1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-21 04:49:52 +02:00
openwrt-xburst/package/uboot-ifxmips/files/lib_generic/LzmaDecode.c
thl 09b96811e8 [ifxmips] cleanup uboot package
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@13291 3c298f89-4303-0410-b956-a3cf2f4a3e73
2008-11-19 17:40:05 +00:00

621 lines
17 KiB
C

/*
LzmaDecode.c
LZMA Decoder (optimized for Speed version)
LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this Code, expressly permits you to
statically or dynamically link your Code (or bind by name) to the
interfaces of this file without subjecting your linked Code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#include <config.h>
#include <common.h>
#ifdef CONFIG_LZMA
#include "LzmaDecode.h"
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_READ_BYTE (*Buffer++)
#define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
{ int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }}
#ifdef _LZMA_IN_CB
#ifndef CFG_BOOTSTRAP_CODE
#define RC_TEST { if (Buffer == BufferLim) \
{ SizeT size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return result; } \
BufferLim = Buffer + size; if (size == 0) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return LZMA_RESULT_DATA_ERROR; } }}
#else //CFG_BOOTSTRAP_CODE
#define RC_TEST { if (Buffer == BufferLim) \
{ SizeT size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) { return result; } \
BufferLim = Buffer + size; if (size == 0) { return LZMA_RESULT_DATA_ERROR; } }}
#endif //CFG_BOOTSTRAP_CODE
#define RC_INIT Buffer = BufferLim = 0; RC_INIT2
#else //_LZMA_IN_CB
#ifndef CFG_BOOTSTRAP_CODE
#define RC_TEST { if (Buffer == BufferLim) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return LZMA_RESULT_DATA_ERROR; } }
#else //CFG_BOOTSTRAP_CODE
#define RC_TEST { if (Buffer == BufferLim) { return LZMA_RESULT_DATA_ERROR; } }
#endif //CFG_BOOTSTRAP_CODE
#define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2
#endif //_LZMA_IN_CB
#define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }
#define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
#define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
#define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;
#define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
{ UpdateBit0(p); mi <<= 1; A0; } else \
{ UpdateBit1(p); mi = (mi + mi) + 1; A1; }
#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
#define RangeDecoderBitTreeDecode(probs, numLevels, res) \
{ int i = numLevels; res = 1; \
do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \
res -= (1 << numLevels); }
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define kNumStates 12
#define kNumLitStates 7
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size)
{
unsigned char prop0;
if (size < LZMA_PROPERTIES_SIZE)
{
#if defined(DEBUG_ENABLE_BOOTSTRAP_PRINTF) || !defined(CFG_BOOTSTRAP_CODE)
printf("ERROR: %s, %d\n", __FILE__, __LINE__);
#endif
return LZMA_RESULT_DATA_ERROR;
}
prop0 = propsData[0];
if (prop0 >= (9 * 5 * 5))
{
#if defined(DEBUG_ENABLE_BOOTSTRAP_PRINTF) || !defined(CFG_BOOTSTRAP_CODE)
printf("ERROR: %s, %d\n", __FILE__, __LINE__);
#endif
return LZMA_RESULT_DATA_ERROR;
}
{
for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5));
for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9);
propsRes->lc = prop0;
/*
unsigned char remainder = (unsigned char)(prop0 / 9);
propsRes->lc = prop0 % 9;
propsRes->pb = remainder / 5;
propsRes->lp = remainder % 5;
*/
}
#ifdef _LZMA_OUT_READ
{
int i;
propsRes->DictionarySize = 0;
for (i = 0; i < 4; i++)
propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8);
if (propsRes->DictionarySize == 0)
propsRes->DictionarySize = 1;
}
#endif
return LZMA_RESULT_OK;
}
#define kLzmaStreamWasFinishedId (-1)
int LzmaDecode(CLzmaDecoderState *vs,
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback,
#else
const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed,
#endif
unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed)
{
CProb *p = vs->Probs;
SizeT nowPos = 0;
Byte previousByte = 0;
UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1;
UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1;
int lc = vs->Properties.lc;
#ifdef _LZMA_OUT_READ
UInt32 Range = vs->Range;
UInt32 Code = vs->Code;
#ifdef _LZMA_IN_CB
const Byte *Buffer = vs->Buffer;
const Byte *BufferLim = vs->BufferLim;
#else
const Byte *Buffer = inStream;
const Byte *BufferLim = inStream + inSize;
#endif
int state = vs->State;
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
int len = vs->RemainLen;
UInt32 globalPos = vs->GlobalPos;
UInt32 distanceLimit = vs->DistanceLimit;
Byte *dictionary = vs->Dictionary;
UInt32 dictionarySize = vs->Properties.DictionarySize;
UInt32 dictionaryPos = vs->DictionaryPos;
Byte tempDictionary[4];
#ifndef _LZMA_IN_CB
*inSizeProcessed = 0;
#endif
*outSizeProcessed = 0;
if (len == kLzmaStreamWasFinishedId)
return LZMA_RESULT_OK;
if (dictionarySize == 0)
{
dictionary = tempDictionary;
dictionarySize = 1;
tempDictionary[0] = vs->TempDictionary[0];
}
if (len == kLzmaNeedInitId)
{
{
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
UInt32 i;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
rep0 = rep1 = rep2 = rep3 = 1;
state = 0;
globalPos = 0;
distanceLimit = 0;
