1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-15 09:20:37 +02:00
openwrt-xburst/target/linux/coldfire/patches/016-Add-nand-driver-support-for-M54418TWR-board.patch
kaloz 7e7649baa9 [coldfire]: switch to 2.6.38
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@31546 3c298f89-4303-0410-b956-a3cf2f4a3e73
2012-05-01 07:00:17 +00:00

1382 lines
37 KiB
Diff

From 6a5c2427d53c24a30f28b8061b2cda4edad37f58 Mon Sep 17 00:00:00 2001
From: Alison Wang <b18965@freescale.com>
Date: Thu, 4 Aug 2011 09:59:43 +0800
Subject: [PATCH 16/52] Add nand driver support for M54418TWR board
Disable hw ECC for erase block aligned pages.
On the erase block, there's always have clean marker for jffs2,
The NFC ECC provide a fake correction on the erase block when
there're clean marker and adjust the bits on the fly when reading back.
Disable the hw ECC on erase block aligned pages is a workaround
for jffs2 on the NAND.
Signed-off-by: Alison Wang <b18965@freescale.com>
---
arch/m68k/include/asm/fsl_nfc.h | 330 +++++++++++++
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/fsl_nfc.c | 995 +++++++++++++++++++++++++++++++++++++++
4 files changed, 1333 insertions(+), 0 deletions(-)
create mode 100644 arch/m68k/include/asm/fsl_nfc.h
create mode 100644 drivers/mtd/nand/fsl_nfc.c
--- /dev/null
+++ b/arch/m68k/include/asm/fsl_nfc.h
@@ -0,0 +1,330 @@
+/*
+ * Copyright (C) 2009-2011 Freescale Semiconductor, Inc. All Rights Reserved.
+ *
+ * Author: Shaohui Xie <b21989@freescale.com>
+ *
+ * Description:
+ * MPC5125/M54418TWR Nand driver.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#ifndef MPC5125_NFC_H
+#define MPC5125_NFC_H
+
+
+/* NFC PAD Define */
+#define PAD_NFC_IO PAD_FUNC0
+#define PAD_NFC_ALE PAD_FUNC0
+#define PAD_NFC_CLE PAD_FUNC0
+#define PAD_NFC_WE PAD_FUNC0
+#define PAD_NFC_RE PAD_FUNC0
+#define PAD_NFC_CE0 PAD_FUNC0
+#define PAD_NFC_CE1 PAD_FUNC1
+#define PAD_NFC_CE2 PAD_FUNC2
+#define PAD_NFC_CE3 PAD_FUNC2
+#define PAD_NFC_RB0 PAD_FUNC0
+#define PAD_NFC_RB1 PAD_FUNC2
+#define PAD_NFC_RB2 PAD_FUNC2
+#define PAD_NFC_RB3 PAD_FUNC2
+
+/* NFC Control PAD Define */
+#define BALL_NFC_CE0 IOCTL_NFC_CE0_B
+#define BALL_NFC_CE1 IOCTL_SDHC1_CLK
+#define BALL_NFC_CE2 IOCTL_PSC1_4
+#define BALL_NFC_CE3 IOCTL_J1850_TX
+#define BALL_NFC_RB0 IOCTL_NFC_RB
+#define BALL_NFC_RB1 IOCTL_FEC1_TXD_0
+#define BALL_NFC_RB2 IOCTL_PSC1_3
+#define BALL_NFC_RB3 IOCTL_J1850_RX
+#define BALL_NFC_ALE IOCTL_EMB_AD19
+#define BALL_NFC_CLE IOCTL_EMB_AD18
+#define BALL_NFC_WE IOCTL_EMB_AD16
+#define BALL_NFC_RE IOCTL_EMB_AD17
+
+/* NFC IO Pad Define */
+#define BALL_NFC_IO0 IOCTL_EMB_AD00
+#define BALL_NFC_IO1 IOCTL_EMB_AD01
+#define BALL_NFC_IO2 IOCTL_EMB_AD02
+#define BALL_NFC_IO3 IOCTL_EMB_AD03
+#define BALL_NFC_IO4 IOCTL_EMB_AD04
+#define BALL_NFC_IO5 IOCTL_EMB_AD05
+#define BALL_NFC_IO6 IOCTL_EMB_AD06
+#define BALL_NFC_IO7 IOCTL_EMB_AD07
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n) ((n) * 0x1000)
+
+/* Addresses for NFC SPARE BUFFER areas */
+#define NFC_SPARE_BUFFERS 8
+#define NFC_SPARE_LEN 0x10
+#define NFC_SPARE_AREA(n) (0x800 + ((n) * NFC_SPARE_LEN))
+
+#define PAGE_2K 0x0800
+#define PAGE_64 0x0040
+
+/* MPC5125 NFC registers */
+/* Typical Flash Commands */
+#define READ_PAGE_CMD_CODE 0x7EE0
+#define PROGRAM_PAGE_CMD_CODE 0x7FC0
+#define ERASE_CMD_CODE 0x4EC0
+#define READ_ID_CMD_CODE 0x4804
+#define RESET_CMD_CODE 0x4040
+#define DMA_PROGRAM_PAGE_CMD_CODE 0xFFC8
+#define RANDOM_IN_CMD_CODE 0x7140
+#define RANDOM_OUT_CMD_CODE 0x70E0
+#define STATUS_READ_CMD_CODE 0x4068
+
+#define PAGE_READ_CMD_BYTE1 0x00
+#define PAGE_READ_CMD_BYTE2 0x30
+#define PROGRAM_PAGE_CMD_BYTE1 0x80
+#define PROGRAM_PAGE_CMD_BYTE2 0x10
+#define READ_STATUS_CMD_BYTE 0x70
+#define ERASE_CMD_BYTE1 0x60
+#define ERASE_CMD_BYTE2 0xD0
+#define READ_ID_CMD_BYTE 0x90
+#define RESET_CMD_BYTE 0xFF
+#define RANDOM_OUT_CMD_BYTE1 0x05
+#define RANDOM_OUT_CMD_BYTE2 0xE0
+
+/* NFC ECC mode define */
+#define ECC_BYPASS 0x0
+#define ECC_8_BYTE 0x1
