta_dev = ieee80211_if_add(dev, name, locked);
if (sta_dev == NULL)
return -ENOANO;
sdata = IEEE80211_DEV_TO_SUB_IF(sta_dev);
ifsta = &sdata->u.sta;
sdata->type = IEEE80211_SUB_IF_TYPE_STA;
ieee80211_proc_init_virtual(sta_dev);
spin_lock_bh(&local->sub_if_lock);
for (i = 0; i < local->conf.bss_count; i++) {
if (local->sta_devs[i] == NULL) {
local->sta_devs[i] = sta_dev;
local->sta_dev_count++;
printk(KERN_DEBUG "%s: using STA entry %d\n",
sta_dev->name, i);
while (i > 0) {
ieee80211_addr_inc(sta_dev->dev_addr);
i--;
}
printk(KERN_DEBUG "%s: MAC address " MACSTR "\n",
sta_dev->name, MAC2STR(sta_dev->dev_addr));
break;
}
}
spin_unlock_bh(&local->sub_if_lock);
init_timer(&ifsta->timer);
ifsta->timer.data = (unsigned long) sta_dev;
ifsta->timer.function = ieee80211_sta_timer;
ifsta->capab = WLAN_CAPABILITY_ESS;
ifsta->auth_algs = IEEE80211_AUTH_ALG_OPEN |
IEEE80211_AUTH_ALG_SHARED_KEY;
ifsta->create_ibss = 1;
ifsta->wmm_enabled = 1;
return 0;
}
static void ieee80211_if_del(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata, int locked)
{
struct sta_info *sta;
u8 addr[ETH_ALEN];
int i, j;
struct list_head *ptr, *n;
memset(addr, 0xff, ETH_ALEN);
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
if (!sdata->keys[i])
continue;
#if 0
/* Low-level driver has probably disabled hw
* already, so there is not really much point
* in disabling the keys at this point. */
if (local->hw->set_key)
local->hw->set_key(dev, DISABLE_KEY, addr,
local->keys[i], 0);
#endif
kfree(sdata->keys[i]);
}
switch (sdata->type) {
case IEEE80211_SUB_IF_TYPE_NORM:
/* Remove all virtual interfaces that use this BSS
* as their sdata->bss */
list_for_each_safe(ptr, n, &local->sub_if_list) {
struct ieee80211_sub_if_data *tsdata =
list_entry(ptr, struct ieee80211_sub_if_data,
list);
if (tsdata != sdata && tsdata->bss == &sdata->u.norm) {
printk(KERN_DEBUG "%s: removing virtual "
"interface %s because its BSS interface"
" is being removed\n",
sdata->dev->name, tsdata->dev->name);
ieee80211_if_del(local, tsdata, locked);
}
}
kfree(sdata->u.norm.beacon_head);
kfree(sdata->u.norm.beacon_tail);
spin_lock_bh(&local->sub_if_lock);
for (j = 0; j < local->bss_dev_count; j++) {
if (sdata->dev == local->bss_devs[j]) {
if (j + 1 < local->bss_dev_count) {
memcpy(&local->bss_devs[j],
&local->bss_devs[j + 1],
(local->bss_dev_count - j - 1) *
sizeof(local->bss_devs[0]));
local->bss_devs[local->bss_dev_count -
1] = NULL;
} else
local->bss_devs[j] = NULL;
local->bss_dev_count--;
break;
}
}
spin_unlock_bh(&local->sub_if_lock);
if (sdata->dev != local->mdev) {
struct sk_buff *skb;
while ((skb = skb_dequeue(&sdata->u.norm.ps_bc_buf))) {
local->total_ps_buffered--;
dev_kfree_skb(skb);
}
}
break;
case IEEE80211_SUB_IF_TYPE_WDS:
sta = sta_info_get(local, sdata->u.wds.remote_addr);
if (sta) {
sta_info_release(local, sta);
sta_info_free(local, sta, 0);
} else {
#ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: Someone had deleted my STA "
"entry for the WDS link\n", sdata->dev->name);
#endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
}
break;
case IEEE80211_SUB_IF_TYPE_STA:
del_timer_sync(&sdata->u.sta.timer);
if (local->scan_timer.data == (unsigned long) sdata->dev)
