1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-05 15:34:59 +02:00
openwrt-xburst/target/linux/brcm-2.4/files/arch/mips/bcm947xx/sbmips.c
2008-01-06 19:28:07 +00:00

1268 lines
37 KiB
C

/*
* BCM47XX Sonics SiliconBackplane MIPS core routines
*
* Copyright 2007, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id$
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <sbutils.h>
#include <bcmdevs.h>
#include <bcmnvram.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbextif.h>
#include <sbmemc.h>
#include <mipsinc.h>
#include <sbhndmips.h>
#include <hndcpu.h>
#include <hndmips.h>
/* sbipsflag register format, indexed by irq. */
static const uint32 sbips_int_mask[] = {
0, /* placeholder */
SBIPS_INT1_MASK,
SBIPS_INT2_MASK,
SBIPS_INT3_MASK,
SBIPS_INT4_MASK
};
static const uint32 sbips_int_shift[] = {
0, /* placeholder */
SBIPS_INT1_SHIFT,
SBIPS_INT2_SHIFT,
SBIPS_INT3_SHIFT,
SBIPS_INT4_SHIFT
};
/*
* Map SB cores sharing the MIPS hardware IRQ0 to virtual dedicated OS IRQs.
* Per-port BSP code is required to provide necessary translations between
* the shared MIPS IRQ and the virtual OS IRQs based on SB core flag.
*
* See sb_irq() for the mapping.
*/
static uint shirq_map_base = 0;
/* Returns the SB interrupt flag of the current core. */
static uint32 sb_getflag(sb_t * sbh)
{
osl_t *osh;
void *regs;
sbconfig_t *sb;
osh = sb_osh(sbh);
regs = sb_coreregs(sbh);
sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
return (R_REG(osh, &sb->sbtpsflag) & SBTPS_NUM0_MASK);
}
/*
* Returns the MIPS IRQ assignment of the current core. If unassigned,
* 0 is returned.
*/
uint sb_irq(sb_t * sbh)
{
osl_t *osh;
uint idx;
void *regs;
sbconfig_t *sb;
uint32 flag, sbipsflag;
uint irq = 0;
osh = sb_osh(sbh);
flag = sb_getflag(sbh);
idx = sb_coreidx(sbh);
if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
(regs = sb_setcore(sbh, SB_MIPS33, 0))) {
sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
/* sbipsflag specifies which core is routed to interrupts 1 to 4 */
sbipsflag = R_REG(osh, &sb->sbipsflag);
for (irq = 1; irq <= 4; irq++) {
if (((sbipsflag & sbips_int_mask[irq]) >>
sbips_int_shift[irq]) == flag)
break;
}
if (irq == 5)
irq = 0;
}
sb_setcoreidx(sbh, idx);
return irq;
}
/* Clears the specified MIPS IRQ. */
static void BCMINITFN(sb_clearirq) (sb_t * sbh, uint irq) {
osl_t *osh;
void *regs;
sbconfig_t *sb;
osh = sb_osh(sbh);
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(regs);
sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
if (irq == 0)
W_REG(osh, &sb->sbintvec, 0);
else
OR_REG(osh, &sb->sbipsflag, sbips_int_mask[irq]);
}
/*
* Assigns the specified MIPS IRQ to the specified core. Shared MIPS
* IRQ 0 may be assigned more than once.
*
* The old assignment to the specified core is removed first.
*/
static void
BCMINITFN(sb_setirq) (sb_t * sbh, uint irq, uint coreid, uint coreunit) {
osl_t *osh;
void *regs;
sbconfig_t *sb;
uint32 flag;
uint oldirq;
osh = sb_osh(sbh);
regs = sb_setcore(sbh, coreid, coreunit);
ASSERT(regs);
flag = sb_getflag(sbh);
oldirq = sb_irq(sbh);
if (oldirq)
sb_clearirq(sbh, oldirq);
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(regs);
sb = (sbconfig_t *) ((ulong) regs + SBCONFIGOFF);
if (!oldirq)
AND_REG(osh, &sb->sbintvec, ~(1 << flag));
if (irq == 0)
OR_REG(osh, &sb->sbintvec, 1 << flag);
else {
flag <<= sbips_int_shift[irq];
ASSERT(!(flag & ~sbips_int_mask[irq]));
flag |= R_REG(osh, &sb->sbipsflag) & ~sbips_int_mask[irq];
W_REG(osh, &sb->sbipsflag, flag);
}
}
/*
* Initializes clocks and interrupts. SB and NVRAM access must be
* initialized prior to calling.
*
* 'shirqmap' enables virtual dedicated OS IRQ mapping if non-zero.
