1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-29 05:15:20 +02:00
openwrt-xburst/target/linux/xburst/files-2.6.27/arch/mips/jz4730/dma.c
Mirko Vogt dc3d3f1c49 yet another patchset - 2.6.27
it's basically also provided by ingenic and nativly based on 2.6.27,
adjusted to fit into the OpenWrt-environment
2009-10-28 03:13:11 +08:00

510 lines
14 KiB
C

/*
* linux/arch/mips/jz4730/dma.c
*
* JZ4730 DMA PC-like APIs.
*
* Copyright (c) 2006-2007 Ingenic Semiconductor Inc.
* Author: <jlwei@ingenic.cn>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/soundcard.h>
#include <asm/system.h>
#include <asm/addrspace.h>
#include <asm/jzsoc.h>
/*
* A note on resource allocation:
*
* All drivers needing DMA channels, should allocate and release them
* through the public routines `jz_request_dma()' and `jz_free_dma()'.
*
* In order to avoid problems, all processes should allocate resources in
* the same sequence and release them in the reverse order.
*
* So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
* When releasing them, first release the IRQ, then release the DMA. The
* main reason for this order is that, if you are requesting the DMA buffer
* done interrupt, you won't know the irq number until the DMA channel is
* returned from jz_request_dma().
*/
struct jz_dma_chan jz_dma_table[NUM_DMA] = {
{dev_id:-1,},
{dev_id:-1,},
{dev_id:-1,},
{dev_id:-1,},
{dev_id:-1,},
{dev_id:-1,},
};
// Device FIFO addresses and default DMA modes
static const struct {
unsigned int fifo_addr;
unsigned int dma_mode;
unsigned int dma_source;
} dma_dev_table[NUM_DMA_DEV] = {
{CPHYSADDR(UART0_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART0OUT},
{CPHYSADDR(UART0_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART0IN},
{CPHYSADDR(UART1_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART1OUT},
{CPHYSADDR(UART1_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART1IN},
{CPHYSADDR(UART2_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART2OUT},
{CPHYSADDR(UART2_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART2IN},
{CPHYSADDR(UART3_BASE), DMA_8bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_UART3OUT},
{CPHYSADDR(UART3_BASE), DMA_8bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_UART3IN},
{CPHYSADDR(SSI_DR), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_SSIOUT},
{CPHYSADDR(SSI_DR), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_SSIIN},
{CPHYSADDR(MSC_TXFIFO), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_MSCOUT},
{CPHYSADDR(MSC_RXFIFO), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_MSCIN},
{CPHYSADDR(AIC_DR), DMA_32bit_TX_CONF|DMA_MODE_WRITE, DMAC_DRSR_RS_AICOUT},
{CPHYSADDR(AIC_DR), DMA_32bit_RX_CONF|DMA_MODE_READ, DMAC_DRSR_RS_AICIN},
{0, DMA_AUTOINIT, 0},
};
int jz_dma_read_proc(char *buf, char **start, off_t fpos,
int length, int *eof, void *data)
{
int i, len = 0;
struct jz_dma_chan *chan;
for (i = 0; i < NUM_DMA; i++) {
if ((chan = get_dma_chan(i)) != NULL) {
len += sprintf(buf + len, "%2d: %s\n",
i, chan->dev_str);
}
}
if (fpos >= len) {
*start = buf;
*eof = 1;
return 0;
}
*start = buf + fpos;
if ((len -= fpos) > length)
return length;
*eof = 1;
return len;
}
void dump_jz_dma_channel(unsigned int dmanr)
{
struct jz_dma_chan *chan;
if (dmanr > NUM_DMA)
return;
chan = &jz_dma_table[dmanr];
printk(KERN_INFO "DMA%d Register Dump:\n", dmanr);
printk(KERN_INFO " DMACR= 0x%08x\n", REG_DMAC_DMACR);
printk(KERN_INFO " DSAR = 0x%08x\n", REG_DMAC_DSAR(dmanr));
printk(KERN_INFO " DDAR = 0x%08x\n", REG_DMAC_DDAR(dmanr));
printk(KERN_INFO " DTCR = 0x%08x\n", REG_DMAC_DTCR(dmanr));
printk(KERN_INFO " DRSR = 0x%08x\n", REG_DMAC_DRSR(dmanr));
printk(KERN_INFO " DCCSR = 0x%08x\n", REG_DMAC_DCCSR(dmanr));
}
/**
* jz_request_dma - dynamically allcate an idle DMA channel to return
* @dev_id: the specified dma device id or DMA_ID_RAW_REQ
* @dev_str: the specified dma device string name
* @irqhandler: the irq handler, or NULL
* @irqflags: the irq handler flags
* @irq_dev_id: the irq handler device id for shared irq
*
* Finds a free channel, and binds the requested device to it.
