mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2025-01-01 05:41:09 +02:00
4f531230a3
openwrt. this gives us the ability to better support different hardware models, without changing any external tar-balls. only et.o and wl.o is missing and is fetched from my webserver. git-svn-id: svn://svn.openwrt.org/openwrt/trunk/openwrt@379 3c298f89-4303-0410-b956-a3cf2f4a3e73
952 lines
26 KiB
C
952 lines
26 KiB
C
/*
|
|
* BCM47XX Sonics SiliconBackplane MIPS core routines
|
|
*
|
|
* Copyright 2004, Broadcom Corporation
|
|
* All Rights Reserved.
|
|
*
|
|
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
|
|
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
|
|
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#include <typedefs.h>
|
|
#include <osl.h>
|
|
#include <sbutils.h>
|
|
#include <bcmdevs.h>
|
|
#include <bcmnvram.h>
|
|
#include <bcmutils.h>
|
|
#include <hndmips.h>
|
|
#include <sbconfig.h>
|
|
#include <sbextif.h>
|
|
#include <sbchipc.h>
|
|
#include <sbmemc.h>
|
|
|
|
/*
|
|
* Memory segments (32bit kernel mode addresses)
|
|
*/
|
|
#undef KUSEG
|
|
#undef KSEG0
|
|
#undef KSEG1
|
|
#undef KSEG2
|
|
#undef KSEG3
|
|
#define KUSEG 0x00000000
|
|
#define KSEG0 0x80000000
|
|
#define KSEG1 0xa0000000
|
|
#define KSEG2 0xc0000000
|
|
#define KSEG3 0xe0000000
|
|
|
|
/*
|
|
* Map an address to a certain kernel segment
|
|
*/
|
|
#undef KSEG0ADDR
|
|
#undef KSEG1ADDR
|
|
#undef KSEG2ADDR
|
|
#undef KSEG3ADDR
|
|
#define KSEG0ADDR(a) (((a) & 0x1fffffff) | KSEG0)
|
|
#define KSEG1ADDR(a) (((a) & 0x1fffffff) | KSEG1)
|
|
#define KSEG2ADDR(a) (((a) & 0x1fffffff) | KSEG2)
|
|
#define KSEG3ADDR(a) (((a) & 0x1fffffff) | KSEG3)
|
|
|
|
/*
|
|
* The following macros are especially useful for __asm__
|
|
* inline assembler.
|
|
*/
|
|
#ifndef __STR
|
|
#define __STR(x) #x
|
|
#endif
|
|
#ifndef STR
|
|
#define STR(x) __STR(x)
|
|
#endif
|
|
|
|
/* *********************************************************************
|
|
* CP0 Registers
|
|
********************************************************************* */
|
|
|
|
#define C0_INX 0 /* CP0: TLB Index */
|
|
#define C0_RAND 1 /* CP0: TLB Random */
|
|
#define C0_TLBLO0 2 /* CP0: TLB EntryLo0 */
|
|
#define C0_TLBLO C0_TLBLO0 /* CP0: TLB EntryLo0 */
|
|
#define C0_TLBLO1 3 /* CP0: TLB EntryLo1 */
|
|
#define C0_CTEXT 4 /* CP0: Context */
|
|
#define C0_PGMASK 5 /* CP0: TLB PageMask */
|
|
#define C0_WIRED 6 /* CP0: TLB Wired */
|
|
#define C0_BADVADDR 8 /* CP0: Bad Virtual Address */
|
|
#define C0_COUNT 9 /* CP0: Count */
|
|
#define C0_TLBHI 10 /* CP0: TLB EntryHi */
|
|
#define C0_COMPARE 11 /* CP0: Compare */
|
|
#define C0_SR 12 /* CP0: Processor Status */
|
|
#define C0_STATUS C0_SR /* CP0: Processor Status */
|
|
#define C0_CAUSE 13 /* CP0: Exception Cause */
|
|
#define C0_EPC 14 /* CP0: Exception PC */
|
|
#define C0_PRID 15 /* CP0: Processor Revision Indentifier */
|
|
#define C0_CONFIG 16 /* CP0: Config */
|
|
#define C0_LLADDR 17 /* CP0: LLAddr */
|
|
#define C0_WATCHLO 18 /* CP0: WatchpointLo */
|
|
#define C0_WATCHHI 19 /* CP0: WatchpointHi */
|
|
#define C0_XCTEXT 20 /* CP0: XContext */
|
|
#define C0_DIAGNOSTIC 22 /* CP0: Diagnostic */
|
|
#define C0_BROADCOM C0_DIAGNOSTIC /* CP0: Broadcom Register */
|
|
#define C0_ECC 26 /* CP0: ECC */
|
|
#define C0_CACHEERR 27 /* CP0: CacheErr */
|
|
#define C0_TAGLO 28 /* CP0: TagLo */
|
|