*/
void BCMINITFN(sb_mips_init) (sb_t * sbh, uint shirqmap) {
osl_t *osh;
ulong hz, ns, tmp;
extifregs_t *eir;
chipcregs_t *cc;
char *value;
uint irq;
osh = sb_osh(sbh);
/* Figure out current SB clock speed */
if ((hz = sb_clock(sbh)) == 0)
hz = 100000000;
ns = 1000000000 / hz;
/* Setup external interface timing */
if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
/* Initialize extif so we can get to the LEDs and external UART */
W_REG(osh, &eir->prog_config, CF_EN);
/* Set timing for the flash */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
W_REG(osh, &eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set programmable interface timing for external uart */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
W_REG(osh, &eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
} else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
/* Set timing for the flash */
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */
tmp |= CEIL(120, ns); /* W0 = 120nS */
if ((sb_corerev(sbh) < 9) || (sb_chip(sbh) == 0x5365))
W_REG(osh, &cc->flash_waitcount, tmp);
if ((sb_corerev(sbh) < 9) ||
((sb_chip(sbh) == BCM5350_CHIP_ID) && sb_chiprev(sbh) == 0)
|| (sb_chip(sbh) == 0x5365)) {
W_REG(osh, &cc->pcmcia_memwait, tmp);
}
/* Save shared IRQ mapping base */
shirq_map_base = shirqmap;
}
/* Chip specific initialization */
switch (sb_chip(sbh)) {
case BCM4710_CHIP_ID:
/* Clear interrupt map */
for (irq = 0; irq <= 4; irq++)
sb_clearirq(sbh, irq);
sb_setirq(sbh, 0, SB_CODEC, 0);
sb_setirq(sbh, 0, SB_EXTIF, 0);
sb_setirq(sbh, 2, SB_ENET, 1);
sb_setirq(sbh, 3, SB_ILINE20, 0);
sb_setirq(sbh, 4, SB_PCI, 0);
ASSERT(eir);
value = nvram_get("et0phyaddr");
if (value && !strcmp(value, "31")) {
/* Enable internal UART */
W_REG(osh, &eir->corecontrol, CC_UE);
/* Give USB its own interrupt */
sb_setirq(sbh, 1, SB_USB, 0);
} else {
/* Disable internal UART */
W_REG(osh, &eir->corecontrol, 0);
/* Give Ethernet its own interrupt */
sb_setirq(sbh, 1, SB_ENET, 0);
sb_setirq(sbh, 0, SB_USB, 0);
}
break;
case BCM5350_CHIP_ID:
/* Clear interrupt map */
for (irq = 0; irq <= 4; irq++)
sb_clearirq(sbh, irq);
sb_setirq(sbh, 0, SB_CC, 0);
sb_setirq(sbh, 0, SB_MIPS33, 0);
sb_setirq(sbh, 1, SB_D11, 0);
sb_setirq(sbh, 2, SB_ENET, 0);
sb_setirq(sbh, 3, SB_PCI, 0);
sb_setirq(sbh, 4, SB_USB, 0);
break;
case BCM4785_CHIP_ID:
/* Reassign PCI to irq 4 */
sb_setirq(sbh, 4, SB_PCI, 0);
break;
}
}
uint32
BCMINITFN(sb_cpu_clock)(sb_t *sbh)
{
extifregs_t *eir;
chipcregs_t *cc;
uint32 n, m;
uint idx;
uint32 pll_type, rate = 0;
/* get index of the current core */
idx = sb_coreidx(sbh);
pll_type = PLL_TYPE1;
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
n = R_REG(osh, &eir->clockcontrol_n);
m = R_REG(osh, &eir->clockcontrol_sb);
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
/* 5354 chip uses a non programmable PLL of frequency 240MHz */
if (sb_chip(sbh) == BCM5354_CHIP_ID) {
rate = 240000000;
goto out;
}
pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
n = R_REG(osh, &cc->clockcontrol_n);
if ((pll_type == PLL_TYPE2) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7))
m = R_REG(osh, &cc->clockcontrol_m3);
else if (pll_type == PLL_TYPE5) {
rate = 200000000;
goto out;
} else if (pll_type == PLL_TYPE3) {
if (sb_chip(sbh) == BCM5365_CHIP_ID) {
rate = 200000000;
goto out;
}
/* 5350 uses m2 to control mips */
else
m = R_REG(osh, &cc->clockcontrol_m2);
} else
m = R_REG(osh, &cc->clockcontrol_sb);
} else
goto out;
/* calculate rate */
if (sb_chip(sbh) == 0x5365)
rate = 100000000;
else
rate = sb_clock_rate(pll_type, n, m);
if (pll_type == PLL_TYPE6)
rate = SB2MIPS_T6(rate);
out:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return rate;
}
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)
static void BCMINITFN(handler) (void) {
__asm__(".set\tmips32\n\t" "ssnop\n\t" "ssnop\n\t"
/* Disable interrupts */
/* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
"mfc0 $15, $12\n\t"
/* Just a Hack to not to use reg 'at' which was causing problems on 4704 A2 */
"li $14, -31746\n\t"
"and $15, $15, $14\n\t"
"mtc0 $15, $12\n\t" "eret\n\t" "nop\n\t" "nop\n\t"
".set\tmips0");
}
/* The following MUST come right after handler() */
static void BCMINITFN(afterhandler) (void) {
}
/*
* Set the MIPS, backplane and PCI clocks as closely as possible.
*
* MIPS clocks synchronization function has been moved from PLL in chipcommon
* core rev. 15 to a DLL inside the MIPS core in 4785.
