1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-21 05:07:43 +02:00
openwrt-xburst/toolchain/gcc/patches/4.5.1+l/600-ubicom_support.patch
kaloz 4c01c82e12 [toolchain/gcc]: add support for Linaro GCC 2010.10
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@23703 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-10-29 10:37:51 +00:00

9369 lines
296 KiB
Diff
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--- a/configure
+++ b/configure
@@ -2688,6 +2688,9 @@ case "${target}" in
ip2k-*-*)
noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
;;
+ ubicom32-*-*)
+ noconfigdirs="$noconfigdirs target-libffi"
+ ;;
*-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu)
noconfigdirs="$noconfigdirs target-newlib target-libgloss"
;;
--- /dev/null
+++ b/gcc/config/ubicom32/constraints.md
@@ -0,0 +1,149 @@
+; Constraint definitions for Ubicom32
+
+; Copyright (C) 2009 Free Software Foundation, Inc.
+; Contributed by Ubicom, Inc.
+
+; This file is part of GCC.
+
+; GCC is free software; you can redistribute it and/or modify it
+; under the terms of the GNU General Public License as published
+; by the Free Software Foundation; either version 3, or (at your
+; option) any later version.
+
+; GCC is distributed in the hope that it will be useful, but WITHOUT
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+; License for more details.
+
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3. If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_register_constraint "a" "ALL_ADDRESS_REGS"
+ "An An register.")
+
+(define_register_constraint "d" "DATA_REGS"
+ "A Dn register.")
+
+(define_register_constraint "h" "ACC_REGS"
+ "An accumulator register.")
+
+(define_register_constraint "l" "ACC_LO_REGS"
+ "An accn_lo register.")
+
+(define_register_constraint "Z" "FDPIC_REG"
+ "The FD-PIC GOT pointer: A0.")
+
+(define_constraint "I"
+ "An 8-bit signed constant value."
+ (and (match_code "const_int")
+ (match_test "(ival >= -128) && (ival <= 127)")))
+
+(define_constraint "Q"
+ "An 8-bit signed constant value represented as unsigned."
+ (and (match_code "const_int")
+ (match_test "(ival >= 0x00) && (ival <= 0xff)")))
+
+(define_constraint "R"
+ "An 8-bit signed constant value represented as unsigned."
+ (and (match_code "const_int")
+ (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))")))
+
+(define_constraint "J"
+ "A 7-bit unsigned constant value."
+ (and (match_code "const_int")
+ (match_test "(ival >= 0) && (ival <= 127)")))
+
+(define_constraint "K"
+ "A 7-bit unsigned constant value shifted << 1."
+ (and (match_code "const_int")
+ (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)")))
+
+(define_constraint "L"
+ "A 7-bit unsigned constant value shifted << 2."
+ (and (match_code "const_int")
+ (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)")))
+
+(define_constraint "M"
+ "A 5-bit unsigned constant value."
+ (and (match_code "const_int")
+ (match_test "(ival >= 0) && (ival <= 31)")))
+
+(define_constraint "N"
+ "A signed 16 bit constant value."
+ (and (match_code "const_int")
+ (match_test "(ival >= -32768) && (ival <= 32767)")))
+
+(define_constraint "O"
+ "An exact bitmask of contiguous 1 bits starting at bit 0."
+ (and (match_code "const_int")
+ (match_test "exact_log2 (ival + 1) != -1")))
+
+(define_constraint "P"
+ "A 7-bit negative constant value shifted << 2."
+ (and (match_code "const_int")
+ (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)")))
+
+(define_constraint "S"
+ "A symbolic reference."
+ (match_code "symbol_ref"))
+
+(define_constraint "Y"
+ "An FD-PIC symbolic reference."
+ (and (match_test "TARGET_FDPIC")
+ (match_test "GET_CODE (op) == UNSPEC")
+ (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT")
+ (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC"))))
+
+(define_memory_constraint "T1"
+ "A memory operand that can be used for .1 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (match_test "GET_MODE (op) == QImode")))
+
+(define_memory_constraint "T2"
+ "A memory operand that can be used for .2 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (match_test "GET_MODE (op) == HImode")))
+
+(define_memory_constraint "T4"
+ "A memory operand that can be used for .4 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (ior (match_test "GET_MODE (op) == SImode")
+ (match_test "GET_MODE (op) == DImode")
+ (match_test "GET_MODE (op) == SFmode"))))
+
+(define_memory_constraint "U1"
+ "An offsettable memory operand that can be used for .1 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (match_test "GET_MODE (op) == QImode")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
+(define_memory_constraint "U2"
+ "An offsettable memory operand that can be used for .2 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (match_test "GET_MODE (op) == HImode")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
+(define_memory_constraint "U4"
+ "An offsettable memory operand that can be used for .4 instruction."
+ (and (match_test "memory_operand (op, GET_MODE(op))")
+ (ior (match_test "GET_MODE (op) == SImode")
+ (match_test "GET_MODE (op) == DImode")
+ (match_test "GET_MODE (op) == SFmode"))
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC")
+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY")
+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY")))
+
--- /dev/null
+++ b/gcc/config/ubicom32/crti.S
@@ -0,0 +1,54 @@
+/* Specialized code needed to support construction and destruction of
+ file-scope objects in C++ and Java code, and to support exception handling.
+ Copyright (C) 1999 Free Software Foundation, Inc.
+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* As a special exception, if you link this library with files
+ compiled with GCC to produce an executable, this does not cause
+ the resulting executable to be covered by the GNU General Public License.
+ This exception does not however invalidate any other reasons why
+ the executable file might be covered by the GNU General Public License. */
+
+/*
+ * This file just supplies function prologues for the .init and .fini
+ * sections. It is linked in before crtbegin.o.
+ */
+ .file "crti.o"
+ .ident "GNU C crti.o"
+
+ .section .init
+ .align 2
+ .globl _init
+ .type _init, @function
+_init:
+ move.4 -4(sp)++, a5
+#ifdef __UBICOM32_FDPIC__
+ move.4 -4(sp)++, a0
+#endif
+
+ .section .fini
+ .align 2
+ .globl _fini
+ .type _fini, @function
+_fini:
+ move.4 -4(sp)++, a5
+#ifdef __UBICOM32_FDPIC__
+ move.4 -4(sp)++, a0
+#endif
--- /dev/null
+++ b/gcc/config/ubicom32/crtn.S
@@ -0,0 +1,47 @@
+/* Specialized code needed to support construction and destruction of
+ file-scope objects in C++ and Java code, and to support exception handling.
+ Copyright (C) 1999 Free Software Foundation, Inc.
+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* As a special exception, if you link this library with files
+ compiled with GCC to produce an executable, this does not cause
+ the resulting executable to be covered by the GNU General Public License.
+ This exception does not however invalidate any other reasons why
+ the executable file might be covered by the GNU General Public License. */
+
+/*
+ * This file supplies function epilogues for the .init and .fini sections.
+ * It is linked in after all other files.
+ */
+
+ .file "crtn.o"
+ .ident "GNU C crtn.o"
+
+ .section .init
+#ifdef __UBICOM32_FDPIC__
+ move.4 a0, (sp)4++
+#endif
+ ret (sp)4++
+
+ .section .fini
+#ifdef __UBICOM32_FDPIC__
+ move.4 a0, (sp)4++
+#endif
+ ret (sp)4++
--- /dev/null
+++ b/gcc/config/ubicom32/elf.h
@@ -0,0 +1,29 @@
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC "\
+%{msim:%{!shared:crt0%O%s}} \
+crti%O%s crtbegin%O%s"
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
+
+#ifdef __UBICOM32_FDPIC__
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
+ asm (SECTION_OP); \
+ asm ("move.4 a0, 0(sp);\n\t" \
+ "call a5," USER_LABEL_PREFIX #FUNC ";"); \
+ asm (TEXT_SECTION_ASM_OP);
+#endif
+
+#undef SUBTARGET_DRIVER_SELF_SPECS
+#define SUBTARGET_DRIVER_SELF_SPECS \
+ "%{mfdpic:-msim} "
+
+#define NO_IMPLICIT_EXTERN_C
+
+/*
+ * We need this to compile crtbegin/crtend. This should really be picked
+ * up from elfos.h but at the moment including elfos.h causes other more
+ * serous linker issues.
+ */
+#define INIT_SECTION_ASM_OP "\t.section\t.init"
+#define FINI_SECTION_ASM_OP "\t.section\t.fini"
--- /dev/null
+++ b/gcc/config/ubicom32/linux.h
@@ -0,0 +1,80 @@
+/* Definitions of target machine for Ubicom32-uclinux
+
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+/* Don't assume anything about the header files. */
+#define NO_IMPLICIT_EXTERN_C
+
+#undef LIB_SPEC
+#define LIB_SPEC \
+ "%{pthread:-lpthread} " \
+ "-lc"
+
+#undef LINK_GCC_C_SEQUENCE_SPEC
+#define LINK_GCC_C_SEQUENCE_SPEC \
+ "%{static:--start-group} %G %L %{static:--end-group} " \
+ "%{!static: %G}"
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC \
+ "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \
+ "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}"
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC \
+ "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s"
+
+/* taken from linux.h */
+/* The GNU C++ standard library requires that these macros be defined. */
+#undef CPLUSPLUS_CPP_SPEC
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
+
+#define TARGET_OS_CPP_BUILTINS() \
+ do { \
+ builtin_define_std ("__UBICOM32__"); \
+ builtin_define_std ("__ubicom32__"); \
+ builtin_define ("__gnu_linux__"); \
+ builtin_define_std ("linux"); \
+ builtin_define_std ("unix"); \
+ builtin_assert ("system=linux"); \
+ builtin_assert ("system=unix"); \
+ builtin_assert ("system=posix"); \
+ } while (0)
+
+#define OBJECT_FORMAT_ELF
+
+
+#undef DRIVER_SELF_SPECS
+#define DRIVER_SELF_SPECS \
+ "%{!mno-fdpic:-mfdpic}"
+
+#undef LINK_SPEC
+#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \
+ %{static:-dn -Bstatic} \
+ %{shared:-G -Bdynamic} \
+ %{!shared: %{!static: \
+ %{rdynamic:-export-dynamic} \
+ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \
+ %{static}} "
+
+/*
+#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h"
+*/
--- /dev/null
+++ b/gcc/config/ubicom32/predicates.md
@@ -0,0 +1,327 @@
+; Predicate definitions for Ubicom32.
+
+; Copyright (C) 2009 Free Software Foundation, Inc.
+; Contributed by Ubicom, Inc.
+
+; This file is part of GCC.
+
+; GCC is free software; you can redistribute it and/or modify it
+; under the terms of the GNU General Public License as published
+; by the Free Software Foundation; either version 3, or (at your
+; option) any later version.
+
+; GCC is distributed in the hope that it will be useful, but WITHOUT
+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+; License for more details.
+
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3. If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_predicate "ubicom32_move_operand"
+ (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum")
+{
+ if (CONST_INT_P (op))
+ return true;
+
+ if (GET_CODE (op) == CONST_DOUBLE)
+ return true;
+
+ if (GET_CODE (op) == CONST)
+ return memory_address_p (mode, op);
+
+ if (GET_MODE (op) != mode)
+ return false;
+
+ if (MEM_P (op))
+ return memory_address_p (mode, XEXP (op, 0));
+
+ if (GET_CODE (op) == SUBREG) {
+ op = SUBREG_REG (op);
+
+ if (REG_P (op))
+ return true;
+
+ if (! MEM_P (op))
+ return false;
+
+ /* Paradoxical SUBREG. */
+ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op)))
+ return false;
+
+ return memory_address_p (GET_MODE (op), XEXP (op, 0));
+ }
+
+ return register_operand (op, mode);
+})
+
+;; Returns true if OP is either a symbol reference or a sum of a
+;; symbol reference and a constant.
+
+(define_predicate "ubicom32_symbolic_address_operand"
+ (match_code "symbol_ref, label_ref, const")
+{
+ switch (GET_CODE (op))
+ {
+ case SYMBOL_REF:
+ case LABEL_REF:
+ return true;
+
+ case CONST:
+ op = XEXP (op, 0);
+ return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
+ || GET_CODE (XEXP (op, 0)) == LABEL_REF)
+ && CONST_INT_P (XEXP (op, 1)));
+
+ default:
+ return false;
+ }
+})
+
+;; Return true if operand is the uClinux FD-PIC register.
+
+(define_predicate "ubicom32_fdpic_operand"
+ (match_code "reg")
+{
+ if (! TARGET_FDPIC)
+ return false;
+
+ if (!REG_P (op))
+ return false;
+
+ if (GET_MODE (op) != mode && mode != VOIDmode)
+ return false;
+
+ if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER)
+ return false;
+
+ return true;
+})
+
+(define_predicate "ubicom32_fdpic_got_offset_operand"
+ (match_code "unspec")
+{
+ if (! TARGET_FDPIC)
+ return false;
+
+ if (GET_CODE (op) != UNSPEC)
+ return false;
+
+ if (XINT (op, 1) != UNSPEC_FDPIC_GOT
+ && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC)
+ return false;
+
+ return true;
+})
+
+(define_predicate "ubicom32_arith_operand"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_move_operand (op, mode)
+ && ! ubicom32_symbolic_address_operand (op, mode)
+ && (! CONST_INT_P (op)
+ || satisfies_constraint_I (op)));
+})
+
+(define_predicate "ubicom32_arith_operand_dot1"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_move_operand (op, mode)
+ && ! ubicom32_symbolic_address_operand (op, mode)
+ && (! CONST_INT_P (op)
+ || satisfies_constraint_Q (op)));
+})
+
+(define_predicate "ubicom32_arith_operand_dot2"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_move_operand (op, mode)
+ && ! ubicom32_symbolic_address_operand (op, mode)
+ && (! CONST_INT_P (op)
+ || satisfies_constraint_R (op)));
+})
+
+(define_predicate "ubicom32_compare_operand"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_move_operand (op, mode)
+ && ! ubicom32_symbolic_address_operand (op, mode)
+ && (! CONST_INT_P (op)
+ || satisfies_constraint_N (op)));
+})
+
+(define_predicate "ubicom32_compare_operator"
+ (match_code "compare"))
+
+(define_predicate "ubicom32_and_or_si3_operand"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_arith_operand (op, mode)
+ || (CONST_INT_P (op)
+ && ((exact_log2 (INTVAL (op) + 1) != -1
+ && exact_log2 (INTVAL (op) + 1) <= 31)
+ || (exact_log2 (INTVAL (op)) != -1
+ && exact_log2 (INTVAL (op)) <= 31)
+ || (exact_log2 (~INTVAL (op)) != -1
+ && exact_log2 (~INTVAL (op)) <= 31))));
+})
+
+(define_predicate "ubicom32_and_or_hi3_operand"
+ (match_code "subreg, reg, const_int, lo_sum, mem")
+{
+ return (ubicom32_arith_operand (op, mode)
+ || (CONST_INT_P (op)
+ && exact_log2 (INTVAL (op) + 1) != -1
+ && exact_log2 (INTVAL (op) + 1) <= 15));
+})
+
+(define_predicate "ubicom32_mem_or_address_register_operand"
+ (match_code "subreg, reg, mem")
+{
+ unsigned int regno;
+
+ if (MEM_P (op)
+ && memory_operand (op, mode))
+ return true;
+
+ if (REG_P (op))
+ regno = REGNO (op);
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+ {
+ int offset;
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+ else
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ regno = REGNO (SUBREG_REG (op)) + offset;
+ }
+ else
+ return false;
+
+ return (regno >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (regno) == FDPIC_REG
+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
+})
+
+(define_predicate "ubicom32_data_register_operand"
+ (match_code "subreg, reg")
+{
+ unsigned int regno;
+
+ if (REG_P (op))
+ regno = REGNO (op);
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+ {
+ int offset;
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+ else
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ regno = REGNO (SUBREG_REG (op)) + offset;
+ }
+ else
+ return false;
+
+ return ((regno >= FIRST_PSEUDO_REGISTER
+ && regno != REGNO (virtual_stack_vars_rtx))
+ || REGNO_REG_CLASS (regno) == DATA_REGS);
+})
+
+(define_predicate "ubicom32_address_register_operand"
+ (match_code "subreg, reg")
+{
+ unsigned int regno;
+
+ if (REG_P (op))
+ regno = REGNO (op);
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+ {
+ int offset;
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+ else
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ regno = REGNO (SUBREG_REG (op)) + offset;
+ }
+ else
+ return false;
+
+ return (regno >= FIRST_PSEUDO_REGISTER
+ || REGNO_REG_CLASS (regno) == FDPIC_REG
+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS);
+})
+
+(define_predicate "ubicom32_acc_lo_register_operand"
+ (match_code "subreg, reg")
+{
+ unsigned int regno;
+
+ if (REG_P (op))
+ regno = REGNO (op);
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+ {
+ int offset;
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+ else
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ regno = REGNO (SUBREG_REG (op)) + offset;
+ }
+ else
+ return false;
+
+ return ((regno >= FIRST_PSEUDO_REGISTER
+ && regno != REGNO (virtual_stack_vars_rtx))
+ || REGNO_REG_CLASS (regno) == ACC_LO_REGS);
+})
+
+(define_predicate "ubicom32_acc_hi_register_operand"
+ (match_code "subreg, reg")
+{
+ unsigned int regno;
+
+ if (REG_P (op))
+ regno = REGNO (op);
+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op)))
+ {
+ int offset;
+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER)
+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op)));
+ else
+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
+ GET_MODE (SUBREG_REG (op)),
+ SUBREG_BYTE (op),
+ GET_MODE (op));
+ regno = REGNO (SUBREG_REG (op)) + offset;
+ }
+ else
+ return false;
+
+ return ((regno >= FIRST_PSEUDO_REGISTER
+ && regno != REGNO (virtual_stack_vars_rtx))
+ || REGNO_REG_CLASS (regno) == ACC_REGS);
+})
+
+(define_predicate "ubicom32_call_address_operand"
+ (match_code "symbol_ref, subreg, reg")
+{
+ return (GET_CODE (op) == SYMBOL_REF || REG_P (op));
+})
+
+(define_special_predicate "ubicom32_cc_register_operand"
+ (and (match_code "reg")
+ (match_test "REGNO (op) == CC_REGNUM")))
+
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32
@@ -0,0 +1,52 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+ $(srcdir)/config/udivmodsi4.c \
+ $(srcdir)/config/divmod.c \
+ $(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS =
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# Commented out to speed up compiler development!
+#
+# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4
+# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+MULTILIB_OPTIONS += mfdpic
+MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi
+MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore
+
+# Assemble startup files.
+$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES)
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
+ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S
+
+$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES)
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \
+ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S
+
+# these parts are required because uClibc ldso needs them to link.
+# they are not in the specfile so they will not be included automatically.
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32-linux
@@ -0,0 +1,35 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+ $(srcdir)/config/udivmodsi4.c \
+ $(srcdir)/config/divmod.c \
+ $(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS =
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# We only support v3 and v4 ISAs for uClinux.
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+
+#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o
--- /dev/null
+++ b/gcc/config/ubicom32/t-ubicom32-uclinux
@@ -0,0 +1,35 @@
+# Name of assembly file containing libgcc1 functions.
+# This entry must be present, but it can be empty if the target does
+# not need any assembler functions to support its code generation.
+CROSS_LIBGCC1 =
+
+# Alternatively if assembler functions *are* needed then define the
+# entries below:
+# CROSS_LIBGCC1 = libgcc1-asm.a
+
+LIB2FUNCS_EXTRA = \
+ $(srcdir)/config/udivmodsi4.c \
+ $(srcdir)/config/divmod.c \
+ $(srcdir)/config/udivmod.c
+
+# If any special flags are necessary when building libgcc2 put them here.
+#
+# TARGET_LIBGCC2_CFLAGS =
+
+# We want fine grained libraries, so use the new code to build the
+# floating point emulation libraries.
+FPBIT = fp-bit.c
+DPBIT = dp-bit.c
+
+fp-bit.c: $(srcdir)/config/fp-bit.c
+ echo '#define FLOAT' > fp-bit.c
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
+
+dp-bit.c: $(srcdir)/config/fp-bit.c
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
+
+# We only support v3 and v4 ISAs for uClinux.
+
+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4
+
+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32-modes.def
@@ -0,0 +1,30 @@
+/* Definitions of target machine for GNU compiler, Ubicom32 architecture.
+ Copyright (C) 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+/* Some insns set all condition code flags, some only set the Z and N flags, and
+ some only set the Z flag. */
+
+CC_MODE (CCW);
+CC_MODE (CCWZN);
+CC_MODE (CCWZ);
+CC_MODE (CCS);
+CC_MODE (CCSZN);
+CC_MODE (CCSZ);
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32-protos.h
@@ -0,0 +1,84 @@
+/* Function prototypes for Ubicom IP3000.
+
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GNU CC.
+
+ GNU CC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ GNU CC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License along
+ with GNU CC; see the file COPYING. If not, write to the Free Software
+ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#ifdef RTX_CODE
+
+#ifdef TREE_CODE
+extern void ubicom32_va_start (tree, rtx);
+#endif /* TREE_CODE */
+
+extern void ubicom32_print_operand (FILE *, rtx, int);
+extern void ubicom32_print_operand_address (FILE *, rtx);
+
+extern void ubicom32_conditional_register_usage (void);
+extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class);
+extern int ubicom32_regno_ok_for_index_p (int, int);
+extern void ubicom32_expand_movsi (rtx *);
+extern void ubicom32_expand_addsi3 (rtx *);
+extern int ubicom32_emit_mult_sequence (rtx *);
+extern void ubicom32_emit_move_const_int (rtx, rtx);
+extern bool ubicom32_legitimate_constant_p (rtx);
+extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int);
+extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode);
+extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int);
+extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1);
+extern int ubicom32_mode_dependent_address_p (rtx);
+extern void ubicom32_output_cond_jump (rtx, rtx, rtx);
+extern void ubicom32_expand_eh_return (rtx *);
+extern void ubicom32_expand_call_fdpic (rtx *);
+extern void ubicom32_expand_call_value_fdpic (rtx *);
+extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx);
+extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx);
+extern int ubicom32_shiftable_const_int (int);
+#endif /* RTX_CODE */
+
+#ifdef TREE_CODE
+extern void init_cumulative_args (CUMULATIVE_ARGS *cum,
+ tree fntype,
+ struct rtx_def *libname,
+ int indirect);
+extern struct rtx_def *function_arg (CUMULATIVE_ARGS *,
+ enum machine_mode, tree, int);
+extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *,
+ enum machine_mode,
+ tree, int);
+extern int function_arg_partial_nregs (CUMULATIVE_ARGS *,
+ enum machine_mode, tree, int);
+extern struct rtx_def *ubicom32_va_arg (tree, tree);
+extern int ubicom32_reg_parm_stack_space (tree);
+#endif /* TREE_CODE */
+
+extern struct rtx_def * ubicom32_builtin_saveregs (void);
+extern void asm_file_start (FILE *);
+extern void ubicom32_expand_prologue (void);
+extern void ubicom32_expand_epilogue (void);
+extern int ubicom32_initial_elimination_offset (int, int);
+extern int ubicom32_regno_ok_for_base_p (int, int);
+extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode);
+extern int ubicom32_can_use_return_insn_p (void);
+extern rtx ubicom32_return_addr_rtx (int, rtx);
+extern void ubicom32_optimization_options (int, int);
+extern void ubicom32_override_options (void);
+extern bool ubicom32_match_cc_mode (rtx, enum machine_mode);
+
+extern int ubicom32_reorg_completed;
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.c
@@ -0,0 +1,2881 @@
+/* Subroutines for insn-output.c for Ubicom32
+
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "real.h"
+#include "insn-config.h"
+#include "conditions.h"
+#include "insn-flags.h"
+#include "output.h"
+#include "insn-attr.h"
+#include "insn-codes.h"
+#include "flags.h"
+#include "recog.h"
+#include "expr.h"
+#include "function.h"
+#include "obstack.h"
+#include "toplev.h"
+#include "tm_p.h"
+#include "tm-constrs.h"
+#include "basic-block.h"
+#include "integrate.h"
+#include "target.h"
+#include "target-def.h"
+#include "reload.h"
+#include "df.h"
+#include "langhooks.h"
+#include "optabs.h"
+
+static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
+static void ubicom32_layout_frame (void);
+static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT);
+static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT);
+static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed);
+static bool ubicom32_fixed_condition_code_regs (unsigned int *,
+ unsigned int *);
+static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode,
+ enum machine_mode);
+static int ubicom32_naked_function_p (void);
+static void ubicom32_machine_dependent_reorg (void);
+static bool ubicom32_assemble_integer (rtx, unsigned int, int);
+static void ubicom32_asm_init_sections (void);
+static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree,
+ bool);
+static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode, const_tree type,
+ bool named ATTRIBUTE_UNUSED);
+static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode, const_tree type,
+ bool named ATTRIBUTE_UNUSED);
+
+static bool ubicom32_return_in_memory (const_tree type,
+ const_tree fntype ATTRIBUTE_UNUSED);
+static bool ubicom32_is_base_reg (rtx, int);
+static void ubicom32_init_builtins (void);
+static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
+static tree ubicom32_fold_builtin (tree, tree, bool);
+static int ubicom32_get_valid_offset_mask (enum machine_mode);
+static bool ubicom32_cannot_force_const_mem (rtx);
+
+/* Case values threshold */
+int ubicom32_case_values_threshold = 6;
+
+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
+int ubicom32_v3 = 1;
+
+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
+int ubicom32_v4 = 1;
+
+/* Valid attributes:
+ naked - don't generate function prologue/epilogue and `ret' command. */
+const struct attribute_spec ubicom32_attribute_table[] =
+{
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
+ { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute },
+ { NULL, 0, 0, false, false, false, NULL }
+};
+
+#undef TARGET_ASM_FUNCTION_PROLOGUE
+#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue
+
+#undef TARGET_ASM_FUNCTION_EPILOGUE
+#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue
+
+#undef TARGET_ATTRIBUTE_TABLE
+#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table
+
+/* All addresses cost the same amount. */
+#undef TARGET_ADDRESS_COST
+#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
+
+#undef TARGET_RTX_COSTS
+#define TARGET_RTX_COSTS ubicom32_rtx_costs
+
+#undef TARGET_FIXED_CONDITION_CODE_REGS
+#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs
+
+#undef TARGET_CC_MODES_COMPATIBLE
+#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible
+
+#undef TARGET_MACHINE_DEPENDENT_REORG
+#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg
+
+#undef TARGET_ASM_INTEGER
+#define TARGET_ASM_INTEGER ubicom32_assemble_integer
+
+#undef TARGET_ASM_INIT_SECTIONS
+#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections
+
+#undef TARGET_ARG_PARTIAL_BYTES
+#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes
+
+#undef TARGET_PASS_BY_REFERENCE
+#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference
+
+#undef TARGET_CALLEE_COPIES
+#define TARGET_CALLEE_COPIES ubicom32_callee_copies
+
+#undef TARGET_RETURN_IN_MEMORY
+#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory
+
+#undef TARGET_INIT_BUILTINS
+#define TARGET_INIT_BUILTINS ubicom32_init_builtins
+
+#undef TARGET_EXPAND_BUILTIN
+#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin
+
+#undef TARGET_FOLD_BUILTIN
+#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin
+
+#undef TARGET_CANNOT_FORCE_CONST_MEM
+#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem
+
+struct gcc_target targetm = TARGET_INITIALIZER;
+
+static char save_regs[FIRST_PSEUDO_REGISTER];
+static int nregs;
+static int frame_size;
+int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */
+int ubicom32_can_use_calli_to_ret;
+
+#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT)
+#define ROUND_CALL_BLOCK_SIZE(BYTES) \
+ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1))
+
+/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
+ must report the mode of the memory reference from PRINT_OPERAND to
+ PRINT_OPERAND_ADDRESS. */
+enum machine_mode output_memory_reference_mode;
+
+/* Flag for some split insns from the ubicom32.md. */
+int ubicom32_reorg_completed;
+
+enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] =
+{
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ DATA_REGS,
+ FDPIC_REG,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ADDRESS_REGS,
+ ACC_REGS,
+ ACC_LO_REGS,
+ ACC_REGS,
+ ACC_LO_REGS,
+ SOURCE3_REG,
+ ADDRESS_REGS,
+ NO_REGS, /* CC_REG must be NO_REGS */
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS,
+ SPECIAL_REGS
+};
+
+rtx ubicom32_compare_op0;
+rtx ubicom32_compare_op1;
+
+/* Handle command line option overrides. */
+
+void
+ubicom32_override_options (void)
+{
+ flag_pic = 0;
+
+ if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) {
+ /* If we have a version 1 architecture then we want to avoid using jump
+ tables. */
+ ubicom32_case_values_threshold = 30000;
+ ubicom32_v3 = 0;
+ ubicom32_v4 = 0;
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) {
+ ubicom32_v3 = 0;
+ ubicom32_v4 = 0;
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) {
+ ubicom32_v3 = 1;
+ ubicom32_v4 = 0;
+ } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) {
+ ubicom32_v3 = 1;
+ ubicom32_v4 = 1;
+ }
+
+ /* There is no single unaligned SI op for PIC code. Sometimes we
+ need to use ".4byte" and sometimes we need to use ".picptr".