#define C0_TAGHI 29 /* CP0: TagHi */
|
|
#define C0_ERREPC 30 /* CP0: ErrorEPC */
|
|
|
|
/*
|
|
* Macros to access the system control coprocessor
|
|
*/
|
|
|
|
#define MFC0(source, sel) \
|
|
({ \
|
|
int __res; \
|
|
__asm__ __volatile__( \
|
|
".set\tnoreorder\n\t" \
|
|
".set\tnoat\n\t" \
|
|
".word\t"STR(0x40010000 | ((source)<<11) | (sel))"\n\t" \
|
|
"move\t%0,$1\n\t" \
|
|
".set\tat\n\t" \
|
|
".set\treorder" \
|
|
:"=r" (__res) \
|
|
: \
|
|
:"$1"); \
|
|
__res; \
|
|
})
|
|
|
|
#define MTC0(source, sel, value) \
|
|
do { \
|
|
__asm__ __volatile__( \
|
|
".set\tnoreorder\n\t" \
|
|
".set\tnoat\n\t" \
|
|
"move\t$1,%z0\n\t" \
|
|
".word\t"STR(0x40810000 | ((source)<<11) | (sel))"\n\t" \
|
|
".set\tat\n\t" \
|
|
".set\treorder" \
|
|
: \
|
|
:"Jr" (value) \
|
|
:"$1"); \
|
|
} while (0)
|
|
|
|
/*
|
|
* R4x00 interrupt enable / cause bits
|
|
*/
|
|
#undef IE_SW0
|
|
#undef IE_SW1
|
|
#undef IE_IRQ0
|
|
#undef IE_IRQ1
|
|
#undef IE_IRQ2
|
|
#undef IE_IRQ3
|
|
#undef IE_IRQ4
|
|
#undef IE_IRQ5
|
|
#define IE_SW0 (1<< 8)
|
|
#define IE_SW1 (1<< 9)
|
|
#define IE_IRQ0 (1<<10)
|
|
#define IE_IRQ1 (1<<11)
|
|
#define IE_IRQ2 (1<<12)
|
|
#define IE_IRQ3 (1<<13)
|
|
#define IE_IRQ4 (1<<14)
|
|
#define IE_IRQ5 (1<<15)
|
|
|
|
/*
|
|
* Bitfields in the R4xx0 cp0 status register
|
|
*/
|
|
#define ST0_IE 0x00000001
|
|
#define ST0_EXL 0x00000002
|
|
#define ST0_ERL 0x00000004
|
|
#define ST0_KSU 0x00000018
|
|
# define KSU_USER 0x00000010
|
|
# define KSU_SUPERVISOR 0x00000008
|
|
# define KSU_KERNEL 0x00000000
|
|
#define ST0_UX 0x00000020
|
|
#define ST0_SX 0x00000040
|
|
#define ST0_KX 0x00000080
|
|
#define ST0_DE 0x00010000
|
|
#define ST0_CE 0x00020000
|
|
|
|
/*
|
|
* Status register bits available in all MIPS CPUs.
|
|
*/
|
|
#define ST0_IM 0x0000ff00
|
|
#define ST0_CH 0x00040000
|
|
#define ST0_SR 0x00100000
|
|
#define ST0_TS 0x00200000
|
|
#define ST0_BEV 0x00400000
|
|
#define ST0_RE 0x02000000
|
|
#define ST0_FR 0x04000000
|
|
#define ST0_CU 0xf0000000
|
|
#define ST0_CU0 0x10000000
|
|
#define ST0_CU1 0x20000000
|
|
#define ST0_CU2 0x40000000
|
|
#define ST0_CU3 0x80000000
|
|
#define ST0_XX 0x80000000 /* MIPS IV naming */
|
|
|
|
/*
|
|
* Cache Operations
|
|
*/
|
|
|
|
#ifndef Fill_I
|
|
#define Fill_I 0x14
|
|
#endif
|
|
|
|
#define cache_unroll(base,op) \
|
|
__asm__ __volatile__(" \
|
|
.set noreorder; \
|
|
.set mips3; \
|
|
cache %1, (%0); \
|
|
.set mips0; \
|
|
.set reorder" \
|
|
: \
|
|
: "r" (base), \
|
|
"i" (op));
|
|
|
|
/*
|
|
* These are the UART port assignments, expressed as offsets from the base
|
|
* register. These assignments should hold for any serial port based on
|
|
* a 8250, 16450, or 16550(A).
|
|
*/
|
|
|
|
#define UART_MCR 4 /* Out: Modem Control Register */
|
|
#define UART_MSR 6 /* In: Modem Status Register */
|
|
#define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
|
|
|
|
/*
|
|
* Returns TRUE if an external UART exists at the given base
|
|
* register.
|
|
*/
|
|
static bool
|
|
serial_exists(uint8 *regs)
|
|
{
|
|
uint8 save_mcr, status1;
|
|
|
|
save_mcr = R_REG(®s[UART_MCR]);
|
|
W_REG(®s[UART_MCR], UART_MCR_LOOP | 0x0a);
|
|
status1 = R_REG(®s[UART_MSR]) & 0xf0;
|
|
W_REG(®s[UART_MCR], save_mcr);
|
|
|
|
return (status1 == 0x90);
|
|
}
|
|
|
|
/*
|
|
* Initializes UART access. The callback function will be called once
|
|
* per found UART.