+#define ECC_12_BYTE 0x2
+#define ECC_15_BYTE 0x3
+#define ECC_23_BYTE 0x4
+#define ECC_30_BYTE 0x5
+#define ECC_45_BYTE 0x6
+#define ECC_60_BYTE 0x7
+#define ECC_ERROR 1
+#define ECC_RIGHT 0
+
+/***************** Module-Relative Register Offsets *************************/
+#define NFC_SRAM_BUFFER 0x0000
+#define NFC_FLASH_CMD1 0x3F00
+#define NFC_FLASH_CMD2 0x3F04
+#define NFC_COL_ADDR 0x3F08
+#define NFC_ROW_ADDR 0x3F0c
+#define NFC_FLASH_COMMAND_REPEAT 0x3F10
+#define NFC_ROW_ADDR_INC 0x3F14
+#define NFC_FLASH_STATUS1 0x3F18
+#define NFC_FLASH_STATUS2 0x3F1c
+#define NFC_DMA1_ADDR 0x3F20
+#define NFC_DMA2_ADDR 0x3F34
+#define NFC_DMA_CONFIG 0x3F24
+#define NFC_CACHE_SWAP 0x3F28
+#define NFC_SECTOR_SIZE 0x3F2c
+#define NFC_FLASH_CONFIG 0x3F30
+#define NFC_IRQ_STATUS 0x3F38
+
+/***************** Module-Relative Register Reset Value *********************/
+#define NFC_SRAM_BUFFER_RSTVAL 0x00000000
+#define NFC_FLASH_CMD1_RSTVAL 0x30FF0000
+#define NFC_FLASH_CMD2_RSTVAL 0x007EE000
+#define NFC_COL_ADDR_RSTVAL 0x00000000
+#define NFC_ROW_ADDR_RSTVAL 0x11000000
+#define NFC_FLASH_COMMAND_REPEAT_RSTVAL 0x00000000
+#define NFC_ROW_ADDR_INC_RSTVAL 0x00000001
+#define NFC_FLASH_STATUS1_RSTVAL 0x00000000
+#define NFC_FLASH_STATUS2_RSTVAL 0x00000000
+#define NFC_DMA1_ADDR_RSTVAL 0x00000000
+#define NFC_DMA2_ADDR_RSTVAL 0x00000000
+#define NFC_DMA_CONFIG_RSTVAL 0x00000000
+#define NFC_CACHE_SWAP_RSTVAL 0x0FFE0FFE
+#define NFC_SECTOR_SIZE_RSTVAL 0x00000420
+#define NFC_FLASH_CONFIG_RSTVAL 0x000EA631
+#define NFC_IRQ_STATUS_RSTVAL 0x04000000
+
+/***************** Module-Relative Register Mask *************************/
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD1_MASK 0xFFFF0000
+#define CMD1_SHIFT 0
+#define CMD_BYTE2_MASK 0xFF000000
+#define CMD_BYTE2_SHIFT 24
+#define CMD_BYTE3_MASK 0x00FF0000
+#define CMD_BYTE3_SHIFT 16
+
+/* NFC_FLASH_CM2 Field */
+#define CMD2_MASK 0xFFFFFF07
+#define CMD2_SHIFT 0
+#define CMD_BYTE1_MASK 0xFF000000
+#define CMD_BYTE1_SHIFT 24
+#define CMD_CODE_MASK 0x00FFFF00
+#define CMD_CODE_SHIFT 8
+#define BUFNO_MASK 0x00000006
+#define BUFNO_SHIFT 1
+#define BUSY_MASK 0x00000001
+#define BUSY_SHIFT 0
+#define START_MASK 0x00000001
+#define START_SHIFT 0
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK 0x0000FFFF
+#define COL_ADDR_SHIFT 0
+#define COL_ADDR_COL_ADDR2_MASK 0x0000FF00
+#define COL_ADDR_COL_ADDR2_SHIFT 8
+#define COL_ADDR_COL_ADDR1_MASK 0x000000FF
+#define COL_ADDR_COL_ADDR1_SHIFT 0
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK 0x00FFFFFF
+#define ROW_ADDR_SHIFT 0
+#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
+#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT 24
+#define ROW_ADDR_ROW_ADDR3_MASK 0x00FF0000
+#define ROW_ADDR_ROW_ADDR3_SHIFT 16
+#define ROW_ADDR_ROW_ADDR2_MASK 0x0000FF00
+#define ROW_ADDR_ROW_ADDR2_SHIFT 8
+#define ROW_ADDR_ROW_ADDR1_MASK 0x000000FF
+#define ROW_ADDR_ROW_ADDR1_SHIFT 0
+
+/* NFC_FLASH_COMMAND_REPEAT Field */
+#define COMMAND_REPEAT_MASK 0x0000FFFF
+#define COMMAND_REPEAT_SHIFT 0
+#define COMMAND_REPEAT_REPEAT_COUNT_MASK 0x0000FFFF
+#define COMMAND_REPEAT_REPEAT_COUNT_SHIFT 0
+
+/* NFC_ROW_ADDR_INC Field */
+#define ROW_ADDR_INC_MASK 0x00FFFFFF
+#define ROW_ADDR_INC_SHIFT 0
+#define ROW_ADDR_INC_ROW_ADDR3_INC_MASK 0x00FF0000
+#define ROW_ADDR_INC_ROW_ADDR3_INC_SHIFT 16
+#define ROW_ADDR_INC_ROW_ADDR2_INC_MASK 0x0000FF00
+#define ROW_ADDR_INC_ROW_ADDR2_INC_SHIFT 8
+#define ROW_ADDR_INC_ROW_ADDR1_INC_MASK 0x000000FF
+#define ROW_ADDR_INC_ROW_ADDR1_INC_SHIFT 0
+
+/* NFC_FLASH_STATUS1 Field */
+#define STATUS1_MASK 0xFFFFFFFF
+#define STATUS1_SHIFT 0
+#define STATUS1_ID_BYTE1_MASK 0xFF000000
+#define STATUS1_ID_BYTE1_SHIFT 24
+#define STATUS1_ID_BYTE2_MASK 0x00FF0000
+#define STATUS1_ID_BYTE2_SHIFT 16
+#define STATUS1_ID_BYTE3_MASK 0x0000FF00
+#define STATUS1_ID_BYTE3_SHIFT 8
+#define STATUS1_ID_BYTE4_MASK 0x000000FF
+#define STATUS1_ID_BYTE4_SHIFT 0
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS2_MASK 0xFF0000FF
