mirror of
git://projects.qi-hardware.com/openwrt-xburst.git
synced 2024-11-07 12:00:38 +02:00
c857d0f9d5
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@14036 3c298f89-4303-0410-b956-a3cf2f4a3e73
22344 lines
725 KiB
Diff
22344 lines
725 KiB
Diff
--- a/configure.in
|
||
+++ b/configure.in
|
||
@@ -503,6 +503,9 @@ case "${target}" in
|
||
arm-*-riscix*)
|
||
noconfigdirs="$noconfigdirs ld target-libgloss ${libgcj}"
|
||
;;
|
||
+ avr32-*-*)
|
||
+ noconfigdirs="$noconfigdirs target-libiberty target-libmudflap target-libffi ${libgcj}"
|
||
+ ;;
|
||
avr-*-*)
|
||
noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}"
|
||
;;
|
||
--- a/gcc/builtins.c
|
||
+++ b/gcc/builtins.c
|
||
@@ -9223,7 +9223,7 @@ validate_arglist (tree arglist, ...)
|
||
|
||
do
|
||
{
|
||
- code = va_arg (ap, enum tree_code);
|
||
+ code = va_arg (ap, int);
|
||
switch (code)
|
||
{
|
||
case 0:
|
||
--- a/gcc/calls.c
|
||
+++ b/gcc/calls.c
|
||
@@ -3447,7 +3447,7 @@ emit_library_call_value_1 (int retval, r
|
||
for (; count < nargs; count++)
|
||
{
|
||
rtx val = va_arg (p, rtx);
|
||
- enum machine_mode mode = va_arg (p, enum machine_mode);
|
||
+ enum machine_mode mode = va_arg (p, int);
|
||
|
||
/* We cannot convert the arg value to the mode the library wants here;
|
||
must do it earlier where we know the signedness of the arg. */
|
||
--- a/gcc/c-incpath.c
|
||
+++ b/gcc/c-incpath.c
|
||
@@ -347,6 +347,18 @@ add_path (char *path, int chain, int cxx
|
||
char* c;
|
||
for (c = path; *c; c++)
|
||
if (*c == '\\') *c = '/';
|
||
+ /* Remove unnecessary trailing slashes. On some versions of MS
|
||
+ Windows, trailing _forward_ slashes cause no problems for stat().
|
||
+ On newer versions, stat() does not recognise a directory that ends
|
||
+ in a '\\' or '/', unless it is a drive root dir, such as "c:/",
|
||
+ where it is obligatory. */
|
||
+ int pathlen = strlen (path);
|
||
+ char* end = path + pathlen - 1;
|
||
+ /* Preserve the lead '/' or lead "c:/". */
|
||
+ char* start = path + (pathlen > 2 && path[1] == ':' ? 3 : 1);
|
||
+
|
||
+ for (; end > start && IS_DIR_SEPARATOR (*end); end--)
|
||
+ *end = 0;
|
||
#endif
|
||
|
||
p = XNEW (cpp_dir);
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32.c
|
||
@@ -0,0 +1,7915 @@
|
||
+/*
|
||
+ Target hooks and helper functions for AVR32.
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+ Initial porting by Anders <20>dland.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+#include "config.h"
|
||
+#include "system.h"
|
||
+#include "coretypes.h"
|
||
+#include "tm.h"
|
||
+#include "rtl.h"
|
||
+#include "tree.h"
|
||
+#include "obstack.h"
|
||
+#include "regs.h"
|
||
+#include "hard-reg-set.h"
|
||
+#include "real.h"
|
||
+#include "insn-config.h"
|
||
+#include "conditions.h"
|
||
+#include "output.h"
|
||
+#include "insn-attr.h"
|
||
+#include "flags.h"
|
||
+#include "reload.h"
|
||
+#include "function.h"
|
||
+#include "expr.h"
|
||
+#include "optabs.h"
|
||
+#include "toplev.h"
|
||
+#include "recog.h"
|
||
+#include "ggc.h"
|
||
+#include "except.h"
|
||
+#include "c-pragma.h"
|
||
+#include "integrate.h"
|
||
+#include "tm_p.h"
|
||
+#include "langhooks.h"
|
||
+
|
||
+#include "target.h"
|
||
+#include "target-def.h"
|
||
+
|
||
+#include <ctype.h>
|
||
+
|
||
+/* Forward definitions of types. */
|
||
+typedef struct minipool_node Mnode;
|
||
+typedef struct minipool_fixup Mfix;
|
||
+
|
||
+/* Obstack for minipool constant handling. */
|
||
+static struct obstack minipool_obstack;
|
||
+static char *minipool_startobj;
|
||
+static rtx minipool_vector_label;
|
||
+
|
||
+/* True if we are currently building a constant table. */
|
||
+int making_const_table;
|
||
+
|
||
+/* Some forward function declarations */
|
||
+static unsigned long avr32_isr_value (tree);
|
||
+static unsigned long avr32_compute_func_type (void);
|
||
+static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *);
|
||
+static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *);
|
||
+static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args,
|
||
+ int flags, bool * no_add_attrs);
|
||
+static void avr32_reorg (void);
|
||
+bool avr32_return_in_msb (tree type);
|
||
+bool avr32_vector_mode_supported (enum machine_mode mode);
|
||
+static void avr32_init_libfuncs (void);
|
||
+
|
||
+
|
||
+static void
|
||
+avr32_add_gc_roots (void)
|
||
+{
|
||
+ gcc_obstack_init (&minipool_obstack);
|
||
+ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
|
||
+}
|
||
+
|
||
+
|
||
+/* List of all known AVR32 parts */
|
||
+static const struct part_type_s avr32_part_types[] = {
|
||
+ /* name, part_type, architecture type, macro */
|
||
+ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"},
|
||
+ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"},
|
||
+ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"},
|
||
+ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"},
|
||
+ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"},
|
||
+ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A0128__"},
|
||
+ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A0256__"},
|
||
+ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A0512__"},
|
||
+ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3A0512ES__"},
|
||
+ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A1128__"},
|
||
+ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A1256__"},
|
||
+ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A1512__"},
|
||
+ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3A1512ES__"},
|
||
+ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL,
|
||
+ "__AVR32_UC3A3256S__"},
|
||
+ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A364__"},
|
||
+ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A364S__"},
|
||
+ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A3128__"},
