1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-05 18:40:15 +02:00
openwrt-xburst/target/linux/lantiq/files-3.3/drivers/spi/spi-xway.c
blogic 1048c7b452 [lantiq] move files/ -> files-3.3/
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@34060 3c298f89-4303-0410-b956-a3cf2f4a3e73
2012-11-02 20:07:02 +00:00

1071 lines
27 KiB
C

/*
* Lantiq SoC SPI controller
*
* Copyright (C) 2011 Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <lantiq_soc.h>
#include <lantiq_platform.h>
#define LTQ_SPI_CLC 0x00 /* Clock control */
#define LTQ_SPI_PISEL 0x04 /* Port input select */
#define LTQ_SPI_ID 0x08 /* Identification */
#define LTQ_SPI_CON 0x10 /* Control */
#define LTQ_SPI_STAT 0x14 /* Status */
#define LTQ_SPI_WHBSTATE 0x18 /* Write HW modified state */
#define LTQ_SPI_TB 0x20 /* Transmit buffer */
#define LTQ_SPI_RB 0x24 /* Receive buffer */
#define LTQ_SPI_RXFCON 0x30 /* Receive FIFO control */
#define LTQ_SPI_TXFCON 0x34 /* Transmit FIFO control */
#define LTQ_SPI_FSTAT 0x38 /* FIFO status */
#define LTQ_SPI_BRT 0x40 /* Baudrate timer */
#define LTQ_SPI_BRSTAT 0x44 /* Baudrate timer status */
#define LTQ_SPI_SFCON 0x60 /* Serial frame control */
#define LTQ_SPI_SFSTAT 0x64 /* Serial frame status */
#define LTQ_SPI_GPOCON 0x70 /* General purpose output control */
#define LTQ_SPI_GPOSTAT 0x74 /* General purpose output status */
#define LTQ_SPI_FGPO 0x78 /* Forced general purpose output */
#define LTQ_SPI_RXREQ 0x80 /* Receive request */
#define LTQ_SPI_RXCNT 0x84 /* Receive count */
#define LTQ_SPI_DMACON 0xEC /* DMA control */
#define LTQ_SPI_IRNEN 0xF4 /* Interrupt node enable */
#define LTQ_SPI_IRNICR 0xF8 /* Interrupt node interrupt capture */
#define LTQ_SPI_IRNCR 0xFC /* Interrupt node control */
#define LTQ_SPI_CLC_SMC_SHIFT 16 /* Clock divider for sleep mode */
#define LTQ_SPI_CLC_SMC_MASK 0xFF
#define LTQ_SPI_CLC_RMC_SHIFT 8 /* Clock divider for normal run mode */
#define LTQ_SPI_CLC_RMC_MASK 0xFF
#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
#define LTQ_SPI_ID_TXFS_SHIFT 24 /* Implemented TX FIFO size */
#define LTQ_SPI_ID_TXFS_MASK 0x3F
#define LTQ_SPI_ID_RXFS_SHIFT 16 /* Implemented RX FIFO size */
#define LTQ_SPI_ID_RXFS_MASK 0x3F
#define LTQ_SPI_ID_REV_MASK 0x1F /* Hardware revision number */
#define LTQ_SPI_ID_CFG BIT(5) /* DMA interface support */
#define LTQ_SPI_CON_BM_SHIFT 16 /* Data width selection */
#define LTQ_SPI_CON_BM_MASK 0x1F
#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
#define LTQ_SPI_STAT_RXBV_MASK 0x7
#define LTQ_SPI_STAT_RXBV_SHIFT 28
#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
#define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
#define LTQ_SPI_WHBSTATE_CLR_ERRORS 0x0F50
#define LTQ_SPI_RXFCON_RXFITL_SHIFT 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_RXFCON_RXFITL_MASK 0x3F
#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_TXFCON_TXFITL_SHIFT 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_TXFCON_TXFITL_MASK 0x3F
#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_FSTAT_RXFFL_MASK 0x3f
#define LTQ_SPI_FSTAT_RXFFL_SHIFT 0
#define LTQ_SPI_FSTAT_TXFFL_MASK 0x3f
#define LTQ_SPI_FSTAT_TXFFL_SHIFT 8
#define LTQ_SPI_GPOCON_ISCSBN_SHIFT 8
#define LTQ_SPI_GPOCON_INVOUTN_SHIFT 0
#define LTQ_SPI_FGPO_SETOUTN_SHIFT 8
#define LTQ_SPI_FGPO_CLROUTN_SHIFT 0
#define LTQ_SPI_RXREQ_RXCNT_MASK 0xFFFF /* Receive count value */