+#define STATUS2_SHIFT 0
+#define STATUS2_ID_BYTE5_MASK 0xFF000000
+#define STATUS2_ID_BYTE5_SHIFT 24
+#define STATUS_BYTE1_MASK 0x000000FF
+#define STATUS2_STATUS_BYTE1_SHIFT 0
+
+/* NFC_DMA1_ADDR Field */
+#define DMA1_ADDR_MASK 0xFFFFFFFF
+#define DMA1_ADDR_SHIFT 0
+#define DMA1_ADDR_DMA1_ADDR_MASK 0xFFFFFFFF
+#define DMA1_ADDR_DMA1_ADDR_SHIFT 0
+
+/* DMA2_ADDR Field */
+#define DMA2_ADDR_MASK 0xFFFFFFFF
+#define DMA2_ADDR_SHIFT 0
+#define DMA2_ADDR_DMA2_ADDR_MASK 0xFFFFFFFF
+#define DMA2_ADDR_DMA2_ADDR_SHIFT 0
+
+/* DMA_CONFIG Field */
+#define DMA_CONFIG_MASK 0xFFFFFFFF
+#define DMA_CONFIG_SHIFT 0
+#define DMA_CONFIG_DMA1_CNT_MASK 0xFFF00000
+#define DMA_CONFIG_DMA1_CNT_SHIFT 20
+#define DMA_CONFIG_DMA2_CNT_MASK 0x000FE000
+#define DMA_CONFIG_DMA2_CNT_SHIFT 13
+#define DMA_CONFIG_DMA2_OFFSET_MASK 0x00001FC0
+#define DMA_CONFIG_DMA2_OFFSET_SHIFT 2
+#define DMA_CONFIG_DMA1_ACT_MASK 0x00000002
+#define DMA_CONFIG_DMA1_ACT_SHIFT 1
+#define DMA_CONFIG_DMA2_ACT_MASK 0x00000001
+#define DMA_CONFIG_DMA2_ACT_SHIFT 0
+
+/* NFC_CACHE_SWAP Field */
+#define CACHE_SWAP_MASK 0x0FFE0FFE
+#define CACHE_SWAP_SHIFT 1
+#define CACHE_SWAP_CACHE_SWAP_ADDR2_MASK 0x0FFE0000
+#define CACHE_SWAP_CACHE_SWAP_ADDR2_SHIFT 17
+#define CACHE_SWAP_CACHE_SWAP_ADDR1_MASK 0x00000FFE
+#define CACHE_SWAP_CACHE_SWAP_ADDR1_SHIFT 1
+
+/* NFC_SECTOR_SIZE Field */
+#define SECTOR_SIZE_MASK 0x00001FFF
+#define SECTOR_SIZE_SHIFT 0
+#define SECTOR_SIZE_SECTOR_SIZE_MASK 0x00001FFF
+#define SECTOR_SIZE_SECTOR_SIZE_SHIFT 0
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_MASK 0xFFFFFFFF
+#define CONFIG_SHIFT 0
+#define CONFIG_STOP_ON_WERR_MASK 0x80000000
+#define CONFIG_STOP_ON_WERR_SHIFT 31
+#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
+#define CONFIG_ECC_SRAM_REQ_MASK 0x00200000
+#define CONFIG_ECC_SRAM_REQ_SHIFT 21
+#define CONFIG_DMA_REQ_MASK 0x00100000
+#define CONFIG_DMA_REQ_SHIFT 20
+#define CONFIG_ECC_MODE_MASK 0x000E0000
+#define CONFIG_ECC_MODE_SHIFT 17
+#define CONFIG_FAST_FLASH_MASK 0x00010000
+#define CONFIG_FAST_FLASH_SHIFT 16
+#define CONFIG_ID_COUNT_MASK 0x0000E000
+#define CONFIG_ID_COUNT_SHIFT 13
+#define CONFIG_CMD_TIMEOUT_MASK 0x00001F00
+#define CONFIG_CMD_TIMEOUT_SHIFT 8
+#define CONFIG_16BIT_MASK 0x00000080
+#define CONFIG_16BIT_SHIFT 7
+#define CONFIG_BOOT_MODE_MASK 0x00000040
+#define CONFIG_BOOT_MODE_SHIFT 6
+#define CONFIG_ADDR_AUTO_INCR_MASK 0x00000020
+#define CONFIG_ADDR_AUTO_INCR_SHIFT 5
+#define CONFIG_BUFNO_AUTO_INCR_MASK 0x00000010
+#define CONFIG_BUFNO_AUTO_INCR_SHIFT 4
+#define CONFIG_PAGE_CNT_MASK 0x0000000F
+#define CONFIG_PAGE_CNT_SHIFT 0
+
+/* NFC_IRQ_STATUS Field */
+#define MASK 0xEFFC003F
+#define SHIFT 0
+#define WERR_IRQ_MASK 0x80000000
+#define WERR_IRQ_SHIFT 31
+#define CMD_DONE_IRQ_MASK 0x40000000
+#define CMD_DONE_IRQ_SHIFT 30
+#define IDLE_IRQ_MASK 0x20000000
+#define IDLE_IRQ_SHIFT 29
+#define WERR_STATUS_MASK 0x08000000
+#define WERR_STATUS_SHIFT 27
+#define FLASH_CMD_BUSY_MASK 0x04000000
+#define FLASH_CMD_BUSY_SHIFT 26
+#define RESIDUE_BUSY_MASK 0x02000000
+#define RESIDUE_BUSY_SHIFT 25
+#define ECC_BUSY_MASK 0x01000000
+#define ECC_BUSY_SHIFT 24
+#define DMA_BUSY_MASK 0x00800000
+#define DMA_BUSY_SHIFT 23
+#define WERR_EN_MASK 0x00400000
+#define WERR_EN_SHIFT 22
+#define CMD_DONE_EN_MASK 0x00200000
+#define CMD_DONE_EN_SHIFT 21
+#define IDLE_EN_MASK 0x00100000
+#define IDLE_EN_SHIFT 20
+#define WERR_CLEAR_MASK 0x00080000
+#define WERR_CLEAR_SHIFT 19
+#define CMD_DONE_CLEAR_MASK 0x00040000
+#define CMD_DONE_CLEAR_SHIFT 18
+#define IDLE_CLEAR_MASK 0x00020000
+#define IDLE_CLEAR_SHIFT 17
+#define RESIDUE_BUFF_NO_MASK 0x00000030
+#define RESIDUE_BUFF_NO_SHIFT 4
+#define ECC_BUFF_NO_MASK 0x000000C0
+#define ECC_BUFF_NO_SHIFT 2
+#define DMA_BUFF_NO_MASK 0x00000003
+
+#endif /* MPC5125_NFC_H */
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -474,6 +474,13 @@ config MTD_NAND_MPC5121_NFC
This enables the driver for the NAND flash controller on the
MPC5121 SoC.