|
||
+ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A3128S__"},
|
||
+ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A3256__"},
|
||
+ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2,
|
||
+ "__AVR32_UC3A3256S__"},
|
||
+ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B064__"},
|
||
+ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B0128__"},
|
||
+ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B0256__"},
|
||
+ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B0256ES__"},
|
||
+ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B164__"},
|
||
+ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B1128__"},
|
||
+ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B1256__"},
|
||
+ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1,
|
||
+ "__AVR32_UC3B1256ES__"},
|
||
+ {NULL, 0, 0, NULL}
|
||
+};
|
||
+
|
||
+/* List of all known AVR32 architectures */
|
||
+static const struct arch_type_s avr32_arch_types[] = {
|
||
+ /* name, architecture type, microarchitecture type, feature flags, macro */
|
||
+ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B,
|
||
+ (FLAG_AVR32_HAS_DSP
|
||
+ | FLAG_AVR32_HAS_SIMD
|
||
+ | FLAG_AVR32_HAS_UNALIGNED_WORD
|
||
+ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK
|
||
+ | FLAG_AVR32_HAS_CACHES),
|
||
+ "__AVR32_AP__"},
|
||
+ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A,
|
||
+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW),
|
||
+ "__AVR32_UC__=1"},
|
||
+ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A,
|
||
+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW
|
||
+ | FLAG_AVR32_HAS_V2_INSNS),
|
||
+ "__AVR32_UC__=2"},
|
||
+ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A,
|
||
+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW
|
||
+ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS),
|
||
+ "__AVR32_UC__=3"},
|
||
+ {NULL, 0, 0, 0, NULL}
|
||
+};
|
||
+
|
||
+/* Default arch name */
|
||
+const char *avr32_arch_name = "none";
|
||
+const char *avr32_part_name = "none";
|
||
+
|
||
+const struct part_type_s *avr32_part;
|
||
+const struct arch_type_s *avr32_arch;
|
||
+
|
||
+
|
||
+/* Set default target_flags. */
|
||
+#undef TARGET_DEFAULT_TARGET_FLAGS
|
||
+#define TARGET_DEFAULT_TARGET_FLAGS \
|
||
+ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD)
|
||
+
|
||
+void
|
||
+avr32_optimization_options (int level,
|
||
+ int size){
|
||
+ if (AVR32_ALWAYS_PIC)
|
||
+ flag_pic = 1;
|
||
+
|
||
+ /* Enable section anchors if optimization is enabled. */
|
||
+ if (level > 0 || size)
|
||
+ flag_section_anchors = 1;
|
||
+}
|
||
+
|
||
+/* Override command line options */
|
||
+void
|
||
+avr32_override_options (void)
|
||
+{
|
||
+ const struct part_type_s *part;
|
||
+ const struct arch_type_s *arch;
|
||
+
|
||
+ /*Add backward compability*/
|
||
+ if (strcmp ("uc", avr32_arch_name)== 0)
|
||
+ {
|
||
+ fprintf (stderr, "Warning: Deprecated arch `%s' specified. "
|
||
+ "Please use '-march=ucr1' instead. "
|
||
+ "Converting to arch 'ucr1'\n",
|
||
+ avr32_arch_name);
|
||
+ avr32_arch_name="ucr1";
|
||
+ }
|
||
+
|
||
+ /* Check if arch type is set. */
|
||
+ for (arch = avr32_arch_types; arch->name; arch++)
|
||
+ {
|
||
+ if (strcmp (arch->name, avr32_arch_name) == 0)
|
||
+ break;
|
||
+ }
|
||
+ avr32_arch = arch;
|
||
+
|
||
+ if (!arch->name && strcmp("none", avr32_arch_name) != 0)
|
||
+ {
|
||
+ fprintf (stderr, "Unknown arch `%s' specified\n"
|
||
+ "Known arch names:\n"
|
||
+ "\tuc (deprecated)\n",
|
||
+ avr32_arch_name);
|
||
+ for (arch = avr32_arch_types; arch->name; arch++)
|
||
+ fprintf (stderr, "\t%s\n", arch->name);
|
||
+ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP];
|
||
+ }
|
||
+
|
||
+ /* Check if part type is set. */
|
||
+ for (part = avr32_part_types; part->name; part++)
|
||
+ if (strcmp (part->name, avr32_part_name) == 0)
|
||
+ break;
|
||
+
|
||
+ avr32_part = part;
|
||
+ if (!part->name)
|
||
+ {
|
||
+ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n",
|
||
+ avr32_part_name);
|
||
+ for (part = avr32_part_types; part->name; part++)
|
||
+ {
|
||
+ if (strcmp("none", part->name) != 0)
|
||
+ fprintf (stderr, "\t%s\n", part->name);
|
||
+ }
|
||
+ /* Set default to NONE*/
|
||
+ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE];
|
||
+ }
|
||
+
|
||
+ /* NB! option -march= overrides option -mpart
|
||
+ * if both are used at the same time */
|
||
+ if (!arch->name)
|
||
+ avr32_arch = &avr32_arch_types[avr32_part->arch_type];
|
||
+
|
||
+ /* If optimization level is two or greater, then align start of loops to a
|
||
+ word boundary since this will allow folding the first insn of the loop.
|
||
+ Do this only for targets supporting branch prediction. */
|
||
+ if (optimize >= 2 && TARGET_BRANCH_PRED)
|
||
+ align_loops = 2;
|
||
+
|
||
+
|
||
+ /* Enable fast-float library if unsafe math optimizations
|
||
+ are used. */
|
||
+ if (flag_unsafe_math_optimizations)
|
||
+ target_flags |= MASK_FAST_FLOAT;
|
||
+
|
||
+ /* Check if we should set avr32_imm_in_const_pool
|
||
+ based on if caches are present or not. */
|
||
+ if ( avr32_imm_in_const_pool == -1 )
|
||
+ {
|
||
+ if ( TARGET_CACHES )
|
||
+ avr32_imm_in_const_pool = 1;
|
||
+ else
|
||
+ avr32_imm_in_const_pool = 0;
|
||
+ }
|
||
+
|
||
+ if (TARGET_NO_PIC)
|
||
+ flag_pic = 0;
|
||
+
|
||
+ avr32_add_gc_roots ();
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+If defined, a function that outputs the assembler code for entry to a
|
||
+function. The prologue is responsible for setting up the stack frame,
|
||
+initializing the frame pointer register, saving registers that must be
|
||
+saved, and allocating size additional bytes of storage for the
|
||
+local variables. size is an integer. file is a stdio
|
||
+stream to which the assembler code should be output.