#define LTQ_SPI_RXCNT_TODO_MASK 0xFFFF /* Recevie to-do value */
#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
#define LTQ_SPI_IRNEN_T BIT(1) /* Transmit end interrupt request */
#define LTQ_SPI_IRNEN_R BIT(0) /* Receive end interrupt request */
#define LTQ_SPI_IRNEN_ALL 0xF
/* Hard-wired GPIOs used by SPI controller */
#define LTQ_SPI_GPIO_DI (ltq_is_ase()? 8 : 16)
#define LTQ_SPI_GPIO_DO (ltq_is_ase()? 9 : 17)
#define LTQ_SPI_GPIO_CLK (ltq_is_ase()? 10 : 18)
struct ltq_spi {
struct spi_bitbang bitbang;
struct completion done;
spinlock_t lock;
struct device *dev;
void __iomem *base;
struct clk *fpiclk;
struct clk *spiclk;
int status;
int irq[3];
const u8 *tx;
u8 *rx;
u32 tx_cnt;
u32 rx_cnt;
u32 len;
struct spi_transfer *curr_transfer;
u32 (*get_tx) (struct ltq_spi *);
u16 txfs;
u16 rxfs;
unsigned dma_support:1;
unsigned cfg_mode:1;
};
struct ltq_spi_controller_state {
void (*cs_activate) (struct spi_device *);
void (*cs_deactivate) (struct spi_device *);
};
struct ltq_spi_irq_map {
char *name;
irq_handler_t handler;
};
struct ltq_spi_cs_gpio_map {
unsigned gpio;
unsigned mux;
};
static inline struct ltq_spi *ltq_spi_to_hw(struct spi_device *spi)
{
return spi_master_get_devdata(spi->master);
}
static inline u32 ltq_spi_reg_read(struct ltq_spi *hw, u32 reg)
{
return ioread32be(hw->base + reg);
}
static inline void ltq_spi_reg_write(struct ltq_spi *hw, u32 val, u32 reg)
{
iowrite32be(val, hw->base + reg);
}
static inline void ltq_spi_reg_setbit(struct ltq_spi *hw, u32 bits, u32 reg)
{
u32 val;
val = ltq_spi_reg_read(hw, reg);
val |= bits;
ltq_spi_reg_write(hw, val, reg);
}
static inline void ltq_spi_reg_clearbit(struct ltq_spi *hw, u32 bits, u32 reg)
{
u32 val;
val = ltq_spi_reg_read(hw, reg);
val &= ~bits;
ltq_spi_reg_write(hw, val, reg);
}
static void ltq_spi_hw_enable(struct ltq_spi *hw)
{
u32 clc;
/* Power-up mdule */
clk_enable(hw->spiclk);
/*
* Set clock divider for run mode to 1 to
* run at same frequency as FPI bus
*/
clc = (1 << LTQ_SPI_CLC_RMC_SHIFT);
ltq_spi_reg_write(hw, clc, LTQ_SPI_CLC);
}
static void ltq_spi_hw_disable(struct ltq_spi *hw)
{
/* Set clock divider to 0 and set module disable bit */
ltq_spi_reg_write(hw, LTQ_SPI_CLC_DISS, LTQ_SPI_CLC);
/* Power-down mdule */
clk_disable(hw->spiclk);
}
static void ltq_spi_reset_fifos(struct ltq_spi *hw)
{
u32 val;
/*
* Enable and flush FIFOs. Set interrupt trigger level to
* half of FIFO count implemented in hardware.
*/
if (hw->txfs > 1) {
val = hw->txfs << (LTQ_SPI_TXFCON_TXFITL_SHIFT - 1);
val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
ltq_spi_reg_write(hw, val, LTQ_SPI_TXFCON);
}
if (hw->rxfs > 1) {
val = hw->rxfs << (LTQ_SPI_RXFCON_RXFITL_SHIFT - 1);
val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
ltq_spi_reg_write(hw, val, LTQ_SPI_RXFCON);
}
}
static inline int ltq_spi_wait_ready(struct ltq_spi *hw)
{
u32 stat;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(200);
do {
stat = ltq_spi_reg_read(hw, LTQ_SPI_STAT);
if (!(stat & LTQ_SPI_STAT_BSY))
return 0;
cond_resched();
} while (!time_after_eq(jiffies, timeout));
dev_err(hw->dev, "SPI wait ready timed out stat: %x\n", stat);
return -ETIMEDOUT;
}
static void ltq_spi_config_mode_set(struct ltq_spi *hw)
{
if (hw->cfg_mode)
return;
/*
* Putting the SPI module in config mode is only safe if no
* transfer is in progress as indicated by busy flag STATE.BSY.