+ See ubicom32_assemble_integer for details. */
+ if (TARGET_FDPIC)
+ targetm.asm_out.unaligned_op.si = 0;
+}
+
+void
+ubicom32_conditional_register_usage (void)
+{
+ /* If we're using the old ipOS ABI we need to make D10 through D13
+ caller-clobbered. */
+ if (TARGET_IPOS_ABI)
+ {
+ call_used_regs[D10_REGNUM] = 1;
+ call_used_regs[D11_REGNUM] = 1;
+ call_used_regs[D12_REGNUM] = 1;
+ call_used_regs[D13_REGNUM] = 1;
+ }
+}
+
+/* We have some number of optimizations that don't really work for the Ubicom32
+ architecture so we deal with them here. */
+
+void
+ubicom32_optimization_options (int level ATTRIBUTE_UNUSED,
+ int size ATTRIBUTE_UNUSED)
+{
+ /* The tree IVOPTs pass seems to do really bad things for the Ubicom32
+ architecture - it tends to turn things that would happily use pre/post
+ increment/decrement into operations involving unecessary loop
+ indicies. */
+ flag_ivopts = 0;
+
+ /* We have problems where DSE at the RTL level misses partial stores
+ to the stack. For now we disable it to avoid this. */
+ flag_dse = 0;
+}
+
+/* Print operand X using operand code CODE to assembly language output file
+ FILE. */
+
+void
+ubicom32_print_operand (FILE *file, rtx x, int code)
+{
+ switch (code)
+ {
+ case 'A':
+ /* Identify the correct accumulator to use. */
+ if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM)
+ fprintf (file, "acc0");
+ else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM)
+ fprintf (file, "acc1");
+ else
+ abort ();
+ break;
+
+ case 'b':
+ case 'B':
+ {
+ enum machine_mode mode;
+
+ mode = GET_MODE (XEXP (x, 0));
+
+ /* These are normal and reversed branches. */
+ switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
+ {
+ case NE:
+ fprintf (file, "ne");
+ break;
+
+ case EQ:
+ fprintf (file, "eq");
+ break;
+
+ case GE:
+ if (mode == CCSZNmode || mode == CCWZNmode)
+ fprintf (file, "pl");
+ else
+ fprintf (file, "ge");
+ break;
+
+ case GT:
+ fprintf (file, "gt");
+ break;
+
+ case LE:
+ fprintf (file, "le");
+ break;
+
+ case LT:
+ if (mode == CCSZNmode || mode == CCWZNmode)
+ fprintf (file, "mi");
+ else
+ fprintf (file, "lt");
+ break;
+
+ case GEU:
+ fprintf (file, "cs");
+ break;
+
+ case GTU:
+ fprintf (file, "hi");
+ break;
+
+ case LEU:
+ fprintf (file, "ls");
+ break;
+
+ case LTU:
+ fprintf (file, "cc");
+ break;
+
+ default:
+ abort ();
+ }
+ }
+ break;
+
+ case 'C':
+ /* This is used for the operand to a call instruction;
+ if it's a REG, enclose it in parens, else output
+ the operand normally. */
+ if (REG_P (x))
+ {
+ fputc ('(', file);
+ ubicom32_print_operand (file, x, 0);
+ fputc (')', file);
+ }
+ else
+ ubicom32_print_operand (file, x, 0);
+ break;
+
+ case 'd':
+ /* Bit operations we need bit numbers. */
+ fprintf (file, "%d", exact_log2 (INTVAL (x)));
+ break;
+
+ case 'D':
+ /* Bit operations we need bit numbers. */
+ fprintf (file, "%d", exact_log2 (~ INTVAL (x)));
+ break;
+
+ case 'E':
+ /* For lea, which we use to add address registers.
+ We don't want the '#' on a constant. */
+ if (CONST_INT_P (x))
+ {
+ fprintf (file, "%ld", INTVAL (x));
+ break;
+ }
+ /* FALL THROUGH */
+
+ default:
+ switch (GET_CODE (x))
+ {
+ case MEM:
+ output_memory_reference_mode = GET_MODE (x);
+ output_address (XEXP (x, 0));
+ break;
+
+ case PLUS:
+ output_address (x);
+ break;
+
+ case REG:
+ fprintf (file, "%s", reg_names[REGNO (x)]);
+ break;
+
+ case SUBREG:
+ fprintf (file, "%s", reg_names[subreg_regno (x)]);
+ break;
+
+ /* This will only be single precision.... */
+ case CONST_DOUBLE:
+ {
+ unsigned long val;
+ REAL_VALUE_TYPE rv;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+ fprintf (file, "0x%lx", val);
+ break;
+ }
+
+ case CONST_INT:
+ case SYMBOL_REF:
+ case CONST:
+ case LABEL_REF:
+ case CODE_LABEL:
+ case LO_SUM:
+ ubicom32_print_operand_address (file, x);
+ break;
+
+ case HIGH:
+ fprintf (file, "#%%hi(");
+ ubicom32_print_operand_address (file, XEXP (x, 0));
+ fprintf (file, ")");
+ break;
+
+ case UNSPEC:
+ switch (XINT (x, 1))
+ {
+ case UNSPEC_FDPIC_GOT:
+ fprintf (file, "#%%got_lo(");
+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
+ fprintf (file, ")");
+ break;
+
+ case UNSPEC_FDPIC_GOT_FUNCDESC:
+ fprintf (file, "#%%got_funcdesc_lo(");
+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0));
+ fprintf (file, ")");
+ break;
+
+ default:
+ abort ();
+ }
+ break;
+
+ default:
+ abort ();
+ }
+ break;
+ }
+}
+
+/* Output assembly language output for the address ADDR to FILE. */
+
+void
+ubicom32_print_operand_address (FILE *file, rtx addr)
+{
+ switch (GET_CODE (addr))
+ {
+ case POST_INC:
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode));
+ break;
+
+ case PRE_INC:
+ fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode));
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "++");
+ break;
+
+ case POST_DEC:
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode));
+ break;
+
+ case PRE_DEC:
+ fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode));
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "++");
+ break;
+
+ case POST_MODIFY:
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1)));
+ break;
+
+ case PRE_MODIFY:
+ fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1)));
+ ubicom32_print_operand_address (file, XEXP (addr, 0));
+ fprintf (file, "++");
+ break;
+
+ case REG:
+ fputc ('(', file);
+ fprintf (file, "%s", reg_names[REGNO (addr)]);
+ fputc (')', file);
+ break;
+
+ case PLUS:
+ {
+ rtx base = XEXP (addr, 0);
+ rtx index = XEXP (addr, 1);
+
+ /* Switch around addresses of the form index * scaling + base. */
+ if (! ubicom32_is_base_reg (base, 1))
+ {
+ rtx tmp = base;
+ base = index;
+ index = tmp;
+ }
+
+ if (CONST_INT_P (index))
+ {
+ fprintf (file, "%ld", INTVAL (index));
+ fputc ('(', file);
+ fputs (reg_names[REGNO (base)], file);
+ }
+ else if (GET_CODE (index) == MULT
+ || REG_P (index))
+ {
+ if (GET_CODE (index) == MULT)
+ index = XEXP (index, 0);
+ fputc ('(', file);
+ fputs (reg_names[REGNO (base)], file);
+ fputc (',', file);
+ fputs (reg_names[REGNO (index)], file);
+ }
+ else
+ abort ();
+
+ fputc (')', file);
+ break;
+ }
+
+ case LO_SUM:
+ fprintf (file, "%%lo(");
+ ubicom32_print_operand (file, XEXP (addr, 1), 'L');
+ fprintf (file, ")(");
+ ubicom32_print_operand (file, XEXP (addr, 0), 0);
+ fprintf (file, ")");
+ break;
+
+ case CONST_INT:
+ fputc ('#', file);
+ output_addr_const (file, addr);
+ break;
+
+ default:
+ output_addr_const (file, addr);
+ break;
+ }
+}
+
+/* X and Y are two things to compare using CODE. Emit the compare insn and
+ return the rtx for the cc reg in the proper mode. */
+
+rtx
+ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
+{
+ enum machine_mode mode = SELECT_CC_MODE (code, x, y);
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (mode, CC_REGNUM);
+
+ emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
+ gen_rtx_COMPARE (mode, x, y)));
+
+ return cc_reg;
+}
+
+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
+ return the mode to be used for the comparison. */
+
+enum machine_mode
+ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y)
+{
+ /* Is this a short compare? */
+ if (GET_MODE (x) == QImode
+ || GET_MODE (x) == HImode
+ || GET_MODE (y) == QImode
+ || GET_MODE (y) == HImode)
+ {
+ switch (op)
+ {
+ case EQ :
+ case NE :
+ return CCSZmode;
+
+ case GE:
+ case LT:
+ if (y == const0_rtx)
+ return CCSZNmode;
+
+ default :
+ return CCSmode;
+ }
+ }
+
+ /* We have a word compare. */
+ switch (op)
+ {
+ case EQ :
+ case NE :
+ return CCWZmode;
+
+ case GE :
+ case LT :
+ if (y == const0_rtx)
+ return CCWZNmode;
+
+ default :
+ return CCWmode;
+ }
+}
+
+/* Return TRUE or FALSE depending on whether the first SET in INSN
+ has source and destination with matching CC modes, and that the
+ CC mode is at least as constrained as REQ_MODE. */
+bool
+ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode)
+{
+ rtx set;
+ enum machine_mode set_mode;
+
+ set = PATTERN (insn);
+ if (GET_CODE (set) == PARALLEL)
+ set = XVECEXP (set, 0, 0);
+ gcc_assert (GET_CODE (set) == SET);
+ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE);
+
+ /* SET_MODE is the mode we have in the instruction. This must either
+ be the same or less restrictive that the required mode REQ_MODE. */
+ set_mode = GET_MODE (SET_DEST (set));
+
+ switch (req_mode)
+ {
+ case CCSZmode:
+ if (set_mode != CCSZmode)
+ return 0;
+ break;
+
+ case CCSZNmode:
+ if (set_mode != CCSZmode
+ && set_mode != CCSZNmode)
+ return 0;
+ break;
+
+ case CCSmode:
+ if (set_mode != CCSmode
+ && set_mode != CCSZmode
+ && set_mode != CCSZNmode)
+ return 0;
+ break;
+
+ case CCWZmode:
+ if (set_mode != CCWZmode)
+ return 0;
+ break;
+
+ case CCWZNmode:
+ if (set_mode != CCWZmode
+ && set_mode != CCWZNmode)
+ return 0;
+ break;
+
+ case CCWmode:
+ if (set_mode != CCWmode
+ && set_mode != CCWZmode
+ && set_mode != CCWZNmode)
+ return 0;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return (GET_MODE (SET_SRC (set)) == set_mode);
+}
+
+/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one
+ that we can implement more efficiently. */
+
+void
+ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1)
+{
+ /* If we have a REG and a MEM then compare the MEM with the REG and not
+ the other way round. */
+ if (REG_P (*op0) && MEM_P (*op1))
+ {
+ rtx tem = *op0;
+ *op0 = *op1;
+ *op1 = tem;
+ *code = swap_condition (*code);
+ return;
+ }
+
+ /* If we have a REG and a CONST_INT then we may want to reverse things
+ if the constant can be represented as an "I" constraint. */
+ if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1))
+ {
+ rtx tem = *op0;
+ *op0 = *op1;
+ *op1 = tem;
+ *code = swap_condition (*code);
+ return;
+ }
+}
+
+/* Return the fixed registers used for condition codes. */
+
+static bool
+ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
+{
+ *p1 = CC_REGNUM;
+ *p2 = INVALID_REGNUM;
+
+ return true;
+}
+
+/* If two condition code modes are compatible, return a condition code
+ mode which is compatible with both. Otherwise, return
+ VOIDmode. */
+
+static enum machine_mode
+ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
+{
+ if (m1 == m2)
+ return m1;
+
+ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC)
+ return VOIDmode;
+
+ switch (m1)
+ {
+ case CCWmode:
+ if (m2 == CCWZNmode || m2 == CCWZmode)
+ return m1;
+
+ return VOIDmode;
+
+ case CCWZNmode:
+ if (m2 == CCWmode)
+ return m2;
+
+ if (m2 == CCWZmode)
+ return m1;
+
+ return VOIDmode;
+
+ case CCWZmode:
+ if (m2 == CCWmode || m2 == CCWZNmode)
+ return m2;
+
+ return VOIDmode;
+
+ case CCSmode:
+ if (m2 == CCSZNmode || m2 == CCSZmode)
+ return m1;
+
+ return VOIDmode;
+
+ case CCSZNmode:
+ if (m2 == CCSmode)
+ return m2;
+
+ if (m2 == CCSZmode)
+ return m1;
+
+ return VOIDmode;
+
+ case CCSZmode:
+ if (m2 == CCSmode || m2 == CCSZNmode)
+ return m2;
+
+ return VOIDmode;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+static rtx
+ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg)
+{
+ int unspec;
+ rtx got_offs;
+ rtx got_offs_scaled;
+ rtx plus_scaled;
+ rtx tmp;
+ rtx new_rtx;
+
+ gcc_assert (reg != 0);
+
+ if (GET_CODE (orig) == SYMBOL_REF
+ && SYMBOL_REF_FUNCTION_P (orig))
+ unspec = UNSPEC_FDPIC_GOT_FUNCDESC;
+ else
+ unspec = UNSPEC_FDPIC_GOT;
+
+ got_offs = gen_reg_rtx (SImode);
+ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec);
+ emit_move_insn (got_offs, tmp);
+
+ got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4));
+ plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled);
+ new_rtx = gen_const_mem (Pmode, plus_scaled);
+ emit_move_insn (reg, new_rtx);
+
+ return reg;
+}
+
+static rtx
+ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg)
+{
+ rtx addr = orig;
+ rtx new_rtx = orig;
+
+ if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
+ {
+ rtx base;
+
+ if (GET_CODE (addr) == CONST)
+ {
+ addr = XEXP (addr, 0);
+ gcc_assert (GET_CODE (addr) == PLUS);
+ }
+
+ base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg);
+ return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1));
+ }
+
+ return new_rtx;
+}
+
+/* Code generation. */
+
+void
+ubicom32_expand_movsi (rtx *operands)
+{
+ if (GET_CODE (operands[1]) == SYMBOL_REF
+ || (GET_CODE (operands[1]) == CONST
+ && GET_CODE (XEXP (operands[1], 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
+ || CONSTANT_ADDRESS_P (operands[1]))
+ {
+ if (TARGET_FDPIC)
+ {
+ rtx tmp;
+ rtx fdpic_reg;
+
+ gcc_assert (can_create_pseudo_p ());
+ tmp = gen_reg_rtx (Pmode);
+ fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+ if (GET_CODE (operands[1]) == SYMBOL_REF
+ || GET_CODE (operands[1]) == LABEL_REF)
+ operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg);
+ else
+ operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg);
+ }
+ else
+ {
+ rtx tmp;
+ enum machine_mode mode;
+
+ /* We want to avoid reusing operand 0 if we can because it limits
+ our ability to optimize later. */
+ tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode);
+
+ mode = GET_MODE (operands[0]);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp,
+ gen_rtx_HIGH (mode, operands[1])));
+ operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]);
+ if (can_create_pseudo_p() && ! REG_P (operands[0]))
+ {
+ tmp = gen_reg_rtx (mode);
+ emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1]));
+ operands[1] = tmp;
+ }
+ }
+ }
+}
+
+/* Emit code for addsi3. */
+
+void
+ubicom32_expand_addsi3 (rtx *operands)
+{
+ rtx op, clob;
+
+ if (can_create_pseudo_p ())
+ {
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
+ }
+
+ /* Emit the instruction. */
+
+ op = gen_rtx_SET (VOIDmode, operands[0],
+ gen_rtx_PLUS (SImode, operands[1], operands[2]));
+
+ if (! can_create_pseudo_p ())
+ {
+ /* Reload doesn't know about the flags register, and doesn't know that
+ it doesn't want to clobber it. We can only do this with PLUS. */
+ emit_insn (op);
+ }
+ else
+ {
+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM));
+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
+ }
+}
+
+/* Emit code for mulsi3. Return 1 if we have generated all the code
+ necessary to do the multiplication. */
+
+int
+ubicom32_emit_mult_sequence (rtx *operands)
+{
+ if (! ubicom32_v4)
+ {
+ rtx a1, a1_1, a2;
+ rtx b1, b1_1, b2;
+ rtx mac_lo_rtx;
+ rtx t1, t2, t3;
+
+ /* Give up if we cannot create new pseudos. */
+ if (!can_create_pseudo_p())
+ return 0;
+
+ /* Synthesize 32-bit multiplication using 16-bit operations:
+
+ a1 = highpart (a)
+ a2 = lowpart (a)
+
+ b1 = highpart (b)
+ b2 = lowpart (b)
+
+ c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
+ = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2
+ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^
+ Signed Signed Unsigned */
+
+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+ {
+ rtx op1;
+
+ op1 = gen_reg_rtx (SImode);
+ emit_move_insn (op1, operands[1]);
+ operands[1] = op1;
+ }
+
+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+ {
+ rtx op2;
+
+ op2 = gen_reg_rtx (SImode);
+ emit_move_insn (op2, operands[2]);
+ operands[2] = op2;
+ }
+
+ /* a1 = highpart (a) */
+ a1 = gen_reg_rtx (HImode);
+ a1_1 = gen_reg_rtx (SImode);
+ emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16)));
+ emit_move_insn (a1, gen_lowpart (HImode, a1_1));
+
+ /* a2 = lowpart (a) */
+ a2 = gen_reg_rtx (HImode);
+ emit_move_insn (a2, gen_lowpart (HImode, operands[1]));
+
+ /* b1 = highpart (b) */
+ b1 = gen_reg_rtx (HImode);
+ b1_1 = gen_reg_rtx (SImode);
+ emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16)));
+ emit_move_insn (b1, gen_lowpart (HImode, b1_1));
+
+ /* b2 = lowpart (b) */
+ b2 = gen_reg_rtx (HImode);
+ emit_move_insn (b2, gen_lowpart (HImode, operands[2]));
+
+ /* t1 = (a1 * b2) << 16 */
+ t1 = gen_reg_rtx (SImode);
+ mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM);
+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2));
+ emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16)));
+
+ /* t2 = (a2 * b1) << 16 */
+ t2 = gen_reg_rtx (SImode);
+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1));
+ emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16)));
+
+ /* mac_lo = a2 * b2 */
+ emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2));
+
+ /* t3 = t1 + t2 */
+ t3 = gen_reg_rtx (SImode);
+ emit_insn (gen_addsi3 (t3, t1, t2));
+
+ /* c = t3 + mac_lo_rtx */
+ emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3));
+
+ return 1;
+ }
+ else
+ {
+ rtx acc_rtx;
+
+ /* Give up if we cannot create new pseudos. */
+ if (!can_create_pseudo_p())
+ return 0;
+
+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+ {
+ rtx op1;
+
+ op1 = gen_reg_rtx (SImode);
+ emit_move_insn (op1, operands[1]);
+ operands[1] = op1;
+ }
+
+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+ {
+ rtx op2;
+
+ op2 = gen_reg_rtx (SImode);
+ emit_move_insn (op2, operands[2]);
+ operands[2] = op2;
+ }
+
+ acc_rtx = gen_reg_rtx (DImode);
+ emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2]));
+ emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx));
+
+ return 1;
+ }
+}
+
+/* Move the integer value VAL into OPERANDS[0]. */
+
+void
+ubicom32_emit_move_const_int (rtx dest, rtx imm)
+{
+ rtx xoperands[2];
+
+ xoperands[0] = dest;
+ xoperands[1] = imm;
+
+ /* Treat mem destinations separately. Values must be explicitly sign
+ extended. */
+ if (MEM_P (dest))
+ {
+ rtx low_hword_mem;
+ rtx low_hword_addr;
+
+ /* Emit shorter sequence for signed 7-bit quantities. */
+ if (satisfies_constraint_I (imm))
+ {
+ output_asm_insn ("move.4\t%0, %1", xoperands);
+ return;
+ }
+
+ /* Special case for pushing constants. */
+ if (GET_CODE (XEXP (dest, 0)) == PRE_DEC
+ && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
+ {
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+ return;
+ }
+
+ /* See if we can add 2 to the original address. This is only
+ possible if the original address is of the form REG or
+ REG+const. */
+ low_hword_addr = plus_constant (XEXP (dest, 0), 2);
+ if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1))
+ {
+ low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr);
+ MEM_COPY_ATTRIBUTES (low_hword_mem, dest);
+ output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands);
+ xoperands[0] = low_hword_mem;
+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
+ return;
+ }
+
+ /* The original address is too complex. We need to use a
+ scratch memory by (sp) and move that to the original
+ destination. */
+ if (! reg_mentioned_p (stack_pointer_rtx, dest))
+ {
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
+ return;
+ }
+
+ /* Our address mentions the stack pointer so we need to
+ use our scratch data register here as well as scratch
+ memory. */
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+ output_asm_insn ("move.4\td15, (sp)4++", xoperands);
+ output_asm_insn ("move.4\t%0, d15", xoperands);
+ return;
+ }
+
+ /* Move into registers are zero extended by default. */
+ if (! REG_P (dest))
+ abort ();
+
+ if (satisfies_constraint_N (imm))
+ {
+ output_asm_insn ("movei\t%0, %1", xoperands);
+ return;
+ }
+
+ if (INTVAL (xoperands[1]) >= 0xff80
+ && INTVAL (xoperands[1]) < 0x10000)
+ {
+ xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000);
+ output_asm_insn ("move.2\t%0, %1", xoperands);
+ return;
+ }
+
+ if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS
+ || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG)
+ && ((INTVAL (xoperands[1]) & 0x80000000) == 0))
+ {
+ output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands);
+ if ((INTVAL (xoperands[1]) & 0x7f) != 0)
+ output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands);
+ return;
+ }
+
+ if ((INTVAL (xoperands[1]) & 0xffff0000) == 0)
+ {
+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands);
+ output_asm_insn ("move.2\t%0, %0", xoperands);
+ return;
+ }
+
+ /* This is very expensive. The constant is so large that we
+ need to use the stack to do the load. */
+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands);
+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands);
+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands);
+}
+
+/* Stack layout. Prologue/Epilogue. */
+
+static int save_regs_size;
+
+static void
+ubicom32_layout_frame (void)
+{
+ int regno;
+
+ memset ((char *) &save_regs[0], 0, sizeof (save_regs));
+ nregs = 0;
+ frame_size = get_frame_size ();
+
+ if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM))
+ {
+ save_regs[FRAME_POINTER_REGNUM] = 1;
+ ++nregs;
+ }
+
+ if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO))
+ ubicom32_can_use_calli_to_ret = 1;
+ else
+ {
+ ubicom32_can_use_calli_to_ret = 0;
+ save_regs[LINK_REGNO] = 1;
+ ++nregs;
+ }
+
+ /* Figure out which register(s) needs to be saved. */
+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++)
+ if (df_regs_ever_live_p(regno)
+ && ! call_used_regs[regno]
+ && ! fixed_regs[regno]
+ && ! save_regs[regno])
+ {
+ save_regs[regno] = 1;
+ ++nregs;
+ }
+
+ save_regs_size = 4 * nregs;
+}
+
+static void
+ubicom32_emit_add_movsi (int regno, int adj)
+{
+ rtx x;
+ rtx reg = gen_rtx_REG (SImode, regno);
+
+ adj += 4;
+ if (adj > 8 * 4)
+ {
+ x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-adj)));
+ RTX_FRAME_RELATED_P (x) = 1;
+ x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg);
+ }
+ else
+ {
+ rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
+ gen_rtx_PLUS (Pmode, stack_pointer_rtx,
+ GEN_INT (-adj)));
+ x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg);
+ }
+ RTX_FRAME_RELATED_P (x) = 1;
+}
+
+void
+ubicom32_expand_prologue (void)
+{
+ rtx x;
+ int regno;
+ int outgoing_args_size = crtl->outgoing_args_size;
+ int adj;
+
+ if (ubicom32_naked_function_p ())
+ return;
+
+ ubicom32_builtin_saveregs ();
+
+ ubicom32_layout_frame ();
+ adj = (outgoing_args_size + get_frame_size () + save_regs_size
+ + crtl->args.pretend_args_size);
+
+ if (!adj)
+ ;
+ else if (outgoing_args_size + save_regs_size < 508
+ && get_frame_size () + save_regs_size > 508)
+ {
+ int i = 0;
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-adj));
+ x = emit_insn (x);
+ RTX_FRAME_RELATED_P (x) = 1;
+
+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
+ if (save_regs[regno] && regno != LINK_REGNO)
+ {
+ x = gen_rtx_MEM (SImode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ GEN_INT (i * 4 + outgoing_args_size)));
+ x = emit_move_insn (x, gen_rtx_REG (SImode, regno));
+ RTX_FRAME_RELATED_P (x) = 1;
+ ++i;
+ }
+ if (save_regs[LINK_REGNO])
+ {
+ x = gen_rtx_MEM (SImode,
+ gen_rtx_PLUS (Pmode,
+ stack_pointer_rtx,
+ GEN_INT (i * 4 + outgoing_args_size)));
+ x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO));
+ RTX_FRAME_RELATED_P (x) = 1;
+ }
+ }
+ else
+ {
+ int regno;
+ int adj = get_frame_size () + crtl->args.pretend_args_size;
+ int i = 0;
+
+ if (save_regs[LINK_REGNO])
+ {
+ ubicom32_emit_add_movsi (LINK_REGNO, adj);
+ ++i;
+ }
+
+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno)
+ if (save_regs[regno] && regno != LINK_REGNO)
+ {
+ if (i)
+ {
+ rtx mem = gen_rtx_MEM (SImode,
+ gen_rtx_PRE_DEC (Pmode,
+ stack_pointer_rtx));
+ x = emit_move_insn (mem, gen_rtx_REG (SImode, regno));
+ RTX_FRAME_RELATED_P (x) = 1;
+ }
+ else
+ ubicom32_emit_add_movsi (regno, adj);
+ ++i;
+ }
+
+ if (outgoing_args_size || (!i && adj))
+ {
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (-outgoing_args_size - (i ? 0 : adj)));
+ x = emit_insn (x);
+ RTX_FRAME_RELATED_P (x) = 1;
+ }
+ }
+
+ if (frame_pointer_needed)
+ {
+ int fp_adj = save_regs_size + outgoing_args_size;
+ x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (fp_adj));
+ x = emit_insn (x);
+ RTX_FRAME_RELATED_P (x) = 1;
+ }
+}
+
+void
+ubicom32_expand_epilogue (void)
+{
+ rtx x;
+ int regno;
+ int outgoing_args_size = crtl->outgoing_args_size;
+ int adj;
+ int i;
+
+ if (ubicom32_naked_function_p ())
+ {
+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
+ LINK_REGNO)));
+ return;
+ }
+
+ if (cfun->calls_alloca)
+ {
+ x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
+ GEN_INT (-save_regs_size));
+ emit_insn (x);
+ outgoing_args_size = 0;
+ }
+
+ if (outgoing_args_size)
+ {
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (outgoing_args_size));
+ emit_insn (x);
+ }
+
+ i = 0;
+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno)
+ if (save_regs[regno] && regno != LINK_REGNO)
+ {
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+ emit_move_insn (gen_rtx_REG (SImode, regno), x);
+ ++i;
+ }
+
+ /* Do we have to adjust the stack after we've finished restoring regs? */
+ adj = get_frame_size() + crtl->args.pretend_args_size;
+ if (cfun->stdarg)
+ adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
+
+#if 0
+ if (crtl->calls_eh_return && 0)
+ {
+ if (save_regs[LINK_REGNO])
+ {
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
+ }
+
+ if (adj)
+ {
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (adj));
+ x = emit_insn (x);
+ }
+
+ /* Perform the additional bump for __throw. */
+ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ EH_RETURN_STACKADJ_RTX));
+ emit_jump_insn (gen_eh_return_internal ());
+ return;
+ }
+#endif
+
+ if (save_regs[LINK_REGNO])
+ {
+ if (adj >= 4 && adj <= (6 * 4))
+ {
+ x = GEN_INT (adj + 4);
+ emit_jump_insn (gen_return_from_post_modify_sp (x));
+ return;
+ }
+
+ if (adj == 0)
+ {
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+ emit_jump_insn (gen_return_internal (x));
+ return;
+ }
+
+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx));
+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x);
+ }
+
+ if (adj)
+ {
+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
+ GEN_INT (adj));
+ x = emit_insn (x);
+ adj = 0;
+ }
+
+ /* Given that we've just done all the hard work here we may as well use
+ a calli to return. */
+ ubicom32_can_use_calli_to_ret = 1;
+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO)));
+}
+
+void
+ubicom32_expand_call_fdpic (rtx *operands)
+{
+ rtx c;
+ rtx addr;
+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+
+ addr = XEXP (operands[0], 0);
+
+ c = gen_call_fdpic (addr, operands[1], fdpic_reg);
+ emit_call_insn (c);
+}
+
+void
+ubicom32_expand_call_value_fdpic (rtx *operands)
+{
+ rtx c;
+ rtx addr;
+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM);
+
+ addr = XEXP (operands[1], 0);
+
+ c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg);
+ emit_call_insn (c);
+}
+
+void
+ubicom32_expand_eh_return (rtx *operands)
+{
+ if (REG_P (operands[0])
+ || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO)
+ {
+ rtx sp = EH_RETURN_STACKADJ_RTX;
+ emit_move_insn (sp, operands[0]);
+ operands[0] = sp;
+ }
+
+ if (REG_P (operands[1])
+ || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO)
+ {
+ rtx ra = EH_RETURN_HANDLER_RTX;
+ emit_move_insn (ra, operands[1]);
+ operands[1] = ra;
+ }
+}
+
+/* Compute the offsets between eliminable registers. */
+
+int
+ubicom32_initial_elimination_offset (int from, int to)
+{
+ ubicom32_layout_frame ();
+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return save_regs_size + crtl->outgoing_args_size;
+
+ if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
+ return get_frame_size ()/* + save_regs_size */;
+
+ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
+ return get_frame_size ()
+ + crtl->outgoing_args_size
+ + save_regs_size;
+
+ return 0;
+}
+
+/* Return 1 if it is appropriate to emit `ret' instructions in the
+ body of a function. Do this only if the epilogue is simple, needing a
+ couple of insns. Prior to reloading, we can't tell how many registers
+ must be saved, so return 0 then. Return 0 if there is no frame
+ marker to de-allocate.