|
||
+
|
||
+The label for the beginning of the function need not be output by this
|
||
+macro. That has already been done when the macro is run.
|
||
+
|
||
+To determine which registers to save, the macro can refer to the array
|
||
+regs_ever_live: element r is nonzero if hard register
|
||
+r is used anywhere within the function. This implies the function
|
||
+prologue should save register r, provided it is not one of the
|
||
+call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use
|
||
+regs_ever_live.)
|
||
+
|
||
+On machines that have ``register windows'', the function entry code does
|
||
+not save on the stack the registers that are in the windows, even if
|
||
+they are supposed to be preserved by function calls; instead it takes
|
||
+appropriate steps to ``push'' the register stack, if any non-call-used
|
||
+registers are used in the function.
|
||
+
|
||
+On machines where functions may or may not have frame-pointers, the
|
||
+function entry code must vary accordingly; it must set up the frame
|
||
+pointer if one is wanted, and not otherwise. To determine whether a
|
||
+frame pointer is in wanted, the macro can refer to the variable
|
||
+frame_pointer_needed. The variable's value will be 1 at run
|
||
+time in a function that needs a frame pointer. (see Elimination).
|
||
+
|
||
+The function entry code is responsible for allocating any stack space
|
||
+required for the function. This stack space consists of the regions
|
||
+listed below. In most cases, these regions are allocated in the
|
||
+order listed, with the last listed region closest to the top of the
|
||
+stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and
|
||
+the highest address if it is not defined). You can use a different order
|
||
+for a machine if doing so is more convenient or required for
|
||
+compatibility reasons. Except in cases where required by standard
|
||
+or by a debugger, there is no reason why the stack layout used by GCC
|
||
+need agree with that used by other compilers for a machine.
|
||
+*/
|
||
+
|
||
+#undef TARGET_ASM_FUNCTION_PROLOGUE
|
||
+#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue
|
||
+
|
||
+
|
||
+#undef TARGET_DEFAULT_SHORT_ENUMS
|
||
+#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false
|
||
+
|
||
+#undef TARGET_PROMOTE_FUNCTION_ARGS
|
||
+#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
|
||
+
|
||
+#undef TARGET_PROMOTE_FUNCTION_RETURN
|
||
+#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
|
||
+
|
||
+#undef TARGET_PROMOTE_PROTOTYPES
|
||
+#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
|
||
+
|
||
+#undef TARGET_MUST_PASS_IN_STACK
|
||
+#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack
|
||
+
|
||
+#undef TARGET_PASS_BY_REFERENCE
|
||
+#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference
|
||
+
|
||
+#undef TARGET_STRICT_ARGUMENT_NAMING
|
||
+#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming
|
||
+
|
||
+#undef TARGET_VECTOR_MODE_SUPPORTED_P
|
||
+#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported
|
||
+
|
||
+#undef TARGET_RETURN_IN_MEMORY
|
||
+#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory
|
||
+
|
||
+#undef TARGET_RETURN_IN_MSB
|
||
+#define TARGET_RETURN_IN_MSB avr32_return_in_msb
|
||
+
|
||
+#undef TARGET_ENCODE_SECTION_INFO
|
||
+#define TARGET_ENCODE_SECTION_INFO avr32_encode_section_info
|
||
+
|
||
+#undef TARGET_ARG_PARTIAL_BYTES
|
||
+#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes
|
||
+
|
||
+#undef TARGET_STRIP_NAME_ENCODING
|
||
+#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding
|
||
+
|
||
+#define streq(string1, string2) (strcmp (string1, string2) == 0)
|
||
+
|
||
+#undef TARGET_NARROW_VOLATILE_BITFIELD
|
||
+#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false
|
||
+
|
||
+#undef TARGET_ATTRIBUTE_TABLE
|
||
+#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table
|
||
+
|
||
+#undef TARGET_COMP_TYPE_ATTRIBUTES
|
||
+#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes
|
||
+
|
||
+
|
||
+#undef TARGET_RTX_COSTS
|
||
+#define TARGET_RTX_COSTS avr32_rtx_costs
|
||
+
|
||
+#undef TARGET_CANNOT_FORCE_CONST_MEM
|
||
+#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem
|
||
+
|
||
+#undef TARGET_ASM_INTEGER
|
||
+#define TARGET_ASM_INTEGER avr32_assemble_integer
|
||
+
|
||
+#undef TARGET_FUNCTION_VALUE
|
||
+#define TARGET_FUNCTION_VALUE avr32_function_value
|
||
+
|
||
+#undef TARGET_MIN_ANCHOR_OFFSET
|
||
+#define TARGET_MIN_ANCHOR_OFFSET (0)
|
||
+
|
||
+#undef TARGET_MAX_ANCHOR_OFFSET
|
||
+#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1)
|
||
+
|
||
+#undef TARGET_SECONDARY_RELOAD
|
||
+#define TARGET_SECONDARY_RELOAD avr32_secondary_reload
|
||
+
|
||
+enum reg_class
|
||
+avr32_secondary_reload (bool in_p, rtx x, enum reg_class class ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode, secondary_reload_info *sri)
|
||
+{
|
||
+
|
||
+ if ( avr32_rmw_memory_operand (x, mode) )
|
||
+ {
|
||
+ if (!in_p)
|
||
+ sri->icode = CODE_FOR_reload_out_rmw_memory_operand;
|
||
+ else
|
||
+ sri->icode = CODE_FOR_reload_in_rmw_memory_operand;
|
||
+ }
|
||
+ return NO_REGS;
|
||
+
|
||
+}
|
||
+
|
||
+/*
|
||
+ * Switches to the appropriate section for output of constant pool
|
||
+ * entry x in mode. You can assume that x is some kind of constant in
|
||
+ * RTL. The argument mode is redundant except in the case of a
|
||
+ * const_int rtx. Select the section by calling readonly_data_ section
|
||
+ * or one of the alternatives for other sections. align is the
|
||
+ * constant alignment in bits.