*/
if (ltq_spi_wait_ready(hw)) {
ltq_spi_reset_fifos(hw);
hw->status = -ETIMEDOUT;
}
ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
hw->cfg_mode = 1;
}
static void ltq_spi_run_mode_set(struct ltq_spi *hw)
{
if (!hw->cfg_mode)
return;
ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
hw->cfg_mode = 0;
}
static u32 ltq_spi_tx_word_u8(struct ltq_spi *hw)
{
const u8 *tx = hw->tx;
u32 data = *tx++;
hw->tx_cnt++;
hw->tx++;
return data;
}
static u32 ltq_spi_tx_word_u16(struct ltq_spi *hw)
{
const u16 *tx = (u16 *) hw->tx;
u32 data = *tx++;
hw->tx_cnt += 2;
hw->tx += 2;
return data;
}
static u32 ltq_spi_tx_word_u32(struct ltq_spi *hw)
{
const u32 *tx = (u32 *) hw->tx;
u32 data = *tx++;
hw->tx_cnt += 4;
hw->tx += 4;
return data;
}
static void ltq_spi_bits_per_word_set(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 bm;
u8 bits_per_word = spi->bits_per_word;
/*
* Use either default value of SPI device or value
* from current transfer.
*/
if (hw->curr_transfer && hw->curr_transfer->bits_per_word)
bits_per_word = hw->curr_transfer->bits_per_word;
if (bits_per_word <= 8)
hw->get_tx = ltq_spi_tx_word_u8;
else if (bits_per_word <= 16)
hw->get_tx = ltq_spi_tx_word_u16;
else if (bits_per_word <= 32)
hw->get_tx = ltq_spi_tx_word_u32;
/* CON.BM value = bits_per_word - 1 */
bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_SHIFT;
ltq_spi_reg_clearbit(hw, LTQ_SPI_CON_BM_MASK <<
LTQ_SPI_CON_BM_SHIFT, LTQ_SPI_CON);
ltq_spi_reg_setbit(hw, bm, LTQ_SPI_CON);
}
static void ltq_spi_speed_set(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 br, max_speed_hz, spi_clk;
u32 speed_hz = spi->max_speed_hz;
/*
* Use either default value of SPI device or value
* from current transfer.
*/
if (hw->curr_transfer && hw->curr_transfer->speed_hz)
speed_hz = hw->curr_transfer->speed_hz;
/*
* SPI module clock is derived from FPI bus clock dependent on
* divider value in CLC.RMS which is always set to 1.
*/
spi_clk = clk_get_rate(hw->fpiclk);
/*
* Maximum SPI clock frequency in master mode is half of
* SPI module clock frequency. Maximum reload value of
* baudrate generator BR is 2^16.