+
+ If NON_SAVING_SETJMP is defined and true, then it is not possible
+ for the epilogue to be simple, so return 0. This is a special case
+ since NON_SAVING_SETJMP will not cause regs_ever_live to change
+ until final, but jump_optimize may need to know sooner if a
+ `return' is OK. */
+
+int
+ubicom32_can_use_return_insn_p (void)
+{
+ if (! reload_completed || frame_pointer_needed)
+ return 0;
+
+ return 1;
+}
+
+/* Attributes and CC handling. */
+
+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
+ struct attribute_spec.handler. */
+static tree
+ubicom32_handle_fndecl_attribute (tree *node, tree name,
+ tree args ATTRIBUTE_UNUSED,
+ int flags ATTRIBUTE_UNUSED,
+ bool *no_add_attrs)
+{
+ if (TREE_CODE (*node) != FUNCTION_DECL)
+ {
+ warning ("'%s' attribute only applies to functions",
+ IDENTIFIER_POINTER (name));
+ *no_add_attrs = true;
+ }
+
+ return NULL_TREE;
+}
+
+/* A C expression that places additional restrictions on the register class to
+ use when it is necessary to copy value X into a register in class CLASS.
+ The value is a register class; perhaps CLASS, or perhaps another, smaller
+ class. On many machines, the following definition is safe:
+
+ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
+
+ Sometimes returning a more restrictive class makes better code. For
+ example, on the 68000, when X is an integer constant that is in range for a
+ `moveq' instruction, the value of this macro is always `DATA_REGS' as long
+ as CLASS includes the data registers. Requiring a data register guarantees
+ that a `moveq' will be used.
+
+ If X is a `const_double', by returning `NO_REGS' you can force X into a
+ memory constant. This is useful on certain machines where immediate
+ floating values cannot be loaded into certain kinds of registers. */
+
+enum reg_class
+ubicom32_preferred_reload_class (rtx x, enum reg_class class)
+{
+ /* If a symbolic constant, HIGH or a PLUS is reloaded,
+ it is most likely being used as an address, so
+ prefer ADDRESS_REGS. If 'class' is not a superset
+ of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */
+ if (GET_CODE (x) == PLUS
+ || GET_CODE (x) == HIGH
+ || GET_CODE (x) == LABEL_REF
+ || GET_CODE (x) == SYMBOL_REF
+ || GET_CODE (x) == CONST)
+ {
+ if (reg_class_subset_p (ALL_ADDRESS_REGS, class))
+ return ALL_ADDRESS_REGS;
+
+ return NO_REGS;
+ }
+
+ return class;
+}
+
+/* Function arguments and varargs. */
+
+int
+ubicom32_reg_parm_stack_space (tree fndecl)
+{
+ return 0;
+
+ if (fndecl
+ && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl))))
+ != void_type_node))
+ return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD;
+
+ return 0;
+}
+
+/* Flush the argument registers to the stack for a stdarg function;
+ return the new argument pointer. */
+
+rtx
+ubicom32_builtin_saveregs (void)
+{
+ int regno;
+
+ if (! cfun->stdarg)
+ return 0;
+
+ for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno)
+ emit_move_insn (gen_rtx_MEM (SImode,
+ gen_rtx_PRE_DEC (SImode,
+ stack_pointer_rtx)),
+ gen_rtx_REG (SImode, regno));
+
+ return stack_pointer_rtx;
+}
+
+void
+ubicom32_va_start (tree valist, rtx nextarg)
+{
+ std_expand_builtin_va_start (valist, nextarg);
+}
+
+rtx
+ubicom32_va_arg (tree valist, tree type)
+{
+ HOST_WIDE_INT size, rsize;
+ tree addr, incr, tmp;
+ rtx addr_rtx;
+ int indirect = 0;
+
+ /* Round up sizeof(type) to a word. */
+ size = int_size_in_bytes (type);
+ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
+
+ /* Large types are passed by reference. */
+ if (size > 8)
+ {
+ indirect = 1;
+ size = rsize = UNITS_PER_WORD;
+ }
+
+ incr = valist;
+ addr = incr = save_expr (incr);
+
+ /* FIXME Nat's version - is it correct? */
+ tmp = fold_convert (ptr_type_node, size_int (rsize));
+ tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp);
+ incr = fold (tmp);
+
+ /* FIXME Nat's version - is it correct? */
+ incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr);
+
+ TREE_SIDE_EFFECTS (incr) = 1;
+ expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
+
+ addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
+
+ if (size < UNITS_PER_WORD)
+ emit_insn (gen_addsi3 (addr_rtx, addr_rtx,
+ GEN_INT (UNITS_PER_WORD - size)));
+
+ if (indirect)
+ {
+ addr_rtx = force_reg (Pmode, addr_rtx);
+ addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
+ set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
+ }
+
+ return addr_rtx;
+}
+
+void
+init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname,
+ int indirect ATTRIBUTE_UNUSED)
+{
+ cum->nbytes = 0;
+
+ if (!libname)
+ {
+ cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+ != void_type_node));
+ }
+}
+
+/* Return an RTX to represent where a value in mode MODE will be passed
+ to a function. If the result is 0, the argument will be pushed. */
+
+rtx
+function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
+ int named ATTRIBUTE_UNUSED)
+{
+ rtx result = 0;
+ int size, align;
+ int nregs = UBICOM32_FUNCTION_ARG_REGS;
+
+ /* Figure out the size of the object to be passed. */
+ if (mode == BLKmode)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ /* Figure out the alignment of the object to be passed. */
+ align = size;
+
+ cum->nbytes = (cum->nbytes + 3) & ~3;
+
+ /* Don't pass this arg via a register if all the argument registers
+ are used up. */
+ if (cum->nbytes >= nregs * UNITS_PER_WORD)
+ return 0;
+
+ /* Don't pass this arg via a register if it would be split between
+ registers and memory. */
+ result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
+
+ return result;
+}
+
+rtx
+function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
+ int named ATTRIBUTE_UNUSED)
+{
+ if (cfun->stdarg)
+ return 0;
+
+ return function_arg (cum, mode, type, named);
+}
+
+
+/* Implement hook TARGET_ARG_PARTIAL_BYTES.
+
+ Returns the number of bytes at the beginning of an argument that
+ must be put in registers. The value must be zero for arguments
+ that are passed entirely in registers or that are entirely pushed
+ on the stack. */
+static int
+ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
+ tree type, bool named ATTRIBUTE_UNUSED)
+{
+ int size, diff;
+
+ int nregs = UBICOM32_FUNCTION_ARG_REGS;
+
+ /* round up to full word */
+ cum->nbytes = (cum->nbytes + 3) & ~3;
+
+ if (targetm.calls.pass_by_reference (cum, mode, type, named))
+ return 0;
+
+ /* number of bytes left in registers */
+ diff = nregs*UNITS_PER_WORD - cum->nbytes;
+
+ /* regs all used up */
+ if (diff <= 0)
+ return 0;
+
+ /* Figure out the size of the object to be passed. */
+ if (mode == BLKmode)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ /* enough space left in regs for size */
+ if (size <= diff)
+ return 0;
+
+ /* put diff bytes in regs and rest on stack */
+ return diff;
+
+}
+
+static bool
+ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode, const_tree type,
+ bool named ATTRIBUTE_UNUSED)
+{
+ int size;
+
+ if (type)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ return size <= 0 || size > 8;
+}
+
+static bool
+ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
+ enum machine_mode mode, const_tree type,
+ bool named ATTRIBUTE_UNUSED)
+{
+ int size;
+
+ if (type)
+ size = int_size_in_bytes (type);
+ else
+ size = GET_MODE_SIZE (mode);
+
+ return size <= 0 || size > 8;
+}
+
+static bool
+ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
+{
+ int size, mode;
+
+ if (!type)
+ return true;
+
+ size = int_size_in_bytes(type);
+ if (size > 8)
+ return true;
+
+ mode = TYPE_MODE(type);
+ if (mode == BLKmode)
+ return true;
+
+ return false;
+}
+
+/* Return true if a given register number REGNO is acceptable for machine
+ mode MODE. */
+bool
+ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
+{
+ /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */
+ if (! ubicom32_v3)
+ {
+ if (regno == ACC0_HI_REGNUM)
+ return (mode == QImode || mode == HImode);
+ }
+
+ /* Only the flags reg can hold CCmode. */
+ if (GET_MODE_CLASS (mode) == MODE_CC)
+ return regno == CC_REGNUM;
+
+ /* We restrict the choice of DImode registers to only being address,
+ data or accumulator regs. We also restrict them to only start on
+ even register numbers so we never have to worry about partial
+ overlaps between operands in instructions. */
+ if (GET_MODE_SIZE (mode) > 4)
+ {
+ switch (REGNO_REG_CLASS (regno))
+ {
+ case ADDRESS_REGS:
+ case DATA_REGS:
+ case ACC_REGS:
+ return (regno & 1) == 0;
+
+ default:
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
+ and check its validity for a certain class.
+ We have two alternate definitions for each of them.
+ The usual definition accepts all pseudo regs; the other rejects
+ them unless they have been allocated suitable hard regs.
+ The symbol REG_OK_STRICT causes the latter definition to be used.
+
+ Most source files want to accept pseudo regs in the hope that
+ they will get allocated to the class that the insn wants them to be in.
+ Source files for reload pass need to be strict.
+ After reload, it makes no difference, since pseudo regs have
+ been eliminated by then.
+
+ These assume that REGNO is a hard or pseudo reg number.
+ They give nonzero only if REGNO is a hard reg of the suitable class
+ or a pseudo reg currently allocated to a suitable hard reg.
+ Since they use reg_renumber, they are safe only once reg_renumber
+ has been allocated, which happens in local-alloc.c. */
+
+int
+ubicom32_regno_ok_for_base_p (int regno, int strict)
+{
+ if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM)
+ || (!strict
+ && (regno >= FIRST_PSEUDO_REGISTER
+ || regno == ARG_POINTER_REGNUM))
+ || (strict && (reg_renumber
+ && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM
+ && reg_renumber[regno] <= STACK_POINTER_REGNUM)))
+ return 1;
+
+ return 0;
+}
+
+int
+ubicom32_regno_ok_for_index_p (int regno, int strict)
+{
+ if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM)
+ || (!strict && regno >= FIRST_PSEUDO_REGISTER)
+ || (strict && (reg_renumber
+ && reg_renumber[regno] >= FIRST_DATA_REGNUM
+ && reg_renumber[regno] <= LAST_DATA_REGNUM)))
+ return 1;
+
+ return 0;
+}
+
+/* Returns 1 if X is a valid index register. STRICT is 1 if only hard
+ registers should be accepted. Accept either REG or SUBREG where a
+ register is valid. */
+
+static bool
+ubicom32_is_index_reg (rtx x, int strict)
+{
+ if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict))
+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
+ && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict)))
+ return true;
+
+ return false;
+}
+
+/* Return 1 if X is a valid index for a memory address. */
+
+static bool
+ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict)
+{
+ /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2
+ or 4 depending on mode. */
+ if (CONST_INT_P (x))
+ {
+ switch (mode)
+ {
+ case QImode:
+ return satisfies_constraint_J (x);
+
+ case HImode:
+ return satisfies_constraint_K (x);
+
+ case SImode:
+ case SFmode:
+ return satisfies_constraint_L (x);
+
+ case DImode:
+ return satisfies_constraint_L (x)
+ && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4));
+
+ default:
+ return false;
+ }
+ }
+
+ if (mode != SImode && mode != HImode && mode != QImode)
+ return false;
+
+ /* Register index scaled by mode of operand: REG + REG * modesize.
+ Valid scaled index registers are:
+
+ SImode (mult (dreg) 4))
+ HImode (mult (dreg) 2))
+ QImode (mult (dreg) 1)) */
+ if (GET_CODE (x) == MULT
+ && ubicom32_is_index_reg (XEXP (x, 0), strict)
+ && CONST_INT_P (XEXP (x, 1))
+ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode))
+ return true;
+
+ /* REG + REG addressing is allowed for QImode. */
+ if (ubicom32_is_index_reg (x, strict) && mode == QImode)
+ return true;
+
+ return false;
+}
+
+static bool
+ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs)
+{
+ if (offs < 0)
+ return false;
+
+ switch (mode)
+ {
+ case QImode:
+ return offs <= 127;
+
+ case HImode:
+ return offs <= 254;
+
+ case SImode:
+ case SFmode:
+ return offs <= 508;
+
+ case DImode:
+ return offs <= 504;
+
+ default:
+ return false;
+ }
+}
+
+static int
+ubicom32_get_valid_offset_mask (enum machine_mode mode)
+{
+ switch (mode)
+ {
+ case QImode:
+ return 127;
+
+ case HImode:
+ return 255;
+
+ case SImode:
+ case SFmode:
+ return 511;
+
+ case DImode:
+ return 255;
+
+ default:
+ return 0;
+ }
+}
+
+/* Returns 1 if X is a valid base register. STRICT is 1 if only hard
+ registers should be accepted. Accept either REG or SUBREG where a
+ register is valid. */
+
+static bool
+ubicom32_is_base_reg (rtx x, int strict)
+{
+ if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict))
+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
+ && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict)))
+ return true;
+
+ return false;
+}
+
+static bool
+ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
+{
+ return TARGET_FDPIC;
+}
+
+/* Determine if X is a legitimate constant. */
+
+bool
+ubicom32_legitimate_constant_p (rtx x)
+{
+ /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether
+ a constant can be entered into reg_equiv_constant[]. If we return true,
+ reload can create new instances of the constant whenever it likes.
+
+ The idea is therefore to accept as many constants as possible (to give
+ reload more freedom) while rejecting constants that can only be created
+ at certain times. In particular, anything with a symbolic component will
+ require use of the pseudo FDPIC register, which is only available before
+ reload. */
+ if (TARGET_FDPIC)
+ {
+ if (GET_CODE (x) == SYMBOL_REF
+ || (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
+ || CONSTANT_ADDRESS_P (x))
+ return false;
+
+ return true;
+ }
+
+ /* For non-PIC code anything goes! */
+ return true;
+}
+
+/* Address validation. */
+
+bool
+ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
+{
+ if (TARGET_DEBUG_ADDRESS)
+ {
+ fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n",
+ (strict) ? " (STRICT)" : "");
+ debug_rtx (x);
+ }
+
+ if (CONSTANT_ADDRESS_P (x))
+ return false;
+
+ if (ubicom32_is_base_reg (x, strict))
+ return true;
+
+ if ((GET_CODE (x) == POST_INC
+ || GET_CODE (x) == PRE_INC
+ || GET_CODE (x) == POST_DEC
+ || GET_CODE (x) == PRE_DEC)
+ && REG_P (XEXP (x, 0))
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
+ && mode != DImode)
+ return true;
+
+ if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY)
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
+ && GET_CODE (XEXP (x, 1)) == PLUS
+ && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0))
+ && CONST_INT_P (XEXP (XEXP (x, 1), 1))
+ && mode != DImode)
+ {
+ HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1));
+ switch (mode)
+ {
+ case QImode:
+ return disp >= -8 && disp <= 7;
+
+ case HImode:
+ return disp >= -16 && disp <= 14 && ! (disp & 1);
+
+ case SImode:
+ return disp >= -32 && disp <= 28 && ! (disp & 3);
+
+ default:
+ return false;
+ }
+ }
+
+ /* Accept base + index * scale. */
+ if (GET_CODE (x) == PLUS
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
+ && ubicom32_is_index_expr (mode, XEXP (x, 1), strict))
+ return true;
+
+ /* Accept index * scale + base. */
+ if (GET_CODE (x) == PLUS
+ && ubicom32_is_base_reg (XEXP (x, 1), strict)
+ && ubicom32_is_index_expr (mode, XEXP (x, 0), strict))
+ return true;
+
+ if (! TARGET_FDPIC)
+ {
+ /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits
+ displacement operand:
+
+ moveai a1, #%hi(SYM)
+ move.4 d3, %lo(SYM)(a1) */
+ if (GET_CODE (x) == LO_SUM
+ && ubicom32_is_base_reg (XEXP (x, 0), strict)
+ && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
+ || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */)
+ && mode != DImode)
+ return true;
+ }
+
+ if (TARGET_DEBUG_ADDRESS)
+ fprintf (stderr, "\nNot a legitimate address.\n");
+
+ return false;
+}
+
+rtx
+ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
+ enum machine_mode mode)
+{
+ if (mode == BLKmode)
+ return NULL_RTX;
+
+ if (GET_CODE (x) == PLUS
+ && REG_P (XEXP (x, 0))
+ && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0)))
+ && CONST_INT_P (XEXP (x, 1))
+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1))))
+ {
+ rtx base;
+ rtx plus;
+ rtx new_rtx;
+ HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
+ HOST_WIDE_INT high = val ^ low;
+
+ if (val < 0)
+ return NULL_RTX;
+
+ if (! low)
+ return NULL_RTX;
+
+ /* Reload the high part into a base reg; leave the low part
+ in the mem directly. */
+ base = XEXP (x, 0);
+ if (! ubicom32_is_base_reg (base, 0))
+ base = copy_to_mode_reg (Pmode, base);
+
+ plus = expand_simple_binop (Pmode, PLUS,
+ gen_int_mode (high, Pmode),
+ base, NULL, 0, OPTAB_WIDEN);
+ new_rtx = plus_constant (plus, low);
+
+ return new_rtx;
+ }
+
+ return NULL_RTX;
+}
+
+/* Try a machine-dependent way of reloading an illegitimate address AD
+ operand. If we find one, push the reload and and return the new address.
+
+ MODE is the mode of the enclosing MEM. OPNUM is the operand number
+ and TYPE is the reload type of the current reload. */
+
+rtx
+ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode,
+ int opnum, int type)
+{
+ /* Is this an address that we've already fixed up? If it is then
+ recognize it and move on. */
+ if (GET_CODE (ad) == PLUS
+ && GET_CODE (XEXP (ad, 0)) == PLUS
+ && REG_P (XEXP (XEXP (ad, 0), 0))
+ && CONST_INT_P (XEXP (XEXP (ad, 0), 1))
+ && CONST_INT_P (XEXP (ad, 1)))
+ {
+ push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ return ad;
+ }
+
+ /* Have we got an address where the offset is simply out of range? If
+ yes then reload the range as a high part and smaller offset. */
+ if (GET_CODE (ad) == PLUS
+ && REG_P (XEXP (ad, 0))
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))
+ && CONST_INT_P (XEXP (ad, 1))
+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1))))
+ {
+ rtx temp;
+ rtx new_rtx;
+
+ HOST_WIDE_INT val = INTVAL (XEXP (ad, 1));
+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode);
+ HOST_WIDE_INT high = val ^ low;
+
+ /* Reload the high part into a base reg; leave the low part
+ in the mem directly. */
+ temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high));
+ new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low));
+
+ push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL,
+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
+ opnum, (enum reload_type) type);
+ return new_rtx;
+ }
+
+ /* If we're presented with an pre/post inc/dec then we must force this
+ to be done in an address register. The register allocator should
+ work this out for itself but at times ends up trying to use the wrong
+ class. If we get the wrong class then reload will end up generating
+ at least 3 instructions whereas this way we can hopefully keep it to
+ just 2. */
+ if ((GET_CODE (ad) == POST_INC
+ || GET_CODE (ad) == PRE_INC
+ || GET_CODE (ad) == POST_DEC
+ || GET_CODE (ad) == PRE_DEC)
+ && REG_P (XEXP (ad, 0))
+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
+ && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))))
+ {
+ push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0),
+ BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0,
+ opnum, RELOAD_OTHER);
+ return ad;
+ }
+
+ return NULL_RTX;
+}
+
+/* Compute a (partial) cost for rtx X. Return true if the complete
+ cost has been computed, and false if subexpressions should be
+ scanned. In either case, *TOTAL contains the cost result. */
+
+static bool
+ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total,
+ bool speed ATTRIBUTE_UNUSED)
+{
+ enum machine_mode mode = GET_MODE (x);
+
+ switch (code)
+ {
+ case CONST_INT:
+ /* Very short constants often fold into instructions so
+ we pretend that they don't cost anything! This is
+ really important as regards zero values as otherwise
+ the compiler has a nasty habit of wanting to reuse
+ zeroes that are in regs but that tends to pessimize
+ the code. */
+ if (satisfies_constraint_I (x))
+ {
+ *total = 0;
+ return true;
+ }
+
+ /* Bit clearing costs nothing */
+ if (outer_code == AND
+ && exact_log2 (~INTVAL (x)) != -1)
+ {
+ *total = 0;
+ return true;
+ }
+
+ /* Masking the lower set of bits costs nothing. */
+ if (outer_code == AND
+ && exact_log2 (INTVAL (x) + 1) != -1)
+ {
+ *total = 0;
+ return true;
+ }
+
+ /* Bit setting costs nothing. */
+ if (outer_code == IOR
+ && exact_log2 (INTVAL (x)) != -1)
+ {
+ *total = 0;
+ return true;
+ }
+
+ /* Larger constants that can be loaded via movei aren't too
+ bad. If we're just doing a set they cost nothing extra. */
+ if (satisfies_constraint_N (x))
+ {
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (2);
+ else
+ *total = COSTS_N_INSNS (1);
+ return true;
+ }
+
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (5);
+ else
+ *total = COSTS_N_INSNS (3);
+ return true;
+
+ case CONST_DOUBLE:
+ /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
+ so their cost is very high. */
+ *total = COSTS_N_INSNS (6);
+ return true;
+
+ case CONST:
+ case SYMBOL_REF:
+ case MEM:
+ *total = 0;
+ return true;
+
+ case IF_THEN_ELSE:
+ *total = COSTS_N_INSNS (1);
+ return true;
+
+ case LABEL_REF:
+ case HIGH:
+ case LO_SUM:
+ case BSWAP:
+ case PLUS:
+ case MINUS:
+ case AND:
+ case IOR:
+ case XOR:
+ case ASHIFT:
+ case ASHIFTRT:
+ case LSHIFTRT:
+ case NEG:
+ case NOT:
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ case ZERO_EXTRACT:
+ if (outer_code == SET)
+ {
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (2);
+ else
+ *total = COSTS_N_INSNS (1);
+ }
+ return true;
+
+ case COMPARE:
+ if (outer_code == SET)
+ {
+ if (GET_MODE (XEXP (x, 0)) == DImode
+ || GET_MODE (XEXP (x, 1)) == DImode)
+ *total = COSTS_N_INSNS (2);
+ else
+ *total = COSTS_N_INSNS (1);
+ }
+ return true;
+
+ case UMOD:
+ case UDIV:
+ case MOD:
+ case DIV:
+ if (outer_code == SET)
+ {
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (600);
+ else
+ *total = COSTS_N_INSNS (200);
+ }
+ return true;
+
+ case MULT:
+ if (outer_code == SET)
+ {
+ if (! ubicom32_v4)
+ {
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (15);
+ else
+ *total = COSTS_N_INSNS (5);
+ }
+ else
+ {
+ if (mode == DImode)
+ *total = COSTS_N_INSNS (6);
+ else
+ *total = COSTS_N_INSNS (2);
+ }
+ }
+ return true;
+
+ case UNSPEC:
+ if (XINT (x, 1) == UNSPEC_FDPIC_GOT
+ || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC)
+ *total = 0;
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if ADDR can have different meanings depending on the machine
+ mode of the memory reference it is used for or if the address is
+ valid for some modes but not others.
+
+ Autoincrement and autodecrement addresses typically have
+ mode-dependent effects because the amount of the increment or
+ decrement is the size of the operand being addressed. Some machines
+ have other mode-dependent addresses. Many RISC machines have no
+ mode-dependent addresses.
+
+ You may assume that ADDR is a valid address for the machine. */
+
+int
+ubicom32_mode_dependent_address_p (rtx addr)
+{
+ if (GET_CODE (addr) == POST_INC
+ || GET_CODE (addr) == PRE_INC
+ || GET_CODE (addr) == POST_DEC
+ || GET_CODE (addr) == PRE_DEC
+ || GET_CODE (addr) == POST_MODIFY
+ || GET_CODE (addr) == PRE_MODIFY)
+ return 1;
+
+ return 0;
+}
+
+static void
+ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+ fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n",
+ get_frame_size (), crtl->args.pretend_args_size,
+ save_regs_size, crtl->outgoing_args_size,
+ current_function_is_leaf ? "leaf" : "nonleaf");
+}
+
+static void
+ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
+ HOST_WIDE_INT size ATTRIBUTE_UNUSED)
+{
+ ubicom32_reorg_completed = 0;
+}
+
+static void
+ubicom32_machine_dependent_reorg (void)
+{
+#if 0 /* Commenting out this optimization until it is fixed */
+ if (optimize)
+ {
+ compute_bb_for_insn ();
+
+ /* Do a very simple CSE pass over just the hard registers. */
+ reload_cse_regs (get_insns ());
+
+ /* Reload_cse_regs can eliminate potentially-trapping MEMs.
+ Remove any EH edges associated with them. */
+ if (flag_non_call_exceptions)
+ purge_all_dead_edges ();
+ }
+#endif
+ ubicom32_reorg_completed = 1;
+}
+
+void
+ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target)
+{
+ rtx note;
+ int mostly_false_jump;
+ rtx xoperands[2];
+ rtx cc_reg;
+
+ note = find_reg_note (insn, REG_BR_PROB, 0);
+ mostly_false_jump = !note || (INTVAL (XEXP (note, 0))
+ <= REG_BR_PROB_BASE / 2);
+
+ xoperands[0] = target;
+ xoperands[1] = cond;
+ cc_reg = XEXP (cond, 0);
+
+ if (GET_MODE (cc_reg) == CCWmode
+ || GET_MODE (cc_reg) == CCWZmode
+ || GET_MODE (cc_reg) == CCWZNmode)
+ {
+ if (mostly_false_jump)
+ output_asm_insn ("jmp%b1.w.f\t%0", xoperands);
+ else
+ output_asm_insn ("jmp%b1.w.t\t%0", xoperands);
+ return;
+ }
+
+ if (GET_MODE (cc_reg) == CCSmode
+ || GET_MODE (cc_reg) == CCSZmode
+ || GET_MODE (cc_reg) == CCSZNmode)
+ {
+ if (mostly_false_jump)
+ output_asm_insn ("jmp%b1.s.f\t%0", xoperands);
+ else
+ output_asm_insn ("jmp%b1.s.t\t%0", xoperands);
+ return;
+ }
+
+ abort ();
+}
+
+/* Return non-zero if FUNC is a naked function. */
+
+static int
+ubicom32_naked_function_p (void)
+{
+ return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
+}
+
+/* Return an RTX indicating where the return address to the
+ calling function can be found. */
+rtx
+ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
+{
+ if (count != 0)
+ return NULL_RTX;
+
+ return get_hard_reg_initial_val (Pmode, LINK_REGNO);
+}
+
+/*
+ * ubicom32_readonly_data_section: This routtine handles code
+ * at the start of readonly data sections
+ */
+static void
+ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED)
+{
+ static int num = 0;
+ if (in_section == readonly_data_section){
+ fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP);
+ if (flag_data_sections){
+ fprintf (asm_out_file, ".rodata%d", num);
+ fprintf (asm_out_file, ",\"a\"");
+ }
+ fprintf (asm_out_file, "\n");
+ }
+ num++;
+}
+
+/*
+ * ubicom32_text_section: not in readonly section
+ */
+static void
+ubicom32_text_section(const void *data ATTRIBUTE_UNUSED)
+{
+ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
+}
+
+/*
+ * ubicom32_data_section: not in readonly section
+ */
+static void
+ubicom32_data_section(const void *data ATTRIBUTE_UNUSED)
+{
+ fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP);
+}
+
+/*
+ * ubicom32_asm_init_sections: This routine implements special
+ * section handling
+ */
+static void
+ubicom32_asm_init_sections(void)
+{
+ text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL);
+
+ data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL);
+
+ readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL);
+}
+
+/*
+ * ubicom32_profiler: This routine would call
+ * mcount to support prof and gprof if mcount
+ * was supported. Currently, do nothing.