|
|
*/
|
|
void
|
|
sb_serial_init(void *sbh, void (*add)(void *regs, uint irq, uint baud_base, uint reg_shift))
|
|
{
|
|
void *regs;
|
|
ulong base;
|
|
uint irq;
|
|
int i, n;
|
|
|
|
if ((regs = sb_setcore(sbh, SB_EXTIF, 0))) {
|
|
extifregs_t *eir = (extifregs_t *) regs;
|
|
sbconfig_t *sb;
|
|
|
|
/* Determine external UART register base */
|
|
sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF);
|
|
base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1)));
|
|
|
|
/* Determine IRQ */
|
|
irq = sb_irq(sbh);
|
|
|
|
/* Disable GPIO interrupt initially */
|
|
W_REG(&eir->gpiointpolarity, 0);
|
|
W_REG(&eir->gpiointmask, 0);
|
|
|
|
/* Search for external UARTs */
|
|
n = 2;
|
|
for (i = 0; i < 2; i++) {
|
|
regs = (void *) REG_MAP(base + (i * 8), 8);
|
|
if (serial_exists(regs)) {
|
|
/* Set GPIO 1 to be the external UART IRQ */
|
|
W_REG(&eir->gpiointmask, 2);
|
|
if (add)
|
|
add(regs, irq, 13500000, 0);
|
|
}
|
|
}
|
|
|
|
/* Add internal UART if enabled */
|
|
if (R_REG(&eir->corecontrol) & CC_UE)
|
|
if (add)
|
|
add((void *) &eir->uartdata, irq, sb_clock(sbh), 2);
|
|
} else if ((regs = sb_setcore(sbh, SB_CC, 0))) {
|
|
chipcregs_t *cc = (chipcregs_t *) regs;
|
|
uint32 rev, cap, pll, baud_base, div;
|
|
|
|
/* Determine core revision and capabilities */
|
|
rev = sb_corerev(sbh);
|
|
cap = R_REG(&cc->capabilities);
|
|
pll = cap & CAP_PLL_MASK;
|
|
|
|
/* Determine IRQ */
|
|
irq = sb_irq(sbh);
|
|
|
|
if (pll == PLL_TYPE1) {
|
|
/* PLL clock */
|
|
baud_base = sb_clock_rate(pll,
|
|
R_REG(&cc->clockcontrol_n),
|
|
R_REG(&cc->clockcontrol_m2));
|
|
div = 1;
|
|
} else if (rev >= 3) {
|
|
/* Internal backplane clock */
|
|
baud_base = sb_clock_rate(pll,
|
|
R_REG(&cc->clockcontrol_n),
|
|
R_REG(&cc->clockcontrol_sb));
|
|
div = 2; /* Minimum divisor */
|
|
W_REG(&cc->clkdiv, ((R_REG(&cc->clkdiv) & ~CLKD_UART) | div));
|
|
} else {
|
|
/* Fixed internal backplane clock */
|
|
baud_base = 88000000;
|
|
div = 48;
|
|
}
|
|
|
|
/* Clock source depends on strapping if UartClkOverride is unset */
|
|
if ((rev > 0) && ((R_REG(&cc->corecontrol) & CC_UARTCLKO) == 0)) {
|
|
if ((cap & CAP_UCLKSEL) == CAP_UINTCLK) {
|
|
/* Internal divided backplane clock */
|
|
baud_base /= div;
|
|
} else {
|
|
/* Assume external clock of 1.8432 MHz */
|
|
baud_base = 1843200;
|
|
}
|
|
}
|
|
|
|
/* Add internal UARTs */
|
|
n = cap & CAP_UARTS_MASK;
|
|
for (i = 0; i < n; i++) {
|
|
/* Register offset changed after revision 0 */
|
|
if (rev)
|
|
regs = (void *)((ulong) &cc->uart0data + (i * 256));
|
|
else
|
|
regs = (void *)((ulong) &cc->uart0data + (i * 8));
|
|
|
|
if (add)
|
|
add(regs, irq, baud_base, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns the SB interrupt flag of the current core. */
|
|
uint32
|
|
sb_flag(void *sbh)
|
|
{
|
|
void *regs;
|
|
sbconfig_t *sb;
|
|
|
|
regs = sb_coreregs(sbh);
|
|
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
|
|
|
|
return (R_REG(&sb->sbtpsflag) & SBTPS_NUM0_MASK);
|
|
}
|
|
|
|
static const uint32 sbips_int_mask[] = {
|
|
0,
|
|
SBIPS_INT1_MASK,
|
|
SBIPS_INT2_MASK,
|
|
SBIPS_INT3_MASK,
|
|
SBIPS_INT4_MASK
|
|
};
|
|
|
|
static const uint32 sbips_int_shift[] = {
|
|
0,
|
|
0,
|
|
SBIPS_INT2_SHIFT,
|
|
SBIPS_INT3_SHIFT,
|
|
SBIPS_INT4_SHIFT
|
|
};
|
|
|
|
/*
|
|
* Returns the MIPS IRQ assignment of the current core. If unassigned,
|
|
* 0 is returned.
|
|
*/
|
|
uint
|
|
sb_irq(void *sbh)
|
|
{
|
|
uint idx;
|
|
void *regs;
|
|
sbconfig_t *sb;
|
|
uint32 flag, sbipsflag;
|
|
uint irq = 0;
|
|
|
|
flag = sb_flag(sbh);
|
|
|
|
idx = sb_coreidx(sbh);
|
|
|
|
if ((regs = sb_setcore(sbh, SB_MIPS, 0)) ||
|
|
(regs = sb_setcore(sbh, SB_MIPS33, 0))) {
|
|
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
|
|
|
|
/* sbipsflag specifies which core is routed to interrupts 1 to 4 */
|
|
sbipsflag = R_REG(&sb->sbipsflag);
|
|
for (irq = 1; irq <= 4; irq++) {
|
|
if (((sbipsflag & sbips_int_mask[irq]) >> sbips_int_shift[irq]) == flag)
|
|
break;
|
|
}
|
|
if (irq == 5)
|
|
irq = 0;
|
|
}
|
|
|
|
sb_setcoreidx(sbh, idx);
|
|
|
|
return irq;
|
|
}
|
|
|
|
/* Clears the specified MIPS IRQ. */
|
|
static void
|
|
sb_clearirq(void *sbh, uint irq)
|
|
{
|
|
void *regs;
|
|
sbconfig_t *sb;
|
|
|
|
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
|
|
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
|
|
ASSERT(regs);
|
|
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
|
|
|
|
if (irq == 0)
|
|
W_REG(&sb->sbintvec, 0);
|
|
else
|
|
OR_REG(&sb->sbipsflag, sbips_int_mask[irq]);
|
|
}
|
|
|
|
/*
|
|
* Assigns the specified MIPS IRQ to the specified core. Shared MIPS
|
|
* IRQ 0 may be assigned more than once.