*/
max_speed_hz = spi_clk / 2;
if (speed_hz >= max_speed_hz)
br = 0;
else
br = (max_speed_hz / speed_hz) - 1;
if (br > 0xFFFF)
br = 0xFFFF;
ltq_spi_reg_write(hw, br, LTQ_SPI_BRT);
}
static void ltq_spi_clockmode_set(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 con;
con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
/*
* SPI mode mapping in CON register:
* Mode CPOL CPHA CON.PO CON.PH
* 0 0 0 0 1
* 1 0 1 0 0
* 2 1 0 1 1
* 3 1 1 1 0
*/
if (spi->mode & SPI_CPHA)
con &= ~LTQ_SPI_CON_PH;
else
con |= LTQ_SPI_CON_PH;
if (spi->mode & SPI_CPOL)
con |= LTQ_SPI_CON_PO;
else
con &= ~LTQ_SPI_CON_PO;
/* Set heading control */
if (spi->mode & SPI_LSB_FIRST)
con &= ~LTQ_SPI_CON_HB;
else
con |= LTQ_SPI_CON_HB;
ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
}
static void ltq_spi_xmit_set(struct ltq_spi *hw, struct spi_transfer *t)
{
u32 con;
con = ltq_spi_reg_read(hw, LTQ_SPI_CON);
if (t) {
if (t->tx_buf && t->rx_buf) {
con &= ~(LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
} else if (t->rx_buf) {
con &= ~LTQ_SPI_CON_RXOFF;
con |= LTQ_SPI_CON_TXOFF;
} else if (t->tx_buf) {
con &= ~LTQ_SPI_CON_TXOFF;
con |= LTQ_SPI_CON_RXOFF;
}
} else
con |= (LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF);
ltq_spi_reg_write(hw, con, LTQ_SPI_CON);
}
static void ltq_spi_gpio_cs_activate(struct spi_device *spi)
{
struct ltq_spi_controller_data *cdata = spi->controller_data;
int val = spi->mode & SPI_CS_HIGH ? 1 : 0;
gpio_set_value(cdata->gpio, val);
}
static void ltq_spi_gpio_cs_deactivate(struct spi_device *spi)
{
struct ltq_spi_controller_data *cdata = spi->controller_data;
int val = spi->mode & SPI_CS_HIGH ? 0 : 1;
gpio_set_value(cdata->gpio, val);
}
static void ltq_spi_internal_cs_activate(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 fgpo;
fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_CLROUTN_SHIFT));
ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
}
static void ltq_spi_internal_cs_deactivate(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 fgpo;
fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
}
static void ltq_spi_chipselect(struct spi_device *spi, int cs)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
struct ltq_spi_controller_state *cstate = spi->controller_state;
switch (cs) {
case BITBANG_CS_ACTIVE:
ltq_spi_bits_per_word_set(spi);
ltq_spi_speed_set(spi);
ltq_spi_clockmode_set(spi);
ltq_spi_run_mode_set(hw);
cstate->cs_activate(spi);
break;
case BITBANG_CS_INACTIVE:
cstate->cs_deactivate(spi);
ltq_spi_config_mode_set(hw);
break;
}
}
static int ltq_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u8 bits_per_word = spi->bits_per_word;
hw->curr_transfer = t;
if (t && t->bits_per_word)
bits_per_word = t->bits_per_word;
if (bits_per_word > 32)
return -EINVAL;
ltq_spi_config_mode_set(hw);
return 0;
}
static const struct ltq_spi_cs_gpio_map ltq_spi_cs[] = {
{ 15, 2 },
{ 22, 2 },
{ 13, 1 },
{ 10, 1 },
{ 9, 1 },
{ 11, 3 },
};
static const struct ltq_spi_cs_gpio_map ltq_spi_cs_ase[] = {
{ 7, 2 },
{ 15, 1 },
{ 14, 1 },
};
static int ltq_spi_setup(struct spi_device *spi)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
struct ltq_spi_controller_data *cdata = spi->controller_data;
struct ltq_spi_controller_state *cstate;
u32 gpocon, fgpo;
int ret;
/* Set default word length to 8 if not set */
if (!spi->bits_per_word)
spi->bits_per_word = 8;
if (spi->bits_per_word > 32)
return -EINVAL;
if (!spi->controller_state) {
cstate = kzalloc(sizeof(struct ltq_spi_controller_state),
GFP_KERNEL);
if (!cstate)
return -ENOMEM;
spi->controller_state = cstate;
} else
return 0;
/*
* Up to six GPIOs can be connected to the SPI module
* via GPIO alternate function to control the chip select lines.
* For more flexibility in board layout this driver can also control
* the CS lines via GPIO API. If GPIOs should be used, board setup code
* have to register the SPI device with struct ltq_spi_controller_data
* attached.