+config MTD_NAND_FSL_NFC
+ tristate "Support for NAND on Freescale ColdFire NFC"
+ depends on MTD_NAND && M5441X
+ help
+ Enables support for NAND Flash chips wired onto Freescale PowerPC
+ processor localbus with User-Programmable Machine support.
+
config MTD_NAND_MXC
tristate "MXC NAND support"
depends on ARCH_MX2 || ARCH_MX25 || ARCH_MX3 || ARCH_MX51
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -38,6 +38,7 @@ obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi
obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
+obj-$(CONFIG_MTD_NAND_FSL_NFC) += fsl_nfc.o
obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
--- /dev/null
+++ b/drivers/mtd/nand/fsl_nfc.c
@@ -0,0 +1,995 @@
+/*
+ * Copyright (C) 2009-2011 Freescale Semiconductor, Inc. All Rights Reserved.
+ *
+ * Author: Shaohui Xie <b21989@freescale.com>
+ * Jason Jin <Jason.jin@freescale.com>
+ *
+ * Description:
+ * MPC5125 Nand driver.
+ * Jason ported to M54418TWR.
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/module.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <asm/fsl_nfc.h>
+#include <asm/mcfsim.h>
+
+#define DRV_NAME "fsl_nfc"
+#define DRV_VERSION "0.5"
+
+/* Timeouts */
+#define NFC_RESET_TIMEOUT 1000 /* 1 ms */
+#define NFC_TIMEOUT (HZ)
+
+
+#define ECC_SRAM_ADDR (0x840 >> 3)
+#define ECC_STATUS_MASK 0x80
+#define ECC_ERR_COUNT 0x3F
+
+#define MIN(x, y) ((x < y) ? x : y)
+
+#ifdef CONFIG_MTD_NAND_FSL_NFC_SWECC
+static int hardware_ecc;
+#else
+static int hardware_ecc = 1;
+#endif
+
+
+struct fsl_nfc_prv {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ int irq;
+ void __iomem *regs;
+ struct clk *clk;
+ wait_queue_head_t irq_waitq;
+ uint column;
+ int spareonly;
+ int page;
+};
+
+static int get_status;
+static int get_id;
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 11,
+ .len = 4,
+ .veroffs = 15,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 11,
+ .len = 4,
+ .veroffs = 15,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *fsl_nfc_pprobes[] = { "cmdlinepart", NULL };
+#endif
+#if 0
+static struct nand_ecclayout nand_hw_eccoob_512 = {
+ .eccbytes = 8,
+ .eccpos = {
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ },
+ .oobfree = {
+ {0, 5} /* byte 5 is factory bad block marker */
+ },
+};
+#endif
+
+static struct nand_ecclayout fsl_nfc_ecc45 = {
+ .eccbytes = 45,
+ .eccpos = {19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 8,
+ .length = 11} }
+};
+
+
+#if 0
+static struct nand_ecclayout nand_hw_eccoob_2k = {
+ .eccbytes = 32,
+ .eccpos = {
+ /* 8 bytes of ecc for each 512 bytes of data */
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ },
+ .oobfree = {
+ {2, 5}, /* bytes 0 and 1 are factory bad block markers */
+ {16, 7},
+ {32, 7},
+ {48, 7},
+ },
+};
+
+
+/* ecc struct for nand 5125 */
+static struct nand_ecclayout nand5125_hw_eccoob_2k = {
+ .eccbytes = 60,
+ .eccpos = {
+ /* 60 bytes of ecc for one page bytes of data */
+ 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
+ 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
+ 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ },
+ .oobfree = {
+ {2, 2}, /* bytes 0 and 1 are factory bad block markers */
+ },
+};
+#endif
+
+static inline u32 nfc_read(struct mtd_info *mtd, uint reg)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ return in_be32(prv->regs + reg);
+}
+
+/* Write NFC register */
+static inline void nfc_write(struct mtd_info *mtd, uint reg, u32 val)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ out_be32(prv->regs + reg, val);
+}
+
+/* Set bits in NFC register */
+static inline void nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
+{
+ nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
+}
+
+/* Clear bits in NFC register */
+static inline void nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
+{
+ nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
+}
+
+static inline void
+nfc_set_field(struct mtd_info *mtd, u32 reg, u32 mask, u32 shift, u32 val)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ out_be32(prv->regs + reg,
+ (in_be32(prv->regs + reg) & (~mask))
+ | val << shift);
+}
+
+static inline int
+nfc_get_field(struct mtd_info *mtd, u32 reg, u32 field_mask)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ return in_be32(prv->regs + reg) & field_mask;
+}
+
+static inline u8 nfc_check_status(struct mtd_info *mtd)
+{
+ u8 fls_status = 0;
+ fls_status = nfc_get_field(mtd, NFC_FLASH_STATUS2, STATUS_BYTE1_MASK);
+ return fls_status;
+}
+
+/* clear cmd_done and cmd_idle falg for the coming command */
+static void fsl_nfc_clear(struct mtd_info *mtd)
+{
+ nfc_write(mtd, NFC_IRQ_STATUS, 1 << CMD_DONE_CLEAR_SHIFT);
+ nfc_write(mtd, NFC_IRQ_STATUS, 1 << IDLE_CLEAR_SHIFT);
+}
+
+/* Wait for operation complete */
+static void fsl_nfc_done(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+ int rv;