*/
bool
BCMINITFN(sb_mips_setclock) (sb_t * sbh, uint32 mipsclock, uint32 sbclock,
uint32 pciclock) {
extifregs_t *eir = NULL;
chipcregs_t *cc = NULL;
mipsregs_t *mipsr = NULL;
volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci,
*clockcontrol_m2;
uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm,
orig_ratio_cfg;
uint32 pll_type, sync_mode;
uint ic_size, ic_lsize;
uint idx, i;
/* PLL configuration: type 1 */
typedef struct {
uint32 mipsclock;
uint16 n;
uint32 sb;
uint32 pci33;
uint32 pci25;
} n3m_table_t;
static n3m_table_t BCMINITDATA(type1_table)[] = {
/* 96.000 32.000 24.000 */
{
96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011},
/* 100.000 33.333 25.000 */
{
100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011},
/* 104.000 31.200 24.960 */
{
104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009},
/* 108.000 32.400 24.923 */
{
108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802},
/* 112.000 32.000 24.889 */
{
112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403},
/* 115.200 32.000 24.000 */
{
115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011},
/* 120.000 30.000 24.000 */
{
120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011},
/* 124.800 31.200 24.960 */
{
124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009},
/* 128.000 32.000 24.000 */
{
128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305},
/* 132.000 33.000 24.750 */
{
132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305},
/* 136.000 32.640 24.727 */
{
136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603},
/* 140.000 30.000 24.706 */
{
140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02},
/* 144.000 30.857 24.686 */
{
144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021},
/* 150.857 33.000 24.000 */
{
150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605},
/* 152.000 32.571 24.000 */
{
152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02},
/* 156.000 31.200 24.960 */
{
156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009},
/* 160.000 32.000 24.000 */
{
160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309},
/* 163.200 32.640 24.727 */
{
163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603},
/* 168.000 32.000 24.889 */
{
168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403},
/* 176.000 33.000 24.000 */
{
176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602},};
/* PLL configuration: type 3 */
typedef struct {
uint32 mipsclock;
uint16 n;
uint32 m2; /* that is the clockcontrol_m2 */
} type3_table_t;
static type3_table_t type3_table[] = {
/* for 5350, mips clock is always double sb clock */
{150000000, 0x311, 0x4020005},
{200000000, 0x311, 0x4020003},
};
/* PLL configuration: type 2, 4, 7 */
typedef struct {
uint32 mipsclock;
uint32 sbclock;
uint32 pciclock;
uint16 n;
uint32 sb;
uint32 pci33;
uint32 m2;
uint32 m3;
uint32 ratio_cfg;
uint32 ratio_parm;
uint32 d11_r1;
uint32 d11_r2;
} n4m_table_t;
static n4m_table_t BCMINITDATA(type2_table)[] = {
{
120000000, 60000000, 32000000, 0x0303, 0x01000200,
0x01000600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
150000000, 75000000, 33333333, 0x0303, 0x01000100,
0x01000600, 0x01000100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
180000000, 80000000, 30000000, 0x0403, 0x01010000,
0x01020300, 0x01020600, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
180000000, 90000000, 30000000, 0x0403, 0x01000100,
0x01020300, 0x01000100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
200000000, 100000000, 33333333, 0x0303, 0x02010000,
0x02040001, 0x02010000, 0x06000001, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
211200000, 105600000, 30171428, 0x0902, 0x01000200,
0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
220800000, 110400000, 31542857, 0x1500, 0x01000200,
0x01030400, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
230400000, 115200000, 32000000, 0x0604, 0x01000200,
0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
234000000, 104000000, 31200000, 0x0b01, 0x01010000,
0x01010700, 0x01020600, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
240000000, 120000000, 33333333, 0x0803, 0x01000200,
0x01020600, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
252000000, 126000000, 33333333, 0x0504, 0x01000100,
0x01020500, 0x01000100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
264000000, 132000000, 33000000, 0x0903, 0x01000200,
0x01020700, 0x01000200, 0x05000200, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
270000000, 120000000, 30000000, 0x0703, 0x01010000,
0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
276000000, 122666666, 31542857, 0x1500, 0x01010000,
0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
280000000, 140000000, 31111111, 0x0503, 0x01000000,
0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
288000000, 128000000, 32914285, 0x0604, 0x01010000,
0x01030400, 0x01020600, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