|
|
*/
|
|
static void
|
|
sb_setirq(void *sbh, uint irq, uint coreid, uint coreunit)
|
|
{
|
|
void *regs;
|
|
sbconfig_t *sb;
|
|
uint32 flag;
|
|
|
|
regs = sb_setcore(sbh, coreid, coreunit);
|
|
ASSERT(regs);
|
|
flag = sb_flag(sbh);
|
|
|
|
if (!(regs = sb_setcore(sbh, SB_MIPS, 0)) &&
|
|
!(regs = sb_setcore(sbh, SB_MIPS33, 0)))
|
|
ASSERT(regs);
|
|
sb = (sbconfig_t *)((ulong) regs + SBCONFIGOFF);
|
|
|
|
if (irq == 0)
|
|
OR_REG(&sb->sbintvec, 1 << flag);
|
|
else {
|
|
flag <<= sbips_int_shift[irq];
|
|
ASSERT(!(flag & ~sbips_int_mask[irq]));
|
|
flag |= R_REG(&sb->sbipsflag) & ~sbips_int_mask[irq];
|
|
W_REG(&sb->sbipsflag, flag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initializes clocks and interrupts. SB and NVRAM access must be
|
|
* initialized prior to calling.
|
|
*/
|
|
void
|
|
sb_mips_init(void *sbh)
|
|
{
|
|
ulong hz, ns, tmp;
|
|
extifregs_t *eir;
|
|
chipcregs_t *cc;
|
|
char *value;
|
|
uint irq;
|
|
|
|
/* Figure out current SB clock speed */
|
|
if ((hz = sb_clock(sbh)) == 0)
|
|
hz = 100000000;
|
|
ns = 1000000000 / hz;
|
|
|
|
/* Setup external interface timing */
|
|
if ((eir = sb_setcore(sbh, SB_EXTIF, 0))) {
|
|
/* Initialize extif so we can get to the LEDs and external UART */
|
|
W_REG(&eir->prog_config, CF_EN);
|
|
|
|
/* Set timing for the flash */
|
|
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
|
|
tmp = tmp | (CEIL(40, ns) << FW_W1_SHIFT); /* W1 = 40nS */
|
|
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
|
|
W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
|
|
|
|
/* Set programmable interface timing for external uart */
|
|
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
|
|
tmp = tmp | (CEIL(20, ns) << FW_W2_SHIFT); /* W2 = 20nS */
|
|
tmp = tmp | (CEIL(100, ns) << FW_W1_SHIFT); /* W1 = 100nS */
|
|
tmp = tmp | CEIL(120, ns); /* W0 = 120nS */
|
|
W_REG(&eir->prog_waitcount, tmp); /* 0x01020a0c for a 100Mhz clock */
|
|
} else if ((cc = sb_setcore(sbh, SB_CC, 0))) {
|
|
/* Set timing for the flash */
|
|
tmp = CEIL(10, ns) << FW_W3_SHIFT; /* W3 = 10nS */
|
|
tmp |= CEIL(10, ns) << FW_W1_SHIFT; /* W1 = 10nS */
|
|
tmp |= CEIL(120, ns); /* W0 = 120nS */
|
|
W_REG(&cc->flash_waitcount, tmp);
|
|
|
|
W_REG(&cc->pcmcia_memwait, tmp);
|
|
}
|
|
|
|
/* Chip specific initialization */
|
|
switch (sb_chip(sbh)) {
|
|
case BCM4710_DEVICE_ID:
|
|
/* Clear interrupt map */
|
|
for (irq = 0; irq <= 4; irq++)
|
|
sb_clearirq(sbh, irq);
|
|
sb_setirq(sbh, 0, SB_CODEC, 0);
|
|
sb_setirq(sbh, 0, SB_EXTIF, 0);
|
|
sb_setirq(sbh, 2, SB_ENET, 1);
|
|
sb_setirq(sbh, 3, SB_ILINE20, 0);
|
|
sb_setirq(sbh, 4, SB_PCI, 0);
|
|
ASSERT(eir);
|
|
value = nvram_get("et0phyaddr");
|
|
if (value && !strcmp(value, "31")) {
|
|
/* Enable internal UART */
|
|
W_REG(&eir->corecontrol, CC_UE);
|
|
/* Give USB its own interrupt */
|
|
sb_setirq(sbh, 1, SB_USB, 0);
|
|
} else {
|
|
/* Disable internal UART */
|
|
W_REG(&eir->corecontrol, 0);
|
|
/* Give Ethernet its own interrupt */
|
|
sb_setirq(sbh, 1, SB_ENET, 0);
|
|
sb_setirq(sbh, 0, SB_USB, 0);
|
|
}
|
|
break;
|
|
case BCM4310_DEVICE_ID:
|
|
MTC0(C0_BROADCOM, 0, MFC0(C0_BROADCOM, 0) & ~(1 << 22));
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint32
|
|
sb_mips_clock(void *sbh)
|
|
{
|
|
extifregs_t *eir;
|
|
chipcregs_t *cc;
|
|
uint32 n, m;
|
|
uint idx;
|
|
uint32 pll_type, rate = 0;
|
|
|
|
/* get index of the current core */
|
|
idx = sb_coreidx(sbh);
|
|
pll_type = PLL_TYPE1;
|
|
|
|
/* switch to extif or chipc core */
|
|
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
|
|
n = R_REG(&eir->clockcontrol_n);
|
|
m = R_REG(&eir->clockcontrol_sb);
|
|