+
+ nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_MASK);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, START_MASK,
+ START_SHIFT, 1);
+
+ if (!nfc_get_field(mtd, NFC_IRQ_STATUS, IDLE_IRQ_MASK)) {
+ rv = wait_event_timeout(prv->irq_waitq,
+ nfc_get_field(mtd, NFC_IRQ_STATUS,
+ IDLE_IRQ_MASK), NFC_TIMEOUT);
+ if (!rv)
+ printk(KERN_DEBUG DRV_NAME
+ ": Timeout while waiting for BUSY.\n");
+ }
+ fsl_nfc_clear(mtd);
+}
+
+static inline u8 fsl_nfc_get_id(struct mtd_info *mtd, int col)
+{
+ u32 flash_id1 = 0;
+ u8 *pid;
+
+ flash_id1 = nfc_read(mtd, NFC_FLASH_STATUS1);
+ pid = (u8 *)&flash_id1;
+
+ return *(pid + col);
+}
+
+static inline u8 fsl_nfc_get_status(struct mtd_info *mtd)
+{
+ u32 flash_status = 0;
+ u8 *pstatus;
+
+ flash_status = nfc_read(mtd, NFC_FLASH_STATUS2);
+ pstatus = (u8 *)&flash_status;
+
+ return *(pstatus + 3);
+}
+
+/* Invoke command cycle */
+static inline void
+fsl_nfc_send_cmd(struct mtd_info *mtd, u32 cmd_byte1,
+ u32 cmd_byte2, u32 cmd_code)
+{
+ fsl_nfc_clear(mtd);
+ nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_BYTE1_MASK,
+ CMD_BYTE1_SHIFT, cmd_byte1);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD1, CMD_BYTE2_MASK,
+ CMD_BYTE2_SHIFT, cmd_byte2);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
+ BUFNO_SHIFT, 0);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_CODE_MASK,
+ CMD_CODE_SHIFT, cmd_code);
+
+ if (cmd_code == RANDOM_OUT_CMD_CODE)
+ nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
+ BUFNO_SHIFT, 1);
+}
+
+/* Receive ID and status from NAND flash */
+static inline void
+fsl_nfc_send_one_byte(struct mtd_info *mtd, u32 cmd_byte1, u32 cmd_code)
+{
+ fsl_nfc_clear(mtd);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_BYTE1_MASK,
+ CMD_BYTE1_SHIFT, cmd_byte1);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, BUFNO_MASK,
+ BUFNO_SHIFT, 0);
+
+ nfc_set_field(mtd, NFC_FLASH_CMD2, CMD_CODE_MASK,
+ CMD_CODE_SHIFT, cmd_code);
+}
+
+/* NFC interrupt handler */
+static irqreturn_t
+fsl_nfc_irq(int irq, void *data)
+{
+ struct mtd_info *mtd = data;
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ nfc_clear(mtd, NFC_IRQ_STATUS, IDLE_EN_MASK);
+ wake_up(&prv->irq_waitq);
+
+ return IRQ_HANDLED;
+}
+
+/* Do address cycle(s) */
+static void
+fsl_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
+{
+
+ if (column != -1) {
+ nfc_set_field(mtd, NFC_COL_ADDR,
+ COL_ADDR_MASK,
+ COL_ADDR_SHIFT, column);
+ }
+
+ if (page != -1) {
+ nfc_set_field(mtd, NFC_ROW_ADDR,
+ ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, page);
+ }
+
+ /* DMA Disable */
+ nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_MASK);
+
+ /* PAGE_CNT = 1 */
+ nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+ CONFIG_PAGE_CNT_SHIFT, 0x1);
+}
+
+/* Control chips select signal on m54418twr board */
+static void
+m54418twr_select_chip(struct mtd_info *mtd, int chip)
+{
+ if (chip < 0) {
+ MCF_GPIO_PAR_FBCTL &= (MCF_GPIO_PAR_FBCTL_ALE_MASK &
+ MCF_GPIO_PAR_FBCTL_TA_MASK);
+ MCF_GPIO_PAR_FBCTL |= MCF_GPIO_PAR_FBCTL_ALE_FB_TS |
+ MCF_GPIO_PAR_FBCTL_TA_TA;
+
+ MCF_GPIO_PAR_BE =
+ MCF_GPIO_PAR_BE_BE3_BE3 | MCF_GPIO_PAR_BE_BE2_BE2 |
+ MCF_GPIO_PAR_BE_BE1_BE1 | MCF_GPIO_PAR_BE_BE0_BE0;
+
+ MCF_GPIO_PAR_CS &= ~MCF_GPIO_PAR_CS_CS1_NFC_CE;
+ MCF_GPIO_PAR_CS |= MCF_GPIO_PAR_CS_CS0_CS0;
+ return;
+ }
+
+ MCF_GPIO_PAR_FBCTL &= (MCF_GPIO_PAR_FBCTL_ALE_MASK &
+ MCF_GPIO_PAR_FBCTL_TA_MASK);
+ MCF_GPIO_PAR_FBCTL |= MCF_GPIO_PAR_FBCTL_ALE_FB_ALE |
+ MCF_GPIO_PAR_FBCTL_TA_NFC_RB;
+ MCF_GPIO_PAR_BE = MCF_GPIO_PAR_BE_BE3_FB_A1 |
+ MCF_GPIO_PAR_BE_BE2_FB_A0 |
+ MCF_GPIO_PAR_BE_BE1_BE1 | MCF_GPIO_PAR_BE_BE0_BE0;
+
+ MCF_GPIO_PAR_CS &= (MCF_GPIO_PAR_BE_BE3_MASK &
+ MCF_GPIO_PAR_BE_BE2_MASK);
+ MCF_GPIO_PAR_CS |= MCF_GPIO_PAR_CS_CS1_NFC_CE;
+ return;
+}
+
+/* Read NAND Ready/Busy signal */
+static int
+fsl_nfc_dev_ready(struct mtd_info *mtd)
+{
+ /*
+ * NFC handles ready/busy signal internally. Therefore, this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+/* Write command to NAND flash */
+static void
+fsl_nfc_command(struct mtd_info *mtd, unsigned command,
+ int column, int page)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ prv->column = (column >= 0) ? column : 0;
+ prv->spareonly = 0;
+ get_id = 0;
+ get_status = 0;
+
+ if (page != -1)
+ prv->page = page;
+
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
+
+ if (!(page%0x40)) {
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
+ }
+
+ switch (command) {
+ case NAND_CMD_PAGEPROG:
+ if (!(prv->page%0x40))
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
+
+ fsl_nfc_send_cmd(mtd,
+ PROGRAM_PAGE_CMD_BYTE1,
+ PROGRAM_PAGE_CMD_BYTE2,
+ PROGRAM_PAGE_CMD_CODE);
+ break;
+ /*
+ * NFC does not support sub-page reads and writes,
+ * so emulate them using full page transfers.