288000000, 144000000, 32000000, 0x0404, 0x01000000,
0x01010600, 0x01000000, 0x05000000, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
300000000, 133333333, 33333333, 0x0803, 0x01010000,
0x01020600, 0x01010100, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
300000000, 133333333, 37500000, 0x0803, 0x01010000,
0x01020500, 0x01010100, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
300000000, 133333333, 42857142, 0x0803, 0x01010000,
0x01020400, 0x01010100, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
300000000, 133333333, 50000000, 0x0803, 0x01010000,
0x01020300, 0x01010100, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
300000000, 133333333, 60000000, 0x0803, 0x01010000,
0x01020200, 0x01010100, 0x05000100, 8, 0x012a00a9,
9 /* ratio 4/9 */ ,
0x012a00a9}, {
300000000, 150000000, 33333333, 0x0803, 0x01000100,
0x01020600, 0x01010100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
300000000, 150000000, 37500000, 0x0803, 0x01000100,
0x01020500, 0x01010100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
300000000, 150000000, 42857142, 0x0803, 0x01000100,
0x01020400, 0x01010100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
300000000, 150000000, 50000000, 0x0803, 0x01000100,
0x01020300, 0x01010100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
300000000, 150000000, 60000000, 0x0803, 0x01000100,
0x01020200, 0x01010100, 0x05000100, 11, 0x0aaa0555,
8 /* ratio 4/8 */ ,
0x00aa0055}, {
330000000, 132000000, 33000000, 0x0903, 0x01000200,
0x00020200, 0x01010100, 0x05000100, 0, 0,
10 /* ratio 4/10 */ , 0x02520129},
{
330000000, 146666666, 33000000, 0x0903, 0x01010000,
0x00020200, 0x01010100, 0x05000100, 0, 0,
9 /* ratio 4/9 */ , 0x012a00a9},
{
330000000, 165000000, 33000000, 0x0903, 0x01000100,
0x00020200, 0x01010100, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
330000000, 165000000, 41250000, 0x0903, 0x01000100,
0x00020100, 0x01010100, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
330000000, 165000000, 55000000, 0x0903, 0x01000100,
0x00020000, 0x01010100, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
360000000, 120000000, 32000000, 0x0a03, 0x01000300,
0x00010201, 0x01010200, 0x05000100, 0, 0,
12 /* ratio 4/12 */ , 0x04920492},
{
360000000, 144000000, 32000000, 0x0a03, 0x01000200,
0x00010201, 0x01010200, 0x05000100, 0, 0,
10 /* ratio 4/10 */ , 0x02520129},
{
360000000, 160000000, 32000000, 0x0a03, 0x01010000,
0x00010201, 0x01010200, 0x05000100, 0, 0,
9 /* ratio 4/9 */ , 0x012a00a9},
{
360000000, 180000000, 32000000, 0x0a03, 0x01000100,
0x00010201, 0x01010200, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
360000000, 180000000, 40000000, 0x0a03, 0x01000100,
0x00010101, 0x01010200, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
360000000, 180000000, 53333333, 0x0a03, 0x01000100,
0x00010001, 0x01010200, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
{
390000000, 130000000, 32500000, 0x0b03, 0x01010100,
0x00020101, 0x01020100, 0x05000100, 0, 0,
12 /* ratio 4/12 */ , 0x04920492},
{
390000000, 156000000, 32500000, 0x0b03, 0x01000200,
0x00020101, 0x01020100, 0x05000100, 0, 0,
10 /* ratio 4/10 */ , 0x02520129},
{
390000000, 173000000, 32500000, 0x0b03, 0x01010000,
0x00020101, 0x01020100, 0x05000100, 0, 0,
9 /* ratio 4/9 */ , 0x012a00a9},
{
390000000, 195000000, 32500000, 0x0b03, 0x01000100,
0x00020101, 0x01020100, 0x05000100, 0, 0,
8 /* ratio 4/8 */ , 0x00aa0055},
};
static n4m_table_t BCMINITDATA(type4_table)[] = {
{
120000000, 60000000, 0, 0x0009, 0x11020009, 0x01030203,
0x11020009, 0x04000009, 11, 0x0aaa0555}, {
150000000, 75000000, 0, 0x0009, 0x11050002, 0x01030203,
0x11050002, 0x04000005, 11, 0x0aaa0555}, {
192000000, 96000000, 0, 0x0702, 0x04000011, 0x11030011,
0x04000011, 0x04000003, 11, 0x0aaa0555}, {
198000000, 99000000, 0, 0x0603, 0x11020005, 0x11030011,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
200000000, 100000000, 0, 0x0009, 0x04020011, 0x11030011,
0x04020011, 0x04020003, 11, 0x0aaa0555}, {
204000000, 102000000, 0, 0x0c02, 0x11020005, 0x01030303,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
208000000, 104000000, 0, 0x0802, 0x11030002, 0x11090005,
0x11030002, 0x04000003, 11, 0x0aaa0555}, {
210000000, 105000000, 0, 0x0209, 0x11020005, 0x01030303,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
216000000, 108000000, 0, 0x0111, 0x11020005, 0x01030303,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
224000000, 112000000, 0, 0x0205, 0x11030002, 0x02002103,
0x11030002, 0x04000003, 11, 0x0aaa0555}, {
228000000, 101333333, 0, 0x0e02, 0x11030003, 0x11210005,
0x01030305, 0x04000005, 8, 0x012a00a9}, {
228000000, 114000000, 0, 0x0e02, 0x11020005, 0x11210005,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
240000000, 102857143, 0, 0x0109, 0x04000021, 0x01050203,
0x11030021, 0x04000003, 13, 0x254a14a9}, {
240000000, 120000000, 0, 0x0109, 0x11030002, 0x01050203,
0x11030002, 0x04000003, 11, 0x0aaa0555}, {
252000000, 100800000, 0, 0x0203, 0x04000009, 0x11050005,
