1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-18 07:22:50 +02:00
openwrt-xburst/package/uboot-ar71xx/files/drivers/net/phy/rtl8366_mii.c
juhosg 2048e10433 ar71xx: adding u-boot for nbg460n
This adds u-boot for nbg460n ar71xx target,
as it is required as second stage bootloader.

Signed-off-by: Michael Kurz <michi.kurz@googlemail.com>

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@24418 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-12-10 15:17:00 +00:00

787 lines
18 KiB
C

/*
* (C) Copyright 2010
* Michael Kurz <michi.kurz@googlemail.com>.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <net.h>
#include <netdev.h>
#include <miiphy.h>
#include MII_GPIOINCLUDE
#include "rtl8366.h"
#ifdef DEBUG_RTL8366
#define DBG(fmt,args...) printf (fmt ,##args)
#else
#define DBG(fmt,args...)
#endif
//-------------------------------------------------------------------
// Soft SMI functions
//-------------------------------------------------------------------
#define DELAY 2
static void smi_init(void)
{
MII_SDAINPUT;
MII_SCKINPUT;
MII_SETSDA(1);
MII_SETSCK(1);
udelay(20);
}
static void smi_start(void)
{
/*
* rtl8366 chip needs a extra clock with
* SDA high before start condition
*/
/* set gpio pins output */
MII_SDAOUTPUT;
MII_SCKOUTPUT;
udelay(DELAY);
/* set initial state: SCK:0, SDA:1 */
MII_SETSCK(0);
MII_SETSDA(1);
udelay(DELAY);
/* toggle clock */
MII_SETSCK(1);
udelay(DELAY);
MII_SETSCK(0);
udelay(DELAY);
/* start condition */
MII_SETSCK(1);
udelay(DELAY);
MII_SETSDA(0);
udelay(DELAY);
MII_SETSCK(0);
udelay(DELAY);
MII_SETSDA(1);
}
static void smi_stop(void)
{
/*
* rtl8366 chip needs a extra clock with
* SDA high after stop condition
*/
/* stop condition */
udelay(DELAY);
MII_SETSDA(0);
MII_SETSCK(1);
udelay(DELAY);
MII_SETSDA(1);
udelay(DELAY);
MII_SETSCK(1);
udelay(DELAY);
MII_SETSCK(0);
udelay(DELAY);
/* toggle clock */
MII_SETSCK(1);
udelay(DELAY);
MII_SETSCK(0);
udelay(DELAY);
MII_SETSCK(1);
/* set gpio pins input */
MII_SDAINPUT;
MII_SCKINPUT;
}
static void smi_writeBits(uint32_t data, uint8_t length)
{
uint8_t test;
for( ; length > 0; length--) {
udelay(DELAY);
/* output data */
test = (((data & (1 << (length - 1))) != 0) ? 1 : 0);
MII_SETSDA(test);
udelay(DELAY);
/* toogle clock */
MII_SETSCK(1);
udelay(DELAY);
MII_SETSCK(0);
}
}
static uint32_t smi_readBits(uint8_t length)
{
uint32_t ret;
MII_SDAINPUT;
for(ret = 0 ; length > 0; length--) {
udelay(DELAY);
ret <<= 1;
/* toogle clock */
MII_SETSCK(1);
udelay(DELAY);
ret |= MII_GETSDA;
MII_SETSCK(0);
}
MII_SDAOUTPUT;
return ret;
}
static int smi_waitAck(void)
{
uint32_t retry = 0;
while (smi_readBits(1)) {
if (retry++ == 5)
return -1;
}
return 0;
}
static int smi_read(uint32_t reg, uint32_t *data)
{
uint32_t rawData;
/* send start condition */
smi_start();
/* send CTRL1 code: 0b1010*/
smi_writeBits(0x0a, 4);
/* send CTRL2 code: 0b100 */
smi_writeBits(0x04, 3);
/* send READ command */
smi_writeBits(0x01, 1);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send address low */
smi_writeBits(reg & 0xFF, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send address high */
smi_writeBits((reg & 0xFF00) >> 8, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* read data low */