* Returns the allocated channel number, or negative on error.
* Requests the DMA done IRQ if irqhandler != NULL.
*
*/
int jz_request_dma(int dev_id, const char *dev_str,
irqreturn_t (*irqhandler)(int, void *),
unsigned long irqflags,
void *irq_dev_id)
{
struct jz_dma_chan *chan;
int i, ret;
if (dev_id < 0 || dev_id >= NUM_DMA_DEV)
return -EINVAL;
for (i = 0; i < NUM_DMA; i++) {
if (jz_dma_table[i].dev_id < 0)
break;
}
if (i == NUM_DMA)
return -ENODEV;
chan = &jz_dma_table[i];
if (irqhandler) {
chan->irq = IRQ_DMA_0 + i; // see intc.h
chan->irq_dev = irq_dev_id;
if ((ret = request_irq(chan->irq, irqhandler, irqflags,
dev_str, chan->irq_dev))) {
chan->irq = 0;
chan->irq_dev = NULL;
return ret;
}
} else {
chan->irq = 0;
chan->irq_dev = NULL;
}
// fill it in
chan->io = i;
chan->dev_id = dev_id;
chan->dev_str = dev_str;
chan->fifo_addr = dma_dev_table[dev_id].fifo_addr;
chan->mode = dma_dev_table[dev_id].dma_mode;
chan->source = dma_dev_table[dev_id].dma_source;
return i;
}
void jz_free_dma(unsigned int dmanr)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan) {
printk("Trying to free DMA%d\n", dmanr);
return;
}
disable_dma(dmanr);
if (chan->irq)
free_irq(chan->irq, chan->irq_dev);
chan->irq = 0;
chan->irq_dev = NULL;
chan->dev_id = -1;
}
void jz_set_dma_dest_width(int dmanr, int nbit)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCCSR_DWDH_MASK;
switch (nbit) {
case 8:
chan->mode |= DMAC_DCCSR_DWDH_8;
break;
case 16:
chan->mode |= DMAC_DCCSR_DWDH_16;
break;
case 32:
chan->mode |= DMAC_DCCSR_DWDH_32;
break;
}
}
void jz_set_dma_src_width(int dmanr, int nbit)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCCSR_SWDH_MASK;
switch (nbit) {
case 8:
chan->mode |= DMAC_DCCSR_SWDH_8;
break;
case 16:
chan->mode |= DMAC_DCCSR_SWDH_16;
break;
case 32:
chan->mode |= DMAC_DCCSR_SWDH_32;
break;
}
}
void jz_set_dma_block_size(int dmanr, int nbyte)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
chan->mode &= ~DMAC_DCCSR_DS_MASK;
switch (nbyte) {
case 1:
chan->mode |= DMAC_DCCSR_DS_8b;
break;
case 2:
chan->mode |= DMAC_DCCSR_DS_16b;
break;
case 4:
chan->mode |= DMAC_DCCSR_DS_32b;
break;
case 16:
chan->mode |= DMAC_DCCSR_DS_16B;
break;
case 32:
chan->mode |= DMAC_DCCSR_DS_32B;
break;
}
}
/**
* jz_set_dma_mode - do the raw settings for the specified DMA channel
* @dmanr: the specified DMA channel
* @mode: dma operate mode, DMA_MODE_READ or DMA_MODE_WRITE
* @dma_mode: dma raw mode
* @dma_source: dma raw request source
* @fifo_addr: dma raw device fifo address
*
* Ensure call jz_request_dma(DMA_ID_RAW_REQ, ...) first, then call
* jz_set_dma_mode() rather than set_dma_mode() if you work with
* and external request dma device.