+ */
+ case NAND_CMD_READ0:
+ column = 0;
+ goto read0;
+ break;
+
+ case NAND_CMD_READ1:
+ prv->column += 256;
+ command = NAND_CMD_READ0;
+ column = 0;
+ goto read0;
+ break;
+
+ case NAND_CMD_READOOB:
+ prv->spareonly = 1;
+ command = NAND_CMD_READ0;
+ column = 0;
+read0:
+ fsl_nfc_send_cmd(mtd,
+ PAGE_READ_CMD_BYTE1,
+ PAGE_READ_CMD_BYTE2,
+ READ_PAGE_CMD_CODE);
+ break;
+
+ case NAND_CMD_SEQIN:
+ fsl_nfc_command(mtd, NAND_CMD_READ0, column, page);
+ column = 0;
+ break;
+
+ case NAND_CMD_ERASE1:
+ fsl_nfc_send_cmd(mtd,
+ ERASE_CMD_BYTE1,
+ ERASE_CMD_BYTE2,
+ ERASE_CMD_CODE);
+ break;
+ case NAND_CMD_ERASE2:
+ return;
+ case NAND_CMD_READID:
+ get_id = 1;
+ fsl_nfc_send_one_byte(mtd, command, READ_ID_CMD_CODE);
+ break;
+ case NAND_CMD_STATUS:
+ get_status = 1;
+ fsl_nfc_send_one_byte(mtd, command, STATUS_READ_CMD_CODE);
+ break;
+ case NAND_CMD_RNDOUT:
+ fsl_nfc_send_cmd(mtd,
+ RANDOM_OUT_CMD_BYTE1,
+ RANDOM_OUT_CMD_BYTE2,
+ RANDOM_OUT_CMD_CODE);
+ break;
+ case NAND_CMD_RESET:
+ fsl_nfc_send_one_byte(mtd, command, RESET_CMD_CODE);
+ break;
+ default:
+ return;
+ }
+
+ fsl_nfc_addr_cycle(mtd, column, page);
+
+ fsl_nfc_done(mtd);
+}
+
+/* Copy data from/to NFC spare buffers. */
+static void
+fsl_nfc_copy_spare(struct mtd_info *mtd, uint offset,
+ u8 *buffer, uint size, int wr)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct fsl_nfc_prv *prv = nand->priv;
+ uint o, s, sbsize, blksize;
+
+ /*
+ * NAND spare area is available through NFC spare buffers.
+ * The NFC divides spare area into (page_size / 512) chunks.
+ * Each chunk is placed into separate spare memory area, using
+ * first (spare_size / num_of_chunks) bytes of the buffer.
+ *
+ * For NAND device in which the spare area is not divided fully
+ * by the number of chunks, number of used bytes in each spare
+ * buffer is rounded down to the nearest even number of bytes,
+ * and all remaining bytes are added to the last used spare area.
+ *
+ * For more information read section 26.6.10 of MPC5121e
+ * Microcontroller Reference Manual, Rev. 3.
+ */
+
+ /* Calculate number of valid bytes in each spare buffer */
+/* sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;*/
+ sbsize = (mtd->oobsize / (mtd->writesize / 2048)) & ~1;
+
+
+ while (size) {
+ /* Calculate spare buffer number */
+ s = offset / sbsize;
+ if (s > NFC_SPARE_BUFFERS - 1)
+ s = NFC_SPARE_BUFFERS - 1;
+
+ /*
+ * Calculate offset to requested data block in selected spare
+ * buffer and its size.
+ */
+ o = offset - (s * sbsize);
+ blksize = min(sbsize - o, size);
+
+ if (wr)
+ memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
+ buffer, blksize);
+ else {
+ memcpy_fromio(buffer,
+ prv->regs + NFC_SPARE_AREA(s) + o, blksize);
+ }
+
+ buffer += blksize;
+ offset += blksize;
+ size -= blksize;
+ };
+}
+
+/* Copy data from/to NFC main and spare buffers */
+static void
+fsl_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, int wr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+ uint c = prv->column;
+ uint l;
+
+ /* Handle spare area access */
+ if (prv->spareonly || c >= mtd->writesize) {
+ /* Calculate offset from beginning of spare area */
+ if (c >= mtd->writesize)
+ c -= mtd->writesize;
+
+ prv->column += len;
+ fsl_nfc_copy_spare(mtd, c, buf, len, wr);
+ return;
+ }
+
+ /*
+ * Handle main area access - limit copy length to prevent
+ * crossing main/spare boundary.