rawData = (smi_readBits(8) & 0xFF);
/* send ACK */
smi_writeBits(0, 1);
/* read data high */
rawData |= (smi_readBits(8) & 0xFF) << 8;
/* send NACK */
smi_writeBits(1, 1);
/* send stop condition */
smi_stop();
if (data)
*data = rawData;
return 0;
}
static int smi_write(uint32_t reg, uint32_t data)
{
/* send start condition */
smi_start();
/* send CTRL1 code: 0b1010*/
smi_writeBits(0x0a, 4);
/* send CTRL2 code: 0b100 */
smi_writeBits(0x04, 3);
/* send WRITE command */
smi_writeBits(0x00, 1);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send address low */
smi_writeBits(reg & 0xFF, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send address high */
smi_writeBits((reg & 0xFF00) >> 8, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send data low */
smi_writeBits(data & 0xFF, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send data high */
smi_writeBits((data & 0xFF00) >> 8, 8);
/* wait for ACK */
if (smi_waitAck())
return -1;
/* send stop condition */
smi_stop();
return 0;
}
//-------------------------------------------------------------------
// Switch register read / write functions
//-------------------------------------------------------------------
static int rtl8366_readRegister(uint32_t reg, uint16_t *data)
{
uint32_t regData;
DBG("rtl8366: read register=%#04x, data=", reg);
if (smi_read(reg, &regData)) {
printf("\nrtl8366 smi read failed!\n");
return -1;
}
if (data)
*data = regData;
DBG("%#04x\n", regData);
return 0;
}
static int rtl8366_writeRegister(uint32_t reg, uint16_t data)
{
DBG("rtl8366: write register=%#04x, data=%#04x\n", reg, data);
if (smi_write(reg, data)) {
printf("rtl8366 smi write failed!\n");
return -1;
}
return 0;
}
static int rtl8366_setRegisterBit(uint32_t reg, uint32_t bitNum, uint32_t value)
{
uint16_t regData;
if (bitNum >= 16)
return -1;
if (rtl8366_readRegister(reg, &regData))
return -1;
if (value)
regData |= (1 << bitNum);
else
regData &= ~(1 << bitNum);
if (rtl8366_writeRegister(reg, regData))
return -1;
return 0;
}
//-------------------------------------------------------------------
// MII PHY read / write functions
//-------------------------------------------------------------------
static int rtl8366_getPhyReg(uint32_t phyNum, uint32_t reg, uint16_t *data)
{
uint16_t phyAddr, regData;
if (phyNum > RTL8366S_PHY_NO_MAX) {
printf("rtl8366s: invalid phy number!\n");
return -1;
}
if (phyNum > RTL8366S_PHY_ADDR_MAX) {
printf("rtl8366s: invalid phy register number!\n");
return -1;
}
if (rtl8366_writeRegister(RTL8366S_PHY_ACCESS_CTRL_REG,
RTL8366S_PHY_CTRL_READ))
return -1;
phyAddr = 0x8000 | (1 << (phyNum + RTL8366S_PHY_NO_OFFSET))
| (reg & RTL8366S_PHY_REG_MASK);
if (rtl8366_writeRegister(phyAddr, 0))
return -1;
if (rtl8366_readRegister(RTL8366S_PHY_ACCESS_DATA_REG, &regData))
return -1;
if (data)
*data = regData;
return 0;
}
static int rtl8366_setPhyReg(uint32_t phyNum, uint32_t reg, uint16_t data)
{
uint16_t phyAddr;
if (phyNum > RTL8366S_PHY_NO_MAX) {
printf("rtl8366s: invalid phy number!\n");
return -1;
}
if (phyNum > RTL8366S_PHY_ADDR_MAX) {
printf("rtl8366s: invalid phy register number!\n");
return -1;
}
if (rtl8366_writeRegister(RTL8366S_PHY_ACCESS_CTRL_REG,