|
||
+ *
|
||
+ * The default version of this function takes care of putting symbolic
|
||
+ * constants in flag_ pic mode in data_section and everything else in
|
||
+ * readonly_data_section.
|
||
+ */
|
||
+//#undef TARGET_ASM_SELECT_RTX_SECTION
|
||
+//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section
|
||
+
|
||
+
|
||
+/*
|
||
+ * If non-null, this hook performs a target-specific pass over the
|
||
+ * instruction stream. The compiler will run it at all optimization
|
||
+ * levels, just before the point at which it normally does
|
||
+ * delayed-branch scheduling.
|
||
+ *
|
||
+ * The exact purpose of the hook varies from target to target. Some
|
||
+ * use it to do transformations that are necessary for correctness,
|
||
+ * such as laying out in-function constant pools or avoiding hardware
|
||
+ * hazards. Others use it as an opportunity to do some
|
||
+ * machine-dependent optimizations.
|
||
+ *
|
||
+ * You need not implement the hook if it has nothing to do. The
|
||
+ * default definition is null.
|
||
+ */
|
||
+#undef TARGET_MACHINE_DEPENDENT_REORG
|
||
+#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg
|
||
+
|
||
+/* Target hook for assembling integer objects.
|
||
+ Need to handle integer vectors */
|
||
+static bool
|
||
+avr32_assemble_integer (rtx x, unsigned int size, int aligned_p)
|
||
+{
|
||
+ if (avr32_vector_mode_supported (GET_MODE (x)))
|
||
+ {
|
||
+ int i, units;
|
||
+
|
||
+ if (GET_CODE (x) != CONST_VECTOR)
|
||
+ abort ();
|
||
+
|
||
+ units = CONST_VECTOR_NUNITS (x);
|
||
+
|
||
+ switch (GET_MODE (x))
|
||
+ {
|
||
+ case V2HImode:
|
||
+ size = 2;
|
||
+ break;
|
||
+ case V4QImode:
|
||
+ size = 1;
|
||
+ break;
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+
|
||
+ for (i = 0; i < units; i++)
|
||
+ {
|
||
+ rtx elt;
|
||
+
|
||
+ elt = CONST_VECTOR_ELT (x, i);
|
||
+ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1);
|
||
+ }
|
||
+
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ return default_assemble_integer (x, size, aligned_p);
|
||
+}
|
||
+
|
||
+/*
|
||
+ * This target hook describes the relative costs of RTL expressions.
|
||
+ *
|
||
+ * The cost may depend on the precise form of the expression, which is
|
||
+ * available for examination in x, and the rtx code of the expression
|
||
+ * in which it is contained, found in outer_code. code is the
|
||
+ * expression code--redundant, since it can be obtained with GET_CODE
|
||
+ * (x).
|
||
+ *
|
||
+ * In implementing this hook, you can use the construct COSTS_N_INSNS
|
||
+ * (n) to specify a cost equal to n fast instructions.
|
||
+ *
|
||
+ * On entry to the hook, *total contains a default estimate for the
|
||
+ * cost of the expression. The hook should modify this value as
|
||
+ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5)
|
||
+ * for multiplications, COSTS_N_INSNS (7) for division and modulus
|
||
+ * operations, and COSTS_N_INSNS (1) for all other operations.
|
||
+ *
|
||
+ * When optimizing for code size, i.e. when optimize_size is non-zero,
|
||
+ * this target hook should be used to estimate the relative size cost
|
||
+ * of an expression, again relative to COSTS_N_INSNS.
|
||
+ *
|
||
+ * The hook returns true when all subexpressions of x have been
|
||
+ * processed, and false when rtx_cost should recurse.
|
||
+ */
|
||
+
|
||
+/* Worker routine for avr32_rtx_costs. */
|
||
+static inline int
|
||
+avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED,
|
||
+ enum rtx_code outer ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ enum machine_mode mode = GET_MODE (x);
|
||
+
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case MEM:
|
||
+ /* Using pre decrement / post increment memory operations on the
|
||
+ avr32_uc architecture means that two writebacks must be performed
|
||
+ and hence two cycles are needed. */
|
||
+ if (!optimize_size
|
||
+ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD
|
||
+ && TARGET_ARCH_UC
|
||
+ && (GET_CODE (XEXP (x, 0)) == PRE_DEC
|
||
+ || GET_CODE (XEXP (x, 0)) == POST_INC))
|
||
+ return COSTS_N_INSNS (5);
|
||
+
|
||
+ /* Memory costs quite a lot for the first word, but subsequent words
|
||
+ load at the equivalent of a single insn each. */
|
||
+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
||
+ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD));
|
||
+
|
||
+ return COSTS_N_INSNS (4);
|
||
+ case SYMBOL_REF:
|
||
+ case CONST:
|
||
+ /* These are valid for the pseudo insns: lda.w and call which operates
|
||
+ on direct addresses. We assume that the cost of a lda.w is the same
|
||
+ as the cost of a ld.w insn. */
|
||
+ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1);
|
||
+ case DIV:
|
||
+ case MOD:
|
||
+ case UDIV:
|
||
+ case UMOD:
|
||
+ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
|
||
+
|
||
+ case ROTATE:
|
||
+ case ROTATERT:
|
||
+ if (mode == TImode)
|
||
+ return COSTS_N_INSNS (100);
|
||
+
|
||
+ if (mode == DImode)
|
||
+ return COSTS_N_INSNS (10);
|
||
+ return COSTS_N_INSNS (4);
|
||
+ case ASHIFT:
|
||
+ case LSHIFTRT:
|
||