0x02000209, 0x04000002, 9, 0x02520129}, {
252000000, 126000000, 0, 0x0203, 0x04000005, 0x11050005,
0x04000005, 0x04000002, 11, 0x0aaa0555}, {
264000000, 132000000, 0, 0x0602, 0x04000005, 0x11050005,
0x04000005, 0x04000002, 11, 0x0aaa0555}, {
272000000, 116571428, 0, 0x0c02, 0x04000021, 0x02000909,
0x02000221, 0x04000003, 13, 0x254a14a9}, {
280000000, 120000000, 0, 0x0209, 0x04000021, 0x01030303,
0x02000221, 0x04000003, 13, 0x254a14a9}, {
288000000, 123428571, 0, 0x0111, 0x04000021, 0x01030303,
0x02000221, 0x04000003, 13, 0x254a14a9}, {
300000000, 120000000, 0, 0x0009, 0x04000009, 0x01030203,
0x02000902, 0x04000002, 9, 0x02520129}, {
300000000, 150000000, 0, 0x0009, 0x04000005, 0x01030203,
0x04000005, 0x04000002, 11, 0x0aaa0555}
};
static n4m_table_t BCMINITDATA(type7_table)[] = {
{
183333333, 91666666, 0, 0x0605, 0x04000011, 0x11030011,
0x04000011, 0x04000003, 11, 0x0aaa0555}, {
187500000, 93750000, 0, 0x0a03, 0x04000011, 0x11030011,
0x04000011, 0x04000003, 11, 0x0aaa0555}, {
196875000, 98437500, 0, 0x1003, 0x11020005, 0x11050011,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
200000000, 100000000, 0, 0x0311, 0x04000011, 0x11030011,
0x04000009, 0x04000003, 11, 0x0aaa0555}, {
200000000, 100000000, 0, 0x0311, 0x04020011, 0x11030011,
0x04020011, 0x04020003, 11, 0x0aaa0555}, {
206250000, 103125000, 0, 0x1103, 0x11020005, 0x11050011,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
212500000, 106250000, 0, 0x0c05, 0x11020005, 0x01030303,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
215625000, 107812500, 0, 0x1203, 0x11090009, 0x11050005,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
216666666, 108333333, 0, 0x0805, 0x11020003, 0x11030011,
0x11020003, 0x04000003, 11, 0x0aaa0555}, {
225000000, 112500000, 0, 0x0d03, 0x11020003, 0x11030011,
0x11020003, 0x04000003, 11, 0x0aaa0555}, {
233333333, 116666666, 0, 0x0905, 0x11020003, 0x11030011,
0x11020003, 0x04000003, 11, 0x0aaa0555}, {
237500000, 118750000, 0, 0x0e05, 0x11020005, 0x11210005,
0x11020005, 0x04000005, 11, 0x0aaa0555}, {
240000000, 120000000, 0, 0x0b11, 0x11020009, 0x11210009,
0x11020009, 0x04000009, 11, 0x0aaa0555}, {
250000000, 125000000, 0, 0x0f03, 0x11020003, 0x11210003,
0x11020003, 0x04000003, 11, 0x0aaa0555}
};
ulong start, end, dst;
bool ret = FALSE;
volatile uint32 *dll_ctrl = (volatile uint32 *)0xff400008;
volatile uint32 *dll_r1 = (volatile uint32 *)0xff400010;
volatile uint32 *dll_r2 = (volatile uint32 *)0xff400018;
/* get index of the current core */
idx = sb_coreidx(sbh);
clockcontrol_m2 = NULL;
/* switch to chipc core */
/* switch to extif or chipc core */
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
pll_type = PLL_TYPE1;
clockcontrol_n = &eir->clockcontrol_n;
clockcontrol_sb = &eir->clockcontrol_sb;
clockcontrol_pci = &eir->clockcontrol_pci;
clockcontrol_m2 = &cc->clockcontrol_m2;
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
/* 5354 chipcommon pll setting can't be changed.
* The PMU on power up comes up with the default clk frequency
* of 240MHz
*/
if (sb_chip(sbh) == BCM5354_CHIP_ID) {
ret = TRUE;
goto done;
}
pll_type = R_REG(osh, &cc->capabilities) & CC_CAP_PLL_MASK;
if (pll_type == PLL_TYPE6) {
clockcontrol_n = NULL;
clockcontrol_sb = NULL;
clockcontrol_pci = NULL;
} else {
clockcontrol_n = &cc->clockcontrol_n;
clockcontrol_sb = &cc->clockcontrol_sb;
clockcontrol_pci = &cc->clockcontrol_pci;
clockcontrol_m2 = &cc->clockcontrol_m2;
}
} else
goto done;
if (pll_type == PLL_TYPE6) {
/* Silence compilers */
orig_n = orig_sb = orig_pci = 0;
} else {
/* Store the current clock register values */
orig_n = R_REG(osh, clockcontrol_n);
orig_sb = R_REG(osh, clockcontrol_sb);
orig_pci = R_REG(osh, clockcontrol_pci);
}
if (pll_type == PLL_TYPE1) {
/* Keep the current PCI clock if not specified */
if (pciclock == 0) {
pciclock =
sb_clock_rate(pll_type, R_REG(osh, clockcontrol_n),
R_REG(osh, clockcontrol_pci));
pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
}
/* Search for the closest MIPS clock less than or equal to a preferred value */
for (i = 0; i < ARRAYSIZE(type1_table); i++) {
ASSERT(type1_table[i].mipsclock ==
sb_clock_rate(pll_type, type1_table[i].n,
type1_table[i].sb));
if (type1_table[i].mipsclock > mipsclock)
break;
}
if (i == 0) {
ret = FALSE;
goto done;
} else {
ret = TRUE;
i--;
}
ASSERT(type1_table[i].mipsclock <= mipsclock);
/* No PLL change */
if ((orig_n == type1_table[i].n) &&
(orig_sb == type1_table[i].sb) &&
(orig_pci == type1_table[i].pci33))
goto done;
/* Set the PLL controls */
W_REG(osh, clockcontrol_n, type1_table[i].n);
W_REG(osh, clockcontrol_sb, type1_table[i].sb);
if (pciclock == 25000000)
W_REG(osh, clockcontrol_pci, type1_table[i].pci25);
else
W_REG(osh, clockcontrol_pci, type1_table[i].pci33);
/* Reset */
sb_watchdog(sbh, 1);
while (1) ;
} else if (pll_type == PLL_TYPE3) {
/* 5350 */
if (sb_chip(sbh) != BCM5365_CHIP_ID) {
/*
* Search for the closest MIPS clock less than or equal to
* a preferred value.