RTL8366S_PHY_CTRL_WRITE))
return -1;
phyAddr = 0x8000 | (1 << (phyNum + RTL8366S_PHY_NO_OFFSET))
| (reg & RTL8366S_PHY_REG_MASK);
if (rtl8366_writeRegister(phyAddr, data))
return -1;
return 0;
}
static int rtl8366_miiread(char *devname, uchar phy_adr, uchar reg, ushort *data)
{
uint16_t regData;
DBG("rtl8366_miiread: devname=%s, addr=%#02x, reg=%#02x\n",
devname, phy_adr, reg);
if (strcmp(devname, RTL8366_DEVNAME) != 0)
return -1;
if (rtl8366_getPhyReg(phy_adr, reg, &regData)) {
printf("rtl8366_miiread: write failed!\n");
return -1;
}
if (data)
*data = regData;
return 0;
}
static int rtl8366_miiwrite(char *devname, uchar phy_adr, uchar reg, ushort data)
{
DBG("rtl8366_miiwrite: devname=%s, addr=%#02x, reg=%#02x, data=%#04x\n",
devname, phy_adr, reg, data);
if (strcmp(devname, RTL8366_DEVNAME) != 0)
return -1;
if (rtl8366_setPhyReg(phy_adr, reg, data)) {
printf("rtl8366_miiwrite: write failed!\n");
return -1;
}
return 0;
}
int rtl8366_mii_register(bd_t *bis)
{
miiphy_register(strdup(RTL8366_DEVNAME), rtl8366_miiread,
rtl8366_miiwrite);
return 0;
}
//-------------------------------------------------------------------
// Switch management functions
//-------------------------------------------------------------------
int rtl8366s_setGreenFeature(uint32_t tx, uint32_t rx)
{
if (rtl8366_setRegisterBit(RTL8366S_GREEN_FEATURE_REG,
RTL8366S_GREEN_FEATURE_TX_BIT, tx))
return -1;
if (rtl8366_setRegisterBit(RTL8366S_GREEN_FEATURE_REG,
RTL8366S_GREEN_FEATURE_RX_BIT, rx))
return -1;
return 0;
}
int rtl8366s_setPowerSaving(uint32_t phyNum, uint32_t enabled)
{
uint16_t regData;
if (phyNum > RTL8366S_PHY_NO_MAX)
return -1;
if (rtl8366_getPhyReg(phyNum, 12, &regData))
return -1;
if (enabled)
regData |= (1 << 12);
else
regData &= ~(1 << 12);
if (rtl8366_setPhyReg(phyNum, 12, regData))
return -1;
return 0;
}
int rtl8366s_setGreenEthernet(uint32_t greenFeature, uint32_t powerSaving)
{
uint32_t phyNum, i;
uint16_t regData;
const uint16_t greenSettings[][2] =
{
{0xBE5B,0x3500},
{0xBE5C,0xB975},
{0xBE5D,0xB9B9},
{0xBE77,0xA500},
{0xBE78,0x5A78},
{0xBE79,0x6478}
};
if (rtl8366_readRegister(RTL8366S_MODEL_ID_REG, &regData))
return -1;
switch (regData)
{
case 0x0000:
for (i = 0; i < 6; i++) {
if (rtl8366_writeRegister(RTL8366S_PHY_ACCESS_CTRL_REG, RTL8366S_PHY_CTRL_WRITE))
return -1;
if (rtl8366_writeRegister(greenSettings[i][0], greenSettings[i][1]))
return -1;
}
break;
case RTL8366S_MODEL_8366SR:
if (rtl8366_writeRegister(RTL8366S_PHY_ACCESS_CTRL_REG, RTL8366S_PHY_CTRL_WRITE))
return -1;
if (rtl8366_writeRegister(greenSettings[0][0], greenSettings[0][1]))
return -1;
break;
default:
printf("rtl8366s_initChip: unsupported chip found!\n");
return -1;
}
if (rtl8366s_setGreenFeature(greenFeature, powerSaving))
return -1;
for (phyNum = 0; phyNum <= RTL8366S_PHY_NO_MAX; phyNum++) {
if (rtl8366s_setPowerSaving(phyNum, powerSaving))
return -1;
}
return 0;
}
int rtl8366s_setCPUPortMask(uint8_t port, uint32_t enabled)
{
if(port >= 6){
printf("rtl8366s_setCPUPortMask: invalid port number\n");
return -1;
}
return rtl8366_setRegisterBit(RTL8366S_CPU_CTRL_REG, port, enabled);
}
int rtl8366s_setCPUDisableInsTag(uint32_t enable)
{
return rtl8366_setRegisterBit(RTL8366S_CPU_CTRL_REG,