+ case ASHIFTRT:
|
||
+ case NOT:
|
||
+ if (mode == TImode)
|
||
+ return COSTS_N_INSNS (10);
|
||
+
|
||
+ if (mode == DImode)
|
||
+ return COSTS_N_INSNS (4);
|
||
+ return COSTS_N_INSNS (1);
|
||
+ case PLUS:
|
||
+ case MINUS:
|
||
+ case NEG:
|
||
+ case COMPARE:
|
||
+ case ABS:
|
||
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
+ return COSTS_N_INSNS (100);
|
||
+
|
||
+ if (mode == TImode)
|
||
+ return COSTS_N_INSNS (50);
|
||
+
|
||
+ if (mode == DImode)
|
||
+ return COSTS_N_INSNS (2);
|
||
+ return COSTS_N_INSNS (1);
|
||
+
|
||
+ case MULT:
|
||
+ {
|
||
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
+ return COSTS_N_INSNS (300);
|
||
+
|
||
+ if (mode == TImode)
|
||
+ return COSTS_N_INSNS (16);
|
||
+
|
||
+ if (mode == DImode)
|
||
+ return COSTS_N_INSNS (4);
|
||
+
|
||
+ if (mode == HImode)
|
||
+ return COSTS_N_INSNS (2);
|
||
+
|
||
+ return COSTS_N_INSNS (3);
|
||
+ }
|
||
+ case IF_THEN_ELSE:
|
||
+ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
|
||
+ return COSTS_N_INSNS (4);
|
||
+ return COSTS_N_INSNS (1);
|
||
+ case SIGN_EXTEND:
|
||
+ case ZERO_EXTEND:
|
||
+ /* Sign/Zero extensions of registers cost quite much since these
|
||
+ instrcutions only take one register operand which means that gcc
|
||
+ often must insert some move instrcutions */
|
||
+ if (mode == QImode || mode == HImode)
|
||
+ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1));
|
||
+ return COSTS_N_INSNS (4);
|
||
+ case UNSPEC:
|
||
+ /* divmod operations */
|
||
+ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL
|
||
+ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL)
|
||
+ {
|
||
+ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16);
|
||
+ }
|
||
+ /* Fallthrough */
|
||
+ default:
|
||
+ return COSTS_N_INSNS (1);
|
||
+ }
|
||
+}
|
||
+
|
||
+static bool
|
||
+avr32_rtx_costs (rtx x, int code, int outer_code, int *total)
|
||
+{
|
||
+ *total = avr32_rtx_costs_1 (x, code, outer_code);
|
||
+ return true;
|
||
+}
|
||
+
|
||
+
|
||
+bool
|
||
+avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ /* Do not want symbols in the constant pool when compiling pic or if using
|
||
+ address pseudo instructions. */
|
||
+ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
|
||
+ && avr32_find_symbol (x) != NULL_RTX);
|
||
+}
|
||
+
|
||
+
|
||
+/* Table of machine attributes. */
|
||
+const struct attribute_spec avr32_attribute_table[] = {
|
||
+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
+ /* Interrupt Service Routines have special prologue and epilogue
|
||
+ requirements. */
|
||
+ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute},
|
||
+ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute},
|
||
+ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute},
|
||
+ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute},
|
||
+ {"rmw_addressable", 0, 0, true, false, false, NULL},
|
||
+ {NULL, 0, 0, false, false, false, NULL}
|
||
+};
|
||
+
|
||
+
|
||
+typedef struct
|
||
+{
|
||
+ const char *const arg;
|
||
+ const unsigned long return_value;
|
||
+}
|
||
+isr_attribute_arg;
|
||
+
|
||
+static const isr_attribute_arg isr_attribute_args[] = {
|
||
+ {"FULL", AVR32_FT_ISR_FULL},
|
||
+ {"full", AVR32_FT_ISR_FULL},
|
||
+ {"HALF", AVR32_FT_ISR_HALF},
|
||
+ {"half", AVR32_FT_ISR_HALF},
|
||
+ {"NONE", AVR32_FT_ISR_NONE},
|
||
+ {"none", AVR32_FT_ISR_NONE},
|
||
+ {"UNDEF", AVR32_FT_ISR_NONE},
|
||
+ {"undef", AVR32_FT_ISR_NONE},
|
||
+ {"SWI", AVR32_FT_ISR_NONE},
|
||
+ {"swi", AVR32_FT_ISR_NONE},
|
||
+ {NULL, AVR32_FT_ISR_NONE}
|
||
+};
|
||
+
|
||
+/* Returns the (interrupt) function type of the current
|
||
+ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */
|
||
+
|
||
+static unsigned long
|
||
+avr32_isr_value (tree argument)
|
||
+{
|
||
+ const isr_attribute_arg *ptr;
|
||
+ const char *arg;
|
||
+
|
||
+ /* No argument - default to ISR_NONE. */
|
||
+ if (argument == NULL_TREE)
|
||
+ return AVR32_FT_ISR_NONE;
|
||
+
|
||
+ /* Get the value of the argument. */
|
||
+ if (TREE_VALUE (argument) == NULL_TREE
|
||
+ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
|
||
+ return AVR32_FT_UNKNOWN;
|
||
+
|
||
+ arg = TREE_STRING_POINTER (TREE_VALUE (argument));
|
||
+
|
||
+ /* Check it against the list of known arguments. */
|
||
+ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
|
||
+ if (streq (arg, ptr->arg))
|
||
+ return ptr->return_value;
|
||
+
|
||
+ /* An unrecognized interrupt type. */
|
||
+ return AVR32_FT_UNKNOWN;
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+These hooks specify assembly directives for creating certain kinds
|
||
+of integer object. The TARGET_ASM_BYTE_OP directive creates a
|
||
+byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an
|
||
+aligned two-byte object, and so on. Any of the hooks may be
|
||
+NULL, indicating that no suitable directive is available.
|
||
+
|
||
+The compiler will print these strings at the start of a new line,
|
||
+followed immediately by the object's initial value. In most cases,
|
||
+the string should contain a tab, a pseudo-op, and then another tab.