*/
for (i = 0; i < ARRAYSIZE(type3_table); i++) {
if (type3_table[i].mipsclock > mipsclock)
break;
}
if (i == 0) {
ret = FALSE;
goto done;
} else {
ret = TRUE;
i--;
}
ASSERT(type3_table[i].mipsclock <= mipsclock);
/* No PLL change */
orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
if ((orig_n == type3_table[i].n)
&& (orig_m2 == type3_table[i].m2)) {
goto done;
}
/* Set the PLL controls */
W_REG(osh, clockcontrol_n, type3_table[i].n);
W_REG(osh, clockcontrol_m2, type3_table[i].m2);
/* Reset */
sb_watchdog(sbh, 1);
while (1) ;
}
} else if ((pll_type == PLL_TYPE2) ||
(pll_type == PLL_TYPE4) ||
(pll_type == PLL_TYPE6) || (pll_type == PLL_TYPE7)) {
n4m_table_t *table = NULL, *te;
uint tabsz = 0;
ASSERT(cc);
orig_mips = R_REG(osh, &cc->clockcontrol_m3);
switch (pll_type) {
case PLL_TYPE6:
{
uint32 new_mips = 0;
ret = TRUE;
if (mipsclock <= SB2MIPS_T6(CC_T6_M1))
new_mips = CC_T6_MMASK;
if (orig_mips == new_mips)
goto done;
W_REG(osh, &cc->clockcontrol_m3, new_mips);
goto end_fill;
}
case PLL_TYPE2:
table = type2_table;
tabsz = ARRAYSIZE(type2_table);
break;
case PLL_TYPE4:
table = type4_table;
tabsz = ARRAYSIZE(type4_table);
break;
case PLL_TYPE7:
table = type7_table;
tabsz = ARRAYSIZE(type7_table);
break;
default:
ASSERT("No table for plltype" == NULL);
break;
}
/* Store the current clock register values */
orig_m2 = R_REG(osh, &cc->clockcontrol_m2);
orig_ratio_parm = 0;
orig_ratio_cfg = 0;
/* Look up current ratio */
for (i = 0; i < tabsz; i++) {
if ((orig_n == table[i].n) &&
(orig_sb == table[i].sb) &&
(orig_pci == table[i].pci33) &&
(orig_m2 == table[i].m2)
&& (orig_mips == table[i].m3)) {
orig_ratio_parm = table[i].ratio_parm;
orig_ratio_cfg = table[i].ratio_cfg;
break;
}
}
/* Search for the closest MIPS clock greater or equal to a preferred value */
for (i = 0; i < tabsz; i++) {
ASSERT(table[i].mipsclock ==
sb_clock_rate(pll_type, table[i].n,
table[i].m3));
if ((mipsclock <= table[i].mipsclock)
&& ((sbclock == 0) || (sbclock <= table[i].sbclock))
&& ((pciclock == 0)
|| (pciclock <= table[i].pciclock)))
break;
}
if (i == tabsz) {
ret = FALSE;
goto done;
} else {
te = &table[i];
ret = TRUE;
}
/* No PLL change */
if ((orig_n == te->n) &&
(orig_sb == te->sb) &&
(orig_pci == te->pci33) &&
(orig_m2 == te->m2) && (orig_mips == te->m3))
goto done;
/* Set the PLL controls */
W_REG(osh, clockcontrol_n, te->n);
W_REG(osh, clockcontrol_sb, te->sb);
W_REG(osh, clockcontrol_pci, te->pci33);
W_REG(osh, &cc->clockcontrol_m2, te->m2);
W_REG(osh, &cc->clockcontrol_m3, te->m3);
/* Set the chipcontrol bit to change mipsref to the backplane divider if needed */
if ((pll_type == PLL_TYPE7) && (te->sb != te->m2) &&
(sb_clock_rate(pll_type, te->n, te->m2) == 120000000))
W_REG(osh, &cc->chipcontrol,
R_REG(osh, &cc->chipcontrol) | 0x100);
/* No ratio change */
if (sb_chip(sbh) != BCM4785_CHIP_ID) {
if (orig_ratio_parm == te->ratio_parm)
goto end_fill;
}
/* Preload the code into the cache */
icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);
if (sb_chip(sbh) == BCM4785_CHIP_ID) {
start = ((ulong) && start_fill_4785) & ~(ic_lsize - 1);
end = ((ulong)
&& end_fill_4785 + (ic_lsize - 1)) & ~(ic_lsize -
1);
} else {
start = ((ulong) && start_fill) & ~(ic_lsize - 1);
end = ((ulong)
&& end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
}
while (start < end) {
cache_op(start, Fill_I);
start += ic_lsize;
}
/* 4785 clock freq change procedures */
if (sb_chip(sbh) == BCM4785_CHIP_ID) {
start_fill_4785:
/* Switch to async */
MTC0(C0_BROADCOM, 4, (1 << 22));
/* Set clock ratio in MIPS */
*dll_r1 = (*dll_r1 & 0xfffffff0) | (te->d11_r1 - 1);
*dll_r2 = te->d11_r2;