RTL8366S_CPU_INSTAG_BIT, enable);
}
int rtl8366s_setCPUDropUnda(uint32_t enable)
{
return rtl8366_setRegisterBit(RTL8366S_CPU_CTRL_REG,
RTL8366S_CPU_DRP_BIT, enable);
}
int rtl8366s_setCPUPort(uint8_t port, uint32_t noTag, uint32_t dropUnda)
{
uint32_t i;
if(port >= 6){
printf("rtl8366s_setCPUPort: invalid port number\n");
return -1;
}
/* reset register */
for(i = 0; i < 6; i++)
{
if(rtl8366s_setCPUPortMask(i, 0)){
printf("rtl8366s_setCPUPort: rtl8366s_setCPUPortMask failed\n");
return -1;
}
}
if(rtl8366s_setCPUPortMask(port, 1)){
printf("rtl8366s_setCPUPort: rtl8366s_setCPUPortMask failed\n");
return -1;
}
if(rtl8366s_setCPUDisableInsTag(noTag)){
printf("rtl8366s_setCPUPort: rtl8366s_setCPUDisableInsTag fail\n");
return -1;
}
if(rtl8366s_setCPUDropUnda(dropUnda)){
printf("rtl8366s_setCPUPort: rtl8366s_setCPUDropUnda fail\n");
return -1;
}
return 0;
}
int rtl8366s_setLedConfig(uint32_t ledNum, uint8_t config)
{
uint16_t regData;
if(ledNum >= RTL8366S_LED_GROUP_MAX) {
DBG("rtl8366s_setLedConfig: invalid led group\n");
return -1;
}
if(config > RTL8366S_LEDCONF_LEDFORCE) {
DBG("rtl8366s_setLedConfig: invalid led config\n");
return -1;
}
if (rtl8366_readRegister(RTL8366S_LED_INDICATED_CONF_REG, &regData)) {
printf("rtl8366s_setLedConfig: failed to get led register!\n");
return -1;
}
regData &= ~(0xF << (ledNum * 4));
regData |= config << (ledNum * 4);
if (rtl8366_writeRegister(RTL8366S_LED_INDICATED_CONF_REG, regData)) {
printf("rtl8366s_setLedConfig: failed to set led register!\n");
return -1;
}
return 0;
}
int rtl8366s_getLedConfig(uint32_t ledNum, uint8_t *config)
{
uint16_t regData;
if(ledNum >= RTL8366S_LED_GROUP_MAX) {
DBG("rtl8366s_getLedConfig: invalid led group\n");
return -1;
}
if (rtl8366_readRegister(RTL8366S_LED_INDICATED_CONF_REG, &regData)) {
printf("rtl8366s_getLedConfig: failed to get led register!\n");
return -1;
}
if (config)
*config = (regData >> (ledNum * 4)) & 0xF;
return 0;
}
int rtl8366s_setLedForceValue(uint32_t group0, uint32_t group1,
uint32_t group2, uint32_t group3)
{
uint16_t regData;
regData = (group0 & 0x3F) | ((group1 & 0x3F) << 6);
if (rtl8366_writeRegister(RTL8366S_LED_0_1_FORCE_REG, regData)) {
printf("rtl8366s_setLedForceValue: failed to set led register!\n");
return -1;
}
regData = (group2 & 0x3F) | ((group3 & 0x3F) << 6);
if (rtl8366_writeRegister(RTL8366S_LED_2_3_FORCE_REG, regData)) {
printf("rtl8366s_setLedForceValue: failed to set led register!\n");
return -1;
}
return 0;
}
int rtl8366s_initChip(void)
{
uint32_t ledGroup, i = 0;
uint16_t regData;
uint8_t ledData[RTL8366S_LED_GROUP_MAX];
const uint16_t (*chipData)[2];
const uint16_t chipB[][2] =
{
{0x0000, 0x0038},{0x8100, 0x1B37},{0xBE2E, 0x7B9F},{0xBE2B, 0xA4C8},
{0xBE74, 0xAD14},{0xBE2C, 0xDC00},{0xBE69, 0xD20F},{0xBE3B, 0xB414},
{0xBE24, 0x0000},{0xBE23, 0x00A1},{0xBE22, 0x0008},{0xBE21, 0x0120},
{0xBE20, 0x1000},{0xBE24, 0x0800},{0xBE24, 0x0000},{0xBE24, 0xF000},
{0xBE23, 0xDF01},{0xBE22, 0xDF20},{0xBE21, 0x101A},{0xBE20, 0xA0FF},
{0xBE24, 0xF800},{0xBE24, 0xF000},{0x0242, 0x02BF},{0x0245, 0x02BF},
{0x0248, 0x02BF},{0x024B, 0x02BF},{0x024E, 0x02BF},{0x0251, 0x02BF},
{0x0230, 0x0A32},{0x0233, 0x0A32},{0x0236, 0x0A32},{0x0239, 0x0A32},