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
|
|
pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
|
|
n = R_REG(&cc->clockcontrol_n);
|
|
if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4))
|
|
m = R_REG(&cc->clockcontrol_mips);
|
|
else if (pll_type == PLL_TYPE3) {
|
|
rate = 200000000;
|
|
goto out;
|
|
} else
|
|
m = R_REG(&cc->clockcontrol_sb);
|
|
} else
|
|
goto out;
|
|
|
|
/* calculate rate */
|
|
rate = sb_clock_rate(pll_type, n, m);
|
|
|
|
out:
|
|
/* switch back to previous core */
|
|
sb_setcoreidx(sbh, idx);
|
|
|
|
return rate;
|
|
}
|
|
|
|
static void
|
|
icache_probe(int *size, int *lsize)
|
|
{
|
|
uint32 config1;
|
|
uint sets, ways;
|
|
|
|
config1 = MFC0(C0_CONFIG, 1);
|
|
|
|
/* Instruction Cache Size = Associativity * Line Size * Sets Per Way */
|
|
if ((*lsize = ((config1 >> 19) & 7)))
|
|
*lsize = 2 << *lsize;
|
|
sets = 64 << ((config1 >> 22) & 7);
|
|
ways = 1 + ((config1 >> 16) & 7);
|
|
*size = *lsize * sets * ways;
|
|
}
|
|
|
|
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4)
|
|
|
|
static void
|
|
handler(void)
|
|
{
|
|
/* Step 11 */
|
|
__asm__ (
|
|
".set\tmips32\n\t"
|
|
"ssnop\n\t"
|
|
"ssnop\n\t"
|
|
/* Disable interrupts */
|
|
/* MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~(ALLINTS | STO_IE)); */
|
|
"mfc0 $15, $12\n\t"
|
|
"and $15, $15, -31746\n\t"
|
|
"mtc0 $15, $12\n\t"
|
|
"eret\n\t"
|
|
"nop\n\t"
|
|
"nop\n\t"
|
|
".set\tmips0"
|
|
);
|
|
}
|
|
|
|
/* The following MUST come right after handler() */
|
|
static void
|
|
afterhandler(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Set the MIPS, backplane and PCI clocks as closely as possible.
|
|
*/
|
|
bool
|
|
sb_mips_setclock(void *sbh, uint32 mipsclock, uint32 sbclock, uint32 pciclock)
|
|
{
|
|
extifregs_t *eir = NULL;
|
|
chipcregs_t *cc = NULL;
|
|
mipsregs_t *mipsr = NULL;
|
|
volatile uint32 *clockcontrol_n, *clockcontrol_sb, *clockcontrol_pci;
|
|
uint32 orig_n, orig_sb, orig_pci, orig_m2, orig_mips, orig_ratio_parm, new_ratio;
|
|
uint32 pll_type, sync_mode;
|
|
uint idx, i;
|
|
typedef struct {
|
|
uint32 mipsclock;
|
|
uint16 n;
|
|
uint32 sb;
|
|
uint32 pci33;
|
|
uint32 pci25;
|
|
} n3m_table_t;
|
|
static n3m_table_t type1_table[] = {
|
|
{ 96000000, 0x0303, 0x04020011, 0x11030011, 0x11050011 }, /* 96.000 32.000 24.000 */
|
|
{ 100000000, 0x0009, 0x04020011, 0x11030011, 0x11050011 }, /* 100.000 33.333 25.000 */
|
|
{ 104000000, 0x0802, 0x04020011, 0x11050009, 0x11090009 }, /* 104.000 31.200 24.960 */
|
|
{ 108000000, 0x0403, 0x04020011, 0x11050009, 0x02000802 }, /* 108.000 32.400 24.923 */
|
|
{ 112000000, 0x0205, 0x04020011, 0x11030021, 0x02000403 }, /* 112.000 32.000 24.889 */
|
|
{ 115200000, 0x0303, 0x04020009, 0x11030011, 0x11050011 }, /* 115.200 32.000 24.000 */
|
|
{ 120000000, 0x0011, 0x04020011, 0x11050011, 0x11090011 }, /* 120.000 30.000 24.000 */
|
|
{ 124800000, 0x0802, 0x04020009, 0x11050009, 0x11090009 }, /* 124.800 31.200 24.960 */
|
|
{ 128000000, 0x0305, 0x04020011, 0x11050011, 0x02000305 }, /* 128.000 32.000 24.000 */
|
|
{ 132000000, 0x0603, 0x04020011, 0x11050011, 0x02000305 }, /* 132.000 33.000 24.750 */
|
|
{ 136000000, 0x0c02, 0x04020011, 0x11090009, 0x02000603 }, /* 136.000 32.640 24.727 */
|
|
{ 140000000, 0x0021, 0x04020011, 0x11050021, 0x02000c02 }, /* 140.000 30.000 24.706 */
|
|
{ 144000000, 0x0405, 0x04020011, 0x01020202, 0x11090021 }, /* 144.000 30.857 24.686 */
|
|
{ 150857142, 0x0605, 0x04020021, 0x02000305, 0x02000605 }, /* 150.857 33.000 24.000 */
|
|
{ 152000000, 0x0e02, 0x04020011, 0x11050021, 0x02000e02 }, /* 152.000 32.571 24.000 */
|
|