+ */
+ l = min((uint)len, mtd->writesize - c);
+ prv->column += l;
+
+ if (wr)
+ memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
+ else {
+ if (get_status) {
+ get_status = 0;
+ *buf = fsl_nfc_get_status(mtd);
+ } else if (l == 1 && c <= 3 && get_id) {
+ *buf = fsl_nfc_get_id(mtd, c);
+ } else
+ memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
+ }
+
+ /* Handle crossing main/spare boundary */
+ if (l != len) {
+ buf += l;
+ len -= l;
+ fsl_nfc_buf_copy(mtd, buf, len, wr);
+ }
+}
+
+/* Read data from NFC buffers */
+static void
+fsl_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ fsl_nfc_buf_copy(mtd, buf, len, 0);
+}
+
+/* Write data to NFC buffers */
+static void
+fsl_nfc_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ fsl_nfc_buf_copy(mtd, (u_char *)buf, len, 1);
+}
+
+/* Compare buffer with NAND flash */
+static int
+fsl_nfc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ u_char tmp[256];
+ uint bsize;
+
+ while (len) {
+ bsize = min(len, 256);
+ fsl_nfc_read_buf(mtd, tmp, bsize);
+
+ if (memcmp(buf, tmp, bsize))
+ return 1;
+
+ buf += bsize;
+ len -= bsize;
+ }
+
+ return 0;
+}
+
+/* Read byte from NFC buffers */
+static u8
+fsl_nfc_read_byte(struct mtd_info *mtd)
+{
+ u8 tmp;
+ fsl_nfc_read_buf(mtd, &tmp, sizeof(tmp));
+ return tmp;
+}
+
+/* Read word from NFC buffers */
+static u16
+fsl_nfc_read_word(struct mtd_info *mtd)
+{
+ u16 tmp;
+ fsl_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+ return tmp;
+}
+
+#if 0
+static void fsl_nfc_check_ecc_status(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+ u8 ecc_status, ecc_count;
+
+ ecc_status = *(u8 *)(prv->regs + ECC_SRAM_ADDR * 8 + 7);
+ ecc_count = ecc_status & ECC_ERR_COUNT;
+ if (ecc_status & ECC_STATUS_MASK) {
+ /*mtd->ecc_stats.failed++;*/
+ printk("ECC failed to correct all errors!\n");
+ } else if (ecc_count) {
+ /*mtd->ecc_stats.corrected += ecc_count;*/
+ printk(KERN_INFO"ECC corrected %d errors\n", ecc_count);
+ }
+
+}
+#endif
+
+static void
+copy_from_to_spare(struct mtd_info *mtd, void *pbuf, int len, int wr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+ int i, copy_count, copy_size;
+
+/* copy_count = mtd->writesize / 512;*/
+ copy_count = mtd->writesize / 2048;
+ /*
+ * Each spare area has 16 bytes for 512, 2K and normal 4K nand.
+ * For 4K nand with large 218 byte spare size, the size is 26 bytes for
+ * the first 7 buffers and 36 for the last.
+ */
+/* copy_size = mtd->oobsize == 218 ? 26 : 16;*/
+ copy_size = 64;
+
+ /*
+ * Each spare area has 16 bytes for 512, 2K and normal 4K nand.
+ * For 4K nand with large 218 byte spare size, the size is 26
+ * bytes for the first 7 buffers and 36 for the last.
+ */
+ for (i = 0; i < copy_count - 1 && len > 0; i++) {
+ if (wr)
+ memcpy_toio(prv->regs + NFC_SPARE_AREA(i),
+ pbuf, MIN(len, copy_size));
+ else
+ memcpy_fromio(pbuf, prv->regs + NFC_SPARE_AREA(i),
+ MIN(len, copy_size));
+ pbuf += copy_size;
+ len -= copy_size;
+ }
+ if (len > 0) {
+ if (wr)
+ memcpy_toio(prv->regs + NFC_SPARE_AREA(i),
+ pbuf, len);
+ else
+ memcpy_fromio(pbuf,
+ prv->regs + NFC_SPARE_AREA(i), len);
+ }
+}
+
+
+static int fsl_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int sndcmd)
+{
+ fsl_nfc_command(mtd, NAND_CMD_READ0, 0, page);
+
+ copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 0);
+ return 0;
+}
+
+static int fsl_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ fsl_nfc_command(mtd, NAND_CMD_READ0, 0, page);
+ /* copy the oob data */
+ copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 1);
+ fsl_nfc_command(mtd, NAND_CMD_PAGEPROG, 0, page);
+ return 0;
+}
+
+static int fsl_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct fsl_nfc_prv *prv = chip->priv;
+ /*fsl_nfc_check_ecc_status(mtd);*/
+
+ memcpy_fromio((void *)buf, prv->regs + NFC_MAIN_AREA(0),
+ mtd->writesize);
+ copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 0);
+ return 0;
+}
+
+static void fsl_nfc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf)
+{
+ struct fsl_nfc_prv *prv = chip->priv;
+ memcpy_toio(prv->regs + NFC_MAIN_AREA(0), buf, mtd->writesize);
+ copy_from_to_spare(mtd, chip->oob_poi, mtd->oobsize, 1);
+}
+
+static void fsl_nfc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ return;
+}
+
+/* Free driver resources */
+static void
+fsl_nfc_free(struct platform_device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ kfree(prv);
+}
+
+static int __devinit
+fsl_nfc_probe(struct platform_device *pdev)
+{
+ struct fsl_nfc_prv *prv;
+ struct resource *res;
+ struct mtd_info *mtd;
+#ifdef CONFIG_MTD_PARTITIONS
+ struct mtd_partition *parts;
+#endif
+ struct nand_chip *chip;
+ unsigned long regs_paddr, regs_size;
+ int retval = 0;
+
+ prv = kzalloc(sizeof(*prv), GFP_KERNEL);
+ if (!prv) {
+ printk(KERN_ERR DRV_NAME ": Memory exhausted!\n");
+ return -ENOMEM;
+ }
+ mtd = &prv->mtd;
+ chip = &prv->chip;
+
+ mtd->priv = chip;
+ chip->priv = prv;
+
+ prv->irq = platform_get_irq(pdev, 0);
+ if (prv->irq <= 0) {
+ printk(KERN_ERR DRV_NAME ": Error mapping IRQ!\n");
+ return -EINVAL;