del_timer_sync(&local->scan_timer);
kfree(sdata->u.sta.extra_ie);
sdata->u.sta.extra_ie = NULL;
kfree(sdata->u.sta.assocreq_ies);
sdata->u.sta.assocreq_ies = NULL;
kfree(sdata->u.sta.assocresp_ies);
sdata->u.sta.assocresp_ies = NULL;
if (sdata->u.sta.probe_resp) {
dev_kfree_skb(sdata->u.sta.probe_resp);
sdata->u.sta.probe_resp = NULL;
}
for (i = 0; i < local->conf.bss_count; i++) {
if (local->sta_devs[i] == sdata->dev) {
local->sta_devs[i] = NULL;
local->sta_dev_count--;
break;
}
}
break;
}
/* remove all STAs that are bound to this virtual interface */
sta_info_flush(local, sdata->dev);
list_del(&sdata->list);
ieee80211_proc_deinit_virtual(sdata->dev);
if (locked)
unregister_netdevice(sdata->dev);
else
unregister_netdev(sdata->dev);
/* Default data device and management device are allocated with the
* master device. All other devices are separately allocated and will
* be freed here. */
if (sdata->dev != local->mdev && sdata->dev != local->wdev &&
sdata->dev != local->apdev)
kfree(sdata->dev);
}
static int ieee80211_if_remove(struct net_device *dev, char *name, int id,
int locked)
{
struct ieee80211_local *local = dev->priv;
struct list_head *ptr, *n;
/* Make sure not to touch sdata->master since it may
* have already been deleted, etc. */
list_for_each_safe(ptr, n, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->type == id && strcmp(name, sdata->dev->name) == 0) {
ieee80211_if_del(local, sdata, locked);
break;
}
}
return 0;
}
int ieee80211_if_remove_wds(struct net_device *dev, char *name, int locked)
{
return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_WDS,
locked);
}
int ieee80211_if_remove_vlan(struct net_device *dev, char *name, int locked)
{
return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_VLAN,
locked);
}
int ieee80211_if_remove_norm(struct net_device *dev, char *name, int locked)
{
return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_NORM,
locked);
}
int ieee80211_if_remove_sta(struct net_device *dev, char *name, int locked)
{
return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_STA,
locked);
}
int ieee80211_if_flush(struct net_device *dev, int locked)
{
struct ieee80211_local *local = dev->priv;
struct list_head *ptr, *n;
list_for_each_safe(ptr, n, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
if (sdata->dev != local->mdev &&
sdata->dev != local->wdev &&
sdata->dev != local->apdev)
ieee80211_if_del(local, sdata, locked);
}
return 0;
}
static void ieee80211_precalc_rates(struct ieee80211_hw *hw)
{
struct ieee80211_hw_modes *mode;
struct ieee80211_rate *rate;
int m, r;
for (m = 0; m < hw->num_modes; m++) {
mode = &hw->modes[m];
for (r = 0; r < mode->num_rates; r++) {
rate = &mode->rates[r];
rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
}
}
}
struct net_device *ieee80211_alloc_hw(size_t priv_data_len,
void (*setup)(struct net_device *))
{
struct net_device *dev, *apdev, *mdev;
struct ieee80211_local *local;
struct ieee80211_sub_if_data *sdata;
int alloc_size;
/* Ensure 32-bit alignment of our private data and hw private data.
* Each net_device is followed by a sub_if_data which which is used
* for wds/vlan information; it is aligned as well.