{ 156000000, 0x0802, 0x04020005, 0x11050009, 0x11090009 }, /* 156.000 31.200 24.960 */
|
|
{ 160000000, 0x0309, 0x04020011, 0x11090011, 0x02000309 }, /* 160.000 32.000 24.000 */
|
|
{ 163200000, 0x0c02, 0x04020009, 0x11090009, 0x02000603 }, /* 163.200 32.640 24.727 */
|
|
{ 168000000, 0x0205, 0x04020005, 0x11030021, 0x02000403 }, /* 168.000 32.000 24.889 */
|
|
{ 176000000, 0x0602, 0x04020003, 0x11050005, 0x02000602 }, /* 176.000 33.000 24.000 */
|
|
};
|
|
typedef struct {
|
|
uint32 mipsclock;
|
|
uint32 sbclock;
|
|
uint16 n;
|
|
uint32 sb;
|
|
uint32 pci33;
|
|
uint32 m2;
|
|
uint32 m3;
|
|
uint32 ratio;
|
|
uint32 ratio_parm;
|
|
} n4m_table_t;
|
|
|
|
static n4m_table_t type2_table[] = {
|
|
{ 180000000, 80000000, 0x0403, 0x01010000, 0x01020300, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 180000000, 90000000, 0x0403, 0x01000100, 0x01020300, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
|
|
{ 200000000, 100000000, 0x0303, 0x01000000, 0x01000600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
|
|
{ 211200000, 105600000, 0x0902, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
|
|
{ 220800000, 110400000, 0x1500, 0x01000200, 0x01030400, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
|
|
{ 230400000, 115200000, 0x0604, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
|
|
{ 234000000, 104000000, 0x0b01, 0x01010000, 0x01010700, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 240000000, 120000000, 0x0803, 0x01000200, 0x01020600, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
|
|
{ 252000000, 126000000, 0x0504, 0x01000100, 0x01020500, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 },
|
|
{ 264000000, 132000000, 0x0903, 0x01000200, 0x01020700, 0x01000200, 0x05000200, 0x21, 0x0aaa0555 },
|
|
{ 270000000, 120000000, 0x0703, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 276000000, 122666666, 0x1500, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 280000000, 140000000, 0x0503, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
|
|
{ 288000000, 128000000, 0x0604, 0x01010000, 0x01030400, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 288000000, 144000000, 0x0404, 0x01000000, 0x01010600, 0x01000000, 0x05000000, 0x21, 0x0aaa0555 },
|
|
{ 300000000, 133333333, 0x0803, 0x01010000, 0x01020600, 0x01020600, 0x05000100, 0x94, 0x012a0115 },
|
|
{ 300000000, 150000000, 0x0803, 0x01000100, 0x01020600, 0x01000100, 0x05000100, 0x21, 0x0aaa0555 }
|
|
};
|
|
|
|
static n4m_table_t type4_table[] = {
|
|
{ 192000000, 96000000, 0x0702, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
|
|
{ 200000000, 100000000, 0x0009, 0x04020011, 0x11030011, 0x04020011, 0x04020003, 0x21, 0x0aaa0555 },
|
|
{ 216000000, 108000000, 0x0111, 0x11020005, 0x01030303, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
|
|
{ 228000000, 101333333, 0x0e02, 0x11030003, 0x11210005, 0x11030305, 0x04000005, 0x94, 0x012a00a9 },
|
|
{ 228000000, 114000000, 0x0e02, 0x11020005, 0x11210005, 0x11020005, 0x04000005, 0x21, 0x0aaa0555 },
|
|
{ 240000000, 120000000, 0x0109, 0x11030002, 0x01050203, 0x11030002, 0x04000003, 0x21, 0x0aaa0555 },
|
|
{ 252000000, 126000000, 0x0203, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
|
|
{ 264000000, 132000000, 0x0602, 0x04000005, 0x11050005, 0x04000005, 0x04000002, 0x21, 0x0aaa0555 },
|
|
{ 272000000, 116571428, 0x0c02, 0x04000021, 0x02000909, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
|
|
{ 280000000, 120000000, 0x0209, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
|
|
{ 288000000, 123428571, 0x0111, 0x04000021, 0x01030303, 0x02000221, 0x04000003, 0x73, 0x254a14a9 },
|
|
{ 300000000, 120000000, 0x0009, 0x04000009, 0x01030203, 0x02000902, 0x04000002, 0x52, 0x02520129 }