+ */
+void
+ubicom32_profiler(void)
+{
+}
+
+/* Initialise the builtin functions. Start by initialising
+ descriptions of different types of functions (e.g., void fn(int),
+ int fn(void)), and then use these to define the builtins. */
+static void
+ubicom32_init_builtins (void)
+{
+ tree endlink;
+ tree short_unsigned_endlink;
+ tree unsigned_endlink;
+ tree short_unsigned_ftype_short_unsigned;
+ tree unsigned_ftype_unsigned;
+
+ endlink = void_list_node;
+
+ short_unsigned_endlink
+ = tree_cons (NULL_TREE, short_unsigned_type_node, endlink);
+
+ unsigned_endlink
+ = tree_cons (NULL_TREE, unsigned_type_node, endlink);
+
+ short_unsigned_ftype_short_unsigned
+ = build_function_type (short_unsigned_type_node, short_unsigned_endlink);
+
+ unsigned_ftype_unsigned
+ = build_function_type (unsigned_type_node, unsigned_endlink);
+
+ /* Initialise the byte swap function. */
+ add_builtin_function ("__builtin_ubicom32_swapb_2",
+ short_unsigned_ftype_short_unsigned,
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
+ BUILT_IN_MD, NULL,
+ NULL_TREE);
+
+ /* Initialise the byte swap function. */
+ add_builtin_function ("__builtin_ubicom32_swapb_4",
+ unsigned_ftype_unsigned,
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4,
+ BUILT_IN_MD, NULL,
+ NULL_TREE);
+}
+
+/* Given a builtin function taking 2 operands (i.e., target + source),
+ emit the RTL for the underlying instruction. */
+static rtx
+ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target)
+{
+ tree arg0;
+ rtx op0, pat;
+ enum machine_mode tmode, mode0;
+
+ /* Grab the incoming argument and emit its RTL. */
+ arg0 = TREE_VALUE (arglist);
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
+
+ /* Determine the modes of the instruction operands. */
+ tmode = insn_data[icode].operand[0].mode;
+ mode0 = insn_data[icode].operand[1].mode;
+
+ /* Ensure that the incoming argument RTL is in a register of the
+ correct mode. */
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
+ op0 = copy_to_mode_reg (mode0, op0);
+
+ /* If there isn't a suitable target, emit a target register. */
+ if (target == 0
+ || GET_MODE (target) != tmode
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
+ target = gen_reg_rtx (tmode);
+
+ /* Emit and return the new instruction. */
+ pat = GEN_FCN (icode) (target, op0);
+ if (!pat)
+ return 0;
+ emit_insn (pat);
+
+ return target;
+}
+
+/* Expand a call to a builtin function. */
+static rtx
+ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
+ enum machine_mode mode ATTRIBUTE_UNUSED,
+ int ignore ATTRIBUTE_UNUSED)
+{
+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
+ tree arglist = CALL_EXPR_ARGS(exp);
+ int fcode = DECL_FUNCTION_CODE (fndecl);
+
+ switch (fcode)
+ {
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
+ return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target);
+
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
+ return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target);
+
+ default:
+ gcc_unreachable();
+ }
+
+ /* Should really do something sensible here. */
+ return NULL_RTX;
+}
+
+/* Fold any constant argument for a swapb.2 instruction. */
+static tree
+ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist)
+{
+ tree arg0;
+
+ arg0 = TREE_VALUE (arglist);
+
+ /* Optimize constant value. */
+ if (TREE_CODE (arg0) == INTEGER_CST)
+ {
+ HOST_WIDE_INT v;
+ HOST_WIDE_INT res;
+
+ v = TREE_INT_CST_LOW (arg0);
+ res = ((v >> 8) & 0xff)
+ | ((v & 0xff) << 8);
+
+ return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res);
+ }
+
+ return NULL_TREE;
+}
+
+/* Fold any constant argument for a swapb.4 instruction. */
+static tree
+ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist)
+{
+ tree arg0;
+
+ arg0 = TREE_VALUE (arglist);
+
+ /* Optimize constant value. */
+ if (TREE_CODE (arg0) == INTEGER_CST)
+ {
+ unsigned HOST_WIDE_INT v;
+ unsigned HOST_WIDE_INT res;
+
+ v = TREE_INT_CST_LOW (arg0);
+ res = ((v >> 24) & 0xff)
+ | (((v >> 16) & 0xff) << 8)
+ | (((v >> 8) & 0xff) << 16)
+ | ((v & 0xff) << 24);
+
+ return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0);
+ }
+
+ return NULL_TREE;
+}
+
+/* Fold any constant arguments for builtin functions. */
+static tree
+ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
+{
+ switch (DECL_FUNCTION_CODE (fndecl))
+ {
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2:
+ return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist);
+
+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4:
+ return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist);
+
+ default:
+ return NULL;
+ }
+}
+
+/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to
+ tell the assembler to generate pointers to function descriptors in
+ some cases. */
+static bool
+ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p)
+{
+ if (TARGET_FDPIC && size == UNITS_PER_WORD)
+ {
+ if (GET_CODE (value) == SYMBOL_REF
+ && SYMBOL_REF_FUNCTION_P (value))
+ {
+ fputs ("\t.picptr\t%funcdesc(", asm_out_file);
+ output_addr_const (asm_out_file, value);
+ fputs (")\n", asm_out_file);
+ return true;
+ }
+
+ if (!aligned_p)
+ {
+ /* We've set the unaligned SI op to NULL, so we always have to
+ handle the unaligned case here. */
+ assemble_integer_with_op ("\t.4byte\t", value);
+ return true;
+ }
+ }
+
+ return default_assemble_integer (value, size, aligned_p);
+}
+
+/* If the constant I can be constructed by shifting a source-1 immediate
+ by a constant number of bits then return the bit count. If not
+ return 0. */
+
+int
+ubicom32_shiftable_const_int (int i)
+{
+ int shift = 0;
+
+ /* Note that any constant that can be represented as an immediate to
+ a movei instruction is automatically ignored here in the interests
+ of the clarity of the output asm code. */
+ if (i >= -32768 && i <= 32767)
+ return 0;
+
+ /* Find the number of trailing zeroes. We could use __builtin_ctz
+ here but it's not obvious if this is supported on all build
+ compilers so we err on the side of caution. */
+ if ((i & 0xffff) == 0)
+ {
+ shift += 16;
+ i >>= 16;
+ }
+
+ if ((i & 0xff) == 0)
+ {
+ shift += 8;
+ i >>= 8;
+ }
+
+ if ((i & 0xf) == 0)
+ {
+ shift += 4;
+ i >>= 4;
+ }
+
+ if ((i & 0x3) == 0)
+ {
+ shift += 2;
+ i >>= 2;
+ }
+
+ if ((i & 0x1) == 0)
+ {
+ shift += 1;
+ i >>= 1;
+ }
+
+ if (i >= -128 && i <= 127)
+ return shift;
+
+ return 0;
+}
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.h
@@ -0,0 +1,1564 @@
+/* Definitions of target machine for Ubicom32
+
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+
+
+#define OBJECT_FORMAT_ELF
+
+/* Run-time target specifications. */
+
+/* Target CPU builtins. */
+#define TARGET_CPU_CPP_BUILTINS() \
+ do \
+ { \
+ builtin_define_std ("__UBICOM32__"); \
+ builtin_define_std ("__ubicom32__"); \
+ \
+ if (TARGET_FDPIC) \
+ { \
+ builtin_define ("__UBICOM32_FDPIC__"); \
+ builtin_define ("__FDPIC__"); \
+ } \
+ } \
+ while (0)
+
+#ifndef TARGET_DEFAULT
+#define TARGET_DEFAULT 0
+#endif
+
+extern int ubicom32_case_values_threshold;
+
+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */
+extern int ubicom32_v3;
+
+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */
+extern int ubicom32_v4;
+
+extern int ubicom32_stack_size;
+
+/* Flag for whether we can use calli instead of ret in returns. */
+extern int ubicom32_can_use_calli_to_ret;
+
+/* This macro is a C statement to print on `stderr' a string describing the
+ particular machine description choice. Every machine description should
+ define `TARGET_VERSION'. */
+#define TARGET_VERSION fprintf (stderr, " (UBICOM32)");
+
+/* We don't need a frame pointer to debug things. Doing this means
+ that gcc can turn on -fomit-frame-pointer when '-O' is specified. */
+#define CAN_DEBUG_WITHOUT_FP
+
+/* We need to handle processor-specific options. */
+#define OVERRIDE_OPTIONS ubicom32_override_options ()
+
+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
+ ubicom32_optimization_options (LEVEL, SIZE)
+
+/* For Ubicom32 the least significant bit has the lowest bit number
+ so we define this to be 0. */
+#define BITS_BIG_ENDIAN 0
+
+/* For Ubicom32 the most significant byte in a word has the lowest
+ number. */
+#define BYTES_BIG_ENDIAN 1
+
+/* For Ubicom32, in a multiword object, the most signifant word has the
+ lowest number. */
+#define WORDS_BIG_ENDIAN 1
+
+/* Ubicom32 has 8 bits per byte. */
+#define BITS_PER_UNIT 8
+
+/* Ubicom32 has 32 bits per word. */
+#define BITS_PER_WORD 32
+
+/* Width of a word, in units (bytes). */
+#define UNITS_PER_WORD 4
+
+/* Width of a pointer, in bits. */
+#define POINTER_SIZE 32
+
+/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use
+ SImode. */
+#define Pmode SImode
+
+/* Normal alignment required for function parameters on the stack, in
+ bits. */
+#define PARM_BOUNDARY 32
+
+/* We need to maintain the stack on a 32-bit boundary. */
+#define STACK_BOUNDARY 32
+
+/* Alignment required for a function entry point, in bits. */
+#define FUNCTION_BOUNDARY 32
+
+/* Alias for the machine mode used for memory references to functions being
+ called, in `call' RTL expressions. We use byte-oriented addresses
+ here. */
+#define FUNCTION_MODE QImode
+
+/* Biggest alignment that any data type can require on this machine,
+ in bits. */
+#define BIGGEST_ALIGNMENT 32
+
+/* this default to BIGGEST_ALIGNMENT unless defined */
+/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/
+#undef MAX_OFILE_ALIGNMENT
+#define MAX_OFILE_ALIGNMENT (128 * 8)
+
+/* Alignment in bits to be given to a structure bit field that follows an empty
+ field such as `int : 0;'. */
+#define EMPTY_FIELD_BOUNDARY 32
+
+/* All structures must be a multiple of 32 bits in size. */
+#define STRUCTURE_SIZE_BOUNDARY 32
+
+/* A bit-field declared as `int' forces `int' alignment for the struct. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* For Ubicom32 we absolutely require that data be aligned with nominal
+ alignment. */
+#define STRICT_ALIGNMENT 1
+
+/* Make strcpy of constants fast. */
+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
+ (TREE_CODE (EXP) == STRING_CST \
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
+
+/* Define this macro as an expression for the alignment of a structure
+ (given by STRUCT as a tree node) if the alignment computed in the
+ usual way is COMPUTED and the alignment explicitly specified was
+ SPECIFIED. */
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
+ ((((ALIGN) < BITS_PER_WORD) \
+ && (TREE_CODE (TYPE) == ARRAY_TYPE \
+ || TREE_CODE (TYPE) == UNION_TYPE \
+ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
+
+#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN)
+
+/* For Ubicom32 we default to unsigned chars. */
+#define DEFAULT_SIGNED_CHAR 0
+
+/* Machine-specific data register numbers. */
+#define FIRST_DATA_REGNUM 0
+#define D10_REGNUM 10
+#define D11_REGNUM 11
+#define D12_REGNUM 12
+#define D13_REGNUM 13
+#define LAST_DATA_REGNUM 15
+
+/* Machine-specific address register numbers. */
+#define FIRST_ADDRESS_REGNUM 16
+#define LAST_ADDRESS_REGNUM 22
+
+/* Register numbers used for passing a function's static chain pointer. If
+ register windows are used, the register number as seen by the called
+ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
+ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
+ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
+
+ The static chain register need not be a fixed register.
+
+ If the static chain is passed in memory, these macros should not be defined;
+ instead, the next two macros should be defined. */
+#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
+
+/* The register number of the frame pointer register, which is used to access
+ automatic variables in the stack frame. We generally eliminate this anyway
+ for Ubicom32 but we make it A6 by default. */
+#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM)
+
+/* The register number of the stack pointer register, which is also be a
+ fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't
+ have a hardware requirement about which register this is, but by convention
+ we use A7. */
+#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
+
+/* Machine-specific accumulator register numbers. */
+#define ACC0_HI_REGNUM 24
+#define ACC0_LO_REGNUM 25
+#define ACC1_HI_REGNUM 26
+#define ACC1_LO_REGNUM 27
+
+/* source3 register number */
+#define SOURCE3_REGNUM 28
+
+/* The register number of the arg pointer register, which is used to access the
+ function's argument list. On some machines, this is the same as the frame
+ pointer register. On some machines, the hardware determines which register
+ this is. On other machines, you can choose any register you wish for this
+ purpose. If this is not the same register as the frame pointer register,
+ then you must mark it as a fixed register according to `FIXED_REGISTERS', or
+ arrange to be able to eliminate it. */
+#define ARG_POINTER_REGNUM 29
+
+/* Pseudo-reg for condition code. */
+#define CC_REGNUM 30
+
+/* Interrupt set/clear registers. */
+#define INT_SET0_REGNUM 31
+#define INT_SET1_REGNUM 32
+#define INT_CLR0_REGNUM 33
+#define INT_CLR1_REGNUM 34
+
+/* Scratchpad registers. */
+#define SCRATCHPAD0_REGNUM 35
+#define SCRATCHPAD1_REGNUM 36
+#define SCRATCHPAD2_REGNUM 37
+#define SCRATCHPAD3_REGNUM 38
+
+/* FDPIC register. */
+#define FDPIC_REGNUM 16
+
+/* Number of hardware registers known to the compiler. They receive numbers 0
+ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
+ really is assigned the number `FIRST_PSEUDO_REGISTER'. */
+#define FIRST_PSEUDO_REGISTER 39
+
+/* An initializer that says which registers are used for fixed purposes all
+ throughout the compiled code and are therefore not available for general
+ allocation. These would include the stack pointer, the frame pointer
+ (except on machines where that can be used as a general register when no
+ frame pointer is needed), the program counter on machines where that is
+ considered one of the addressable registers, and any other numbered register
+ with a standard use.
+
+ This information is expressed as a sequence of numbers, separated by commas
+ and surrounded by braces. The Nth number is 1 if register N is fixed, 0
+ otherwise.
+
+ The table initialized from this macro, and the table initialized by the
+ following one, may be overridden at run time either automatically, by the
+ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
+ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
+#define FIXED_REGISTERS \
+ { \
+ 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \
+ 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \
+ 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \
+ 0, 0, /* acc0 hi/lo */ \
+ 0, 0, /* acc1 hi/lo */ \
+ 0, /* source3 */ \
+ 1, /* arg */ \
+ 1, /* cc */ \
+ 1, 1, /* int_set[01] */ \
+ 1, 1, /* int_clr[01] */ \
+ 1, 1, 1, 1 /* scratchpad[0123] */ \
+ }
+
+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
+ general) by function calls as well as for fixed registers. This macro
+ therefore identifies the registers that are not available for general
+ allocation of values that must live across function calls.
+
+ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
+ saves it on function entry and restores it on function exit, if the register
+ is used within the function. */
+#define CALL_USED_REGISTERS \
+ { \
+ 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \
+ 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \
+ 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \
+ 1, 1, /* acc0 hi/lo */ \
+ 1, 1, /* acc1 hi/lo */ \
+ 1, /* source3 */ \
+ 1, /* arg */ \
+ 1, /* cc */ \
+ 1, 1, /* int_set[01] */ \
+ 1, 1, /* int_clr[01] */ \
+ 1, 1, 1, 1 /* scratchpad[0123] */ \
+ }
+
+/* How to refer to registers in assembler output.
+ This sequence is indexed by compiler's hard-register-number (see above). */
+
+/* A C initializer containing the assembler's names for the machine registers,
+ each one as a C string constant. This is what translates register numbers
+ in the compiler into assembler language. */
+#define REGISTER_NAMES \
+ { \
+ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
+ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \
+ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
+ "acc0_hi", "acc0_lo", \
+ "acc1_hi", "acc1_lo", \
+ "source3", \
+ "arg", \
+ "cc", \
+ "int_set0", "int_set1", \
+ "int_clr0", "int_clr1", \
+ "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \
+ }
+
+#define CONDITIONAL_REGISTER_USAGE \
+ ubicom32_conditional_register_usage ();
+
+/* Order of allocation of registers. */
+
+/* If defined, an initializer for a vector of integers, containing the numbers
+ of hard registers in the order in which GNU CC should prefer to use them
+ (from most preferred to least).
+
+ For Ubicom32 we try using caller-clobbered data registers first, then
+ callee-saved data registers, then caller-clobbered address registers,
+ then callee-saved address registers and finally everything else.
+
+ The caller-clobbered registers are usually slightly cheaper to use because
+ there's no need to save/restore. */
+#define REG_ALLOC_ORDER \
+ { \
+ 0, 1, 2, 3, 4, /* d0 - d4 */ \
+ 5, 6, 7, 8, 9, /* d5 - d9 */ \
+ 14, /* d14 */ \
+ 10, 11, 12, 13, /* d10 - d13 */ \
+ 19, 20, 16, 21, /* a3, a4, a0, a5 */ \
+ 17, 18, 22, /* a1, a2, a6 */ \
+ 24, 25, /* acc0 hi/lo */ \
+ 26, 27, /* acc0 hi/lo */ \
+ 28 /* source3 */ \
+ }
+
+/* C expression for the number of consecutive hard registers, starting at
+ register number REGNO, required to hold a value of mode MODE. */
+#define HARD_REGNO_NREGS(REGNO, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* Most registers can hold QImode, HImode and SImode values but we have to
+ be able to indicate any hard registers that cannot hold values with some
+ modes. */
+#define HARD_REGNO_MODE_OK(REGNO, MODE) \
+ ubicom32_hard_regno_mode_ok(REGNO, MODE)
+
+/* We can rename most registers aside from the FDPIC register if we're using
+ FDPIC. */
+#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1)
+
+/* A C expression that is nonzero if it is desirable to choose register
+ allocation so as to avoid move instructions between a value of mode MODE1
+ and a value of mode MODE2.
+
+ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
+ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
+ zero. */
+#define MODES_TIEABLE_P(MODE1, MODE2) 1
+
+/* An enumeral type that must be defined with all the register class names as
+ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
+ register class, followed by one more enumeral value, `LIM_REG_CLASSES',
+ which is not a register class but rather tells how many classes there are.
+
+ Each register class has a number, which is the value of casting the class
+ name to type `int'. The number serves as an index in many of the tables
+ described below. */
+
+enum reg_class
+{
+ NO_REGS,
+ DATA_REGS,
+ FDPIC_REG,
+ ADDRESS_REGS,
+ ALL_ADDRESS_REGS,
+ ACC_LO_REGS,
+ ACC_REGS,
+ CC_REG,
+ DATA_ACC_REGS,
+ SOURCE3_REG,
+ SPECIAL_REGS,
+ GENERAL_REGS,
+ ALL_REGS,
+ LIM_REG_CLASSES
+};
+
+/* The number of distinct register classes. */
+#define N_REG_CLASSES (int) LIM_REG_CLASSES
+
+/* An initializer containing the names of the register classes as C string
+ constants. These names are used in writing some of the debugging dumps. */
+
+#define REG_CLASS_NAMES \
+{ \
+ "NO_REGS", \
+ "DATA_REGS", \
+ "FDPIC_REG", \
+ "ADDRESS_REGS", \
+ "ALL_ADDRESS_REGS", \
+ "ACC_LO_REGS", \
+ "ACC_REGS", \
+ "CC_REG", \
+ "DATA_ACC_REGS", \
+ "SOURCE3_REG", \
+ "SPECIAL_REGS", \
+ "GENERAL_REGS", \
+ "ALL_REGS", \
+ "LIM_REGS" \
+}
+
+/* An initializer containing the contents of the register classes, as integers
+ which are bit masks. The Nth integer specifies the contents of class N.
+ The way the integer MASK is interpreted is that register R is in the class
+ if `MASK & (1 << R)' is 1.
+
+ When the machine has more than 32 registers, an integer does not suffice.
+ Then the integers are replaced by sub-initializers, braced groupings
+ containing several integers. Each sub-initializer must be suitable as an
+ initializer for the type `HARD_REG_SET' which is defined in
+ `hard-reg-set.h'. */
+#define REG_CLASS_CONTENTS \
+{ \
+ {0x00000000, 0x00000000}, /* No regs */ \
+ {0x0000ffff, 0x00000000}, /* DATA_REGS */ \
+ {0x00010000, 0x00000000}, /* FDPIC_REG */ \
+ {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \
+ {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \
+ {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \
+ {0x0f000000, 0x00000000}, /* ACC_REGS */ \
+ {0x40000000, 0x00000000}, /* CC_REG */ \
+ {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \
+ {0x10000000, 0x00000000}, /* SOURGE3_REG */ \
+ {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \
+ {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \
+ {0xbfffffff, 0x0000007f} /* ALL_REGS */ \
+}
+
+extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER];
+
+/* A C expression whose value is a register class containing hard register
+ REGNO. In general there is more than one such class; choose a class which
+ is "minimal", meaning that no smaller class also contains the register. */
+#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO])
+
+#define IRA_COVER_CLASSES \
+{ \
+ GENERAL_REGS, \
+ LIM_REG_CLASSES \
+}
+
+/* Ubicom32 base registers must be address registers since addresses can
+ only be reached via address registers. */
+#define BASE_REG_CLASS ALL_ADDRESS_REGS
+
+/* Ubicom32 index registers must be data registers since we cannot add
+ two address registers together to form an address. */
+#define INDEX_REG_CLASS DATA_REGS
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as a base register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register. */
+
+#ifndef REG_OK_STRICT
+#define REGNO_OK_FOR_BASE_P(regno) \
+ ubicom32_regno_ok_for_base_p (regno, 0)
+#else
+#define REGNO_OK_FOR_BASE_P(regno) \
+ ubicom32_regno_ok_for_base_p (regno, 1)
+#endif
+
+/* A C expression which is nonzero if register number NUM is suitable for use
+ as an index register in operand addresses. It may be either a suitable hard
+ register or a pseudo register that has been allocated such a hard register.
+
+ The difference between an index register and a base register is that the
+ index register may be scaled. If an address involves the sum of two
+ registers, neither one of them scaled, then either one may be labeled the
+ "base" and the other the "index"; but whichever labeling is used must fit
+ the machine's constraints of which registers may serve in each capacity.
+ The compiler will try both labelings, looking for one that is valid, and
+ will reload one or both registers only if neither labeling works. */
+#ifndef REG_OK_STRICT
+#define REGNO_OK_FOR_INDEX_P(regno) \
+ ubicom32_regno_ok_for_index_p (regno, 0)
+#else
+#define REGNO_OK_FOR_INDEX_P(regno) \
+ ubicom32_regno_ok_for_index_p (regno, 1)
+#endif
+
+/* Attempt to restrict the register class we need to copy value X intoto the
+ would-be register class CLASS. Most things are fine for Ubicom32 but we
+ have to restrict certain types of address loads. */
+#define PREFERRED_RELOAD_CLASS(X, CLASS) \
+ ubicom32_preferred_reload_class (X, CLASS)
+
+/* A C expression for the maximum number of consecutive registers of
+ class CLASS needed to hold a value of mode MODE. For Ubicom32 this
+ is pretty much identical to HARD_REGNO_NREGS. */
+#define CLASS_MAX_NREGS(CLASS, MODE) \
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+
+/* For Ubicom32 the stack grows downwards when we push a word onto the stack
+ - i.e. it moves to a smaller address. */
+#define STACK_GROWS_DOWNWARD 1
+
+/* Offset from the frame pointer to the first local variable slot to
+ be allocated. */
+#define STARTING_FRAME_OFFSET 0
+
+/* Offset from the argument pointer register to the first argument's
+ address. */
+#define FIRST_PARM_OFFSET(FNDECL) 0
+
+/* A C expression whose value is RTL representing the value of the return
+ address for the frame COUNT steps up from the current frame, after the
+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
+ defined.
+
+ The value of the expression must always be the correct address when COUNT is
+ zero, but may be `NULL_RTX' if there is not way to determine the return
+ address of other frames. */
+#define RETURN_ADDR_RTX(COUNT, FRAME) \
+ ubicom32_return_addr_rtx (COUNT, FRAME)
+
+/* Register That Address the Stack Frame. */
+
+/* We don't actually require a frame pointer in most functions with the
+ Ubicom32 architecture so we allow it to be eliminated. */
+#define FRAME_POINTER_REQUIRED 0
+
+/* Macro that defines a table of register pairs used to eliminate unecessary
+ registers that point into the stack frame.
+
+ For Ubicom32 we don't generally need an arg pointer of a frame pointer
+ so we allow the arg pointer to be replaced by either the frame pointer or
+ the stack pointer. We also allow the frame pointer to be replaced by
+ the stack pointer. */
+#define ELIMINABLE_REGS \
+{ \
+ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
+}
+
+/* Let the compiler know that we want to use the ELIMINABLE_REGS macro
+ above. */
+#define CAN_ELIMINATE(FROM, TO) 1
+
+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
+ initial difference between the specified pair of registers. This macro must
+ be defined if `ELIMINABLE_REGS' is defined. */
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
+ (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO)
+
+/* If defined, the maximum amount of space required for outgoing arguments will
+ be computed and placed into the variable
+ `current_function_outgoing_args_size'. No space will be pushed onto the
+ stack for each call; instead, the function prologue should increase the
+ stack frame size by this amount.
+
+ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
+ proper. */
+#define ACCUMULATE_OUTGOING_ARGS 1
+
+/* Define this macro if functions should assume that stack space has been
+ allocated for arguments even when their values are passed in registers.
+
+ The value of this macro is the size, in bytes, of the area reserved for
+ arguments passed in registers for the function represented by FNDECL.
+
+ This space can be allocated by the caller, or be a part of the
+ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
+ which. */
+#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL)
+
+/* A C expression that should indicate the number of bytes of its own arguments
+ that a function pops on returning, or 0 if the function pops no arguments
+ and the caller must therefore pop them all after the function returns.
+
+ FUNDECL is a C variable whose value is a tree node that describes the
+ function in question. Normally it is a node of type `FUNCTION_DECL' that
+ describes the declaration of the function. From this it is possible to
+ obtain the DECL_MACHINE_ATTRIBUTES of the function.
+
+ FUNTYPE is a C variable whose value is a tree node that describes the
+ function in question. Normally it is a node of type `FUNCTION_TYPE' that
+ describes the data type of the function. From this it is possible to obtain
+ the data types of the value and arguments (if known).
+
+ When a call to a library function is being considered, FUNTYPE will contain
+ an identifier node for the library function. Thus, if you need to
+ distinguish among various library functions, you can do so by their names.
+ Note that "library function" in this context means a function used to
+ perform arithmetic, whose name is known specially in the compiler and was
+ not mentioned in the C code being compiled.
+
+ STACK-SIZE is the number of bytes of arguments passed on the stack. If a
+ variable number of bytes is passed, it is zero, and argument popping will
+ always be the responsibility of the calling function.
+
+ On the Vax, all functions always pop their arguments, so the definition of
+ this macro is STACK-SIZE. On the 68000, using the standard calling
+ convention, no functions pop their arguments, so the value of the macro is
+ always 0 in this case. But an alternative calling convention is available
+ in which functions that take a fixed number of arguments pop them but other
+ functions (such as `printf') pop nothing (the caller pops all). When this
+ convention is in use, FUNTYPE is examined to determine whether a function
+ takes a fixed number of arguments. */
+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
+
+/* A C expression that controls whether a function argument is passed in a
+ register, and which register.