*
* Sample memory map looks something like:
*
* 0000 *****************
* * net_dev *
* 015c *****************
* * sub_if *
* 017c *****************
* * local *
* 0b84 *****************
* * hw_priv *
* 1664 *****************
* * ap net_dev *
* 17c0 *****************
* * sub_if *
* *****************
* * master net_dev*
* *****************
* * sub_if *
* *****************
*/
alloc_size = sizeof(struct net_device) +
sizeof(struct ieee80211_sub_if_data) + 3 +
sizeof(struct ieee80211_local) + 3 +
priv_data_len + 3 +
sizeof(struct net_device) + 3 +
sizeof(struct ieee80211_sub_if_data) + 3 +
sizeof(struct net_device) + 3 +
sizeof(struct ieee80211_sub_if_data) + 3 +
4096;
mdev = (struct net_device *) kzalloc(alloc_size, GFP_KERNEL);
if (mdev == NULL)
return NULL;
mdev->priv = (struct net_device *)
(((long) mdev +
sizeof(struct net_device) +
sizeof(struct ieee80211_sub_if_data) + 3)
& ~3);
local = mdev->priv;
local->hw_priv = (void *)
(((long) local + sizeof(struct ieee80211_local) + 3) & ~3);
apdev = (struct net_device *)
(((long) local->hw_priv + priv_data_len + 3) & ~3);
dev = (struct net_device *)
(((long) apdev +
sizeof(struct net_device) +
sizeof(struct ieee80211_sub_if_data) + 3)
& ~3);
dev->priv = local;
ether_setup(dev);
memcpy(dev->name, "wlan%d", 7);
dev->hard_start_xmit = ieee80211_subif_start_xmit;
dev->do_ioctl = ieee80211_ioctl;
dev->change_mtu = ieee80211_change_mtu;
dev->tx_timeout = ieee80211_tx_timeout;
dev->get_stats = ieee80211_get_stats;
dev->open = ieee80211_open;
dev->stop = ieee80211_stop;
dev->tx_queue_len = 0;
dev->set_mac_address = ieee80211_set_mac_address;
local->wdev = dev;
local->mdev = mdev;
local->rx_handlers = ieee80211_rx_handlers;
local->tx_handlers = ieee80211_tx_handlers;
local->bridge_packets = 1;
local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
local->short_retry_limit = 7;
local->long_retry_limit = 4;
local->conf.calib_int = 60;
local->rate_ctrl_num_up = RATE_CONTROL_NUM_UP;
local->rate_ctrl_num_down = RATE_CONTROL_NUM_DOWN;
local->conf.bss_count = 1;
memset(local->conf.bssid_mask, 0xff, ETH_ALEN);
local->bss_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL);
if (local->bss_devs == NULL)
goto fail;
local->bss_devs[0] = local->wdev;
local->bss_dev_count = 1;
local->sta_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL);
if (local->sta_devs == NULL)
goto fail;
local->sta_devs[0] = NULL;
local->scan.in_scan = 0;
local->hw_modes = (unsigned int) -1;
init_timer(&local->scan.timer); /* clear it out */
spin_lock_init(&local->generic_lock);
init_timer(&local->rate_limit_timer);
local->rate_limit_timer.function = ieee80211_rate_limit;
local->rate_limit_timer.data = (unsigned long) local;
init_timer(&local->stat_timer);
local->stat_timer.function = ieee80211_stat_refresh;
local->stat_timer.data = (unsigned long) local;
ieee80211_rx_bss_list_init(dev);
sta_info_init(local);
ieee80211_if_init(dev);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata->dev = dev;
sdata->master = mdev;
sdata->local = local;
ieee80211_if_sdata_init(sdata);
ieee80211_if_norm_init(sdata);