|
|
};
|
|
uint icache_size, ic_lsize;
|
|
ulong start, end, dst;
|
|
bool ret = FALSE;
|
|
|
|
/* get index of the current core */
|
|
idx = sb_coreidx(sbh);
|
|
|
|
/* switch to extif or chipc core */
|
|
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
|
|
pll_type = PLL_TYPE1;
|
|
clockcontrol_n = &eir->clockcontrol_n;
|
|
clockcontrol_sb = &eir->clockcontrol_sb;
|
|
clockcontrol_pci = &eir->clockcontrol_pci;
|
|
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
|
|
pll_type = R_REG(&cc->capabilities) & CAP_PLL_MASK;
|
|
clockcontrol_n = &cc->clockcontrol_n;
|
|
clockcontrol_sb = &cc->clockcontrol_sb;
|
|
clockcontrol_pci = &cc->clockcontrol_pci;
|
|
} else
|
|
goto done;
|
|
|
|
/* Store the current clock register values */
|
|
orig_n = R_REG(clockcontrol_n);
|
|
orig_sb = R_REG(clockcontrol_sb);
|
|
orig_pci = R_REG(clockcontrol_pci);
|
|
|
|
if (pll_type == PLL_TYPE1) {
|
|
/* Keep the current PCI clock if not specified */
|
|
if (pciclock == 0) {
|
|
pciclock = sb_clock_rate(pll_type, R_REG(clockcontrol_n), R_REG(clockcontrol_pci));
|
|
pciclock = (pciclock <= 25000000) ? 25000000 : 33000000;
|
|
}
|
|
|
|
/* Search for the closest MIPS clock less than or equal to a preferred value */
|
|
for (i = 0; i < ARRAYSIZE(type1_table); i++) {
|
|
ASSERT(type1_table[i].mipsclock ==
|
|
sb_clock_rate(pll_type, type1_table[i].n, type1_table[i].sb));
|
|
if (type1_table[i].mipsclock > mipsclock)
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
ret = FALSE;
|
|
goto done;
|
|
} else {
|
|
ret = TRUE;
|
|
i--;
|
|
}
|
|
ASSERT(type1_table[i].mipsclock <= mipsclock);
|
|
|
|
/* No PLL change */
|
|
if ((orig_n == type1_table[i].n) &&
|
|
(orig_sb == type1_table[i].sb) &&
|
|
(orig_pci == type1_table[i].pci33))
|
|
goto done;
|
|
|
|
/* Set the PLL controls */
|
|
W_REG(clockcontrol_n, type1_table[i].n);
|
|
W_REG(clockcontrol_sb, type1_table[i].sb);
|
|
if (pciclock == 25000000)
|
|
W_REG(clockcontrol_pci, type1_table[i].pci25);
|
|
else
|
|
W_REG(clockcontrol_pci, type1_table[i].pci33);
|
|
|
|
/* Reset */
|
|
sb_watchdog(sbh, 1);
|
|
while (1);
|
|
} else if ((pll_type == PLL_TYPE2) || (pll_type == PLL_TYPE4)) {
|
|
n4m_table_t *table = (pll_type == PLL_TYPE2) ? type2_table : type4_table;
|
|
uint tabsz = (pll_type == PLL_TYPE2) ? ARRAYSIZE(type2_table) : ARRAYSIZE(type4_table);
|
|
|
|
ASSERT(cc);
|
|
|
|
/* Store the current clock register values */
|
|
orig_m2 = R_REG(&cc->clockcontrol_m2);
|
|
orig_mips = R_REG(&cc->clockcontrol_mips);
|
|
orig_ratio_parm = 0;
|
|
|
|
/* Look up current ratio */
|
|
for (i = 0; i < tabsz; i++) {
|
|
if ((orig_n == table[i].n) &&
|
|
(orig_sb == table[i].sb) &&
|
|
(orig_pci == table[i].pci33) &&
|
|
(orig_m2 == table[i].m2) &&
|
|
(orig_mips == table[i].m3)) {
|
|
orig_ratio_parm = table[i].ratio_parm;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Search for the closest MIPS clock greater or equal to a preferred value */
|
|
for (i = 0; i < tabsz; i++) {
|
|
ASSERT(table[i].mipsclock ==
|
|
sb_clock_rate(pll_type, table[i].n, table[i].m3));
|
|
if ((mipsclock <= table[i].mipsclock) &&
|
|
((sbclock == 0) || (sbclock <= table[i].sbclock)))
|
|
break;
|
|
}
|
|
if (i == tabsz) {
|
|
ret = FALSE;
|
|
goto done;
|
|
} else {
|
|
ret = TRUE;
|
|
}
|
|
|
|
/* No PLL change */
|
|
if ((orig_n == table[i].n) &&
|
|
(orig_sb == table[i].sb) &&
|
|
(orig_pci == table[i].pci33) &&
|
|
(orig_m2 == table[i].m2) &&
|
|
(orig_mips == table[i].m3))
|
|
goto done;
|
|
|
|
/* Set the PLL controls */
|
|
W_REG(clockcontrol_n, table[i].n);
|
|
W_REG(clockcontrol_sb, table[i].sb);
|
|