/* Enable new settings in MIPS */
*dll_r1 = *dll_r1 | 0xc0000000;
/* Set active cfg */
MTC0(C0_BROADCOM, 2,
MFC0(C0_BROADCOM, 2) | (1 << 3) | 1);
/* Fake soft reset (clock cfg registers not reset) */
MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));
/* Clear active cfg */
MTC0(C0_BROADCOM, 2, MFC0(C0_BROADCOM, 2) & ~(1 << 3));
/* set watchdog timer */
W_REG(osh, &cc->watchdog, 20);
(void)R_REG(osh, &cc->chipid);
/* wait for timer interrupt */
__asm__ __volatile__(".set\tmips3\n\t"
"sync\n\t" "wait\n\t"
".set\tmips0");
end_fill_4785:
while (1) ;
}
/* Generic clock freq change procedures */
else {
/* Copy the handler */
start = (ulong) & handler;
end = (ulong) & afterhandler;
dst = KSEG1ADDR(0x180);
for (i = 0; i < (end - start); i += 4)
*((ulong *) (dst + i)) =
*((ulong *) (start + i));
/* Preload the handler into the cache one line at a time */
for (i = 0; i < (end - start); i += ic_lsize)
cache_op(dst + i, Fill_I);
/* Clear BEV bit */
MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);
/* Enable interrupts */
MTC0(C0_STATUS, 0,
MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));
/* Enable MIPS timer interrupt */
if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
!(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
ASSERT(mipsr);
W_REG(osh, &mipsr->intmask, 1);
start_fill:
/* step 1, set clock ratios */
MTC0(C0_BROADCOM, 3, te->ratio_parm);
MTC0(C0_BROADCOM, 1, te->ratio_cfg);
/* step 2: program timer intr */
W_REG(osh, &mipsr->timer, 100);
(void)R_REG(osh, &mipsr->timer);
/* step 3, switch to async */
sync_mode = MFC0(C0_BROADCOM, 4);
MTC0(C0_BROADCOM, 4, 1 << 22);
/* step 4, set cfg active */
MTC0(C0_BROADCOM, 2, (1 << 3) | 1);
/* steps 5 & 6 */
__asm__ __volatile__(".set\tmips3\n\t" "wait\n\t"
".set\tmips0");
/* step 7, clear cfg active */
MTC0(C0_BROADCOM, 2, 0);
/* Additional Step: set back to orig sync mode */
MTC0(C0_BROADCOM, 4, sync_mode);
/* step 8, fake soft reset */
MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | (1 << 2));
end_fill:
/* set watchdog timer */
W_REG(osh, &cc->watchdog, 20);
(void)R_REG(osh, &cc->chipid);
/* wait for timer interrupt */
__asm__ __volatile__(".set\tmips3\n\t"
"sync\n\t" "wait\n\t"
".set\tmips0");
while (1) ;
}
}
done:
/* Enable 4785 DLL */
if (sb_chip(sbh) == BCM4785_CHIP_ID) {
uint32 tmp;
/* set mask to 1e, enable DLL (bit 0) */
*dll_ctrl |= 0x0041e021;
/* enable aggressive hardware mode */
*dll_ctrl |= 0x00000080;
/* wait for lock flag to clear */
while ((*dll_ctrl & 0x2) == 0) ;
/* clear sticky flags (clear on write 1) */
tmp = *dll_ctrl;
*dll_ctrl = tmp;
/* set mask to 5b'10001 */
*dll_ctrl = (*dll_ctrl & 0xfffc1fff) | 0x00022000;
/* enable sync mode */
MTC0(C0_BROADCOM, 4, MFC0(C0_BROADCOM, 4) & 0xfe3fffff);
(void)MFC0(C0_BROADCOM, 4);
}
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return ret;
}
void BCMINITFN(enable_pfc) (uint32 mode) {
ulong start, end;
uint ic_size, ic_lsize;
/* If auto then choose the correct mode for this
* platform, currently we only ever select one mode
*/
if (mode == PFC_AUTO)
mode = PFC_INST;
icache_probe(MFC0(C0_CONFIG, 1), &ic_size, &ic_lsize);
/* enable prefetch cache if available */
if (MFC0(C0_BROADCOM, 0) & BRCM_PFC_AVAIL) {
start = ((ulong) && setpfc_start) & ~(ic_lsize - 1);
end = ((ulong)
&& setpfc_end + (ic_lsize - 1)) & ~(ic_lsize - 1);
/* Preload setpfc code into the cache one line at a time */
while (start < end) {
cache_op(start, Fill_I);
start += ic_lsize;
}
/* Now set the pfc */
setpfc_start:
/* write range */
*(volatile uint32 *)PFC_CR1 = 0xffff0000;
/* enable */
*(volatile uint32 *)PFC_CR0 = mode;
setpfc_end:
/* Compiler foder */