*/
if (cdata && cdata->gpio) {
ret = gpio_request(cdata->gpio, "spi-cs");
if (ret)
return -EBUSY;
ret = spi->mode & SPI_CS_HIGH ? 0 : 1;
gpio_direction_output(cdata->gpio, ret);
cstate->cs_activate = ltq_spi_gpio_cs_activate;
cstate->cs_deactivate = ltq_spi_gpio_cs_deactivate;
} else {
struct ltq_spi_cs_gpio_map *cs_map =
ltq_is_ase() ? ltq_spi_cs_ase : ltq_spi_cs;
ret = ltq_gpio_request(&spi->dev, cs_map[spi->chip_select].gpio,
cs_map[spi->chip_select].mux,
1, "spi-cs");
if (ret)
return -EBUSY;
gpocon = (1 << (spi->chip_select +
LTQ_SPI_GPOCON_ISCSBN_SHIFT));
if (spi->mode & SPI_CS_HIGH)
gpocon |= (1 << spi->chip_select);
fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT));
ltq_spi_reg_setbit(hw, gpocon, LTQ_SPI_GPOCON);
ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO);
cstate->cs_activate = ltq_spi_internal_cs_activate;
cstate->cs_deactivate = ltq_spi_internal_cs_deactivate;
}
return 0;
}
static void ltq_spi_cleanup(struct spi_device *spi)
{
struct ltq_spi_controller_data *cdata = spi->controller_data;
struct ltq_spi_controller_state *cstate = spi->controller_state;
unsigned gpio;
if (cdata && cdata->gpio)
gpio = cdata->gpio;
else
gpio = ltq_is_ase() ? ltq_spi_cs_ase[spi->chip_select].gpio :
ltq_spi_cs[spi->chip_select].gpio;
gpio_free(gpio);
kfree(cstate);
}
static void ltq_spi_txfifo_write(struct ltq_spi *hw)
{
u32 fstat, data;
u16 fifo_space;
/* Determine how much FIFOs are free for TX data */
fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
fifo_space = hw->txfs - ((fstat >> LTQ_SPI_FSTAT_TXFFL_SHIFT) &
LTQ_SPI_FSTAT_TXFFL_MASK);
if (!fifo_space)
return;
while (hw->tx_cnt < hw->len && fifo_space) {
data = hw->get_tx(hw);
ltq_spi_reg_write(hw, data, LTQ_SPI_TB);
fifo_space--;
}
}
static void ltq_spi_rxfifo_read(struct ltq_spi *hw)
{
u32 fstat, data, *rx32;
u16 fifo_fill;
u8 rxbv, shift, *rx8;
/* Determine how much FIFOs are filled with RX data */
fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT);
fifo_fill = ((fstat >> LTQ_SPI_FSTAT_RXFFL_SHIFT)
& LTQ_SPI_FSTAT_RXFFL_MASK);
if (!fifo_fill)
return;
/*
* The 32 bit FIFO is always used completely independent from the
* bits_per_word value. Thus four bytes have to be read at once
* per FIFO.
*/
rx32 = (u32 *) hw->rx;
while (hw->len - hw->rx_cnt >= 4 && fifo_fill) {
*rx32++ = ltq_spi_reg_read(hw, LTQ_SPI_RB);
hw->rx_cnt += 4;
hw->rx += 4;
fifo_fill--;
}
/*
* If there are remaining bytes, read byte count from STAT.RXBV
* register and read the data byte-wise.
*/
while (fifo_fill && hw->rx_cnt < hw->len) {
rxbv = (ltq_spi_reg_read(hw, LTQ_SPI_STAT) >>
LTQ_SPI_STAT_RXBV_SHIFT) & LTQ_SPI_STAT_RXBV_MASK;
data = ltq_spi_reg_read(hw, LTQ_SPI_RB);
shift = (rxbv - 1) * 8;
rx8 = hw->rx;
while (rxbv) {
*rx8++ = (data >> shift) & 0xFF;
rxbv--;
shift -= 8;
hw->rx_cnt++;
hw->rx++;
}
fifo_fill--;
}
}
static void ltq_spi_rxreq_set(struct ltq_spi *hw)
{
u32 rxreq, rxreq_max, rxtodo;
rxtodo = ltq_spi_reg_read(hw, LTQ_SPI_RXCNT) & LTQ_SPI_RXCNT_TODO_MASK;
/*
* In RX-only mode the serial clock is activated only after writing
* the expected amount of RX bytes into RXREQ register.
* To avoid receive overflows at high clocks it is better to request
* only the amount of bytes that fits into all FIFOs. This value
* depends on the FIFO size implemented in hardware.