+
+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
+ arguments so far passed in registers; MODE, the machine mode of the argument;
+ TYPE, the data type of the argument as a tree node or 0 if that is not known
+ (which happens for C support library functions); and NAMED, which is 1 for an
+ ordinary argument and 0 for nameless arguments that correspond to `...' in the
+ called function's prototype.
+
+ The value of the expression should either be a `reg' RTX for the hard
+ register in which to pass the argument, or zero to pass the argument on the
+ stack.
+
+ For machines like the Vax and 68000, where normally all arguments are
+ pushed, zero suffices as a definition.
+
+ The usual way to make the ANSI library `stdarg.h' work on a machine where
+ some arguments are usually passed in registers, is to cause nameless
+ arguments to be passed on the stack instead. This is done by making
+ `FUNCTION_ARG' return 0 whenever NAMED is 0.
+
+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
+ this macro to determine if this argument is of a type that must be passed in
+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
+ returns non-zero for such an argument, the compiler will abort. If
+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
+ stack and then loaded into a register. */
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+ function_arg (&CUM, MODE, TYPE, NAMED)
+
+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
+ function_incoming_arg (&CUM, MODE, TYPE, NAMED)
+
+/* A C expression for the number of words, at the beginning of an argument,
+ must be put in registers. The value must be zero for arguments that are
+ passed entirely in registers or that are entirely pushed on the stack.
+
+ On some machines, certain arguments must be passed partially in registers
+ and partially in memory. On these machines, typically the first N words of
+ arguments are passed in registers, and the rest on the stack. If a
+ multi-word argument (a `double' or a structure) crosses that boundary, its
+ first few words must be passed in registers and the rest must be pushed.
+ This macro tells the compiler when this occurs, and how many of the words
+ should go in registers.
+
+ `FUNCTION_ARG' for these arguments should return the first register to be
+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
+ the called function. */
+
+/* A C expression that indicates when an argument must be passed by reference.
+ If nonzero for an argument, a copy of that argument is made in memory and a
+ pointer to the argument is passed instead of the argument itself. The
+ pointer is passed in whatever way is appropriate for passing a pointer to
+ that type.
+
+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
+ definition of this macro might be
+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
+ MUST_PASS_IN_STACK (MODE, TYPE) */
+
+/* If defined, a C expression that indicates when it is the called function's
+ responsibility to make a copy of arguments passed by invisible reference.
+ Normally, the caller makes a copy and passes the address of the copy to the
+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
+ nonzero, the caller does not make a copy. Instead, it passes a pointer to
+ the "live" value. The called function must not modify this value. If it
+ can be determined that the value won't be modified, it need not make a copy;
+ otherwise a copy must be made. */
+
+/* A C type for declaring a variable that is used as the first argument of
+ `FUNCTION_ARG' and other related values. For some target machines, the type
+ `int' suffices and can hold the number of bytes of argument so far.
+
+ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
+ that have been passed on the stack. The compiler has other variables to
+ keep track of that. For target machines on which all arguments are passed
+ on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
+ however, the data structure must exist and should not be empty, so use
+ `int'. */
+struct cum_arg
+{
+ int nbytes;
+ int reg;
+ int stdarg;
+};
+#define CUMULATIVE_ARGS struct cum_arg
+
+/* A C statement (sans semicolon) for initializing the variable CUM for the
+ state at the beginning of the argument list. The variable has type
+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
+ of the function which will receive the args, or 0 if the args are to a
+ compiler support library function. The value of INDIRECT is nonzero when
+ processing an indirect call, for example a call through a function pointer.
+ The value of INDIRECT is zero for a call to an explicitly named function, a
+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
+ arguments for the function being compiled.
+
+ When processing a call to a compiler support library function, LIBNAME
+ identifies which one. It is a `symbol_ref' rtx which contains the name of
+ the function, as a string. LIBNAME is 0 when an ordinary C function call is
+ being processed. Thus, each time this macro is called, either LIBNAME or
+ FNTYPE is nonzero, but never both of them at once. */
+
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \
+ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT);
+
+/* A C statement (sans semicolon) to update the summarizer variable CUM to
+ advance past an argument in the argument list. The values MODE, TYPE and
+ NAMED describe that argument. Once this is done, the variable CUM is
+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
+
+ This macro need not do anything if the argument in question was passed on
+ the stack. The compiler knows how to track the amount of stack space used
+ for arguments without any special help. */
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
+ ((CUM).nbytes += ((MODE) != BLKmode \
+ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
+ : (int_size_in_bytes (TYPE) + 3) & ~3))
+
+/* For the Ubicom32 we define the upper function argument register here. */
+#define UBICOM32_FUNCTION_ARG_REGS 10
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+ which function arguments are sometimes passed. This does *not* include
+ implicit arguments such as the static chain and the structure-value address.
+ On many machines, no registers can be used for this purpose since all
+ function arguments are pushed on the stack. */
+#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS)
+
+
+/* How Scalar Function Values are Returned. */
+
+/* The number of the hard register that is used to return a scalar value from a
+ function call. */
+#define RETURN_VALUE_REGNUM 0
+
+/* A C expression to create an RTX representing the place where a function
+ returns a value of data type VALTYPE. VALTYPE is a tree node representing a
+ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
+ represent that type. On many machines, only the mode is relevant.
+ (Actually, on most machines, scalar values are returned in the same place
+ regardless of mode).
+
+ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
+ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
+
+ If the precise function being called is known, FUNC is a tree node
+ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
+ possible to use a different value-returning convention for specific
+ functions when all their calls are known.
+
+ `FUNCTION_VALUE' is not used for return vales with aggregate data types,
+ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
+ related macros, below. */
+#define FUNCTION_VALUE(VALTYPE, FUNC) \
+ gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM)
+
+/* A C expression to create an RTX representing the place where a library
+ function returns a value of mode MODE.
+
+ Note that "library function" in this context means a compiler support
+ routine, used to perform arithmetic, whose name is known specially by the
+ compiler and was not mentioned in the C code being compiled.
+
+ The definition of `LIBRARY_VALUE' need not be concerned aggregate data
+ types, because none of the library functions returns such types. */
+#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
+
+/* A C expression that is nonzero if REGNO is the number of a hard register in
+ which the values of called function may come back.
+
+ A register whose use for returning values is limited to serving as the
+ second of a pair (for a value of type `double', say) need not be recognized
+ by this macro. So for most machines, this definition suffices:
+
+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
+
+ If the machine has register windows, so that the caller and the called
+ function use different registers for the return value, this macro should
+ recognize only the caller's register numbers. */
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM)
+
+
+/* How Large Values are Returned. */
+
+/* A C expression which can inhibit the returning of certain function values in
+ registers, based on the type of value. A nonzero value says to return the
+ function value in memory, just as large structures are always returned.
+ Here TYPE will be a C expression of type `tree', representing the data type
+ of the value.
+
+ Note that values of mode `BLKmode' must be explicitly handled by this macro.
+ Also, the option `-fpcc-struct-return' takes effect regardless of this
+ macro. On most systems, it is possible to leave the macro undefined; this
+ causes a default definition to be used, whose value is the constant 1 for
+ `BLKmode' values, and 0 otherwise.
+
+ Do not use this macro to indicate that structures and unions should always
+ be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN'
+ to indicate this. */
+#define RETURN_IN_MEMORY(TYPE) \
+ (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
+
+/* Define this macro to be 1 if all structure and union return values must be
+ in memory. Since this results in slower code, this should be defined only
+ if needed for compatibility with other compilers or with an ABI. If you
+ define this macro to be 0, then the conventions used for structure and union
+ return values are decided by the `RETURN_IN_MEMORY' macro.
+
+ If not defined, this defaults to the value 1. */
+#define DEFAULT_PCC_STRUCT_RETURN 0
+
+/* If the structure value address is not passed in a register, define
+ `STRUCT_VALUE' as an expression returning an RTX for the place
+ where the address is passed. If it returns 0, the address is
+ passed as an "invisible" first argument. */
+#define STRUCT_VALUE 0
+
+/* Define this macro as a C expression that is nonzero if the return
+ instruction or the function epilogue ignores the value of the stack pointer;
+ in other words, if it is safe to delete an instruction to adjust the stack
+ pointer before a return from the function.
+
+ Note that this macro's value is relevant only for functions for which frame
+ pointers are maintained. It is never safe to delete a final stack
+ adjustment in a function that has no frame pointer, and the compiler knows
+ this regardless of `EXIT_IGNORE_STACK'. */
+#define EXIT_IGNORE_STACK 1
+
+/* A C statement or compound statement to output to FILE some assembler code to
+ call the profiling subroutine `mcount'. Before calling, the assembler code
+ must load the address of a counter variable into a register where `mcount'
+ expects to find the address. The name of this variable is `LP' followed by
+ the number LABELNO, so you would generate the name using `LP%d' in a
+ `fprintf'.
+
+ The details of how the address should be passed to `mcount' are determined
+ by your operating system environment, not by GNU CC. To figure them out,
+ compile a small program for profiling using the system's installed C
+ compiler and look at the assembler code that results.
+
+ This declaration must be present, but it can be an abort if profiling is
+ not implemented. */
+
+#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno)
+
+/* A C statement to output, on the stream FILE, assembler code for a block of
+ data that contains the constant parts of a trampoline. This code should not
+ include a label--the label is taken care of automatically. */
+#if 0
+#define TRAMPOLINE_TEMPLATE(FILE) \
+ do { \
+ fprintf (FILE, "\tadd -4,sp\n"); \
+ fprintf (FILE, "\t.long 0x0004fffa\n"); \
+ fprintf (FILE, "\tmov (0,sp),a0\n"); \
+ fprintf (FILE, "\tadd 4,sp\n"); \
+ fprintf (FILE, "\tmov (13,a0),a1\n"); \
+ fprintf (FILE, "\tmov (17,a0),a0\n"); \
+ fprintf (FILE, "\tjmp (a0)\n"); \
+ fprintf (FILE, "\t.long 0\n"); \
+ fprintf (FILE, "\t.long 0\n"); \
+ } while (0)
+#endif
+
+/* A C expression for the size in bytes of the trampoline, as an integer. */
+#define TRAMPOLINE_SIZE 0x1b
+
+/* Alignment required for trampolines, in bits.
+
+ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
+ aligning trampolines. */
+#define TRAMPOLINE_ALIGNMENT 32
+
+/* A C statement to initialize the variable parts of a trampoline. ADDR is an
+ RTX for the address of the trampoline; FNADDR is an RTX for the address of
+ the nested function; STATIC_CHAIN is an RTX for the static chain value that
+ should be passed to the function when it is called. */
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
+{ \
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
+ (CXT)); \
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
+ (FNADDR)); \
+}
+
+/* Ubicom32 supports pre and post increment/decrement addressing. */
+#define HAVE_POST_INCREMENT 1
+#define HAVE_PRE_INCREMENT 1
+#define HAVE_POST_DECREMENT 1
+#define HAVE_PRE_DECREMENT 1
+
+/* Ubicom32 supports pre and post address side-effects with constants
+ other than the size of the memory operand. */
+#define HAVE_PRE_MODIFY_DISP 1
+#define HAVE_POST_MODIFY_DISP 1
+
+/* A C expression that is 1 if the RTX X is a constant which is a valid
+ address. On most machines, this can be defined as `CONSTANT_P (X)',
+ but a few machines are more restrictive in which constant addresses
+ are supported.
+
+ `CONSTANT_P' accepts integer-values expressions whose values are not
+ explicitly known, such as `symbol_ref', `label_ref', and `high'
+ expressions and `const' arithmetic expressions, in addition to
+ `const_int' and `const_double' expressions. */
+#define CONSTANT_ADDRESS_P(X) \
+ (GET_CODE (X) == LABEL_REF \
+ || (GET_CODE (X) == CONST \
+ && GET_CODE (XEXP (X, 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF))
+
+/* Ubicom32 supports a maximum of 2 registers in a valid memory address.
+ One is always an address register while a second, optional, one may be a
+ data register. */
+#define MAX_REGS_PER_ADDRESS 2
+
+/* A C compound statement with a conditional `goto LABEL;' executed if X (an
+ RTX) is a legitimate memory address on the target machine for a memory
+ operand of mode MODE.
+
+ It usually pays to define several simpler macros to serve as subroutines for
+ this one. Otherwise it may be too complicated to understand.
+
+ This macro must exist in two variants: a strict variant and a non-strict
+ one. The strict variant is used in the reload pass. It must be defined so
+ that any pseudo-register that has not been allocated a hard register is
+ considered a memory reference. In contexts where some kind of register is
+ required, a pseudo-register with no hard register must be rejected.
+
+ The non-strict variant is used in other passes. It must be defined to
+ accept all pseudo-registers in every context where some kind of register is
+ required.
+
+ Compiler source files that want to use the strict variant of this macro
+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
+ conditional to define the strict variant in that case and the non-strict
+ variant otherwise.
+
+ Subroutines to check for acceptable registers for various purposes (one for
+ base registers, one for index registers, and so on) are typically among the
+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
+ subroutine macros need have two variants; the higher levels of macros may be
+ the same whether strict or not.
+
+ Normally, constant addresses which are the sum of a `symbol_ref' and an
+ integer are stored inside a `const' RTX to mark them as constant.
+ Therefore, there is no need to recognize such sums specifically as
+ legitimate addresses. Normally you would simply recognize any `const' as
+ legitimate.
+
+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
+ are not marked with `const'. It assumes that a naked `plus' indicates
+ indexing. If so, then you *must* reject such naked constant sums as
+ illegitimate addresses, so that none of them will be given to
+ `PRINT_OPERAND_ADDRESS'.
+
+ On some machines, whether a symbolic address is legitimate depends on the
+ section that the address refers to. On these machines, define the macro
+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
+ then check for it here. When you see a `const', you will have to look
+ inside it to find the `symbol_ref' in order to determine the section.
+
+ The best way to modify the name string is by adding text to the beginning,
+ with suitable punctuation to prevent any ambiguity. Allocate the new name
+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
+ remove and decode the added text and output the name accordingly, and define
+ `STRIP_NAME_ENCODING' to access the original name string.
+
+ You can check the information stored here into the `symbol_ref' in the
+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
+ `PRINT_OPERAND_ADDRESS'. */
+/* On the ubicom32, the value in the address register must be
+ in the same memory space/segment as the effective address.
+
+ This is problematical for reload since it does not understand
+ that base+index != index+base in a memory reference. */
+
+#ifdef REG_OK_STRICT
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+ if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR;
+#else
+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
+ if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR;
+#endif
+
+/* Try machine-dependent ways of modifying an illegitimate address
+ to be legitimate. If we find one, return the new, valid address.
+ This macro is used in only one place: `memory_address' in explow.c.
+
+ OLDX is the address as it was before break_out_memory_refs was called.
+ In some cases it is useful to look at this to decide what needs to be done.
+
+ MODE and WIN are passed so that this macro can use
+ GO_IF_LEGITIMATE_ADDRESS.
+
+ It is always safe for this macro to do nothing. It exists to recognize
+ opportunities to optimize the output.
+
+ On RS/6000, first check for the sum of a register with a constant
+ integer that is out of range. If so, generate code to add the
+ constant with the low-order 16 bits masked to the register and force
+ this result into another register (this can be done with `cau').
+ Then generate an address of REG+(CONST&0xffff), allowing for the
+ possibility of bit 16 being a one.
+
+ Then check for the sum of a register and something not constant, try to
+ load the other things into a register and return the sum. */
+
+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
+{ \
+ rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \
+ if (result != NULL_RTX) \
+ { \
+ (X) = result; \
+ goto WIN; \
+ } \
+}
+
+/* Try a machine-dependent way of reloading an illegitimate address
+ operand. If we find one, push the reload and jump to WIN. This
+ macro is used in only one place: `find_reloads_address' in reload.c. */
+#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
+{ \
+ rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \
+ if (new_rtx) \
+ { \
+ (AD) = new_rtx; \
+ goto WIN; \
+ } \
+}
+
+/* A C statement or compound statement with a conditional `goto LABEL;'
+ executed if memory address X (an RTX) can have different meanings depending
+ on the machine mode of the memory reference it is used for or if the address
+ is valid for some modes but not others.
+
+ Autoincrement and autodecrement addresses typically have mode-dependent
+ effects because the amount of the increment or decrement is the size of the
+ operand being addressed. Some machines have other mode-dependent addresses.
+ Many RISC machines have no mode-dependent addresses.
+
+ You may assume that ADDR is a valid address for the machine. */
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
+ if (ubicom32_mode_dependent_address_p (ADDR)) \
+ goto LABEL;
+
+/* A C expression that is nonzero if X is a legitimate constant for an
+ immediate operand on the target machine. You can assume that X
+ satisfies `CONSTANT_P', so you need not check this. In fact, `1' is
+ a suitable definition for this macro on machines where anything
+ `CONSTANT_P' is valid. */
+#define LEGITIMATE_CONSTANT_P(X) \
+ ubicom32_legitimate_constant_p ((X))
+
+/* Moves between registers are pretty-much single instructions for
+ Ubicom32. We make this the default "2" that gcc likes. */
+#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
+
+/* This is a little bit of magic from the S390 port that wins 2% on code
+ size when building the Linux kernel! Unfortunately while it wins on
+ that size the user-space apps built using FD-PIC don't improve and the
+ performance is lower because we put more pressure on the caches. We may
+ want this back on some future CPU that has higher cache performance. */
+/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */
+
+/* Moves between registers and memory are more expensive than between
+ registers because we have caches and write buffers that slow things
+ down! */
+#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2
+
+/* A fall-through branch is very low cost but anything that changes the PC
+ incurs a major pipeline hazard. We don't make the full extent of this
+ hazard visible because we hope that multiple threads will absorb much
+ of the cost and so we don't want a jump being replaced with, say, 7
+ instructions. */
+#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
+ ((PREDICTABLE_P) ? 1 : 3)
+
+/* Define this macro as a C expression which is nonzero if accessing less than
+ a word of memory (i.e. a `char' or a `short') is no faster than accessing a
+ word of memory, i.e., if such access require more than one instruction or if
+ there is no difference in cost between byte and (aligned) word loads.
+
+ When this macro is not defined, the compiler will access a field by finding
+ the smallest containing object; when it is defined, a fullword load will be
+ used if alignment permits. Unless bytes accesses are faster than word
+ accesses, using word accesses is preferable since it may eliminate
+ subsequent memory access if subsequent accesses occur to other fields in the
+ same word of the structure, but to different bytes. */
+#define SLOW_BYTE_ACCESS 0
+
+/* The number of scalar move insns which should be generated instead of a
+ string move insn or a library call. Increasing the value will always make
+ code faster, but eventually incurs high cost in increased code size.
+
+ If you don't define this, a reasonable default is used. */
+/* According to expr.c, a value of around 6 should minimize code size. */
+#define MOVE_RATIO(SPEED) 6
+
+/* We're much better off calling a constant function address with the
+ Ubicom32 architecture because we have an opcode for doing so. Don't
+ let the compiler extract function addresses as common subexpressions
+ into an address register. */
+#define NO_FUNCTION_CSE
+
+#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y)
+
+#define REVERSIBLE_CC_MODE(MODE) 1
+
+/* Canonicalize a comparison from one we don't have to one we do have. */
+#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
+ ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
+
+/* Dividing the output into sections. */
+
+/* A C expression whose value is a string containing the assembler operation
+ that should precede instructions and read-only data. Normally `".text"' is
+ right. */
+#define TEXT_SECTION_ASM_OP "\t.section .text"
+
+/* A C expression whose value is a string containing the assembler operation to
+ identify the following data as writable initialized data. Normally
+ `".data"' is right. */
+#define DATA_SECTION_ASM_OP "\t.section .data"
+
+
+/* If defined, a C expression whose value is a string containing the
+ assembler operation to identify the following data as
+ uninitialized global data. If not defined, and neither
+ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
+ uninitialized global data will be output in the data section if
+ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
+ used. */
+#define BSS_SECTION_ASM_OP "\t.section .bss"
+
+/* This is how we tell the assembler that a symbol is weak. */
+
+#define ASM_WEAKEN_LABEL(FILE, NAME) \
+ do \
+ { \
+ fputs ("\t.weak\t", (FILE)); \
+ assemble_name ((FILE), (NAME)); \
+ fputc ('\n', (FILE)); \
+ } \
+ while (0)
+
+/* The Overall Framework of an Assembler File. */
+
+#undef SET_ASM_OP
+#define SET_ASM_OP "\t.set\t"
+
+/* A C string constant describing how to begin a comment in the target
+ assembler language. The compiler assumes that the comment will end at the
+ end of the line. */
+#define ASM_COMMENT_START ";"
+
+/* A C string constant for text to be output before each `asm' statement or
+ group of consecutive ones. Normally this is `"#APP"', which is a comment
+ that has no effect on most assemblers but tells the GNU assembler that it
+ must check the lines that follow for all valid assembler constructs. */
+#define ASM_APP_ON "#APP\n"
+
+/* A C string constant for text to be output after each `asm' statement or
+ group of consecutive ones. Normally this is `"#NO_APP"', which tells the
+ GNU assembler to resume making the time-saving assumptions that are valid
+ for ordinary compiler output. */
+#define ASM_APP_OFF "#NO_APP\n"
+
+/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate,
+ explicit argument. If you define this macro, it is used in place of
+ `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required
+ alignment of the variable. The alignment is specified as the number of
+ bits.
+
+ Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when
+ defining this macro. */
+#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
+ asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
+
+/* A C expression to assign to OUTVAR (which is a variable of type `char *') a
+ newly allocated string made from the string NAME and the number NUMBER, with
+ some suitable punctuation added. Use `alloca' to get space for the string.
+
+ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce
+ an assembler label for an internal static variable whose name is NAME.
+ Therefore, the string must be such as to result in valid assembler code.
+ The argument NUMBER is different each time this macro is executed; it
+ prevents conflicts between similarly-named internal static variables in
+ different scopes.
+
+ Ideally this string should not be a valid C identifier, to prevent any
+ conflict with the user's own symbols. Most assemblers allow periods or
+ percent signs in assembler symbols; putting at least one of these between
+ the name and the number will suffice. */
+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
+ ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
+ sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
+
+#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
+ sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM))
+/* A C statement to store into the string STRING a label whose name
+ is made from the string PREFIX and the number NUM.
+
+ This string, when output subsequently by `assemble_name', should
+ produce the output that `(*targetm.asm_out.internal_label)' would produce
+ with the same PREFIX and NUM.
+
+ If the string begins with `*', then `assemble_name' will output
+ the rest of the string unchanged. It is often convenient for
+ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the
+ string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
+ output the string, and may change it. (Of course,
+ `ASM_OUTPUT_LABELREF' is also part of your machine description, so
+ you should know what it does on your machine.) */
+
+/* This says how to output assembler code to declare an
+ uninitialized external linkage data object. Under SVR4,
+ the linker seems to want the alignment of data objects
+ to depend on their types. We do exactly that here. */
+
+#define COMMON_ASM_OP "\t.comm\t"
+
+#undef ASM_OUTPUT_COMMON
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
+ do \
+ { \
+ fprintf ((FILE), "%s", COMMON_ASM_OP); \
+ assemble_name ((FILE), (NAME)); \
+ fprintf ((FILE), ", %u\n", (SIZE)); \
+ } \
+ while (0)
+
+/* This says how to output assembler code to declare an
+ uninitialized internal linkage data object. Under SVR4,
+ the linker seems to want the alignment of data objects
+ to depend on their types. We do exactly that here. */
+#define LOCAL_ASM_OP "\t.lcomm\t"
+
+#undef ASM_OUTPUT_LOCAL
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
+ do \
+ { \
+ fprintf ((FILE), "%s", LOCAL_ASM_OP); \
+ assemble_name ((FILE), (NAME)); \
+ fprintf ((FILE), ", %u\n", (SIZE)); \
+ } \
+ while (0)
+
+/* Globalizing directive for a label. */
+#define GLOBAL_ASM_OP ".global\t"
+
+/* Output the operand of an instruction. */
+#define PRINT_OPERAND(FILE, X, CODE) \
+ ubicom32_print_operand(FILE, X, CODE)
+
+/* Output the address of an operand. */
+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
+ ubicom32_print_operand_address (FILE, ADDR)
+
+/* A C expression to output to STREAM some assembler code which will push hard
+ register number REGNO onto the stack. The code need not be optimal, since
+ this macro is used only when profiling. */
+#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)
+
+/* A C expression to output to STREAM some assembler code which will pop hard
+ register number REGNO off of the stack. The code need not be optimal, since
+ this macro is used only when profiling. */
+#define ASM_OUTPUT_REG_POP(FILE, REGNO)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are relative to the table's own address.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a difference between two labels.
+ VALUE and REL are the numbers of two internal labels. The definitions of
+ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be
+ printed in the same way here. For example,
+
+ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
+ fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
+
+/* This macro should be provided on machines where the addresses in a dispatch
+ table are absolute.
+
+ The definition should be a C statement to output to the stdio stream STREAM
+ an assembler pseudo-instruction to generate a reference to a label. VALUE
+ is the number of an internal label whose definition is output using
+ `ASM_OUTPUT_INTERNAL_LABEL'. For example,
+
+ fprintf (STREAM, "\t.word L%d\n", VALUE) */
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
+ fprintf (STREAM, "\t.word .L%d\n", VALUE)
+
+/* Switch into a generic section. */
+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
+
+/* Assembler Commands for Alignment. */
+
+#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N)
+/* A C statement to output to the stdio stream STREAM an assembler
+ instruction to advance the location counter by NBYTES bytes.
+ Those bytes should be zero when loaded. NBYTES will be a C
+ expression of type `int'. */
+
+/* A C statement to output to the stdio stream STREAM an assembler command to
+ advance the location counter to a multiple of 2 to the POWER bytes. POWER
+ will be a C expression of type `int'. */
+#define ASM_OUTPUT_ALIGN(FILE, LOG) \
+ if ((LOG) != 0) \
+ fprintf (FILE, "\t.align %d\n", (LOG))
+
+/* A C expression that returns the DBX register number for the compiler
+ register number REGNO. In simple cases, the value of this expression may be
+ REGNO itself. But sometimes there are some registers that the compiler
+ knows about and DBX does not, or vice versa. In such cases, some register
+ may need to have one number in the compiler and another for DBX.
+
+ If two registers have consecutive numbers inside GNU CC, and they can be
+ used as a pair to hold a multiword value, then they *must* have consecutive
+ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
+ will be unable to access such a pair, because they expect register pairs to
+ be consecutive in their own numbering scheme.
+
+ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
+ preserve register pairs, then what you must do instead is redefine the
+ actual register numbering scheme.
+
+ This declaration is required. */
+#define DBX_REGISTER_NUMBER(REGNO) REGNO
+
+/* A C expression that returns the integer offset value for an automatic
+ variable having address X (an RTL expression). The default computation
+ assumes that X is based on the frame-pointer and gives the offset from the
+ frame-pointer. This is required for targets that produce debugging output
+ for DBX or COFF-style debugging output for SDB and allow the frame-pointer
+ to be eliminated when the `-g' options is used. */
+#define DEBUGGER_AUTO_OFFSET(X) \
+ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
+ + (frame_pointer_needed \
+ ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \
+ STACK_POINTER_REGNUM)))
+
+/* A C expression that returns the integer offset value for an argument having
+ address X (an RTL expression). The nominal offset is OFFSET. */
+#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
+ ((GET_CODE (X) == PLUS ? OFFSET : 0) \
+ + (frame_pointer_needed \
+ ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \
+ STACK_POINTER_REGNUM)))
+
+/* A C expression that returns the type of debugging output GNU CC produces
+ when the user specifies `-g' or `-ggdb'. Define this if you have arranged
+ for GNU CC to support more than one format of debugging output. Currently,
+ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
+ `DWARF2_DEBUG', and `XCOFF_DEBUG'.
+
+ The value of this macro only affects the default debugging output; the user
+ can always get a specific type of output by using `-gstabs', `-gcoff',
+ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
+
+ Defined in svr4.h.
+*/
+#undef PREFERRED_DEBUGGING_TYPE
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
+
+/* Define this macro if GNU CC should produce dwarf version 2 format debugging
+ output in response to the `-g' option.
+
+ To support optional call frame debugging information, you must also define
+ `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the
+ prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa'
+ and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you
+ don't.
+
+ Defined in svr4.h. */
+
+#define DWARF2_DEBUGGING_INFO 1
+/*#define DWARF2_UNWIND_INFO 1*/
+#define DWARF2_UNWIND_INFO 0
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO)
+#define INCOMING_FRAME_SP_OFFSET 0
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO)
+#define EH_RETURN_FIRST 9
+#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM)
+
+/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
+ location used to store the amount to ajdust the stack. This is
+ usually a registers that is available from end of the function's body
+ to the end of the epilogue. Thus, this cannot be a register used as a
+ temporary by the epilogue.