list_add_tail(&sdata->list, &local->sub_if_list);
if (strlen(dev->name) + 2 >= sizeof(dev->name))
goto fail;
apdev = (struct net_device *)
(((long) local->hw_priv + priv_data_len + 3) & ~3);
local->apdev = apdev;
ether_setup(apdev);
apdev->priv = local;
apdev->hard_start_xmit = ieee80211_mgmt_start_xmit;
apdev->change_mtu = ieee80211_change_mtu_apdev;
apdev->get_stats = ieee80211_get_stats;
apdev->open = ieee80211_open;
apdev->stop = ieee80211_stop;
apdev->type = ARPHRD_IEEE80211_PRISM;
apdev->hard_header_parse = header_parse_80211;
apdev->tx_queue_len = 0;
sprintf(apdev->name, "%sap", dev->name);
sdata = IEEE80211_DEV_TO_SUB_IF(apdev);
sdata->type = IEEE80211_SUB_IF_TYPE_MGMT;
sdata->dev = apdev;
sdata->master = mdev;
sdata->local = local;
list_add_tail(&sdata->list, &local->sub_if_list);
ether_setup(mdev);
mdev->hard_start_xmit = ieee80211_master_start_xmit;
mdev->do_ioctl = ieee80211_ioctl;
mdev->change_mtu = ieee80211_change_mtu;
mdev->tx_timeout = ieee80211_tx_timeout;
mdev->get_stats = ieee80211_get_stats;
mdev->open = ieee80211_open;
mdev->stop = ieee80211_stop;
mdev->type = ARPHRD_IEEE80211;
mdev->hard_header_parse = header_parse_80211;
sprintf(mdev->name, "%s.11", dev->name);
sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
sdata->dev = mdev;
sdata->master = mdev;
sdata->local = local;
list_add_tail(&sdata->list, &local->sub_if_list);
tasklet_init(&local->tasklet,
ieee80211_tasklet_handler,
(unsigned long) local);
skb_queue_head_init(&local->skb_queue);
skb_queue_head_init(&local->skb_queue_unreliable);
if (setup)
setup(mdev);
return mdev;
fail:
ieee80211_free_hw(mdev);
return NULL;
}
int ieee80211_register_hw(struct net_device *dev, struct ieee80211_hw *hw)
{
struct ieee80211_local *local = dev->priv;
int result;
if (!hw)
return -1;
if (hw->version != IEEE80211_VERSION) {
printk("ieee80211_register_hw - version mismatch: 80211.o "
"version %d, low-level driver version %d\n",
IEEE80211_VERSION, hw->version);
return -1;
}
local->conf.mode = IW_MODE_MASTER;
local->conf.beacon_int = 1000;
ieee80211_update_hw(dev, hw); /* Don't care about the result. */
sta_info_start(local);
result = register_netdev(local->wdev);
if (result < 0)
return -1;
result = register_netdev(local->apdev);
if (result < 0)
goto fail_2nd_dev;
if (hw->fraglist)
dev->features |= NETIF_F_FRAGLIST;
result = register_netdev(dev);
if (result < 0)
goto fail_3rd_dev;
if (rate_control_initialize(local) < 0) {
printk(KERN_DEBUG "%s: Failed to initialize rate control "
"algorithm\n", dev->name);
goto fail_rate;
}
/* TODO: add rtnl locking around device creation and qdisc install */
ieee80211_install_qdisc(dev);
ieee80211_wep_init(local);
ieee80211_proc_init_interface(local);
return 0;
fail_rate:
unregister_netdev(dev);
fail_3rd_dev:
unregister_netdev(local->apdev);
fail_2nd_dev:
unregister_netdev(local->wdev);
sta_info_stop(local);
return result;
}
int ieee80211_update_hw(struct net_device *dev, struct ieee80211_hw *hw)
{
struct ieee80211_local *local = dev->priv;
local->hw = hw;
/* Backwards compatibility for low-level drivers that do not set number
* of TX queues. */