*
* NOTE: Don not dynamically allocate dma channel if one external request
* dma device will occupy this channel.
*/
int jz_set_dma_mode(unsigned int dmanr, unsigned int mode,
unsigned int dma_mode, unsigned int dma_source,
unsigned int fifo_addr)
{
int dev_id, i;
struct jz_dma_chan *chan;
if (dmanr > NUM_DMA)
return -ENODEV;
for (i = 0; i < NUM_DMA; i++) {
if (jz_dma_table[i].dev_id < 0)
break;
}
if (i == NUM_DMA)
return -ENODEV;
chan = &jz_dma_table[dmanr];
dev_id = chan->dev_id;
if (dev_id > 0) {
printk(KERN_DEBUG "%s sets the allocated DMA channel %d!\n",
__FUNCTION__, dmanr);
return -ENODEV;
}
/* clone it from the dynamically allocated. */
if (i != dmanr) {
chan->irq = jz_dma_table[i].irq;
chan->irq_dev = jz_dma_table[i].irq_dev;
chan->dev_str = jz_dma_table[i].dev_str;
jz_dma_table[i].irq = 0;
jz_dma_table[i].irq_dev = NULL;
jz_dma_table[i].dev_id = -1;
}
chan->dev_id = DMA_ID_RAW_SET;
chan->io = dmanr;
chan->fifo_addr = fifo_addr;
chan->mode = dma_mode;
chan->source = dma_source;
set_dma_mode(dmanr, dma_mode);
return dmanr;
}
void enable_dma(unsigned int dmanr)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
REG_DMAC_DCCSR(chan->io) &= ~(DMAC_DCCSR_HLT | DMAC_DCCSR_TC | DMAC_DCCSR_AR);
__dmac_enable_channel(dmanr);
if (chan->irq)
__dmac_channel_enable_irq(dmanr);
}
#define DMA_DISABLE_POLL 0x5000
void disable_dma(unsigned int dmanr)
{
int i;
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
if (!__dmac_channel_enabled(dmanr))
return;
for (i = 0; i < DMA_DISABLE_POLL; i++)
if (__dmac_channel_transmit_end_detected(dmanr))
break;
#if 0
if (i == DMA_DISABLE_POLL)
printk(KERN_INFO "disable_dma: poll expired!\n");
#endif
__dmac_disable_channel(dmanr);
if (chan->irq)
__dmac_channel_disable_irq(dmanr);
}
/* note: DMA_MODE_MASK is simulated by sw, DCCSR_MODE_MASK mask hw bits */
void set_dma_mode(unsigned int dmanr, unsigned int mode)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR);
chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM);
mode &= DMA_MODE_MASK;
if (mode == DMA_MODE_READ) {
chan->mode |= DMAC_DCCSR_DAM;
chan->mode &= ~DMAC_DCCSR_SAM;
} else if (mode == DMA_MODE_WRITE) {
chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM;
chan->mode &= ~DMAC_DCCSR_DAM;
} else {
printk(KERN_DEBUG "set_dma_mode() support DMA_MODE_READ or DMA_MODE_WRITE!\n");
}
REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
}
void jz_set_oss_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
switch (audio_fmt) {
case AFMT_U8:
/* SNDRV_PCM_FORMAT_S8 burst mode : 32BIT */
break;
case AFMT_S16_LE:
/* SNDRV_PCM_FORMAT_S16_LE burst mode : 16BYTE */
if (mode == DMA_MODE_READ) {
mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR);
chan->mode = DMA_AIC_32_16BYTE_RX_CMD | DMA_MODE_READ;
chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCCSR_DAM;
chan->mode &= ~DMAC_DCCSR_SAM;
} else if (mode == DMA_MODE_WRITE) {
mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR);
chan->mode = DMA_AIC_32_16BYTE_TX_CMD | DMA_MODE_WRITE;
chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM |DMAC_DCCSR_DAM);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM;
chan->mode &= ~DMAC_DCCSR_DAM;
} else
printk("jz_set_oss_dma() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n");
REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
break;
}
}
void jz_set_alsa_dma(unsigned int dmanr, unsigned int mode, unsigned int audio_fmt)
{
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
switch (audio_fmt) {
case 8:
/* SNDRV_PCM_FORMAT_S8 burst mode : 32BIT */
break;
case 16:
/* SNDRV_PCM_FORMAT_S16_LE burst mode : 16BYTE */
if (mode == DMA_MODE_READ) {
mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR);
chan->mode = DMA_AIC_16BYTE_RX_CMD | DMA_MODE_READ;
chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCCSR_DAM;
chan->mode &= ~DMAC_DCCSR_SAM;
} else if (mode == DMA_MODE_WRITE) {
mode &= ~(DMAC_DCCSR_TC | DMAC_DCCSR_AR);
chan->mode = DMA_AIC_16BYTE_TX_CMD | DMA_MODE_WRITE;
chan->mode |= mode & ~(DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM | DMAC_DCCSR_DAM);
mode &= DMA_MODE_MASK;
chan->mode |= DMAC_DCCSR_SAM | DMAC_DCCSR_EACKM;
chan->mode &= ~DMAC_DCCSR_DAM;
} else
printk("jz_set_alsa_dma() just supports DMA_MODE_READ or DMA_MODE_WRITE!\n");
REG_DMAC_DCCSR(chan->io) = chan->mode & ~DMA_MODE_MASK;
REG_DMAC_DRSR(chan->io) = chan->source;
break;
}
}
void set_dma_addr(unsigned int dmanr, unsigned int a)
{
unsigned int mode;
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
mode = chan->mode & DMA_MODE_MASK;
if (mode == DMA_MODE_READ) {
REG_DMAC_DSAR(chan->io) = chan->fifo_addr;
REG_DMAC_DDAR(chan->io) = a;
} else if (mode == DMA_MODE_WRITE) {
REG_DMAC_DSAR(chan->io) = a;
REG_DMAC_DDAR(chan->io) = chan->fifo_addr;
} else
printk(KERN_DEBUG "Driver should call set_dma_mode() ahead set_dma_addr()!\n");
}
void set_dma_count(unsigned int dmanr, unsigned int count)
{
unsigned int mode;
int dma_ds[] = {4, 1, 2, 16, 32};
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return;
mode = (chan->mode & DMAC_DCCSR_DS_MASK) >> DMAC_DCCSR_DS_BIT;
count = count / dma_ds[mode];
REG_DMAC_DTCR(chan->io) = count;
}
int get_dma_residue(unsigned int dmanr)
{
int count;
unsigned int mode;
int dma_ds[] = {4, 1, 2, 16, 32};
struct jz_dma_chan *chan = get_dma_chan(dmanr);
if (!chan)
return 0;
mode = (chan->mode & DMAC_DCCSR_DS_MASK) >> DMAC_DCCSR_DS_BIT;
count = REG_DMAC_DTCR(chan->io);
count = count * dma_ds[mode];
return count;
}
EXPORT_SYMBOL(jz_dma_table);
EXPORT_SYMBOL(jz_request_dma);
EXPORT_SYMBOL(jz_free_dma);
EXPORT_SYMBOL(jz_set_dma_src_width);
EXPORT_SYMBOL(jz_set_dma_dest_width);
EXPORT_SYMBOL(jz_set_dma_block_size);
EXPORT_SYMBOL(jz_set_dma_mode);
EXPORT_SYMBOL(set_dma_mode);
EXPORT_SYMBOL(jz_set_oss_dma);
EXPORT_SYMBOL(jz_set_alsa_dma);
EXPORT_SYMBOL(set_dma_addr);
EXPORT_SYMBOL(set_dma_count);
EXPORT_SYMBOL(get_dma_residue);
EXPORT_SYMBOL(enable_dma);
EXPORT_SYMBOL(disable_dma);
EXPORT_SYMBOL(dump_jz_dma_channel);