+ }
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (res == NULL) {
+ printk(KERN_ERR "%s platform_get_resource MEM failed %x\n",
+ __func__, (unsigned int)res);
+ retval = -ENOMEM;
+ goto error;
+ }
+ regs_paddr = res->start;
+ regs_size = res->end - res->start + 1;
+
+#if 0
+ if (!request_mem_region(regs_paddr, regs_size, DRV_NAME)) {
+ printk(KERN_ERR DRV_NAME ": Error requesting memory region!\n");
+ return -EBUSY;
+ }
+
+ prv->regs = ioremap(regs_paddr, regs_size);
+#endif
+ prv->regs = (void __iomem *)regs_paddr;
+ if (!prv->regs) {
+ printk(KERN_ERR DRV_NAME ": Error mapping memory region!\n");
+ return -ENOMEM;
+ }
+
+ mtd->name = "NAND";
+ mtd->writesize = 2048;
+ mtd->oobsize = 64;
+
+ chip->dev_ready = fsl_nfc_dev_ready;
+ chip->cmdfunc = fsl_nfc_command;
+ chip->read_byte = fsl_nfc_read_byte;
+ chip->read_word = fsl_nfc_read_word;
+ chip->read_buf = fsl_nfc_read_buf;
+ chip->write_buf = fsl_nfc_write_buf;
+ chip->verify_buf = fsl_nfc_verify_buf;
+ chip->options = NAND_NO_AUTOINCR | NAND_USE_FLASH_BBT |
+ NAND_BUSWIDTH_16 | NAND_CACHEPRG;
+
+ chip->select_chip = m54418twr_select_chip;
+
+ if (hardware_ecc) {
+ chip->ecc.read_page = fsl_nfc_read_page;
+ chip->ecc.write_page = fsl_nfc_write_page;
+ chip->ecc.read_oob = fsl_nfc_read_oob;
+ chip->ecc.write_oob = fsl_nfc_write_oob;
+ chip->ecc.layout = &fsl_nfc_ecc45;
+
+ /* propagate ecc.layout to mtd_info */
+ mtd->ecclayout = chip->ecc.layout;
+ chip->ecc.calculate = NULL;
+ chip->ecc.hwctl = fsl_nfc_enable_hwecc;
+ chip->ecc.correct = NULL;
+ chip->ecc.mode = NAND_ECC_HW;
+ /* RS-ECC is applied for both MAIN+SPARE not MAIN alone */
+ chip->ecc.steps = 1;
+ chip->ecc.bytes = 45;
+ chip->ecc.size = 0x800;
+
+ /* set ECC mode = ECC_45_BYTE */
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
+ /* set ECC_STATUS write position */
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_SRAM_ADDR_MASK,
+ CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
+ /* enable ECC_STATUS results write */
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_SRAM_REQ_MASK,
+ CONFIG_ECC_SRAM_REQ_SHIFT, 1);
+ } else {
+ chip->ecc.mode = NAND_ECC_SOFT;
+ /* set ECC BY_PASS */
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
+ }
+ chip->bbt_td = &bbt_main_descr;
+ chip->bbt_md = &bbt_mirror_descr;
+ bbt_main_descr.pattern = bbt_pattern;
+ bbt_mirror_descr.pattern = mirror_pattern;
+
+ init_waitqueue_head(&prv->irq_waitq);
+ retval = request_irq(prv->irq, fsl_nfc_irq, IRQF_DISABLED,
+ DRV_NAME, mtd);
+ if (retval) {
+ printk(KERN_ERR DRV_NAME ": Error requesting IRQ!\n");
+ goto error;
+ }
+
+ /* SET SECTOR SIZE */
+ nfc_write(mtd, NFC_SECTOR_SIZE, PAGE_2K | PAGE_64);
+
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_ADDR_AUTO_INCR_MASK,
+ CONFIG_ADDR_AUTO_INCR_SHIFT, 0);
+
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_BUFNO_AUTO_INCR_MASK,
+ CONFIG_BUFNO_AUTO_INCR_SHIFT, 0);
+ /* SET FAST_FLASH = 1 */
+#if 0
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_FAST_FLASH_MASK,
+ CONFIG_FAST_FLASH_SHIFT, 1);
+#endif
+
+ nfc_set_field(mtd, NFC_FLASH_CONFIG,
+ CONFIG_16BIT_MASK,
+ CONFIG_16BIT_SHIFT, 1);
+
+
+ /* Detect NAND chips */
+ if (nand_scan(mtd, 1)) {
+ printk(KERN_ERR DRV_NAME ": NAND Flash not found !\n");
+ free_irq(prv->irq, mtd);
+ retval = -ENXIO;
+ goto error;
+ }
+
+ platform_set_drvdata(pdev, mtd);
+
+ /* Register device in MTD */
+#ifdef CONFIG_MTD_PARTITIONS
+ retval = parse_mtd_partitions(mtd, fsl_nfc_pprobes, &parts, 0);
+ if (retval < 0) {
+ printk(KERN_ERR DRV_NAME ": Error parsing MTD partitions!\n");
+ free_irq(prv->irq, mtd);
+ retval = -EINVAL;
+ goto error;
+ }
+
+ printk(KERN_DEBUG "parse partition: partnr = %d\n", retval);
+
+ if (retval > 0)
+ retval = add_mtd_partitions(mtd, parts, retval);
+ else
+#endif
+ retval = add_mtd_device(mtd);
+
+ if (retval) {
+ printk(KERN_ERR DRV_NAME ": Error adding MTD device!\n");
+ free_irq(prv->irq, mtd);
+ goto error;
+ }
+
+ return 0;
+error:
+ fsl_nfc_free(pdev, mtd);
+ return retval;
+}
+
+static int __exit
+fsl_nfc_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct nand_chip *chip = mtd->priv;
+ struct fsl_nfc_prv *prv = chip->priv;
+
+ nand_release(mtd);
+ free_irq(prv->irq, mtd);
+ fsl_nfc_free(pdev, mtd);
+
+ return 0;
+}
+
+static struct platform_driver fsl_nfc_driver = {
+ .probe = fsl_nfc_probe,
+ .remove = __exit_p(fsl_nfc_remove),
+ .suspend = NULL,
+ .resume = NULL,
+ .driver = {
+ .name = DRV_NAME,
+ .owner = THIS_MODULE,
+ },
+};
+
+static int __init fsl_nfc_init(void)
+{
+ pr_info("FSL NFC MTD nand Driver %s\n", DRV_VERSION);
+ if (platform_driver_register(&fsl_nfc_driver) != 0) {
+ printk(KERN_ERR DRV_NAME ": Driver register failed!\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static void __exit fsl_nfc_cleanup(void)
+{
+ platform_driver_unregister(&fsl_nfc_driver);
+}
+
+module_init(fsl_nfc_init);
+module_exit(fsl_nfc_cleanup);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("FSL NFC NAND MTD driver");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);