if (hw->queues == 0)
hw->queues = 1;
memcpy(local->apdev->dev_addr, dev->dev_addr, ETH_ALEN);
local->apdev->base_addr = dev->base_addr;
local->apdev->irq = dev->irq;
local->apdev->mem_start = dev->mem_start;
local->apdev->mem_end = dev->mem_end;
memcpy(local->wdev->dev_addr, dev->dev_addr, ETH_ALEN);
local->wdev->base_addr = dev->base_addr;
local->wdev->irq = dev->irq;
local->wdev->mem_start = dev->mem_start;
local->wdev->mem_end = dev->mem_end;
if (!hw->modes || !hw->modes->channels || !hw->modes->rates ||
!hw->modes->num_channels || !hw->modes->num_rates)
return -1;
ieee80211_precalc_rates(hw);
local->conf.phymode = hw->modes[0].mode;
local->curr_rates = hw->modes[0].rates;
local->num_curr_rates = hw->modes[0].num_rates;
ieee80211_prepare_rates(dev);
local->conf.freq = local->hw->modes[0].channels[0].freq;
local->conf.channel = local->hw->modes[0].channels[0].chan;
local->conf.channel_val = local->hw->modes[0].channels[0].val;
/* FIXME: Invoke config to allow driver to set the channel. */
return 0;
}
void ieee80211_unregister_hw(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
struct list_head *ptr, *n;
int i;
tasklet_disable(&local->tasklet);
/* TODO: skb_queue should be empty here, no need to do anything? */
if (local->rate_limit)
del_timer_sync(&local->rate_limit_timer);
if (local->stat_time)
del_timer_sync(&local->stat_timer);
if (local->scan_timer.data)
del_timer_sync(&local->scan_timer);
ieee80211_rx_bss_list_deinit(dev);
list_for_each_safe(ptr, n, &local->sub_if_list) {
struct ieee80211_sub_if_data *sdata =
list_entry(ptr, struct ieee80211_sub_if_data, list);
ieee80211_if_del(local, sdata, 0);
}
sta_info_stop(local);
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++)
if (local->fragments[i].skb)
dev_kfree_skb(local->fragments[i].skb);
for (i = 0; i < NUM_IEEE80211_MODES; i++) {
kfree(local->supp_rates[i]);
kfree(local->basic_rates[i]);
}
kfree(local->conf.ssid);
kfree(local->conf.generic_elem);
ieee80211_proc_deinit_interface(local);
skb_queue_purge(&local->skb_queue);
skb_queue_purge(&local->skb_queue_unreliable);
rate_control_free(local);
}
void ieee80211_free_hw(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
kfree(local->sta_devs);
kfree(local->bss_devs);
kfree(dev);
}
/* Perform netif operations on all configured interfaces */
int ieee80211_netif_oper(struct net_device *sdev, Netif_Oper op)
{
struct ieee80211_local *local = sdev->priv;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(sdev);
struct net_device *dev = sdata->master;
switch (op) {
case NETIF_ATTACH:
netif_device_attach(dev);
break;
case NETIF_DETACH:
netif_device_detach(dev);
break;
case NETIF_START:
netif_start_queue(dev);
break;
case NETIF_STOP:
break;
case NETIF_WAKE:
if (local->scan.in_scan == 0) {
netif_wake_queue(dev);
#if 1
if (/* FIX: 802.11 qdisc in use */ 1)
__netif_schedule(dev);
#endif
}
break;
case NETIF_IS_STOPPED:
if (netif_queue_stopped(dev))
return 1;
break;
case NETIF_UPDATE_TX_START:
dev->trans_start = jiffies;
break;
}
return 0;
}
void * ieee80211_dev_hw_data(struct net_device *dev)
{