+
+ This must be an integer register. */
+#define EH_RETURN_STACKADJ_REGNO 11
+#define EH_RETURN_STACKADJ_RTX \
+ gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
+
+/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
+ location used to store the address the processor should jump to
+ catch exception. This is usually a registers that is available from
+ end of the function's body to the end of the epilogue. Thus, this
+ cannot be a register used as a temporary by the epilogue.
+
+ This must be an address register. */
+#define EH_RETURN_HANDLER_REGNO 18
+#define EH_RETURN_HANDLER_RTX \
+ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
+
+/* #define DWARF2_DEBUGGING_INFO */
+
+/* Define this macro if GNU CC should produce dwarf version 2-style
+ line numbers. This usually requires extending the assembler to
+ support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the
+ assembler configuration header files. */
+/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */
+
+
+/* An alias for a machine mode name. This is the machine mode that elements
+ of a jump-table have. */
+#define CASE_VECTOR_MODE Pmode
+
+/* Smallest number of different values for which it is best to use a
+ jump-table instead of a tree of conditional branches. For most Ubicom32
+ targets this is quite small, but for the v1 architecture implementations
+ we had very little data memory and so heavily prefer the tree approach
+ rather than the jump tables. */
+#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold
+
+/* Register operations within the Ubicom32 architecture always operate on
+ the whole register word and not just the sub-bits required for the opcode
+ mode size. */
+#define WORD_REGISTER_OPERATIONS
+
+/* The maximum number of bytes that a single instruction can move quickly from
+ memory to memory. */
+#define MOVE_MAX 4
+
+/* A C expression that is nonzero if on this machine the number of bits
+ actually used for the count of a shift operation is equal to the number of
+ bits needed to represent the size of the object being shifted. When this
+ macro is non-zero, the compiler will assume that it is safe to omit a
+ sign-extend, zero-extend, and certain bitwise `and' instructions that
+ truncates the count of a shift operation. On machines that have
+ instructions that act on bitfields at variable positions, which may include
+ `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
+ deletion of truncations of the values that serve as arguments to bitfield
+ instructions.
+
+ If both types of instructions truncate the count (for shifts) and position
+ (for bitfield operations), or if no variable-position bitfield instructions
+ exist, you should define this macro.
+
+ However, on some machines, such as the 80386 and the 680x0, truncation only
+ applies to shift operations and not the (real or pretended) bitfield
+ operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines.
+ Instead, add patterns to the `md' file that include the implied truncation
+ of the shift instructions.
+
+ You need not define this macro if it would always have the value of zero. */
+#define SHIFT_COUNT_TRUNCATED 1
+
+/* A C expression which is nonzero if on this machine it is safe to "convert"
+ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
+ than INPREC) by merely operating on it as if it had only OUTPREC bits.
+
+ On many machines, this expression can be 1.
+
+ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
+ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
+ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
+ things. */
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
+
+/* A C string constant that tells the GNU CC driver program options to pass
+ to the assembler. It can also specify how to translate options you give
+ to GNU CC into options for GNU CC to pass to the assembler. See the
+ file `sun3.h' for an example of this.
+
+ Defined in svr4.h. */
+#undef ASM_SPEC
+#define ASM_SPEC \
+ "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}"
+
+#define LINK_SPEC "\
+%{h*} %{v:-V} \
+%{b} \
+%{mfdpic:-melf32ubicom32fdpic -z text} \
+%{static:-dn -Bstatic} \
+%{shared:-G -Bdynamic} \
+%{symbolic:-Bsymbolic} \
+%{G*} \
+%{YP,*} \
+%{Qy:} %{!Qn:-Qy}"
+
+#undef STARTFILE_SPEC
+#undef ENDFILE_SPEC
+
+/* The svr4.h LIB_SPEC with -leval and --*group tacked on */
+
+#undef LIB_SPEC
+#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
+
+#undef HAVE_GAS_SHF_MERGE
+#define HAVE_GAS_SHF_MERGE 0
+
+#define HANDLE_SYSV_PRAGMA 1
+#undef HANDLE_PRAGMA_PACK
+
+typedef void (*ubicom32_func_ptr) (void);
+
+/* Define builtins for selected special-purpose instructions. */
+enum ubicom32_builtins
+{
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2,
+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4
+};
+
+extern rtx ubicom32_compare_op0;
+extern rtx ubicom32_compare_op1;
+
+#define TYPE_ASM_OP "\t.type\t"
+#define TYPE_OPERAND_FMT "@%s"
+
+#ifndef ASM_DECLARE_RESULT
+#define ASM_DECLARE_RESULT(FILE, RESULT)
+#endif
+
+/* These macros generate the special .type and .size directives which
+ are used to set the corresponding fields of the linker symbol table
+ entries in an ELF object file under SVR4. These macros also output
+ the starting labels for the relevant functions/objects. */
+
+/* Write the extra assembler code needed to declare a function properly.
+ Some svr4 assemblers need to also have something extra said about the
+ function's return value. We allow for that here. */
+
+#ifndef ASM_DECLARE_FUNCTION_NAME
+#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
+ do \
+ { \
+ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \
+ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
+ ASM_OUTPUT_LABEL (FILE, NAME); \
+ } \
+ while (0)
+#endif
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.md
@@ -0,0 +1,3753 @@
+; GCC machine description for Ubicom32
+;
+; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
+; Foundation, Inc.
+; Contributed by Ubicom, Inc.
+;
+; This file is part of GCC.
+;
+; GCC is free software; you can redistribute it and/or modify
+; it under the terms of the GNU General Public License as published by
+; the Free Software Foundation; either version 3, or (at your option)
+; any later version.
+;
+; GCC is distributed in the hope that it will be useful,
+; but WITHOUT ANY WARRANTY; without even the implied warranty of
+; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+; GNU General Public License for more details.
+;
+; You should have received a copy of the GNU General Public License
+; along with GCC; see the file COPYING3. If not see
+; <http://www.gnu.org/licenses/>.
+
+(define_constants
+ [(AUX_DATA_REGNO 15)
+ (LINK_REGNO 21)
+ (SP_REGNO 23)
+ (ACC0_HI_REGNO 24)
+ (ACC1_HI_REGNO 26)
+ (CC_REGNO 30)])
+
+(define_constants
+ [(UNSPEC_FDPIC_GOT 0)
+ (UNSPEC_FDPIC_GOT_FUNCDESC 1)])
+
+(define_constants
+ [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)])
+
+;; Types of instructions (for scheduling purposes).
+
+(define_attr "type" "mul,addr,other"
+ (const_string "other"))
+
+; Define instruction scheduling characteristics. We can only issue
+; one instruction per clock so we don't need to define CPU units.
+;
+(define_automaton "ubicom32")
+
+(define_cpu_unit "i_pipeline" "ubicom32");
+
+; We have a 4 cycle hazard associated with address calculations which
+; seems rather tricky to avoid so we go with a defensive assumption
+; that almost anything can be used to generate addresses.
+;
+;(define_insn_reservation "ubicom32_other" 4
+; (eq_attr "type" "other")
+; "i_pipeline")
+
+; Some moves don't generate hazards.
+;
+;(define_insn_reservation "ubicom32_addr" 1
+; (eq_attr "type" "addr")
+; "i_pipeline")
+
+; We need 3 cycles between a multiply instruction and any use of the
+; matching accumulator register(s).
+;
+(define_insn_reservation "ubicom32_mul" 4
+ (eq_attr "type" "mul")
+ "i_pipeline")
+
+(define_attr "length" ""
+ (const_int 4))
+
+(include "predicates.md")
+(include "constraints.md")
+
+; 8-bit move with no change to the flags reg.
+;
+(define_insn "movqi"
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
+ (match_operand:QI 1 "ubicom32_move_operand" "g"))]
+ ""
+ "move.1\\t%0, %1")
+
+; Combiner-generated 8-bit move with the zero flag set accordingly.
+;
+(define_insn "movqi_ccszn"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))
+ (set (match_operand:QI 1 "nonimmediate_operand" "=rm")
+ (match_dup 0))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "ext.1\\t%1, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
+ (match_operand:QI 1 "nonimmediate_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 0)
+ (const_int 0)]))]
+ "(GET_MODE (operands[2]) == CCSZNmode
+ || GET_MODE (operands[2]) == CCSZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
+ (match_operand:QI 1 "nonimmediate_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 1)
+ (const_int 0)]))]
+ "(GET_MODE (operands[2]) == CCSZNmode
+ || GET_MODE (operands[2]) == CCSZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; 16-bit move with no change to the flags reg.
+;
+(define_insn "movhi"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
+ (match_operand:HI 1 "ubicom32_move_operand" "g"))]
+ ""
+ "*
+ {
+ if (CONST_INT_P (operands[1]))
+ return \"movei\\t%0, %1\";
+
+ return \"move.2\\t%0, %1\";
+ }")
+
+; Combiner-generated 16-bit move with the zero flag set accordingly.
+;
+(define_insn "movhi_ccszn"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))
+ (set (match_operand:HI 1 "nonimmediate_operand" "=rm")
+ (match_dup 0))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "ext.2\\t%1, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
+ (match_operand:HI 1 "nonimmediate_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 0)
+ (const_int 0)]))]
+ "(GET_MODE (operands[2]) == CCSZNmode
+ || GET_MODE (operands[2]) == CCSZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
+ (match_operand:HI 1 "nonimmediate_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 1)
+ (const_int 0)]))]
+ "(GET_MODE (operands[2]) == CCSZNmode
+ || GET_MODE (operands[2]) == CCSZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; 32-bit move with no change to the flags reg.
+;
+(define_expand "movsi"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "general_operand" ""))]
+ ""
+ "{
+ /* Convert any complexities in operand 1 into something that can just
+ fall into the default expander code. */
+ ubicom32_expand_movsi (operands);
+ }")
+
+(define_insn "movsi_high"
+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
+ (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))]
+ ""
+ "moveai\\t%0, #%%hi(%E1)")
+
+(define_insn "movsi_lo_sum"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a")
+ (match_operand:SI 2 "immediate_operand" "s")))]
+ ""
+ "lea.1\\t%0, %%lo(%E2)(%1)")
+
+(define_insn "movsi_internal"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))]
+ ""
+ "*
+ {
+ if (CONST_INT_P (operands[1]))
+ {
+ ubicom32_emit_move_const_int (operands[0], operands[1]);
+ return \"\";
+ }
+
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
+ {
+ HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]);
+
+ ubicom32_emit_move_const_int (operands[0], GEN_INT (i));
+ return \"\";
+ }
+
+ if (ubicom32_address_register_operand (operands[0], VOIDmode)
+ && register_operand (operands[1], VOIDmode))
+ {
+ if (ubicom32_address_register_operand (operands[1], VOIDmode))
+ return \"lea.1\\t%0, 0(%1)\";
+
+ /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */
+ if (ubicom32_v4)
+ return \"movea\\t%0, %1\";
+
+ return \"move.4\\t%0, %1\";
+ }
+
+ return \"move.4\\t%0, %1\";
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value 2^n by using a bset.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(exact_log2 (INTVAL (operands[1])) > 14
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 0)
+ (ior:SI (const_int 0)
+ (match_dup 1)))
+ (clobber (reg:CC CC_REGNO))])]
+ "")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value ~(2^n) by using a bclr.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(exact_log2 (~INTVAL (operands[1])) > 14
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 0)
+ (and:SI (const_int -1)
+ (match_dup 1)))
+ (clobber (reg:CC CC_REGNO))])]
+ "")
+
+; For 32-bit constants that have bits 0 through 24 and bit 31 set the same
+; we can use swapb.4!
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(ubicom32_v4
+ && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff
+ && (INTVAL (operands[1]) & 0xffffffff) != 0
+ && ((INTVAL (operands[1]) & 0x80ffffff) == 0
+ || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))"
+ [(set (match_dup 0)
+ (bswap:SI (match_dup 2)))]
+ "{
+ operands[2] = GEN_INT (INTVAL (operands[1]) >> 24);
+ }")
+
+; If this is a write of a constant to memory look to see if we can usefully
+; transform this into 2 smaller writes.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "memory_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "! satisfies_constraint_I (operands[1])
+ && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)"
+ [(set (match_dup 4) (match_dup 2))
+ (set (match_dup 5) (match_dup 3))]
+ "{
+ rtx low_hword_addr;
+
+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
+ operands[3] = gen_lowpart (HImode, operands[1]);
+
+ operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0));
+ MEM_COPY_ATTRIBUTES (operands[4], operands[0]);
+
+ low_hword_addr = plus_constant (XEXP (operands[0], 0), 2);
+ operands[5] = gen_rtx_MEM (HImode, low_hword_addr);
+ MEM_COPY_ATTRIBUTES (operands[5], operands[0]);
+ }")
+
+; If we're writing memory and we've not found a better way to do this then
+; try loading into a D register and then copying to memory. This will
+; perform the fewest possible memory read/writes.
+;
+(define_peephole2
+ [(match_scratch:SI 2 "d")
+ (set (match_operand:SI 0 "memory_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "! satisfies_constraint_I (operands[1])"
+ [(set (match_dup 2) (match_dup 1))
+ (set (match_dup 0) (match_dup 2))]
+ "")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value (2^n - 1) by using an lsr.4.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 0)
+ (lshiftrt:SI (const_int -1)
+ (match_dup 2)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; constants of value (2^n - 1) by using an lsr.4.
+;
+(define_peephole2
+ [(match_scratch:SI 2 "d")
+ (set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 2)
+ (lshiftrt:SI (const_int -1)
+ (match_dup 3)))
+ (clobber (reg:CC CC_REGNO))])
+ (set (match_dup 0)
+ (match_dup 2))]
+ "{
+ operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1));
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; some other constants by using an lsl.4 to shift 7 bits left by some
+; constant.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 0)
+ (ashift:SI (match_dup 2)
+ (match_dup 3)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
+ operands[2] = GEN_INT (INTVAL (operands[1]) >> shift);
+ operands[3] = GEN_INT (shift);
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; some other constants by using an lsl.4 to shift 7 bits left by some
+; constant.
+;
+(define_peephole2
+ [(match_scratch:SI 2 "d")
+ (set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(ubicom32_shiftable_const_int (INTVAL (operands[1]))
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(parallel
+ [(set (match_dup 2)
+ (ashift:SI (match_dup 3)
+ (match_dup 4)))
+ (clobber (reg:CC CC_REGNO))])
+ (set (match_dup 0)
+ (match_dup 2))]
+ "{
+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1]));
+ operands[3] = GEN_INT (INTVAL (operands[1]) >> shift);
+ operands[4] = GEN_INT (shift);
+ }")
+
+; For some 16-bit unsigned constants that have bit 15 set we can use
+; swapb.2!
+;
+; Note that the movsi code emits the same sequence but by using a peephole2
+; we split the pattern early enough to allow instruction scheduling to
+; occur.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(ubicom32_v4
+ && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)"
+ [(set (match_dup 0)
+ (zero_extend:SI (bswap:HI (match_dup 2))))]
+ "{
+ HOST_WIDE_INT i = INTVAL (operands[1]) >> 8;
+ if (i >= 0x80)
+ i -= 0x100;
+ operands[2] = GEN_INT (i);
+ }")
+
+; In general for a 16-bit unsigned constant that has bit 15 set
+; then we need a movei/move.2 pair unless we can represent it
+; via just a move.2.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(INTVAL (operands[1]) & 0xffff8000) == 0x8000
+ && (INTVAL (operands[1]) & 0xffff) < 0xff80"
+ [(set (match_dup 2)
+ (match_dup 1))
+ (set (match_dup 0)
+ (zero_extend:SI (match_dup 2)))]
+ "{
+ operands[2] = gen_rtx_REG (HImode, REGNO (operands[0]));
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; 32-bit constants that have bits 16 through 31 set to arbitrary values
+; and have bits 0 through 15 set to something representable as a default
+; source-1 immediate - we use movei/shmrg.2
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(((INTVAL (operands[1]) >= 0x8000
+ && INTVAL (operands[1]) < 0xff80)
+ || INTVAL (operands[1]) >= 0x10000
+ || INTVAL (operands[1]) < -0x8000)
+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
+ || (INTVAL (operands[1]) & 0xffff) < 0x80)
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(set (match_dup 0)
+ (match_dup 2))
+ (parallel
+ [(set (match_dup 0)
+ (ior:SI
+ (ashift:SI (match_dup 0)
+ (const_int 16))
+ (zero_extend:SI
+ (match_dup 3))))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]);
+ operands[3] = gen_lowpart (HImode, operands[1]);
+ }")
+
+; Exactly the same as the peephole2 preceding except that this targets a
+; general register instead of D register. Hopefully the later optimization
+; passes will notice that the value ended up in a D register first here
+; and eliminate away the other register!
+;
+(define_peephole2
+ [(match_scratch:SI 2 "d")
+ (set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(((INTVAL (operands[1]) >= 0x8000
+ && INTVAL (operands[1]) < 0xff80)
+ || INTVAL (operands[1]) >= 0x10000
+ || INTVAL (operands[1]) < -0x8000)
+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80
+ || (INTVAL (operands[1]) & 0xffff) < 0x80)
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(set (match_dup 2)
+ (match_dup 3))
+ (parallel
+ [(set (match_dup 2)
+ (ior:SI
+ (ashift:SI (match_dup 2)
+ (const_int 16))
+ (zero_extend:SI
+ (match_dup 4))))
+ (clobber (reg:CC CC_REGNO))])
+ (set (match_dup 0)
+ (match_dup 2))]
+ "{
+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
+ operands[4] = gen_lowpart (HImode, operands[1]);
+ }")
+
+; If we have a load of a large integer constant which does not have bit 31
+; set and we have a spare A reg then construct it with a moveai/lea.1 pair
+; instead. This avoids constructing it in 3 instructions on the stack.
+;
+; Note that we have to be careful not to match anything that matches
+; something we can do in a single instruction! There aren't many such
+; constants but there are some.
+;
+(define_peephole2
+ [(match_scratch:SI 2 "a")
+ (set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))]
+ "(! (INTVAL (operands[1]) & 0x80000000)
+ && ((INTVAL (operands[1]) >= 0x8000
+ && INTVAL (operands[1]) < 0xff80)
+ || INTVAL (operands[1]) >= 0x10000))"
+ [(set (match_dup 2)
+ (match_dup 3))
+ (set (match_dup 0)
+ (plus:SI (match_dup 2)
+ (match_dup 4)))]
+ "{
+ HOST_WIDE_INT i = INTVAL (operands[1]);
+ operands[3] = GEN_INT (i & 0xffffff80);
+ operands[4] = GEN_INT (i & 0x7f);
+ }")
+
+; If we're not dependent on the state of the condition codes we can construct
+; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible.
+;
+(define_peephole2
+ [(match_scratch:HI 2 "d")
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))
+ (match_dup 2)]
+ "(INTVAL (operands[1]) & 0x80000000
+ && INTVAL (operands[1]) < -0x8000
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(set (match_dup 0)
+ (match_dup 3))
+ (set (match_dup 2)
+ (match_dup 4))
+ (parallel
+ [(set (match_dup 0)
+ (ior:SI
+ (ashift:SI (match_dup 0)
+ (const_int 16))
+ (zero_extend:SI
+ (match_dup 2))))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]);
+ operands[4] = gen_lowpart (HImode, operands[1]);
+ }")
+
+; Exactly the same as the peephole2 preceding except that this targets a
+; general register instead of D register. Hopefully the later optimization
+; passes will notice that the value ended up in a D register first here
+; and eliminate away the other register!
+;
+(define_peephole2
+ [(match_scratch:SI 2 "d")
+ (match_scratch:HI 3 "d")
+ (set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))
+ (match_dup 3)]
+ "(INTVAL (operands[1]) & 0x80000000
+ && INTVAL (operands[1]) < -0x8000
+ && peep2_regno_dead_p (0, CC_REGNO))"
+ [(set (match_dup 2)
+ (match_dup 4))
+ (set (match_dup 3)
+ (match_dup 5))
+ (parallel
+ [(set (match_dup 2)
+ (ior:SI
+ (ashift:SI (match_dup 2)
+ (const_int 16))
+ (zero_extend:SI
+ (match_dup 3))))
+ (clobber (reg:CC CC_REGNO))])
+ (set (match_dup 0)
+ (match_dup 2))]
+ "{
+ operands[4] = gen_highpart_mode (HImode, SImode, operands[1]);
+ operands[5] = gen_lowpart (HImode, operands[1]);
+ }")
+
+(define_insn "movsi_fdpic_got_offset"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))]
+ ""
+ "movei\\t%0, %1")
+
+; The explicit MEM inside the UNSPEC prevents the compiler from moving
+; the load before a branch after a NULL test, or before a store that
+; initializes a function descriptor.
+
+(define_insn_and_split "load_fdpic_funcdesc"
+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a")
+ (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))]
+ UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 0)
+ (mem:SI (match_dup 1)))])
+
+; Combiner-generated 32-bit move with the zero flag set accordingly.
+;
+(define_insn "movsi_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d")
+ (const_int 0)))
+ (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm")
+ (match_dup 0))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ lsl.4\\t%1, %0, #0
+ add.4\\t%1, #0, %0")
+
+; Combiner-generated 32-bit move with all flags set accordingly.
+;
+(define_insn "movsi_ccw"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (const_int 0)))
+ (set (match_operand:SI 1 "nonimmediate_operand" "=rm")
+ (match_dup 0))]
+ "ubicom32_match_cc_mode(insn, CCWmode)"
+ "add.4\\t%1, #0, %0")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (parallel
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 0)
+ (const_int 0)]))
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+ "(GET_MODE (operands[2]) == CCWZNmode
+ || GET_MODE (operands[2]) == CCWZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (match_operand:SI 1 "ubicom32_data_register_operand" ""))
+ (parallel
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 1)
+ (const_int 0)]))
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+ "(GET_MODE (operands[2]) == CCWZNmode
+ || GET_MODE (operands[2]) == CCWZmode)"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 0)
+ (match_dup 1))])]
+ "")
+
+; Combine isn't very good at merging some types of operations so we
+; have to make do with a peephole. It's not as effective but it's better
+; than doing nothing.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (parallel
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 0)
+ (const_int 0)]))
+ (set (match_operand:SI 4 "ubicom32_data_register_operand" "")
+ (match_dup 0))])]
+ "(peep2_reg_dead_p (2, operands[0])
+ && (GET_MODE (operands[2]) == CCWZNmode
+ || GET_MODE (operands[2]) == CCWZmode))"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (set (match_dup 4)
+ (match_dup 1))])]
+ "")
+
+; Register renaming may make a general reg into a D reg in which case
+; we may be able to simplify a compare.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (parallel
+ [(set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (match_operator 3 "ubicom32_compare_operator"
+ [(match_dup 0)
+ (const_int 0)]))
+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])]
+ "(peep2_reg_dead_p (2, operands[0])
+ && (GET_MODE (operands[2]) == CCWZNmode
+ || GET_MODE (operands[2]) == CCWZmode))"
+ [(parallel
+ [(set (match_dup 2)
+ (match_op_dup 3
+ [(match_dup 1)
+ (const_int 0)]))
+ (clobber (match_dup 4))])]
+ "")
+
+(define_insn_and_split "movdi"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm")
+ (match_operand:DI 1 "general_operand" "rmi,ri"))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 2) (match_dup 3))
+ (set (match_dup 4) (match_dup 5))]
+ "{
+ rtx dest_low;
+ rtx src_low;
+
+ dest_low = gen_lowpart (SImode, operands[0]);
+ src_low = gen_lowpart (SImode, operands[1]);
+
+ if (REG_P (operands[0])
+ && REG_P (operands[1])
+ && REGNO (operands[0]) < REGNO (operands[1]))
+ {
+ operands[2] = gen_highpart (SImode, operands[0]);
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
+ operands[4] = dest_low;
+ operands[5] = src_low;
+ }
+ else if (reg_mentioned_p (dest_low, src_low))
+ {
+ operands[2] = gen_highpart (SImode, operands[0]);
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]);
+ operands[4] = dest_low;
+ operands[5] = src_low;
+ }
+ else
+ {
+ operands[2] = dest_low;
+ operands[3] = src_low;
+ operands[4] = gen_highpart (SImode, operands[0]);
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+ }
+ }"
+ [(set_attr "length" "8")])
+
+; Combiner-generated 64-bit move with all flags set accordingly.
+;
+(define_insn "movdi_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
+ (const_int 0)))
+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
+ (match_dup 0))
+ (clobber (match_scratch:SI 2 "=X, d, d"))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_highpart (SImode, operands[0]);
+ operands[6] = gen_highpart (SImode, operands[1]);
+
+ if (ubicom32_data_register_operand (operands[0], VOIDmode))
+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
+
+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "movdi_ccw"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r")
+ (const_int 0)))
+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm")
+ (match_dup 0))
+ (clobber (match_scratch:SI 2 "=X, d, d"))]
+ "ubicom32_match_cc_mode(insn, CCWmode)"
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_highpart (SImode, operands[0]);
+ operands[6] = gen_highpart (SImode, operands[1]);
+
+ if (ubicom32_data_register_operand (operands[0], VOIDmode))
+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\";
+
+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "movsf"
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm")
+ (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))]
+ ""
+ "*
+ {
+ if (GET_CODE (operands[1]) == CONST_DOUBLE)
+ {
+ HOST_WIDE_INT val;
+ REAL_VALUE_TYPE rv;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
+ REAL_VALUE_TO_TARGET_SINGLE (rv, val);
+
+ ubicom32_emit_move_const_int (operands[0], GEN_INT (val));
+ return \"\";
+ }
+
+ return \"move.4\\t%0, %1\";
+ }")
+
+(define_insn "zero_extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "move.1\\t%0, %1")
+
+(define_insn "zero_extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "move.1\\t%0, %1")
+
+(define_insn "zero_extendqisi2_ccwz_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (zero_extend:SI (match_dup 1)))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "shmrg.1\\t%0, %1, #0")
+
+(define_insn "zero_extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "move.2\\t%0, %1")
+
+(define_insn "zero_extendhisi2_ccwz_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (zero_extend:SI (match_dup 1)))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "shmrg.2\\t%0, %1, #0")
+
+(define_insn_and_split "zero_extendqidi2"
+ [(set (match_operand:DI 0 "register_operand" "=r")
+ (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (zero_extend:SI (match_dup 1)))
+ (set (match_dup 3)
+ (const_int 0))]
+ "{
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_highpart (SImode, operands[0]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn_and_split "zero_extendhidi2"
+ [(set (match_operand:DI 0 "register_operand" "=r")
+ (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (zero_extend:SI (match_dup 1)))
+ (set (match_dup 3)
+ (const_int 0))]
+ "{
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_highpart (SImode, operands[0]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn_and_split "zero_extendsidi2"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=rm")
+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (match_dup 1))
+ (set (match_dup 3)
+ (const_int 0))]
+ "{
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_highpart (SImode, operands[0]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "extendqihi2"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "ext.1\\t%0, %1")
+
+(define_insn "extendqisi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "ext.1\\t%0, %1")
+
+(define_insn "extendhisi2"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "ext.2\\t%0, %1")
+
+(define_insn_and_split "extendsidi2"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=d")
+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (match_dup 2)
+ (match_dup 1))
+ (parallel
+ [(set (match_dup 3)
+ (ashiftrt:SI (match_dup 2)
+ (const_int 31)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_highpart (SImode, operands[0]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "bswaphi"
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
+ "(ubicom32_v4)"
+ "swapb.2\\t%0, %1");
+
+(define_insn "bswaphisi"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (zero_extend:SI
+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))]
+ "(ubicom32_v4)"
+ "swapb.2\\t%0, %1");
+
+(define_insn "bswapsi"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))]
+ "(ubicom32_v4)"
+ "swapb.4\\t%0, %1");
+
+(define_insn "tstqi_ext1"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "ext.1\\t#0, %0")
+
+(define_expand "cmpqi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "")
+ (match_operand:QI 1 "ubicom32_data_register_operand" "")))]
+ "(ubicom32_v4)"
+ "{
+ ubicom32_compare_op0 = operands[0];
+ ubicom32_compare_op1 = operands[1];
+ DONE;
+ }")
+
+(define_insn "sub1_ccs"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
+ "(ubicom32_v4)"
+ "sub.1\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "sub1_ccsz_1"
+ [(set (reg:CCSZ CC_REGNO)
+ (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm")
+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))]
+ "(ubicom32_v4)"
+ "sub.1\\t#0, %0, %1")
+
+(define_insn "sub1_ccsz_2"
+ [(set (reg:CCSZ CC_REGNO)
+ (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d")
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))]
+ "(ubicom32_v4)"
+ "sub.1\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.1 more effectively. We peephole this case here.