|
||
+*/
|
||
+#undef TARGET_ASM_BYTE_OP
|
||
+#define TARGET_ASM_BYTE_OP "\t.byte\t"
|
||
+#undef TARGET_ASM_ALIGNED_HI_OP
|
||
+#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t"
|
||
+#undef TARGET_ASM_ALIGNED_SI_OP
|
||
+#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t"
|
||
+#undef TARGET_ASM_ALIGNED_DI_OP
|
||
+#define TARGET_ASM_ALIGNED_DI_OP NULL
|
||
+#undef TARGET_ASM_ALIGNED_TI_OP
|
||
+#define TARGET_ASM_ALIGNED_TI_OP NULL
|
||
+#undef TARGET_ASM_UNALIGNED_HI_OP
|
||
+#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
|
||
+#undef TARGET_ASM_UNALIGNED_SI_OP
|
||
+#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t"
|
||
+#undef TARGET_ASM_UNALIGNED_DI_OP
|
||
+#define TARGET_ASM_UNALIGNED_DI_OP NULL
|
||
+#undef TARGET_ASM_UNALIGNED_TI_OP
|
||
+#define TARGET_ASM_UNALIGNED_TI_OP NULL
|
||
+
|
||
+#undef TARGET_ASM_OUTPUT_MI_THUNK
|
||
+#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk
|
||
+
|
||
+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
||
+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
|
||
+
|
||
+static void
|
||
+avr32_output_mi_thunk (FILE * file,
|
||
+ tree thunk ATTRIBUTE_UNUSED,
|
||
+ HOST_WIDE_INT delta,
|
||
+ HOST_WIDE_INT vcall_offset, tree function)
|
||
+ {
|
||
+ int mi_delta = delta;
|
||
+ int this_regno =
|
||
+ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ?
|
||
+ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12));
|
||
+
|
||
+
|
||
+ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
|
||
+ || vcall_offset)
|
||
+ {
|
||
+ fputs ("\tpushm\tlr\n", file);
|
||
+ }
|
||
+
|
||
+
|
||
+ if (mi_delta != 0)
|
||
+ {
|
||
+ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21"))
|
||
+ {
|
||
+ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Immediate is larger than k21 we must make us a temp register by
|
||
+ pushing a register to the stack. */
|
||
+ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta);
|
||
+ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta);
|
||
+ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
|
||
+ }
|
||
+ }
|
||
+
|
||
+
|
||
+ if (vcall_offset != 0)
|
||
+ {
|
||
+ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]);
|
||
+ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset);
|
||
+ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]);
|
||
+ }
|
||
+
|
||
+
|
||
+ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")
|
||
+ || vcall_offset)
|
||
+ {
|
||
+ fputs ("\tpopm\tlr\n", file);
|
||
+ }
|
||
+
|
||
+ /* Jump to the function. We assume that we can use an rjmp since the
|
||
+ function to jump to is local and probably not too far away from
|
||
+ the thunk. If this assumption proves to be wrong we could implement
|
||
+ this jump by calculating the offset between the jump source and destination
|
||
+ and put this in the constant pool and then perform an add to pc.
|
||
+ This would also be legitimate PIC code. But for now we hope that an rjmp
|
||
+ will be sufficient...
|
||
+ */
|
||
+ fputs ("\trjmp\t", file);
|
||
+ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
|
||
+ fputc ('\n', file);
|
||
+ }
|
||
+
|
||
+
|
||
+/* Implements target hook vector_mode_supported. */
|
||
+bool
|
||
+avr32_vector_mode_supported (enum machine_mode mode)
|
||
+{
|
||
+ if ((mode == V2HImode) || (mode == V4QImode))
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+
|
||
+#undef TARGET_INIT_LIBFUNCS
|
||
+#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs
|
||
+
|
||
+#undef TARGET_INIT_BUILTINS
|
||
+#define TARGET_INIT_BUILTINS avr32_init_builtins
|
||
+
|
||
+#undef TARGET_EXPAND_BUILTIN
|
||
+#define TARGET_EXPAND_BUILTIN avr32_expand_builtin
|
||
+
|
||
+tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int,
|
||
+ void_ftype_ptr_int;
|
||
+tree void_ftype_int, void_ftype_void, int_ftype_ptr_int;
|
||
+tree short_ftype_short, int_ftype_int_short, int_ftype_short_short,
|
||
+ short_ftype_short_short;
|
||
+tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short;
|
||
+tree void_ftype_int_int_int_int_int, void_ftype_int_int_int;
|
||
+tree longlong_ftype_int_int, void_ftype_int_int_longlong;
|
||
+tree int_ftype_int_int_int, longlong_ftype_longlong_int_short;
|
||
+tree longlong_ftype_longlong_short_short, int_ftype_int_short_short;
|
||
+
|
||
+#define def_builtin(NAME, TYPE, CODE) \
|
||
+ lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
|
||
+ BUILT_IN_MD, NULL, NULL_TREE)
|
||
+
|
||
+#define def_mbuiltin(MASK, NAME, TYPE, CODE) \
|
||
+ do \
|
||
+ { \
|
||
+ if ((MASK)) \
|
||
+ lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
|
||
+ BUILT_IN_MD, NULL, NULL_TREE); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+struct builtin_description
|
||
+{
|
||
+ const unsigned int mask;
|
||
+ const enum insn_code icode;
|
||
+ const char *const name;
|
||
+ const int code;
|
||
+ const enum rtx_code comparison;
|
||
+ const unsigned int flag;
|
||
+ const tree *ftype;
|
||
+};
|
||
+
|
||
+static const struct builtin_description bdesc_2arg[] = {
|
||
+#define DSP_BUILTIN(code, builtin, ftype) \
|
||
+ { 1, CODE_FOR_##code, "__builtin_" #code , \
|
||
+ AVR32_BUILTIN_##builtin, 0, 0, ftype }
|
||
+
|
||
+ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short),
|
||
+ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short),
|
||
+ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short),
|
||
+ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short),
|
||
+ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short),
|
||
+ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short),
|
||
+ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short),
|
||
+ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int),
|
||
+ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int),
|
||
+ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short),
|
||
+ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short)
|
||
+};
|
||
+
|
||
+
|
||
+void
|
||
+avr32_init_builtins (void)
|
||
+{
|
||
+ unsigned int i;
|
||
+ const struct builtin_description *d;
|
||
+ tree endlink = void_list_node;
|
||
+ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink);
|
||
+ tree longlong_endlink =
|
||
+ tree_cons (NULL_TREE, long_long_integer_type_node, endlink);
|
||
+ tree short_endlink =
|
||
+ tree_cons (NULL_TREE, short_integer_type_node, endlink);
|
||
+ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink);
|
||
+
|
||
+ /* int func (int) */
|
||
+ int_ftype_int = build_function_type (integer_type_node, int_endlink);
|
||
+
|
||
+ /* short func (short) */
|
||
+ short_ftype_short
|
||
+ = build_function_type (short_integer_type_node, short_endlink);
|
||
+
|
||
+ /* short func (short, short) */
|
||
+ short_ftype_short_short
|
||
+ = build_function_type (short_integer_type_node,
|
||
+ tree_cons (NULL_TREE, short_integer_type_node,
|
||
+ short_endlink));
|
||
+
|
||
+ /* long long func (long long, short, short) */
|
||
+ longlong_ftype_longlong_short_short
|
||
+ = build_function_type (long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE,
|
||
+ short_integer_type_node,
|
||
+ short_endlink)));
|
||
+
|
||
+ /* long long func (short, short) */
|
||
+ longlong_ftype_short_short
|
||
+ = build_function_type (long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, short_integer_type_node,
|
||
+ short_endlink));
|
||
+
|
||