struct ieee80211_local *local = dev->priv;
return local->hw_priv;
}
void * ieee80211_dev_stats(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
return &(sdata->stats);
}
int ieee80211_rate_control_register(struct rate_control_ops *ops)
{
struct rate_control_algs *alg;
alg = kmalloc(sizeof(*alg), GFP_KERNEL);
if (alg == NULL) {
return -1;
}
memset(alg, 0, sizeof(*alg));
alg->next = ieee80211_rate_ctrl_algs;
alg->ops = ops;
ieee80211_rate_ctrl_algs = alg;
return 0;
}
void ieee80211_rate_control_unregister(struct rate_control_ops *ops)
{
struct rate_control_algs *alg, *prev;
prev = NULL;
alg = ieee80211_rate_ctrl_algs;
while (alg) {
if (alg->ops == ops) {
if (prev)
prev->next = alg->next;
else
ieee80211_rate_ctrl_algs = alg->next;
kfree(alg);
break;
}
prev = alg;
alg = alg->next;
}
}
static int rate_control_initialize(struct ieee80211_local *local)
{
struct rate_control_algs *algs;
for (algs = ieee80211_rate_ctrl_algs; algs; algs = algs->next) {
local->rate_ctrl = algs->ops;
local->rate_ctrl_priv = rate_control_alloc(local);
if (local->rate_ctrl_priv) {
printk(KERN_DEBUG "%s: Selected rate control "
"algorithm '%s'\n", local->wdev->name,
local->rate_ctrl->name);
return 0;
}
}
printk(KERN_WARNING "%s: Failed to select rate control algorithm\n",
local->wdev->name);
return -1;
}
static int __init ieee80211_init(void)
{
struct sk_buff *skb;
if (sizeof(struct ieee80211_tx_packet_data) > (sizeof(skb->cb))) {
printk("80211: ieee80211_tx_packet_data is bigger "
"than the skb->cb (%d > %d)\n",
(int) sizeof(struct ieee80211_tx_packet_data),
(int) sizeof(skb->cb));
return -EINVAL;
}
if (sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)) {
printk("80211: ieee80211_rx_status is bigger "
"than the skb->cb (%d > %d)\n",
(int) sizeof(struct ieee80211_rx_status),
(int) sizeof(skb->cb));
return -EINVAL;
}
ieee80211_proc_init();
{
int ret = ieee80211_wme_register();
if (ret) {
printk(KERN_DEBUG "ieee80211_init: failed to "
"initialize WME (err=%d)\n", ret);
ieee80211_proc_deinit();
return ret;
}
}
return 0;
}
static void __exit ieee80211_exit(void)
{
ieee80211_wme_unregister();
ieee80211_proc_deinit();
}
EXPORT_SYMBOL(ieee80211_alloc_hw);
EXPORT_SYMBOL(ieee80211_register_hw);
EXPORT_SYMBOL(ieee80211_update_hw);
EXPORT_SYMBOL(ieee80211_unregister_hw);
EXPORT_SYMBOL(ieee80211_free_hw);
EXPORT_SYMBOL(ieee80211_rx);
EXPORT_SYMBOL(ieee80211_tx_status);
EXPORT_SYMBOL(ieee80211_beacon_get);
EXPORT_SYMBOL(ieee80211_get_buffered_bc);
EXPORT_SYMBOL(ieee80211_netif_oper);
EXPORT_SYMBOL(ieee80211_dev_hw_data);
EXPORT_SYMBOL(ieee80211_dev_stats);
EXPORT_SYMBOL(ieee80211_get_hw_conf);
EXPORT_SYMBOL(ieee80211_set_aid_for_sta);
EXPORT_SYMBOL(ieee80211_rx_irqsafe);
EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
EXPORT_SYMBOL(ieee80211_get_hdrlen);
EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
EXPORT_SYMBOL(ieee80211_rate_control_register);
EXPORT_SYMBOL(ieee80211_rate_control_unregister);
EXPORT_SYMBOL(sta_info_get);
EXPORT_SYMBOL(sta_info_release);
EXPORT_SYMBOL(ieee80211_radar_status);
module_init(ieee80211_init);
module_exit(ieee80211_exit);