+;
+(define_peephole2
+ [(set (match_operand:QI 0 "register_operand" "")
+ (match_operand:QI 1 "ubicom32_arith_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (compare (match_operand:QI 3 "ubicom32_data_register_operand" "")
+ (match_dup 0)))
+ (set (pc)
+ (if_then_else (match_operator 4 "comparison_operator"
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))]
+ "(peep2_reg_dead_p (2, operands[0])
+ && peep2_regno_dead_p (3, CC_REGNO))"
+ [(set (match_dup 2)
+ (compare (match_dup 1)
+ (match_dup 3)))
+ (set (pc)
+ (if_then_else (match_op_dup 6
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))]
+ "{
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+ GET_MODE (operands[4]),
+ cc_reg,
+ const0_rtx);
+ }")
+
+(define_insn "tsthi_ext2"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "ext.2\\t#0, %0")
+
+(define_expand "cmphi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "")
+ (match_operand:HI 1 "ubicom32_compare_operand" "")))]
+ ""
+ "{
+ do
+ {
+ /* Is this a cmpi? */
+ if (CONST_INT_P (operands[1]))
+ break;
+
+ /* Must be a sub.2 - if necessary copy an operand into a reg. */
+ if (! ubicom32_data_register_operand (operands[1], HImode))
+ operands[1] = copy_to_mode_reg (HImode, operands[1]);
+ }
+ while (0);
+
+ ubicom32_compare_op0 = operands[0];
+ ubicom32_compare_op1 = operands[1];
+ DONE;
+ }")
+
+(define_insn "cmpi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm")
+ (match_operand 1 "const_int_operand" "N")))]
+ ""
+ "cmpi\\t%0, %1")
+
+(define_insn "sub2_ccs"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
+ ""
+ "sub.2\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "sub2_ccsz_1"
+ [(set (reg:CCSZ CC_REGNO)
+ (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm")
+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))]
+ ""
+ "sub.2\\t#0, %0, %1")
+
+(define_insn "sub2_ccsz_2"
+ [(set (reg:CCSZ CC_REGNO)
+ (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d")
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))]
+ ""
+ "sub.2\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.2 more effectively. We peephole this case here.
+;
+(define_peephole2
+ [(set (match_operand:HI 0 "register_operand" "")
+ (match_operand:HI 1 "ubicom32_arith_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (compare (match_operand:HI 3 "ubicom32_data_register_operand" "")
+ (match_dup 0)))
+ (set (pc)
+ (if_then_else (match_operator 4 "comparison_operator"
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))]
+ "(peep2_reg_dead_p (2, operands[0])
+ && peep2_regno_dead_p (3, CC_REGNO))"
+ [(set (match_dup 2)
+ (compare (match_dup 1)
+ (match_dup 3)))
+ (set (pc)
+ (if_then_else (match_op_dup 6
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))]
+ "{
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+ GET_MODE (operands[4]),
+ cc_reg,
+ const0_rtx);
+ }")
+
+(define_insn_and_split "tstsi_lsl4"
+ [(set (match_operand 0 "ubicom32_cc_register_operand" "=r")
+ (match_operator 1 "ubicom32_compare_operator"
+ [(match_operand:SI 2 "nonimmediate_operand" "rm")
+ (const_int 0)]))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "#"
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ [(parallel
+ [(set (match_dup 0)
+ (match_op_dup 1
+ [(match_dup 2)
+ (const_int 0)]))
+ (clobber (match_dup 3))])]
+ "{
+ operands[3] = gen_reg_rtx (SImode);
+ }")
+
+(define_insn "tstsi_lsl4_d"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))
+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "lsl.4\\t%1, %0, #0")
+
+; Comparison for equality with -1.
+;
+(define_insn "cmpsi_not4_ccwz"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
+ (const_int -1)))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "not.4\\t#0, %0")
+
+(define_expand "cmpsi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "")
+ (match_operand:SI 1 "ubicom32_compare_operand" "")))]
+ ""
+ "{
+ do
+ {
+ /* Is this a cmpi? We can't take a memory address as cmpi takes
+ 16-bit operands. */
+ if (register_operand (operands[0], SImode)
+ && CONST_INT_P (operands[1])
+ && satisfies_constraint_N (operands[1]))
+ break;
+
+ /* Must be a sub.4 - if necessary copy an operand into a reg. */
+ if (! ubicom32_data_register_operand (operands[1], SImode))
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
+ }
+ while (0);
+
+ ubicom32_compare_op0 = operands[0];
+ ubicom32_compare_op1 = operands[1];
+ DONE;
+ }")
+
+(define_insn "cmpsi_cmpi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "register_operand" "r")
+ (match_operand 1 "const_int_operand" "N")))]
+ "(satisfies_constraint_N (operands[1]))"
+ "cmpi\\t%0, %1")
+
+(define_insn "cmpsi_sub4"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
+ ""
+ "sub.4\\t#0, %0, %1")
+
+; If we're testing for equality we don't have to worry about reversing conditions.
+;
+(define_insn "cmpsi_sub4_ccwz_1"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm")
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "sub.4\\t#0, %0, %1")
+
+(define_insn "cmpsi_sub4_ccwz_2"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (match_operand:SI 1 "nonimmediate_operand" "rm")))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "sub.4\\t#0, %1, %0")
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.4 more effectively. We peephole this case here.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "ubicom32_arith_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (compare (match_operand:SI 3 "ubicom32_data_register_operand" "")
+ (match_dup 0)))
+ (set (pc)
+ (if_then_else (match_operator 4 "comparison_operator"
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))]
+ "(peep2_reg_dead_p (2, operands[0])
+ && peep2_regno_dead_p (3, CC_REGNO))"
+ [(set (match_dup 2)
+ (compare (match_dup 1)
+ (match_dup 3)))
+ (set (pc)
+ (if_then_else (match_op_dup 6
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))]
+ "{
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+ GET_MODE (operands[4]),
+ cc_reg,
+ const0_rtx);
+ }")
+
+(define_insn_and_split "tstdi_or4"
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))]
+ ""
+ "#"
+ ""
+ [(parallel
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ (match_dup 0)
+ (const_int 0)))
+ (clobber (match_dup 1))])]
+ "{
+ operands[1] = gen_reg_rtx (SImode);
+ }")
+
+(define_insn "tstdi_or4_d"
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm")
+ (const_int 0)))
+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))]
+ ""
+ "*
+ {
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_highpart_mode (SImode, DImode, operands[0]);
+
+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
+ return \"or.4\\t#0, %2, %3\";
+
+ return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_expand "cmpdi"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "")
+ (match_operand:DI 1 "ubicom32_data_register_operand" "")))]
+ ""
+ "{
+ ubicom32_compare_op0 = operands[0];
+ ubicom32_compare_op1 = operands[1];
+ DONE;
+ }")
+
+(define_insn "cmpdi_sub4subc"
+ [(set (reg CC_REGNO)
+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:DI 1 "ubicom32_data_register_operand" "d")))]
+ ""
+ "*
+ {
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_lowpart (SImode, operands[1]);
+ operands[4] = gen_highpart_mode (SImode, DImode, operands[0]);
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+
+ return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\";
+ }"
+ [(set_attr "length" "8")])
+
+; When the combiner runs it doesn't have any insight into whether or not an argument
+; to a compare is spilled to the stack and therefore can't swap the comparison in
+; an attempt to use sub.4/subc more effectively. We peephole this case here.
+;
+(define_peephole2
+ [(set (match_operand:DI 0 "register_operand" "")
+ (match_operand:DI 1 "ubicom32_arith_operand" ""))
+ (set (match_operand 2 "ubicom32_cc_register_operand" "")
+ (compare (match_operand:DI 3 "ubicom32_data_register_operand" "")
+ (match_dup 0)))
+ (set (pc)
+ (if_then_else (match_operator 4 "comparison_operator"
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_operand 5 "" ""))
+ (pc)))]
+ "(peep2_reg_dead_p (2, operands[0])
+ && peep2_regno_dead_p (3, CC_REGNO))"
+ [(set (match_dup 2)
+ (compare (match_dup 1)
+ (match_dup 3)))
+ (set (pc)
+ (if_then_else (match_op_dup 6
+ [(match_dup 2)
+ (const_int 0)])
+ (label_ref (match_dup 5))
+ (pc)))]
+ "{
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])),
+ GET_MODE (operands[4]),
+ cc_reg,
+ const0_rtx);
+ }")
+
+(define_insn "btst"
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ
+ (zero_extract:SI
+ (match_operand:SI 0 "nonimmediate_operand" "rm")
+ (const_int 1)
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))]
+ ""
+ "btst\\t%0, %1")
+
+(define_insn "bfextu_ccwz_null"
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ
+ (zero_extract:SI
+ (match_operand:SI 0 "nonimmediate_operand" "rm")
+ (match_operand 1 "const_int_operand" "M")
+ (const_int 0))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ ""
+ "bfextu\\t%2, %0, %1")
+
+(define_expand "addqi3"
+ [(parallel
+ [(set (match_operand:QI 0 "memory_operand" "")
+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "")
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], QImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+ }")
+
+(define_insn "addqi3_add1"
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "@
+ add.1\\t%0, %2, %1
+ add.1\\t%0, %1, %2")
+
+(define_insn "addqi3_add1_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm"))
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "@
+ add.1\\t#0, %1, %0
+ add.1\\t#0, %0, %1")
+
+(define_expand "addhi3"
+ [(parallel
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "")
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ if (!memory_operand (operands[0], HImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+ }")
+
+(define_insn "addhi3_add2"
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ add.2\\t%0, %2, %1
+ add.2\\t%0, %1, %2")
+
+(define_insn "addhi3_add2_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm"))
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "@
+ add.2\\t#0, %1, %0
+ add.2\\t#0, %0, %1")
+
+(define_expand "addsi3"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "")
+ (match_operand:SI 2 "ubicom32_move_operand" "")))]
+ ""
+ "{
+ ubicom32_expand_addsi3 (operands);
+ DONE;
+ }")
+
+; We start with an instruction pattern that can do all sorts of interesting
+; things but we split out any uses of lea or pdec instructions because
+; those instructions don't clobber the condition codes.
+;
+(define_insn_and_split "addsi3_1"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm")
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm")
+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ #
+ #
+ #
+ #
+ #
+ add.4\\t%0, %2, %1
+ add.4\\t%0, %1, %2"
+ "(reload_completed
+ && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))"
+ [(set (match_dup 0)
+ (plus:SI (match_dup 1)
+ (match_dup 2)))]
+ ""
+)
+
+(define_insn "addsi3_1_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (plus:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ add.4\\t%0, %2, %1
+ add.4\\t%0, %1, %2")
+
+(define_insn "addsi3_1_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm"))
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ add.4\\t#0, %1, %0
+ add.4\\t#0, %0, %1")
+
+(define_insn_and_split "addsi3_2"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm")
+ (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a")
+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))]
+ ""
+ "@
+ lea.4\\t%0, %E2(%1)
+ lea.2\\t%0, %E2(%1)
+ lea.1\\t%0, %E2(%1)
+ pdec\\t%0, %n2(%1)
+ lea.1\\t%0, (%1,%2)
+ #"
+ "(reload_completed
+ && ! satisfies_constraint_L (operands[2])
+ && ! satisfies_constraint_K (operands[2])
+ && ! satisfies_constraint_J (operands[2])
+ && ! satisfies_constraint_P (operands[2])
+ && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))"
+ [(set (reg:SI AUX_DATA_REGNO)
+ (match_dup 2))
+ (set (match_dup 0)
+ (plus:SI (match_dup 1)
+ (reg:SI AUX_DATA_REGNO)))]
+ ""
+)
+
+(define_insn "lea_2"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 2))
+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
+ ""
+ "lea.2\\t%0, (%2,%1)")
+
+(define_insn "lea_4"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 4))
+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))]
+ ""
+ "lea.4\\t%0, (%2,%1)")
+
+(define_expand "adddi3"
+ [(parallel
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "")
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+ }")
+
+; We construct a 64-bit add from 32-bit operations. Note that we use the
+; & constraint to prevent overlapping registers being allocated. We do
+; allow identical registers though as that won't break anything.
+;
+(define_insn "adddi3_add4addc"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart (SImode, operands[1]);
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+
+ if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))
+ return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\";
+
+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "adddi3_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))
+ (const_int 0)))
+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m")
+ (plus:DI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+
+ if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])))
+ {
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[7] = gen_highpart (SImode, operands[1]);
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+ }
+ else
+ {
+ operands[4] = gen_lowpart (SImode, operands[2]);
+ operands[5] = gen_lowpart (SImode, operands[1]);
+ operands[7] = gen_highpart (SImode, operands[2]);
+ operands[8] = gen_highpart (SImode, operands[1]);
+ }
+
+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "adddi3_ccwz_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm"))
+ (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "*
+ {
+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0])))
+ {
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_lowpart (SImode, operands[1]);
+ operands[4] = gen_highpart (SImode, operands[0]);
+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]);
+ }
+ else
+ {
+ operands[2] = gen_lowpart (SImode, operands[1]);
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_highpart (SImode, operands[1]);
+ operands[5] = gen_highpart (SImode, operands[0]);
+ }
+
+ return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_expand "subqi3"
+ [(parallel
+ [(set (match_operand:QI 0 "memory_operand" "")
+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "")
+ (match_operand:QI 2 "ubicom32_data_register_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], QImode))
+ FAIL;
+ }")
+
+(define_insn "subqi3_sub1"
+ [(set (match_operand:QI 0 "memory_operand" "=m")
+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:QI 2 "ubicom32_data_register_operand" "d")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "sub.1\\t%0, %1, %2")
+
+(define_expand "subhi3"
+ [(parallel
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "")
+ (match_operand:HI 2 "ubicom32_data_register_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], HImode))
+ FAIL;
+ }")
+
+(define_insn "subhi3_sub2"
+ [(set (match_operand:HI 0 "memory_operand" "=m")
+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:HI 2 "ubicom32_data_register_operand" "d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "sub.2\\t%0, %1, %2")
+
+(define_insn "subsi3"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_data_register_operand" "d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "sub.4\\t%0, %1, %2")
+
+(define_insn "subsi3_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_data_register_operand" "d"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (minus:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "sub.4\\t%0, %1, %2")
+
+; We construct a 64-bit add from 32-bit operations. Note that we use the
+; & constraint to prevent overlapping registers being allocated. We do
+; allow identical registers though as that won't break anything.
+;
+(define_insn "subdi3"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m")
+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI")
+ (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
+ operands[8] = gen_highpart (SImode, operands[2]);
+
+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "subdi3_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI")
+ (match_operand:DI 2 "ubicom32_data_register_operand" "d, d"))
+ (const_int 0)))
+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m")
+ (minus:DI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "*
+ {
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]);
+ operands[8] = gen_highpart (SImode, operands[2]);
+
+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\";
+ }"
+ [(set_attr "length" "8")])
+
+;(define_insn "negqi2"
+; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm")
+; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d")))
+; (clobber (reg:CC CC_REGNO))]
+; "(ubicom32_v4)"
+; "sub.1\\t%0, #0, %1")
+
+;(define_insn "neghi2"
+; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm")
+; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d")))
+; (clobber (reg:CC CC_REGNO))]
+; ""
+; "sub.2\\t%0, #0, %1")
+
+(define_insn "negsi2"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "sub.4\\t%0, #0, %1")
+
+(define_insn_and_split "negdi2"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
+ (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ "reload_completed"
+ [(parallel [(set (match_dup 0)
+ (minus:DI (const_int 0)
+ (match_dup 1)))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ [(set_attr "length" "8")])
+
+(define_insn "umulhisi3"
+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
+ (mult:SI
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
+ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
+ (clobber (reg:HI ACC0_HI_REGNO))
+ (clobber (reg:HI ACC1_HI_REGNO))]
+ ""
+ "@
+ mulu\\t%A0, %2, %1
+ mulu\\t%A0, %1, %2"
+ [(set_attr "type" "mul,mul")])
+
+(define_insn "mulhisi3"
+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l")
+ (mult:SI
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm"))
+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d"))))
+ (clobber (reg:HI ACC0_HI_REGNO))
+ (clobber (reg:HI ACC1_HI_REGNO))]
+ ""
+ "@
+ muls\\t%A0, %2, %1
+ muls\\t%A0, %1, %2"
+ [(set_attr "type" "mul,mul")])
+
+(define_expand "mulsi3"
+ [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "")
+ (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "")
+ (match_operand:SI 2 "ubicom32_arith_operand" "")))]
+ ""
+ "{
+ if (ubicom32_emit_mult_sequence (operands))
+ DONE;
+ }")
+
+(define_insn "umulsidi3"
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
+ (mult:DI
+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
+ (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
+ "(ubicom32_v4)"
+ "@
+ mulu.4\\t%A0, %2, %1
+ mulu.4\\t%A0, %1, %2"
+ [(set_attr "type" "mul,mul")])
+
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+ (mult:DI
+ (zero_extend:DI (match_dup 0))
+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
+ "(peep2_reg_dead_p (2, operands[0])
+ || REGNO (operands[0]) == REGNO (operands[2])
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+ && ! rtx_equal_p (operands[0], operands[3])"
+ [(set (match_dup 2)
+ (mult:DI
+ (zero_extend:DI (match_dup 1))
+ (zero_extend:DI (match_dup 3))))]
+ "")
+
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+ (mult:DI
+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
+ (zero_extend:DI (match_dup 0))))]
+ "(peep2_reg_dead_p (2, operands[0])
+ || REGNO (operands[0]) == REGNO (operands[2])
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+ && ! rtx_equal_p (operands[0], operands[3])"
+ [(set (match_dup 2)
+ (mult:DI
+ (zero_extend:DI (match_dup 1))
+ (zero_extend:DI (match_dup 3))))]
+ "")
+
+(define_insn "umulsidi3_const"
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
+ (mult:DI
+ (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
+ (match_operand 2 "const_int_operand" "I")))]
+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
+ "mulu.4\\t%A0, %2, %1"
+ [(set_attr "type" "mul")])
+
+(define_insn "mulsidi3"
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h")
+ (mult:DI
+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm"))
+ (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))]
+ "(ubicom32_v4)"
+ "@
+ muls.4\\t%A0, %2, %1
+ muls.4\\t%A0, %1, %2"
+ [(set_attr "type" "mul,mul")])
+
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+ (mult:DI
+ (sign_extend:DI (match_dup 0))
+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))]
+ "(peep2_reg_dead_p (2, operands[0])
+ || REGNO (operands[0]) == REGNO (operands[2])
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+ && ! rtx_equal_p (operands[0], operands[3])"
+ [(set (match_dup 2)
+ (mult:DI
+ (sign_extend:DI (match_dup 1))
+ (sign_extend:DI (match_dup 3))))]
+ "")
+
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "nonimmediate_operand" ""))
+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "")
+ (mult:DI
+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))
+ (sign_extend:DI (match_dup 0))))]
+ "(peep2_reg_dead_p (2, operands[0])
+ || REGNO (operands[0]) == REGNO (operands[2])
+ || REGNO (operands[0]) == REGNO (operands[2]) + 1)
+ && ! rtx_equal_p (operands[0], operands[3])"
+ [(set (match_dup 2)
+ (mult:DI
+ (sign_extend:DI (match_dup 1))
+ (sign_extend:DI (match_dup 3))))]
+ "")
+
+(define_insn "mulsidi3_const"
+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h")
+ (mult:DI
+ (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d"))
+ (match_operand 2 "const_int_operand" "I")))]
+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))"
+ "muls.4\\t%A0, %2, %1"
+ [(set_attr "type" "mul")])
+
+(define_expand "andqi3"
+ [(parallel
+ [(set (match_operand:QI 0 "memory_operand" "")
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "")
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], QImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+ }")
+
+(define_insn "andqi3_and1"
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "@
+ and.1\\t%0, %2, %1
+ and.1\\t%0, %1, %2")
+
+(define_insn "andqi3_and1_ccszn"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:QI 0 "memory_operand" "=m, m")
+ (and:QI (match_dup 1)
+ (match_dup 2)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "@
+ and.1\\t%0, %2, %1
+ and.1\\t%0, %1, %2")
+
+(define_insn "andqi3_and1_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "@
+ and.1\\t#0, %1, %0
+ and.1\\t#0, %0, %1")
+
+(define_insn "and1_ccszn_null_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "and.1\\t#0, %1, %0")
+
+(define_insn "and1_ccszn_null_2"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (subreg:SI
+ (match_operand:QI 1 "memory_operand" "m")
+ 0))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "and.1\\t#0, %1, %0")
+
+(define_insn "and1_ccszn_null_3"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (and:SI (subreg:SI
+ (match_operand:QI 0 "memory_operand" "m")
+ 0)
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "and.1\\t#0, %0, %1")
+
+(define_expand "andhi3"
+ [(parallel
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "")
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ if (!memory_operand (operands[0], HImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+ }")
+
+(define_insn "andhi3_and2"
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ and.2\\t%0, %2, %1
+ and.2\\t%0, %1, %2")
+
+(define_insn "andhi3_and2_ccszn"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:HI 0 "memory_operand" "=m, m")
+ (and:HI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "@
+ and.2\\t%0, %2, %1
+ and.2\\t%0, %1, %2")
+
+(define_insn "andhi3_and2_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "@
+ and.2\\t#0, %1, %0
+ and.2\\t#0, %0, %1")
+
+(define_insn "and2_ccszn_null_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "and.2\\t#0, %1, %0")
+
+(define_insn "and2_ccszn_null_2"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (subreg:SI
+ (match_operand:HI 1 "memory_operand" "m")
+ 0))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "and.2\\t#0, %1, %0")
+
+(define_insn "and2_ccszn_null_3"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (and:SI (subreg:SI
+ (match_operand:HI 0 "memory_operand" "m")
+ 0)
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "and.2\\t#0, %0, %1")
+
+(define_expand "andsi3"
+ [(parallel
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "")
+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ do
+ {
+ /* Is this a bfextu? */
+ if (ubicom32_data_register_operand (operands[0], SImode)
+ && CONST_INT_P (operands[2])
+ && exact_log2 (INTVAL (operands[2]) + 1) != -1)
+ break;
+
+ /* Is this a bclr? */
+ if (CONST_INT_P (operands[2])
+ && exact_log2 (~INTVAL (operands[2])) != -1)
+ break;
+
+ /* Must be an and.4 */
+ if (!ubicom32_data_register_operand (operands[1], SImode))
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
+
+ if (!ubicom32_arith_operand (operands[2], SImode))
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
+ }
+ while (0);
+ }")
+
+(define_insn "andsi3_bfextu"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
+ (match_operand:SI 2 "const_int_operand" "O")))
+ (clobber (reg:CC CC_REGNO))]
+ "(satisfies_constraint_O (operands[2]))"
+ "*
+ {
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
+
+ return \"bfextu\\t%0, %1, %3\";
+ }")
+
+(define_insn "andsi3_bfextu_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm")
+ (match_operand:SI 2 "const_int_operand" "O"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (and:SI (match_dup 1)
+ (match_dup 2)))]
+ "(satisfies_constraint_O (operands[2])
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
+ "*
+ {
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1));
+
+ return \"bfextu\\t%0, %1, %3\";
+ }")
+
+(define_insn "andsi3_bfextu_ccwz_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
+ (match_operand:SI 1 "const_int_operand" "O"))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ "(satisfies_constraint_O (operands[1])
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
+ "*
+ {
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1));
+
+ return \"bfextu\\t%2, %0, %3\";
+ }")
+
+(define_insn "andsi3_bclr"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
+ (match_operand:SI 2 "const_int_operand" "n")))
+ (clobber (reg:CC CC_REGNO))]
+ "(exact_log2 (~INTVAL (operands[2])) != -1)"
+ "bclr\\t%0, %1, #%D2")
+
+(define_insn "andsi3_and4"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ and.4\\t%0, %2, %1
+ and.4\\t%0, %1, %2")
+
+(define_insn "andsi3_and4_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (and:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ and.4\\t%0, %2, %1
+ and.4\\t%0, %1, %2")
+
+(define_insn "andsi3_and4_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ and.4\\t#0, %1, %0
+ and.4\\t#0, %0, %1")
+
+(define_insn "andsi3_lsr4_ccwz_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm")
+ (match_operand:SI 1 "const_int_operand" "n"))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1
+ && ubicom32_match_cc_mode(insn, CCWZmode))"
+ "*
+ {
+ operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1));
+
+ return \"lsr.4\\t%2, %0, %3\";
+ }")
+
+; We really would like the combiner to recognize this scenario and deal with
+; it but unfortunately it tries to canonicalize zero_extract ops on MEMs
+; into QImode operations and we can't match them in any useful way.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (match_operand:SI 1 "const_int_operand" ""))
+ (set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ
+ (and:SI (match_operand:SI 2 "nonimmediate_operand" "")
+ (match_dup 0))
+ (const_int 0)))]
+ "(exact_log2 (INTVAL (operands[1])) != -1
+ && peep2_reg_dead_p (2, operands[0]))"
+ [(set (reg:CCWZ CC_REGNO)
+ (compare:CCWZ
+ (zero_extract:SI
+ (match_dup 2)
+ (const_int 1)
+ (match_dup 3))
+ (const_int 0)))]
+ "{
+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1])));
+ }")
+
+(define_expand "anddi3"
+ [(parallel
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "")
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+ }")
+
+(define_insn_and_split "anddi3_and4"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ "reload_completed"
+ [(parallel [(set (match_dup 3)
+ (and:SI (match_dup 4)
+ (match_dup 5)))
+ (clobber (reg:CC CC_REGNO))])
+ (parallel [(set (match_dup 6)
+ (and:SI (match_dup 7)
+ (match_dup 8)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart (SImode, operands[1]);
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_expand "iorqi3"
+ [(parallel
+ [(set (match_operand:QI 0 "memory_operand" "")
+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "")
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], QImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+ }")
+
+(define_insn "iorqi3_or1"
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "@
+ or.1\\t%0, %2, %1
+ or.1\\t%0, %1, %2")
+
+(define_expand "iorhi3"
+ [(parallel
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "")
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ if (!memory_operand (operands[0], HImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+ }")
+
+(define_insn "iorhi3_or2"
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ or.2\\t%0, %2, %1
+ or.2\\t%0, %1, %2")
+
+(define_expand "iorsi3"
+ [(parallel
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "")
+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ do
+ {
+ /* Is this a bset? */
+ if (CONST_INT_P (operands[2])
+ && exact_log2 (INTVAL (operands[2])) != -1)
+ break;
+
+ /* Must be an or.4 */
+ if (!ubicom32_data_register_operand (operands[1], SImode))
+ operands[1] = copy_to_mode_reg (SImode, operands[1]);
+
+ if (!ubicom32_arith_operand (operands[2], SImode))
+ operands[2] = copy_to_mode_reg (SImode, operands[2]);
+ }
+ while (0);
+ }")
+
+(define_insn "iorsi3_bset"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI")
+ (match_operand 2 "const_int_operand" "n")))
+ (clobber (reg:CC CC_REGNO))]
+ "(exact_log2 (INTVAL (operands[2])) != -1)"
+ "bset\\t%0, %1, #%d2")
+
+(define_insn "iorsi3_or4"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ or.4\\t%0, %2, %1
+ or.4\\t%0, %1, %2")
+
+(define_insn "iorsi3_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (ior:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ or.4\\t%0, %2, %1
+ or.4\\t%0, %1, %2")
+
+(define_insn "iorsi3_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ or.4\\t#0, %1, %0
+ or.4\\t#0, %0, %1")
+
+(define_expand "iordi3"
+ [(parallel
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+ }")
+
+(define_insn_and_split "iordi3_or4"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ "reload_completed"
+ [(parallel [(set (match_dup 3)
+ (ior:SI (match_dup 4)
+ (match_dup 5)))
+ (clobber (reg:CC CC_REGNO))])
+ (parallel [(set (match_dup 6)
+ (ior:SI (match_dup 7)
+ (match_dup 8)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart (SImode, operands[1]);
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_expand "xorqi3"
+ [(parallel
+ [(set (match_operand:QI 0 "memory_operand" "")
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "")
+ (match_operand:QI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ "(ubicom32_v4)"
+ "{
+ if (!memory_operand (operands[0], QImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (QImode, operands[2]);
+ }")
+
+(define_insn "xorqi3_xor1"
+ [(set (match_operand:QI 0 "memory_operand" "=m, m")
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "@
+ xor.1\\t%0, %2, %1
+ xor.1\\t%0, %1, %2")
+
+(define_insn "xorqi3_xor1_ccszn"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:QI 0 "memory_operand" "=m, m")
+ (xor:QI (match_dup 1)
+ (match_dup 2)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "@
+ xor.1\\t%0, %2, %1
+ xor.1\\t%0, %1, %2")
+
+(define_insn "xorqi3_xor1_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "@
+ xor.1\\t#0, %1, %0
+ xor.1\\t#0, %0, %1")
+
+(define_insn "xor1_ccszn_null_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "xor.1\\t#0, %1, %0")
+
+(define_insn "xor1_ccszn_null_2"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (subreg:SI
+ (match_operand:QI 1 "memory_operand" "m")
+ 0))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "xor.1\\t#0, %1, %0")
+
+(define_insn "xor1_ccwzn_null_3"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:QI
+ (xor:SI (subreg:SI
+ (match_operand:QI 0 "memory_operand" "m")
+ 0)
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+ 3)
+ (const_int 0)))]
+ "(ubicom32_v4
+ && ubicom32_match_cc_mode(insn, CCSZNmode))"
+ "xor.1\\t#0, %0, %1")
+
+(define_expand "xorhi3"
+ [(parallel
+ [(set (match_operand:HI 0 "memory_operand" "")
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "")
+ (match_operand:HI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ if (!memory_operand (operands[0], HImode))
+ FAIL;
+
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (HImode, operands[2]);
+ }")
+
+(define_insn "xorhi3_xor2"
+ [(set (match_operand:HI 0 "memory_operand" "=m, m")
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ xor.2\\t%0, %2, %1
+ xor.2\\t%0, %1, %2")
+
+(define_insn "xorhi3_xor2_ccszn"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:HI 0 "memory_operand" "=m, m")
+ (xor:HI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "@
+ xor.2\\t%0, %2, %1
+ xor.2\\t%0, %1, %2")
+
+(define_insn "xorhi3_xor2_ccszn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "@
+ xor.2\\t#0, %1, %0
+ xor.2\\t#0, %0, %1")
+
+(define_insn "xor2_ccszn_null_1"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rI"))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "xor.2\\t#0, %1, %0")
+
+(define_insn "xor2_ccszn_null_2"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d")
+ (subreg:SI
+ (match_operand:HI 1 "memory_operand" "m")
+ 0))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "xor.2\\t#0, %1, %0")
+
+(define_insn "xor2_ccszn_null_3"
+ [(set (reg CC_REGNO)
+ (compare
+ (subreg:HI
+ (xor:SI (subreg:SI
+ (match_operand:HI 0 "memory_operand" "m")
+ 0)
+ (match_operand:SI 1 "ubicom32_data_register_operand" "d"))
+ 2)
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCSZNmode)"
+ "xor.2\\t#0, %0, %1")
+
+(define_insn "xorsi3"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "@
+ xor.4\\t%0, %2, %1
+ xor.4\\t%0, %1, %2")
+
+(define_insn "xorsi3_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm")
+ (xor:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ xor.4\\t%0, %2, %1
+ xor.4\\t%0, %1, %2")
+
+(define_insn "xorsi3_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")
+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "@
+ xor.4\\t#0, %1, %0
+ xor.4\\t#0, %0, %1")
+
+(define_expand "xordi3"
+ [(parallel
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "")
+ (match_operand:DI 2 "ubicom32_arith_operand" "")))
+ (clobber (reg:CC CC_REGNO))])]
+ ""
+ "{
+ /* If we have a non-data reg for operand 1 then prefer that over
+ a CONST_INT in operand 2. */
+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))
+ && CONST_INT_P (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+
+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2]))
+ operands[2] = copy_to_mode_reg (DImode, operands[2]);
+ }")
+
+(define_insn_and_split "xordi3_xor4"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m")
+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm")
+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ "reload_completed"
+ [(parallel [(set (match_dup 3)
+ (xor:SI (match_dup 4)
+ (match_dup 5)))
+ (clobber (reg:CC CC_REGNO))])
+ (parallel [(set (match_dup 6)
+ (xor:SI (match_dup 7)
+ (match_dup 8)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[3] = gen_lowpart (SImode, operands[0]);
+ operands[4] = gen_lowpart (SImode, operands[1]);
+ operands[5] = gen_lowpart (SImode, operands[2]);
+ operands[6] = gen_highpart (SImode, operands[0]);
+ operands[7] = gen_highpart (SImode, operands[1]);
+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]);
+ }"
+ [(set_attr "length" "8")])
+
+(define_insn "not2_2"
+ [(set (match_operand:HI 0 "memory_operand" "=m")
+ (subreg:HI
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
+ 2))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "not.2\\t%0, %1")
+
+(define_insn "one_cmplsi2"
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "not.4\\t%0, %1")
+
+(define_insn "one_cmplsi2_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm")
+ (not:SI (match_dup 1)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "not.4\\t%0, %1")
+
+(define_insn "one_cmplsi2_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI"))
+ (const_int 0)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "not.4\\t#0, %0")
+
+(define_insn_and_split "one_cmpldi2"
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm")
+ (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "#"
+ ""
+ [(parallel [(set (match_dup 2)
+ (not:SI (match_dup 3)))
+ (clobber (reg:CC CC_REGNO))])
+ (parallel [(set (match_dup 4)
+ (not:SI (match_dup 5)))
+ (clobber (reg:CC CC_REGNO))])]
+ "{
+ operands[2] = gen_lowpart (SImode, operands[0]);
+ operands[3] = gen_lowpart (SImode, operands[1]);
+ operands[4] = gen_highpart (SImode, operands[0]);
+ operands[5] = gen_highpart (SImode, operands[1]);
+ }"
+ [(set_attr "length" "8")])
+
+; Conditional jump instructions
+
+(define_expand "beq"
+ [(set (pc)
+ (if_then_else (eq (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bne"
+ [(set (pc)
+ (if_then_else (ne (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bgt"
+ [(set (pc)
+ (if_then_else (gt (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "ble"
+ [(set (pc)
+ (if_then_else (le (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bge"
+ [(set (pc)
+ (if_then_else (ge (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "blt"
+ [(set (pc)
+ (if_then_else (lt (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bgtu"
+ [(set (pc)
+ (if_then_else (gtu (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bleu"
+ [(set (pc)
+ (if_then_else (leu (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bgeu"
+ [(set (pc)
+ (if_then_else (geu (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_expand "bltu"
+ [(set (pc)
+ (if_then_else (ltu (match_dup 1)
+ (const_int 0))
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "{
+ operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0,
+ ubicom32_compare_op1);
+ }")
+
+(define_insn "jcc"
+ [(set (pc)
+ (if_then_else (match_operator 1 "comparison_operator"
+ [(match_operand 2 "ubicom32_cc_register_operand" "")
+ (const_int 0)])
+ (label_ref (match_operand 0 "" ""))
+ (pc)))]
+ ""
+ "*
+ {
+ ubicom32_output_cond_jump (insn, operands[1], operands[0]);
+ return \"\";
+ }")
+
+; Reverse branch - reverse our comparison condition so that we can
+; branch in the opposite sense.