W_REG(clockcontrol_pci, table[i].pci33);
|
|
W_REG(&cc->clockcontrol_m2, table[i].m2);
|
|
W_REG(&cc->clockcontrol_mips, table[i].m3);
|
|
|
|
/* No ratio change */
|
|
if (orig_ratio_parm == table[i].ratio_parm)
|
|
goto end_fill;
|
|
|
|
new_ratio = table[i].ratio_parm;
|
|
|
|
icache_probe(&icache_size, &ic_lsize);
|
|
|
|
/* Preload the code into the cache */
|
|
start = ((ulong) &&start_fill) & ~(ic_lsize - 1);
|
|
end = ((ulong) &&end_fill + (ic_lsize - 1)) & ~(ic_lsize - 1);
|
|
while (start < end) {
|
|
cache_unroll(start, Fill_I);
|
|
start += ic_lsize;
|
|
}
|
|
|
|
/* Copy the handler */
|
|
start = (ulong) &handler;
|
|
end = (ulong) &afterhandler;
|
|
dst = KSEG1ADDR(0x180);
|
|
for (i = 0; i < (end - start); i += 4)
|
|
*((ulong *)(dst + i)) = *((ulong *)(start + i));
|
|
|
|
/* Preload handler into the cache one line at a time */
|
|
for (i = 0; i < (end - start); i += 4)
|
|
cache_unroll(dst + i, Fill_I);
|
|
|
|
/* Clear BEV bit */
|
|
MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) & ~ST0_BEV);
|
|
|
|
/* Enable interrupts */
|
|
MTC0(C0_STATUS, 0, MFC0(C0_STATUS, 0) | (ALLINTS | ST0_IE));
|
|
|
|
/* Enable MIPS timer interrupt */
|
|
if (!(mipsr = sb_setcore(sbh, SB_MIPS, 0)) &&
|
|
!(mipsr = sb_setcore(sbh, SB_MIPS33, 0)))
|
|
ASSERT(mipsr);
|
|
W_REG(&mipsr->intmask, 1);
|
|
|
|
start_fill:
|
|
/* step 1, set clock ratios */
|
|
MTC0(C0_BROADCOM, 3, new_ratio);
|
|
MTC0(C0_BROADCOM, 1, 8);
|
|
|
|
/* step 2: program timer intr */
|
|
W_REG(&mipsr->timer, 100);
|
|
(void) R_REG(&mipsr->timer);
|
|
|
|
/* step 3, switch to async */
|
|
sync_mode = MFC0(C0_BROADCOM, 4);
|
|
MTC0(C0_BROADCOM, 4, 1 << 22);
|
|
|
|
/* step 4, set cfg active */
|
|
MTC0(C0_BROADCOM, 2, 0x9);
|
|
|
|
|
|
/* steps 5 & 6 */
|
|
__asm__ __volatile__ (
|
|
".set\tmips3\n\t"
|
|
"wait\n\t"
|
|
".set\tmips0"
|
|
);
|
|
|
|
/* step 7, clear cfg_active */
|
|
MTC0(C0_BROADCOM, 2, 0);
|
|
|
|
/* Additional Step: set back to orig sync mode */
|
|
MTC0(C0_BROADCOM, 4, sync_mode);
|
|
|
|
/* step 8, fake soft reset */
|
|
MTC0(C0_BROADCOM, 5, MFC0(C0_BROADCOM, 5) | 4);
|
|
|
|
end_fill:
|
|
/* step 9 set watchdog timer */
|
|
sb_watchdog(sbh, 20);
|
|
(void) R_REG(&cc->chipid);
|
|
|
|
/* step 11 */
|
|
__asm__ __volatile__ (
|
|
".set\tmips3\n\t"
|
|
"sync\n\t"
|
|
"wait\n\t"
|
|
".set\tmips0"
|
|
);
|
|
while (1);
|
|
}
|
|
|
|
done:
|
|
/* switch back to previous core */
|
|
sb_setcoreidx(sbh, idx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* returns the ncdl value to be programmed into sdram_ncdl for calibration */
|
|
uint32
|
|
sb_memc_get_ncdl(void *sbh)
|
|
{
|
|
sbmemcregs_t *memc;
|
|
uint32 ret = 0;
|
|
uint32 config, rd, wr, misc, dqsg, cd, sm, sd;
|
|
uint idx, rev;
|
|
|
|
idx = sb_coreidx(sbh);
|
|
|
|
memc = (sbmemcregs_t *)sb_setcore(sbh, SB_MEMC, 0);
|
|
if (memc == 0)
|
|
goto out;
|
|
|
|
rev = sb_corerev(sbh);
|
|
|
|
config = R_REG(&memc->config);
|
|
wr = R_REG(&memc->wrncdlcor);
|
|
rd = R_REG(&memc->rdncdlcor);
|
|
misc = R_REG(&memc->miscdlyctl);
|
|
dqsg = R_REG(&memc->dqsgatencdl);
|
|
|
|
rd &= MEMC_RDNCDLCOR_RD_MASK;
|
|
wr &= MEMC_WRNCDLCOR_WR_MASK;
|
|
dqsg &= MEMC_DQSGATENCDL_G_MASK;
|
|
|
|
if (config & MEMC_CONFIG_DDR) {
|
|
ret = (wr << 16) | (rd << 8) | dqsg;
|
|
} else {
|
|
if (rev > 0)
|
|
cd = rd;
|
|
else
|
|
cd = (rd == MEMC_CD_THRESHOLD) ? rd : (wr + MEMC_CD_THRESHOLD);
|
|
sm = (misc & MEMC_MISC_SM_MASK) >> MEMC_MISC_SM_SHIFT;
|
|
sd = (misc & MEMC_MISC_SD_MASK) >> MEMC_MISC_SD_SHIFT;
|
|
ret = (sm << 16) | (sd << 8) | cd;
|
|
}
|
|
|
|
out:
|
|
/* switch back to previous core */
|
|
sb_setcoreidx(sbh, idx);
|
|
|
|
return ret;
|
|
}
|