dictionaryPos = 0;
dictionary[dictionarySize - 1] = 0;
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
}
len = 0;
}
while(len != 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
#else /* if !_LZMA_OUT_READ */
int state = 0;
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
int len = 0;
const Byte *Buffer;
const Byte *BufferLim;
UInt32 Range;
UInt32 Code;
#ifndef _LZMA_IN_CB
*inSizeProcessed = 0;
#endif
*outSizeProcessed = 0;
{
UInt32 i;
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
}
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
#endif /* _LZMA_OUT_READ */
while(nowPos < outSize)
{
CProb *prob;
UInt32 bound;
int posState = (int)(
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& posStateMask);
prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
int symbol = 1;
UpdateBit0(prob)
prob = p + Literal + (LZMA_LIT_SIZE *
(((
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state >= kNumLitStates)
{
int matchByte;
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
#else
matchByte = outStream[nowPos - rep0];
#endif
do
{
int bit;
CProb *probLit;
matchByte <<= 1;
bit = (matchByte & 0x100);
probLit = prob + 0x100 + bit + symbol;
RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break)
}
while (symbol < 0x100);
}
while (symbol < 0x100)
{
CProb *probLit = prob + symbol;
RC_GET_BIT(probLit, symbol)
}
previousByte = (Byte)symbol;
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
if (distanceLimit < dictionarySize)
distanceLimit++;
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#endif
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
}
else
{
UpdateBit1(prob);
prob = p + IsRep + state;
IfBit0(prob)
{
UpdateBit0(prob);
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < kNumLitStates ? 0 : 3;
prob = p + LenCoder;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG0 + state;
IfBit0(prob)
{
UpdateBit0(prob);
prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
#ifdef _LZMA_OUT_READ
UInt32 pos;
#endif
UpdateBit0(prob);
#ifdef _LZMA_OUT_READ
if (distanceLimit == 0)
#else
if (nowPos == 0)
#endif
{
#if defined(DEBUG_ENABLE_BOOTSTRAP_PRINTF) || !defined(CFG_BOOTSTRAP_CODE)
printf("ERROR: %s, %d\n", __FILE__, __LINE__);
#endif
return LZMA_RESULT_DATA_ERROR;
}
state = state < kNumLitStates ? 9 : 11;
#ifdef _LZMA_OUT_READ
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
if (distanceLimit < dictionarySize)
distanceLimit++;
#endif
continue;
}
else
{
UpdateBit1(prob);
}
}
else
{
UInt32 distance;
UpdateBit1(prob);
prob = p + IsRepG1 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep1;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG2 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep2;
}
else
{
UpdateBit1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = p + RepLenCoder;
}
{
int numBits, offset;
CProb *probLen = prob + LenChoice;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenLow + (posState << kLenNumLowBits);
offset = 0;
numBits = kLenNumLowBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenChoice2;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenMid + (posState << kLenNumMidBits);
offset = kLenNumLowSymbols;
numBits = kLenNumMidBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenHigh;
offset = kLenNumLowSymbols + kLenNumMidSymbols;
numBits = kLenNumHighBits;
}
}
RangeDecoderBitTreeDecode(probLen, numBits, len);
len += offset;
}
if (state < 4)
{
int posSlot;
state += kNumLitStates;
prob = p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = (2 | ((UInt32)posSlot & 1));
if (posSlot < kEndPosModelIndex)
{
rep0 <<= numDirectBits;
prob = p + SpecPos + rep0 - posSlot - 1;
}
else
{
numDirectBits -= kNumAlignBits;
do
{
RC_NORMALIZE
Range >>= 1;
rep0 <<= 1;
if (Code >= Range)
{
Code -= Range;
rep0 |= 1;
}
}
while (--numDirectBits != 0);
prob = p + Align;
rep0 <<= kNumAlignBits;
numDirectBits = kNumAlignBits;
}
{
int i = 1;
int mi = 1;
do
{
CProb *prob3 = prob + mi;
RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
i <<= 1;
}
while(--numDirectBits != 0);
}
}
else
rep0 = posSlot;
if (++rep0 == (UInt32)(0))
{
/* it's for stream version */
len = kLzmaStreamWasFinishedId;
break;
}
}
len += kMatchMinLen;
#ifdef _LZMA_OUT_READ
if (rep0 > distanceLimit)
#else
if (rep0 > nowPos)
#endif
{
#if defined(DEBUG_ENABLE_BOOTSTRAP_PRINTF) || !defined(CFG_BOOTSTRAP_CODE)
printf("ERROR: %s, %d\n", __FILE__, __LINE__);
#endif
return LZMA_RESULT_DATA_ERROR;
}
#ifdef _LZMA_OUT_READ
if (dictionarySize - distanceLimit > (UInt32)len)
distanceLimit += len;
else
distanceLimit = dictionarySize;
#endif
do
{
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
len--;
outStream[nowPos++] = previousByte;
}
while(len != 0 && nowPos < outSize);
}
}
RC_NORMALIZE;
#ifdef _LZMA_OUT_READ
vs->Range = Range;
vs->Code = Code;
vs->DictionaryPos = dictionaryPos;
vs->GlobalPos = globalPos + (UInt32)nowPos;
vs->DistanceLimit = distanceLimit;
vs->Reps[0] = rep0;
vs->Reps[1] = rep1;
vs->Reps[2] = rep2;
vs->Reps[3] = rep3;
vs->State = state;
vs->RemainLen = len;
vs->TempDictionary[0] = tempDictionary[0];
#endif
#ifdef _LZMA_IN_CB
vs->Buffer = Buffer;
vs->BufferLim = BufferLim;
#else
*inSizeProcessed = (SizeT)(Buffer - inStream);
#endif
*outSizeProcessed = nowPos;
return LZMA_RESULT_OK;
}
#endif /* CONFIG_LZMA */