+ /* int func (int, int) */
|
||
+ int_ftype_int_int
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ int_endlink));
|
||
+
|
||
+ /* long long func (int, int) */
|
||
+ longlong_ftype_int_int
|
||
+ = build_function_type (long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ int_endlink));
|
||
+
|
||
+ /* long long int func (long long, int, short) */
|
||
+ longlong_ftype_longlong_int_short
|
||
+ = build_function_type (long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ short_endlink)));
|
||
+
|
||
+ /* long long int func (int, short) */
|
||
+ longlong_ftype_int_short
|
||
+ = build_function_type (long_long_integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ short_endlink));
|
||
+
|
||
+ /* int func (int, short, short) */
|
||
+ int_ftype_int_short_short
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE,
|
||
+ short_integer_type_node,
|
||
+ short_endlink)));
|
||
+
|
||
+ /* int func (short, short) */
|
||
+ int_ftype_short_short
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, short_integer_type_node,
|
||
+ short_endlink));
|
||
+
|
||
+ /* int func (int, short) */
|
||
+ int_ftype_int_short
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ short_endlink));
|
||
+
|
||
+ /* void func (int, int) */
|
||
+ void_ftype_int_int
|
||
+ = build_function_type (void_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ int_endlink));
|
||
+
|
||
+ /* void func (int, int, int) */
|
||
+ void_ftype_int_int_int
|
||
+ = build_function_type (void_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ int_endlink)));
|
||
+
|
||
+ /* void func (int, int, long long) */
|
||
+ void_ftype_int_int_longlong
|
||
+ = build_function_type (void_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ longlong_endlink)));
|
||
+
|
||
+ /* void func (int, int, int, int, int) */
|
||
+ void_ftype_int_int_int_int_int
|
||
+ = build_function_type (void_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE,
|
||
+ integer_type_node,
|
||
+ tree_cons
|
||
+ (NULL_TREE,
|
||
+ integer_type_node,
|
||
+ int_endlink)))));
|
||
+
|
||
+ /* void func (void *, int) */
|
||
+ void_ftype_ptr_int
|
||
+ = build_function_type (void_type_node,
|
||
+ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
|
||
+
|
||
+ /* void func (int) */
|
||
+ void_ftype_int = build_function_type (void_type_node, int_endlink);
|
||
+
|
||
+ /* void func (void) */
|
||
+ void_ftype_void = build_function_type (void_type_node, void_endlink);
|
||
+
|
||
+ /* int func (void) */
|
||
+ int_ftype_void = build_function_type (integer_type_node, void_endlink);
|
||
+
|
||
+ /* int func (void *, int) */
|
||
+ int_ftype_ptr_int
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, ptr_type_node, int_endlink));
|
||
+
|
||
+ /* int func (int, int, int) */
|
||
+ int_ftype_int_int_int
|
||
+ = build_function_type (integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ tree_cons (NULL_TREE, integer_type_node,
|
||
+ int_endlink)));
|
||
+
|
||
+ /* Initialize avr32 builtins. */
|
||
+ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR);
|
||
+ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR);
|
||
+ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR);
|
||
+ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR);
|
||
+ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE);
|
||
+ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC);
|
||
+ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF);
|
||
+ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF);
|
||
+ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR);
|
||
+ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS);
|
||
+ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW);
|
||
+ def_builtin ("__builtin_breakpoint", void_ftype_void,
|
||
+ AVR32_BUILTIN_BREAKPOINT);
|
||
+ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG);
|
||
+ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI);
|
||
+ def_builtin ("__builtin_bswap_16", short_ftype_short,
|
||
+ AVR32_BUILTIN_BSWAP16);
|
||
+ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32);
|
||
+ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int,
|
||
+ AVR32_BUILTIN_COP);
|
||
+ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W);
|
||
+ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int,
|
||
+ AVR32_BUILTIN_MVRC_W);
|
||
+ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int,
|
||
+ AVR32_BUILTIN_MVCR_D);
|
||
+ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong,
|
||
+ AVR32_BUILTIN_MVRC_D);
|
||
+ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS);
|
||
+ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU);
|
||
+ def_builtin ("__builtin_satrnds", int_ftype_int_int_int,
|
||
+ AVR32_BUILTIN_SATRNDS);
|
||
+ def_builtin ("__builtin_satrndu", int_ftype_int_int_int,
|
||
+ AVR32_BUILTIN_SATRNDU);
|
||
+ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR);
|
||
+ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR);
|
||
+ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short,
|
||
+ AVR32_BUILTIN_MACSATHH_W);
|
||
+ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short,
|
||
+ AVR32_BUILTIN_MACWH_D);
|
||
+ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short,
|
||
+ AVR32_BUILTIN_MACHH_D);
|
||
+ def_builtin ("__builtin_mems", void_ftype_ptr_int, AVR32_BUILTIN_MEMS);
|
||
+ def_builtin ("__builtin_memt", void_ftype_ptr_int, AVR32_BUILTIN_MEMT);
|
||
+ def_builtin ("__builtin_memc", void_ftype_ptr_int, AVR32_BUILTIN_MEMC);
|
||
+
|
||
+ /* Add all builtins that are more or less simple operations on two
|
||
+ operands. */
|
||
+ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
|
||
+ {
|
||
+ /* Use one of the operands; the target can have a different mode for
|
||
+ mask-generating compares. */
|
||
+
|
||
+ if (d->name == 0)
|
||
+ continue;
|
||
+
|
||
+ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code);
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+/* Subroutine of avr32_expand_builtin to take care of binop insns. */
|
||
+
|
||
+static rtx
|
||
+avr32_expand_binop_builtin (enum insn_code icode, tree arglist, rtx target)
|
||
+{
|
||
+ rtx pat;
|
||
+ tree arg0 = TREE_VALUE (arglist);
|
||
+ tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
||
+ enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
||
+ enum machine_mode mode1 = insn_data[icode].operand[2].mode;
|
||
+
|
||
+ if (!target
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+ /* In case the insn wants input operands in modes different from the
|
||
+ result, abort. */
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ /* If op0 is already a reg we must cast it to the correct mode. */
|
||
+ if (REG_P (op0))
|
||
+ op0 = convert_to_mode (mode0, op0, 1);
|
||
+ else
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+ }
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
|
||
+ {
|
||
+ /* If op1 is already a reg we must cast it to the correct mode. */
|
||
+ if (REG_P (op1))
|
||
+ op1 = convert_to_mode (mode1, op1, 1);
|
||
+ else
|
||
+ op1 = copy_to_mode_reg (mode1, op1);
|
||
+ }
|
||
+ pat = GEN_FCN (icode) (target, op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+}
|
||
+
|
||
+/* Expand an expression EXP that calls a built-in function,
|
||
+ with result going to TARGET if that's convenient
|
||
+ (and in mode MODE if that's convenient).