{0x023C, 0x0A32},{0x023F, 0x0A32},{0x0254, 0x0A3F},{0x0255, 0x0064},
{0x0256, 0x0A3F},{0x0257, 0x0064},{0x0258, 0x0A3F},{0x0259, 0x0064},
{0x025A, 0x0A3F},{0x025B, 0x0064},{0x025C, 0x0A3F},{0x025D, 0x0064},
{0x025E, 0x0A3F},{0x025F, 0x0064},{0x0260, 0x0178},{0x0261, 0x01F4},
{0x0262, 0x0320},{0x0263, 0x0014},{0x021D, 0x9249},{0x021E, 0x0000},
{0x0100, 0x0004},{0xBE4A, 0xA0B4},{0xBE40, 0x9C00},{0xBE41, 0x501D},
{0xBE48, 0x3602},{0xBE47, 0x8051},{0xBE4C, 0x6465},{0x8000, 0x1F00},
{0x8001, 0x000C},{0x8008, 0x0000},{0x8007, 0x0000},{0x800C, 0x00A5},
{0x8101, 0x02BC},{0xBE53, 0x0005},{0x8E45, 0xAFE8},{0x8013, 0x0005},
{0xBE4B, 0x6700},{0x800B, 0x7000},{0xBE09, 0x0E00},
{0xFFFF, 0xABCD}
};
const uint16_t chipDefault[][2] =
{
{0x0242, 0x02BF},{0x0245, 0x02BF},{0x0248, 0x02BF},{0x024B, 0x02BF},
{0x024E, 0x02BF},{0x0251, 0x02BF},
{0x0254, 0x0A3F},{0x0256, 0x0A3F},{0x0258, 0x0A3F},{0x025A, 0x0A3F},
{0x025C, 0x0A3F},{0x025E, 0x0A3F},
{0x0263, 0x007C},{0x0100, 0x0004},
{0xBE5B, 0x3500},{0x800E, 0x200F},{0xBE1D, 0x0F00},{0x8001, 0x5011},
{0x800A, 0xA2F4},{0x800B, 0x17A3},{0xBE4B, 0x17A3},{0xBE41, 0x5011},
{0xBE17, 0x2100},{0x8000, 0x8304},{0xBE40, 0x8304},{0xBE4A, 0xA2F4},
{0x800C, 0xA8D5},{0x8014, 0x5500},{0x8015, 0x0004},{0xBE4C, 0xA8D5},
{0xBE59, 0x0008},{0xBE09, 0x0E00},{0xBE36, 0x1036},{0xBE37, 0x1036},
{0x800D, 0x00FF},{0xBE4D, 0x00FF},
{0xFFFF, 0xABCD}
};
DBG("rtl8366s_initChip\n");
/* save current led config and set to led force */
for (ledGroup = 0; ledGroup < RTL8366S_LED_GROUP_MAX; ledGroup++) {
if (rtl8366s_getLedConfig(ledGroup, &ledData[ledGroup]))
return -1;
if (rtl8366s_setLedConfig(ledGroup, RTL8366S_LEDCONF_LEDFORCE))
return -1;
}
if (rtl8366s_setLedForceValue(0,0,0,0))
return -1;
if (rtl8366_readRegister(RTL8366S_MODEL_ID_REG, &regData))
return -1;
switch (regData)
{
case 0x0000:
chipData = chipB;
break;
case RTL8366S_MODEL_8366SR:
chipData = chipDefault;
break;
default:
printf("rtl8366s_initChip: unsupported chip found!\n");
return -1;
}
DBG("rtl8366s_initChip: found %x chip\n", regData);
while ((chipData[i][0] != 0xFFFF) && (chipData[i][1] != 0xABCD)) {
/* phy settings*/
if ((chipData[i][0] & 0xBE00) == 0xBE00) {
if (rtl8366_writeRegister(RTL8366S_PHY_ACCESS_CTRL_REG,
RTL8366S_PHY_CTRL_WRITE))
return -1;
}
if (rtl8366_writeRegister(chipData[i][0], chipData[i][1]))
return -1;
i++;
}
/* chip needs some time */
udelay(100 * 1000);
/* restore led config */
for (ledGroup = 0; ledGroup < RTL8366S_LED_GROUP_MAX; ledGroup++) {
if (rtl8366s_setLedConfig(ledGroup, ledData[ledGroup]))
return -1;
}
return 0;
}
int rtl8366s_initialize(void)
{
uint16_t regData;
DBG("rtl8366s_initialize: start setup\n");
smi_init();
rtl8366_readRegister(RTL8366S_CHIP_ID_REG, &regData);
DBG("Realtek 8366SR switch ID %#04x\n", regData);
if (regData != 0x8366) {
printf("rtl8366s_initialize: found unsupported switch\n");
return -1;
}
if (rtl8366s_initChip()) {
printf("rtl8366s_initialize: init chip failed\n");
return -1;
}
if (rtl8366s_setGreenEthernet(1, 1)) {
printf("rtl8366s_initialize: set green ethernet failed\n");
return -1;
}
/* Set port 5 noTag and don't dropUnda */
if (rtl8366s_setCPUPort(5, 1, 0)) {
printf("rtl8366s_initialize: set CPU port failed\n");
return -1;
}
return 0;
}