+;
+(define_insn_and_split "jcc_reverse"
+ [(set (pc)
+ (if_then_else (match_operator 1 "comparison_operator"
+ [(match_operand 2 "ubicom32_cc_register_operand" "")
+ (const_int 0)])
+ (pc)
+ (label_ref (match_operand 0 "" ""))))]
+ ""
+ "#"
+ "reload_completed"
+ [(set (pc)
+ (if_then_else (match_dup 3)
+ (label_ref (match_dup 0))
+ (pc)))]
+ "{
+ rtx cc_reg;
+
+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO);
+ operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])),
+ GET_MODE (operands[1]),
+ cc_reg,
+ const0_rtx);
+ }")
+
+(define_insn "jump"
+ [(set (pc)
+ (label_ref (match_operand 0 "" "")))]
+ ""
+ "jmpt\\t%l0")
+
+(define_expand "indirect_jump"
+ [(parallel [(set (pc)
+ (match_operand:SI 0 "register_operand" ""))
+ (clobber (match_dup 0))])]
+ ""
+ "")
+
+(define_insn "indirect_jump_internal"
+ [(set (pc)
+ (match_operand:SI 0 "register_operand" "a"))
+ (clobber (match_dup 0))]
+ ""
+ "calli\\t%0,0(%0)")
+
+; Program Space: The table contains instructions, typically jumps.
+; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address.
+; <Jump Table is Here> ;An -> Here.
+; LEA Ak, (An,Dn) ;Ak -> Table Entry
+; JMP/CALL (Ak)
+
+(define_expand "tablejump"
+ [(parallel [(set (pc)
+ (match_operand:SI 0 "nonimmediate_operand" ""))
+ (use (label_ref (match_operand 1 "" "")))])]
+ ""
+ "")
+
+(define_insn "tablejump_internal"
+ [(set (pc)
+ (match_operand:SI 0 "nonimmediate_operand" "rm"))
+ (use (label_ref (match_operand 1 "" "")))]
+ ""
+ "ret\\t%0")
+
+; Call subroutine with no return value.
+;
+(define_expand "call"
+ [(call (match_operand:QI 0 "general_operand" "")
+ (match_operand:SI 1 "general_operand" ""))]
+ ""
+ "{
+ if (TARGET_FDPIC)
+ {
+ ubicom32_expand_call_fdpic (operands);
+ DONE;
+ }
+
+ if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode))
+ XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0));
+ }")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does. This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_1"
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 1 "general_operand" "g,g"))]
+ "! TARGET_FDPIC"
+ "#"
+ ""
+ [(parallel
+ [(call (mem:QI (match_dup 0))
+ (match_dup 1))
+ (clobber (reg:SI LINK_REGNO))])]
+ "")
+
+(define_insn "call_slow"
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 1 "general_operand" "g,g"))
+ (clobber (reg:SI LINK_REGNO))]
+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
+ "@
+ calli\\ta5, 0(%0)
+ moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)")
+
+(define_insn "call_fast"
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 1 "general_operand" "g,g"))
+ (clobber (reg:SI LINK_REGNO))]
+ "(! TARGET_FDPIC && TARGET_FASTCALL)"
+ "@
+ calli\\ta5, 0(%0)
+ call\\ta5, %C0")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does. This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_fdpic"
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 1 "general_operand" "g,g"))
+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))]
+ "TARGET_FDPIC"
+ "#"
+ ""
+ [(parallel
+ [(call (mem:QI (match_dup 0))
+ (match_dup 1))
+ (use (match_dup 2))
+ (clobber (reg:SI LINK_REGNO))])]
+ "")
+
+(define_insn "call_fdpic_clobber"
+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 1 "general_operand" "g,g"))
+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))
+ (clobber (reg:SI LINK_REGNO))]
+ "TARGET_FDPIC"
+ "@
+ move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5)
+ call\\ta5, %C0")
+
+; Call subroutine, returning value in operand 0
+; (which must be a hard register).
+;
+(define_expand "call_value"
+ [(set (match_operand 0 "" "")
+ (call (match_operand:QI 1 "general_operand" "")
+ (match_operand:SI 2 "general_operand" "")))]
+ ""
+ "{
+ if (TARGET_FDPIC)
+ {
+ ubicom32_expand_call_value_fdpic (operands);
+ DONE;
+ }
+
+ if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode))
+ XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0));
+ }")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does. This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_value_1"
+ [(set (match_operand 0 "register_operand" "=r,r")
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 2 "general_operand" "g,g")))]
+ "! TARGET_FDPIC"
+ "#"
+ ""
+ [(parallel
+ [(set (match_dup 0)
+ (call (mem:QI (match_dup 1))
+ (match_dup 2)))
+ (clobber (reg:SI LINK_REGNO))])]
+ "")
+
+(define_insn "call_value_slow"
+ [(set (match_operand 0 "register_operand" "=r,r")
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 2 "general_operand" "g,g")))
+ (clobber (reg:SI LINK_REGNO))]
+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)"
+ "@
+ calli\\ta5, 0(%1)
+ moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)")
+
+(define_insn "call_value_fast"
+ [(set (match_operand 0 "register_operand" "=r,r")
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 2 "general_operand" "g,g")))
+ (clobber (reg:SI LINK_REGNO))]
+ "(! TARGET_FDPIC && TARGET_FASTCALL)"
+ "@
+ calli\\ta5, 0(%1)
+ call\\ta5, %C1")
+
+; We expand to a simple form that doesn't clobber the link register and
+; then split to a form that does. This allows the RTL optimizers that
+; run before the splitter to have the opportunity to eliminate the call
+; without marking A5 as being clobbered and this in turn avoids saves
+; and returns in a number of cases.
+;
+(define_insn_and_split "call_value_fdpic"
+ [(set (match_operand 0 "register_operand" "=r,r")
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 2 "general_operand" "g,g")))
+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))]
+ "TARGET_FDPIC"
+ "#"
+ ""
+ [(parallel
+ [(set (match_dup 0)
+ (call (mem:QI (match_dup 1))
+ (match_dup 2)))
+ (use (match_dup 3))
+ (clobber (reg:SI LINK_REGNO))])]
+ "")
+
+(define_insn "call_value_fdpic_clobber"
+ [(set (match_operand 0 "register_operand" "=r,r")
+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S"))
+ (match_operand:SI 2 "general_operand" "g,g")))
+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))
+ (clobber (reg:SI LINK_REGNO))]
+ "TARGET_FDPIC"
+ "@
+ move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5)
+ call\\ta5, %C1")
+
+(define_expand "untyped_call"
+ [(parallel [(call (match_operand 0 "" "")
+ (const_int 0))
+ (match_operand 1 "" "")
+ (match_operand 2 "" "")])]
+ ""
+ "{
+ int i;
+
+ emit_call_insn (gen_call (operands[0], const0_rtx));
+
+ for (i = 0; i < XVECLEN (operands[2], 0); i++)
+ {
+ rtx set = XVECEXP (operands[2], 0, i);
+ emit_move_insn (SET_DEST (set), SET_SRC (set));
+ }
+ DONE;
+ }")
+
+(define_insn "lsl1_1"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashift:SI (subreg:SI
+ (match_operand:QI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "lsl.1\\t%0, %1, %2")
+
+; The combiner gets rather creative about left shifts of sub-word memory
+; operands because it's uncertain about whether the memory is sign or
+; zero extended. It only wants zero-extended behaviour and so throws
+; in an extra and operation.
+;
+(define_insn "lsl1_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (and:SI
+ (ashift:SI (subreg:SI
+ (match_operand:QI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "const_int_operand" "M"))
+ (match_operand:SI 3 "const_int_operand" "n")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))"
+ "lsl.1\\t%0, %1, %2")
+
+(define_insn "lsl2_1"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashift:SI (subreg:SI
+ (match_operand:HI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "lsl.2\\t%0, %1, %2")
+
+; The combiner gets rather creative about left shifts of sub-word memory
+; operands because it's uncertain about whether the memory is sign or
+; zero extended. It only wants zero-extended behaviour and so throws
+; in an extra and operation.
+;
+(define_insn "lsl2_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (and:SI
+ (ashift:SI (subreg:SI
+ (match_operand:HI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "const_int_operand" "M"))
+ (match_operand:SI 3 "const_int_operand" "n")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))"
+ "lsl.2\\t%0, %1, %2")
+
+(define_insn "ashlsi3"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "lsl.4\\t%0, %1, %2")
+
+(define_insn "lshlsi3_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashift:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "lsl.4\\t%0, %1, %2")
+
+(define_insn "lshlsi3_ccwz_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "lsl.4\\t%2, %0, %1")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "asr1_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (sign_extract:SI (match_operand:QI 1 "memory_operand" "m")
+ (match_operand:SI 2 "const_int_operand" "M")
+ (match_operand:SI 3 "const_int_operand" "M")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
+ "asr.1\\t%0, %1, %3")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "asr2_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (sign_extract:SI (match_operand:HI 1 "memory_operand" "m")
+ (match_operand:SI 2 "const_int_operand" "M")
+ (match_operand:SI 3 "const_int_operand" "M")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
+ "asr.2\\t%0, %1, %3")
+
+(define_insn "ashrsi3"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "asr.4\\t%0, %1, %2")
+
+(define_insn "ashrsi3_ccwzn"
+ [(set (reg CC_REGNO)
+ (compare
+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ashiftrt:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "asr.4\\t%0, %1, %2")
+
+(define_insn "ashrsi3_ccwzn_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ")
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ "ubicom32_match_cc_mode(insn, CCWZNmode)"
+ "asr.4\\t%2, %0, %1")
+
+(define_insn "lsr1_1"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (lshiftrt:SI (subreg:SI
+ (match_operand:QI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "lsr.1\\t%0, %1, %2")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "lsr1_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (zero_extract:SI (match_operand:QI 1 "memory_operand" "m")
+ (match_operand:SI 2 "const_int_operand" "M")
+ (match_operand:SI 3 "const_int_operand" "M")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))"
+ "lsr.1\\t%0, %1, %3")
+
+(define_insn "lsr2_1"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (lshiftrt:SI (subreg:SI
+ (match_operand:HI 1 "memory_operand" "m")
+ 0)
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4)"
+ "lsr.2\\t%0, %1, %2")
+
+; The combiner finds this canonical form for what is in essence a right
+; shift.
+;
+(define_insn "lsr2_2"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (zero_extract:SI (match_operand:HI 1 "memory_operand" "m")
+ (match_operand:SI 2 "const_int_operand" "M")
+ (match_operand:SI 3 "const_int_operand" "M")))
+ (clobber (reg:CC CC_REGNO))]
+ "(ubicom32_v4
+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))"
+ "lsr.2\\t%0, %1, %3")
+
+(define_insn "lshrsi3"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "lsr.4\\t%0, %1, %2")
+
+(define_insn "lshrsi3_ccwz"
+ [(set (reg CC_REGNO)
+ (compare
+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (lshiftrt:SI (match_dup 1)
+ (match_dup 2)))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "lsr.4\\t%0, %1, %2")
+
+(define_insn "lshrsi3_ccwz_null"
+ [(set (reg CC_REGNO)
+ (compare
+ (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")
+ (match_operand:SI 1 "ubicom32_arith_operand" "dM"))
+ (const_int 0)))
+ (clobber (match_scratch:SI 2 "=d"))]
+ "ubicom32_match_cc_mode(insn, CCWZmode)"
+ "lsr.4\\t%2, %0, %1")
+
+(define_expand "prologue"
+ [(const_int 0)]
+ ""
+ "{
+ ubicom32_expand_prologue ();
+ DONE;
+ }")
+
+(define_expand "epilogue"
+ [(return)]
+ ""
+ "{
+ ubicom32_expand_epilogue ();
+ DONE;
+ }")
+
+(define_expand "return"
+ [(return)]
+ ""
+ "{
+ ubicom32_expand_epilogue ();
+ DONE;
+ }")
+
+(define_expand "_eh_return"
+ [(use (match_operand:SI 0 "register_operand" "r"))
+ (use (match_operand:SI 1 "register_operand" "r"))]
+ ""
+ "{
+ ubicom32_expand_eh_return (operands);
+ DONE;
+ }")
+
+; XXX - it looks almost certain that we could make return_internal use a Dn
+; register too. In that instance we'd have to use a ret instruction
+; rather than a calli but it might save cycles.
+;
+(define_insn "return_internal"
+ [(const_int 2)
+ (return)
+ (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))]
+ ""
+ "*
+ {
+ if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO
+ && ubicom32_can_use_calli_to_ret)
+ return \"calli\\t%0, 0(%0)\";
+
+ return \"ret\\t%0\";
+ }")
+
+(define_insn "return_from_post_modify_sp"
+ [(parallel
+ [(const_int 2)
+ (return)
+ (use (mem:SI (post_modify:SI
+ (reg:SI SP_REGNO)
+ (plus:SI (reg:SI SP_REGNO)
+ (match_operand:SI 0 "const_int_operand" "n")))))])]
+ "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4"
+ "ret\\t(sp)%E0++")
+
+;(define_insn "eh_return_internal"
+; [(const_int 4)
+; (return)
+; (use (reg:SI 34))]
+; ""
+; "ret\\ta2")
+
+; No operation, needed in case the user uses -g but not -O.
+(define_expand "nop"
+ [(const_int 0)]
+ ""
+ "")
+
+(define_insn "nop_internal"
+ [(const_int 0)]
+ ""
+ "nop")
+
+; The combiner will generate this pattern given shift and add operations.
+; The canonical form that the combiner wants to use appears to be multiplies
+; instead of shifts even if the compiled sources use shifts.
+;
+(define_insn "shmrg1_add"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (plus:SI
+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 256))
+ (zero_extend:SI
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "shmrg.1\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and or operations.
+;
+(define_insn "shmrg1_ior"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ior:SI
+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 8))
+ (zero_extend:SI
+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI"))))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "shmrg.1\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and add operations.
+; The canonical form that the combiner wants to use appears to be multiplies
+; instead of shifts even if the compiled sources use shifts.
+;
+(define_insn "shmrg2_add"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (plus:SI
+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 65536))
+ (zero_extend:SI
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "shmrg.2\\t%0, %2, %1")
+
+; The combiner will generate this pattern given shift and or operations.
+;
+(define_insn "shmrg2_ior"
+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d")
+ (ior:SI
+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d")
+ (const_int 16))
+ (zero_extend:SI
+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI"))))
+ (clobber (reg:CC CC_REGNO))]
+ ""
+ "shmrg.2\\t%0, %2, %1")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 16 bits. We turn this into a zero-extended load of that useful
+; 16 bits direct from the stack where possible.
+;
+
+; XXX - do these peephole2 ops actually work after the CCmode conversion?
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
+ (match_operand:SI 1 "const_int_operand" ""))))
+ (set (match_operand:SI 2 "nonimmediate_operand" "")
+ (zero_extend:SI (match_operand:HI 3 "register_operand" "")))]
+ "(INTVAL (operands[1]) <= 252
+ && REGNO (operands[3]) == REGNO (operands[0])
+ && ((peep2_reg_dead_p (2, operands[0])
+ && ! reg_mentioned_p (operands[0], operands[2]))
+ || rtx_equal_p (operands[0], operands[2])))"
+ [(set (match_dup 2)
+ (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO)
+ (match_dup 4)))))]
+ "{
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
+ }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 16 bits. We turn this into a 16-bit load of that useful
+; 16 bits direct from the stack where possible.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
+ (match_operand:SI 1 "const_int_operand" ""))))
+ (set (match_operand:HI 2 "nonimmediate_operand" "")
+ (match_operand:HI 3 "register_operand" ""))]
+ "(INTVAL (operands[1]) <= 252
+ && REGNO (operands[3]) == REGNO (operands[0])
+ && ((peep2_reg_dead_p (2, operands[0])
+ && ! reg_mentioned_p (operands[0], operands[2]))
+ || rtx_equal_p (operands[0], operands[2])))"
+ [(set (match_dup 2)
+ (mem:HI (plus:SI (reg:SI SP_REGNO)
+ (match_dup 4))))]
+ "{
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2);
+ }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 24 bits. We turn this into a zero-extended load of that useful
+; 8 bits direct from the stack where possible.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
+ (match_operand:SI 1 "const_int_operand" ""))))
+ (set (match_operand:SI 2 "nonimmediate_operand" "")
+ (zero_extend:SI (match_operand:QI 3 "register_operand" "")))]
+ "(INTVAL (operands[1]) <= 124
+ && REGNO (operands[3]) == REGNO (operands[0])
+ && ((peep2_reg_dead_p (2, operands[0])
+ && ! reg_mentioned_p (operands[0], operands[2]))
+ || rtx_equal_p (operands[0], operands[2])))"
+ [(set (match_dup 2)
+ (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO)
+ (match_dup 4)))))]
+ "{
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
+ }")
+
+; Match the case where we load a word from the stack but then discard the
+; upper 24 bits. We turn this into an 8-bit load of that useful
+; 8 bits direct from the stack where possible.
+;
+(define_peephole2
+ [(set (match_operand:SI 0 "register_operand" "")
+ (mem:SI (plus:SI (reg:SI SP_REGNO)
+ (match_operand:SI 1 "const_int_operand" ""))))
+ (set (match_operand:QI 2 "nonimmediate_operand" "")
+ (match_operand:QI 3 "register_operand" ""))]
+ "(INTVAL (operands[1]) <= 124
+ && REGNO (operands[3]) == REGNO (operands[0])
+ && ((peep2_reg_dead_p (2, operands[0])
+ && ! reg_mentioned_p (operands[0], operands[2]))
+ || rtx_equal_p (operands[0], operands[2])))"
+ [(set (match_dup 2)
+ (mem:QI (plus:SI (reg:SI SP_REGNO)
+ (match_dup 4))))]
+ "{
+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3);
+ }")
+
--- /dev/null
+++ b/gcc/config/ubicom32/ubicom32.opt
@@ -0,0 +1,27 @@
+mdebug-address
+Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS)
+Debug addresses
+
+mdebug-context
+Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT)
+Debug contexts
+
+march=
+Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined
+Specify the name of the target architecture
+
+mfdpic
+Target Report Mask(FDPIC)
+Enable Function Descriptor PIC mode
+
+minline-plt
+Target Report Mask(INLINE_PLT)
+Enable inlining of PLT in function calls
+
+mfastcall
+Target Report Mask(FASTCALL)
+Enable default fast (call) calling sequence for smaller applications
+
+mipos-abi
+Target Report Mask(IPOS_ABI)
+Enable the ipOS ABI in which D10-D13 are caller-clobbered
--- /dev/null
+++ b/gcc/config/ubicom32/uclinux.h
@@ -0,0 +1,67 @@
+/* Definitions of target machine for Ubicom32-uclinux
+
+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+ 2009 Free Software Foundation, Inc.
+ Contributed by Ubicom, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published
+ by the Free Software Foundation; either version 3, or (at your
+ option) any later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+/* Don't assume anything about the header files. */
+#define NO_IMPLICIT_EXTERN_C
+
+#undef LIB_SPEC
+#define LIB_SPEC \
+ "%{pthread:-lpthread} " \
+ "%{!shared:%{!symbolic: -lc}} "
+
+
+#undef LINK_GCC_C_SEQUENCE_SPEC
+#define LINK_GCC_C_SEQUENCE_SPEC \
+ "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} "
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC \
+ "%{!shared: crt1%O%s}" \
+ " crti%O%s crtbegin%O%s"
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
+
+/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that
+ we want to support both flat and ELF output. */
+#define OBJECT_FORMAT_FLAT
+
+#undef DRIVER_SELF_SPECS
+#define DRIVER_SELF_SPECS \
+ "%{!mno-fastcall:-mfastcall}"
+
+/* taken from linux.h */
+/* The GNU C++ standard library requires that these macros be defined. */
+#undef CPLUSPLUS_CPP_SPEC
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
+
+#define TARGET_OS_CPP_BUILTINS() \
+ do { \
+ builtin_define_std ("__UBICOM32__"); \
+ builtin_define_std ("__ubicom32__"); \
+ builtin_define ("__gnu_linux__"); \
+ builtin_define_std ("linux"); \
+ builtin_define_std ("unix"); \
+ builtin_assert ("system=linux"); \
+ builtin_assert ("system=unix"); \
+ builtin_assert ("system=posix"); \
+ } while (0)
--- /dev/null
+++ b/gcc/config/ubicom32/xm-ubicom32.h
@@ -0,0 +1,36 @@
+/* Configuration for Ubicom's Ubicom32 architecture.
+ Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software
+ Foundation, Inc.
+ Contributed by Ubicom Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+/* #defines that need visibility everywhere. */
+#define FALSE 0
+#define TRUE 1
+
+/* This describes the machine the compiler is hosted on. */
+#define HOST_BITS_PER_CHAR 8
+#define HOST_BITS_PER_SHORT 16
+#define HOST_BITS_PER_INT 32
+#define HOST_BITS_PER_LONG 32
+#define HOST_BITS_PER_LONGLONG 64
+
+/* Arguments to use with `exit'. */
+#define SUCCESS_EXIT_CODE 0
+#define FATAL_EXIT_CODE 33
--- a/gcc/config.gcc
+++ b/gcc/config.gcc
@@ -2314,6 +2314,34 @@ spu-*-elf*)
c_target_objs="${c_target_objs} spu-c.o"
cxx_target_objs="${cxx_target_objs} spu-c.o"
;;
+ubicom32-*-elf)
+ xm_file=ubicom32/xm-ubicom32.h
+ tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h
+ tmake_file=ubicom32/t-ubicom32
+ ;;
+ubicom32-*-uclinux*)
+ xm_file=ubicom32/xm-ubicom32.h
+ tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h
+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
+ extra_options="${extra_options} linux.opt"
+ tmake_file=ubicom32/t-ubicom32-uclinux
+ use_collect2=no
+ ;;
+ubicom32-*-linux-uclibc)
+ xm_file=ubicom32/xm-ubicom32.h
+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+ use_collect2=no
+ ;;
+ubicom32-*-linux*)
+ xm_file=ubicom32/xm-ubicom32.h
+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h
+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux"
+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1"
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+ use_collect2=no
+ ;;
v850e1-*-*)
target_cpu_default="TARGET_CPU_v850e1"
tm_file="dbxelf.h elfos.h svr4.h v850/v850.h"
--- a/libgcc/config.host
+++ b/libgcc/config.host
@@ -551,6 +551,15 @@ sparc64-*-netbsd*)
;;
spu-*-elf*)
;;
+ubicom32*-*-elf*)
+ ;;
+ubicom32*-*-uclinux*)
+ ;;
+ubicom32*-*-linux*)
+ # No need to build crtbeginT.o on uClibc systems. Should probably
+ # be moved to the OS specific section above.
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
+ ;;
v850e1-*-*)
;;
v850e-*-*)