*/
rxreq = hw->len - hw->rx_cnt;
rxreq_max = hw->rxfs << 2;
rxreq = min(rxreq_max, rxreq);
if (!rxtodo && rxreq)
ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ);
}
static inline void ltq_spi_complete(struct ltq_spi *hw)
{
complete(&hw->done);
}
irqreturn_t ltq_spi_tx_irq(int irq, void *data)
{
struct ltq_spi *hw = data;
unsigned long flags;
int completed = 0;
spin_lock_irqsave(&hw->lock, flags);
if (hw->tx_cnt < hw->len)
ltq_spi_txfifo_write(hw);
if (hw->tx_cnt == hw->len)
completed = 1;
spin_unlock_irqrestore(&hw->lock, flags);
if (completed)
ltq_spi_complete(hw);
return IRQ_HANDLED;
}
irqreturn_t ltq_spi_rx_irq(int irq, void *data)
{
struct ltq_spi *hw = data;
unsigned long flags;
int completed = 0;
spin_lock_irqsave(&hw->lock, flags);
if (hw->rx_cnt < hw->len) {
ltq_spi_rxfifo_read(hw);
if (hw->tx && hw->tx_cnt < hw->len)
ltq_spi_txfifo_write(hw);
}
if (hw->rx_cnt == hw->len)
completed = 1;
else if (!hw->tx)
ltq_spi_rxreq_set(hw);
spin_unlock_irqrestore(&hw->lock, flags);
if (completed)
ltq_spi_complete(hw);
return IRQ_HANDLED;
}
irqreturn_t ltq_spi_err_irq(int irq, void *data)
{
struct ltq_spi *hw = data;
unsigned long flags;
spin_lock_irqsave(&hw->lock, flags);
/* Disable all interrupts */
ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
/* Clear all error flags */
ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
/* Flush FIFOs */
ltq_spi_reg_setbit(hw, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
ltq_spi_reg_setbit(hw, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
hw->status = -EIO;
spin_unlock_irqrestore(&hw->lock, flags);
ltq_spi_complete(hw);
return IRQ_HANDLED;
}
static int ltq_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct ltq_spi *hw = ltq_spi_to_hw(spi);
u32 irq_flags = 0;
hw->tx = t->tx_buf;
hw->rx = t->rx_buf;
hw->len = t->len;
hw->tx_cnt = 0;
hw->rx_cnt = 0;
hw->status = 0;
INIT_COMPLETION(hw->done);
ltq_spi_xmit_set(hw, t);
/* Enable error interrupts */
ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
if (hw->tx) {
/* Initially fill TX FIFO with as much data as possible */
ltq_spi_txfifo_write(hw);
irq_flags |= LTQ_SPI_IRNEN_T;
/* Always enable RX interrupt in Full Duplex mode */
if (hw->rx)
irq_flags |= LTQ_SPI_IRNEN_R;
} else if (hw->rx) {
/* Start RX clock */
ltq_spi_rxreq_set(hw);
/* Enable RX interrupt to receive data from RX FIFOs */
irq_flags |= LTQ_SPI_IRNEN_R;
}
/* Enable TX or RX interrupts */
ltq_spi_reg_setbit(hw, irq_flags, LTQ_SPI_IRNEN);
wait_for_completion_interruptible(&hw->done);
/* Disable all interrupts */
ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN);
/*
* Return length of current transfer for bitbang utility code if
* no errors occured during transmission.
*/
if (!hw->status)
hw->status = hw->len;
return hw->status;
}
static const struct ltq_spi_irq_map ltq_spi_irqs[] = {
{ "spi_tx", ltq_spi_tx_irq },
{ "spi_rx", ltq_spi_rx_irq },
{ "spi_err", ltq_spi_err_irq },
};
static int __devinit
ltq_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct resource *r;
struct ltq_spi *hw;
struct ltq_spi_platform_data *pdata = pdev->dev.platform_data;
int ret, i;
u32 data, id;
master = spi_alloc_master(&pdev->dev, sizeof(struct ltq_spi));
if (!master) {
dev_err(&pdev->dev, "spi_alloc_master\n");
ret = -ENOMEM;
goto err;
}
hw = spi_master_get_devdata(master);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "platform_get_resource\n");
ret = -ENOENT;
goto err_master;
}
r = devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
pdev->name);
if (!r) {
dev_err(&pdev->dev, "devm_request_mem_region\n");
ret = -ENXIO;
goto err_master;
}
hw->base = devm_ioremap_nocache(&pdev->dev, r->start, resource_size(r));
if (!hw->base) {