ic_size = 0;
}
}
/* returns the ncdl value to be programmed into sdram_ncdl for calibration */
uint32 BCMINITFN(sb_memc_get_ncdl) (sb_t * sbh) {
osl_t *osh;
sbmemcregs_t *memc;
uint32 ret = 0;
uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
uint idx, rev;
osh = sb_osh(sbh);
idx = sb_coreidx(sbh);
memc = (sbmemcregs_t *) sb_setcore(sbh, SB_MEMC, 0);
if (memc == 0)
goto out;
rev = sb_corerev(sbh);
config = R_REG(osh, &memc->config);
wr = R_REG(osh, &memc->wrncdlcor);
rd = R_REG(osh, &memc->rdncdlcor);
misc = R_REG(osh, &memc->miscdlyctl);
dqsg = R_REG(osh, &memc->dqsgatencdl);
rd &= MEMC_RDNCDLCOR_RD_MASK;
wr &= MEMC_WRNCDLCOR_WR_MASK;
dqsg &= MEMC_DQSGATENCDL_G_MASK;
if (config & MEMC_CONFIG_DDR) {
ret = (wr << 16) | (rd << 8) | dqsg;
} else {
if (rev > 0)
cd = rd;
else
cd = (rd ==
MEMC_CD_THRESHOLD) ? rd : (wr +
MEMC_CD_THRESHOLD);
sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
ret = (sm << 16) | (sd << 8) | cd;
}
out:
/* switch back to previous core */
sb_setcoreidx(sbh, idx);
return ret;
}
void hnd_cpu_reset(sb_t * sbh)
{
if (sb_chip(sbh) == BCM4785_CHIP_ID)
MTC0(C0_BROADCOM, 4, (1 << 22));
sb_watchdog(sbh, 1);
if (sb_chip(sbh) == BCM4785_CHIP_ID) {
__asm__ __volatile__(".set\tmips3\n\t"
"sync\n\t" "wait\n\t" ".set\tmips0");
}
while (1) ;
}
#if defined(BCMPERFSTATS)
/*
* CP0 Register 25 supports 4 semi-independent 32bit performance counters.
* $25 select 0, 1, 2, and 3 are the counters. The counters *decrement* (who thought this one up?)
* $25 select 4 and 5 each contain 2-16bit control fields, one for each of the 4 counters
* $25 select 6 is the global perf control register.
*/
/* enable and start instruction counting */
void hndmips_perf_cyclecount_enable(void)
{
MTC0(C0_PERFORMANCE, 6, 0x80000200); /* global enable perf counters */
MTC0(C0_PERFORMANCE, 4, 0x8048 | MFC0(C0_PERFORMANCE, 4)); /* enable cycles counting for counter 0 */
MTC0(C0_PERFORMANCE, 0, 0); /* zero counter zero */
}
void hndmips_perf_instrcount_enable(void)
{
MTC0(C0_PERFORMANCE, 6, 0x80000200); /* global enable perf counters */
MTC0(C0_PERFORMANCE, 4, 0x8044 | MFC0(C0_PERFORMANCE, 4)); /* enable instructions counting for counter 0 */
MTC0(C0_PERFORMANCE, 0, 0); /* zero counter zero */
}
/* enable and start I$ hit and I$ miss counting */
void hndmips_perf_icachecount_enable(void)
{
MTC0(C0_PERFORMANCE, 6, 0x80000218); /* enable I$ counting */
MTC0(C0_PERFORMANCE, 4, 0x80148018); /* count I$ hits in cntr 0 and misses in cntr 1 */
MTC0(C0_PERFORMANCE, 0, 0); /* zero counter 0 - # I$ hits */
MTC0(C0_PERFORMANCE, 1, 0); /* zero counter 1 - # I$ misses */
}
/* enable and start D$ hit and I$ miss counting */
void hndmips_perf_dcachecount_enable(void)
{
MTC0(C0_PERFORMANCE, 6, 0x80000211); /* enable D$ counting */
MTC0(C0_PERFORMANCE, 4, 0x80248028); /* count D$ hits in cntr 0 and misses in cntr 1 */
MTC0(C0_PERFORMANCE, 0, 0); /* zero counter 0 - # D$ hits */
MTC0(C0_PERFORMANCE, 1, 0); /* zero counter 1 - # D$ misses */
}
void hndmips_perf_icache_miss_enable()
{
MTC0(C0_PERFORMANCE, 4, 0x80140000 | MFC0(C0_PERFORMANCE, 4)); /* enable cache misses counting for counter 1 */
MTC0(C0_PERFORMANCE, 1, 0); /* zero counter one */
}
void hndmips_perf_icache_hit_enable()
{
MTC0(C0_PERFORMANCE, 5, 0x8018 | MFC0(C0_PERFORMANCE, 5));
/* enable cache hits counting for counter 2 */
MTC0(C0_PERFORMANCE, 2, 0); /* zero counter 2 */
}
uint32 hndmips_perf_read_instrcount()
{
return -(long)(MFC0(C0_PERFORMANCE, 0));
}
uint32 hndmips_perf_read_cache_miss()
{
return -(long)(MFC0(C0_PERFORMANCE, 1));
}
uint32 hndmips_perf_read_cache_hit()
{
return -(long)(MFC0(C0_PERFORMANCE, 2));
}
#endif