dev_err(&pdev->dev, "devm_ioremap_nocache\n");
ret = -ENXIO;
goto err_master;
}
hw->fpiclk = clk_get_fpi();
if (IS_ERR(hw->fpiclk)) {
dev_err(&pdev->dev, "fpi clk\n");
ret = PTR_ERR(hw->fpiclk);
goto err_master;
}
hw->spiclk = clk_get(&pdev->dev, NULL);
if (IS_ERR(hw->spiclk)) {
dev_err(&pdev->dev, "spi clk\n");
ret = PTR_ERR(hw->spiclk);
goto err_master;
}
memset(hw->irq, 0, sizeof(hw->irq));
for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) {
ret = platform_get_irq_byname(pdev, ltq_spi_irqs[i].name);
if (0 > ret) {
dev_err(&pdev->dev, "platform_get_irq_byname\n");
goto err_irq;
}
hw->irq[i] = ret;
ret = request_irq(hw->irq[i], ltq_spi_irqs[i].handler,
0, ltq_spi_irqs[i].name, hw);
if (ret) {
dev_err(&pdev->dev, "request_irq\n");
goto err_irq;
}
}
hw->bitbang.master = spi_master_get(master);
hw->bitbang.chipselect = ltq_spi_chipselect;
hw->bitbang.setup_transfer = ltq_spi_setup_transfer;
hw->bitbang.txrx_bufs = ltq_spi_txrx_bufs;
master->bus_num = pdev->id;
master->num_chipselect = pdata->num_chipselect;
master->setup = ltq_spi_setup;
master->cleanup = ltq_spi_cleanup;
hw->dev = &pdev->dev;
init_completion(&hw->done);
spin_lock_init(&hw->lock);
/* Set GPIO alternate functions to SPI */
ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_DI, 2, 0, "spi-di");
ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_DO, 2, 1, "spi-do");
ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_CLK, 2, 1, "spi-clk");
ltq_spi_hw_enable(hw);
/* Read module capabilities */
id = ltq_spi_reg_read(hw, LTQ_SPI_ID);
hw->txfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
hw->rxfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK;
hw->dma_support = (id & LTQ_SPI_ID_CFG) ? 1 : 0;
ltq_spi_config_mode_set(hw);
/* Enable error checking, disable TX/RX, set idle value high */
data = LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN |
LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF | LTQ_SPI_CON_IDLE;
ltq_spi_reg_write(hw, data, LTQ_SPI_CON);
/* Enable master mode and clear error flags */
ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETMS |
LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
/* Reset GPIO/CS registers */
ltq_spi_reg_write(hw, 0x0, LTQ_SPI_GPOCON);
ltq_spi_reg_write(hw, 0xFF00, LTQ_SPI_FGPO);
/* Enable and flush FIFOs */
ltq_spi_reset_fifos(hw);
ret = spi_bitbang_start(&hw->bitbang);
if (ret) {
dev_err(&pdev->dev, "spi_bitbang_start\n");
goto err_bitbang;
}
platform_set_drvdata(pdev, hw);
pr_info("Lantiq SoC SPI controller rev %u (TXFS %u, RXFS %u, DMA %u)\n",
id & LTQ_SPI_ID_REV_MASK, hw->txfs, hw->rxfs, hw->dma_support);
return 0;
err_bitbang:
ltq_spi_hw_disable(hw);
err_irq:
clk_put(hw->fpiclk);
for (; i > 0; i--)
free_irq(hw->irq[i], hw);
err_master:
spi_master_put(master);
err:
return ret;
}
static int __devexit
ltq_spi_remove(struct platform_device *pdev)
{
struct ltq_spi *hw = platform_get_drvdata(pdev);
int ret, i;
ret = spi_bitbang_stop(&hw->bitbang);
if (ret)
return ret;
platform_set_drvdata(pdev, NULL);
ltq_spi_config_mode_set(hw);
ltq_spi_hw_disable(hw);
for (i = 0; i < ARRAY_SIZE(hw->irq); i++)
if (0 < hw->irq[i])
free_irq(hw->irq[i], hw);
gpio_free(LTQ_SPI_GPIO_DI);
gpio_free(LTQ_SPI_GPIO_DO);
gpio_free(LTQ_SPI_GPIO_CLK);
clk_put(hw->fpiclk);
spi_master_put(hw->bitbang.master);
return 0;
}
static struct platform_driver ltq_spi_driver = {
.probe = ltq_spi_probe,
.remove = __devexit_p(ltq_spi_remove),
.driver = {
.name = "ltq_spi",
.owner = THIS_MODULE,
},
};
module_platform_driver(ltq_spi_driver);
MODULE_DESCRIPTION("Lantiq SoC SPI controller driver");
MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@googlemail.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:ltq-spi");