|
||
+ SUBTARGET may be used as the target for computing one of EXP's operands.
|
||
+ IGNORE is nonzero if the value is to be ignored. */
|
||
+
|
||
+rtx
|
||
+avr32_expand_builtin (tree exp,
|
||
+ rtx target,
|
||
+ rtx subtarget ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ int ignore ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ const struct builtin_description *d;
|
||
+ unsigned int i;
|
||
+ enum insn_code icode = 0;
|
||
+ tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
||
+ tree arglist = TREE_OPERAND (exp, 1);
|
||
+ tree arg0, arg1, arg2;
|
||
+ rtx op0, op1, op2, pat;
|
||
+ enum machine_mode tmode, mode0, mode1;
|
||
+ enum machine_mode arg0_mode;
|
||
+ int fcode = DECL_FUNCTION_CODE (fndecl);
|
||
+
|
||
+ switch (fcode)
|
||
+ {
|
||
+ default:
|
||
+ break;
|
||
+
|
||
+ case AVR32_BUILTIN_SATS:
|
||
+ case AVR32_BUILTIN_SATU:
|
||
+ case AVR32_BUILTIN_SATRNDS:
|
||
+ case AVR32_BUILTIN_SATRNDU:
|
||
+ {
|
||
+ const char *fname;
|
||
+ switch (fcode)
|
||
+ {
|
||
+ default:
|
||
+ case AVR32_BUILTIN_SATS:
|
||
+ icode = CODE_FOR_sats;
|
||
+ fname = "sats";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_SATU:
|
||
+ icode = CODE_FOR_satu;
|
||
+ fname = "satu";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_SATRNDS:
|
||
+ icode = CODE_FOR_satrnds;
|
||
+ fname = "satrnds";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_SATRNDU:
|
||
+ icode = CODE_FOR_satrndu;
|
||
+ fname = "satrndu";
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0)))
|
||
+ {
|
||
+ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
|
||
+ {
|
||
+ error ("Parameter 2 to __builtin_%s should be a constant number.",
|
||
+ fname);
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode))
|
||
+ {
|
||
+ error ("Parameter 3 to __builtin_%s should be a constant number.",
|
||
+ fname);
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ emit_move_insn (target, op0);
|
||
+ pat = GEN_FCN (icode) (target, op1, op2);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_MUSTR:
|
||
+ icode = CODE_FOR_mustr;
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ pat = GEN_FCN (icode) (target);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+
|
||
+ case AVR32_BUILTIN_MFSR:
|
||
+ icode = CODE_FOR_mfsr;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ error ("Parameter 1 to __builtin_mfsr must be a constant number");
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ pat = GEN_FCN (icode) (target, op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+ case AVR32_BUILTIN_MTSR:
|
||
+ icode = CODE_FOR_mtsr;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ mode0 = insn_data[icode].operand[0].mode;
|
||
+ mode1 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
|
||
+ {
|
||
+ error ("Parameter 1 to __builtin_mtsr must be a constant number");
|
||
+ return gen_reg_rtx (mode0);
|
||
+ }
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
|
||
+ op1 = copy_to_mode_reg (mode1, op1);
|
||
+ pat = GEN_FCN (icode) (op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_MFDR:
|
||
+ icode = CODE_FOR_mfdr;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ error ("Parameter 1 to __builtin_mfdr must be a constant number");
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ pat = GEN_FCN (icode) (target, op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+ case AVR32_BUILTIN_MTDR:
|
||
+ icode = CODE_FOR_mtdr;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ mode0 = insn_data[icode].operand[0].mode;
|
||
+ mode1 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
|
||
+ {
|
||
+ error ("Parameter 1 to __builtin_mtdr must be a constant number");
|
||
+ return gen_reg_rtx (mode0);
|
||
+ }
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
|
||
+ op1 = copy_to_mode_reg (mode1, op1);
|
||
+ pat = GEN_FCN (icode) (op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_CACHE:
|
||
+ icode = CODE_FOR_cache;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ mode0 = insn_data[icode].operand[0].mode;
|
||
+ mode1 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1))
|
||
+ {
|
||
+ error ("Parameter 2 to __builtin_cache must be a constant number");
|
||
+ return gen_reg_rtx (mode1);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+
|
||
+ pat = GEN_FCN (icode) (op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_SYNC:
|
||
+ case AVR32_BUILTIN_MUSFR:
|
||
+ case AVR32_BUILTIN_SSRF:
|
||
+ case AVR32_BUILTIN_CSRF:
|
||
+ {
|
||
+ const char *fname;
|
||
+ switch (fcode)
|
||
+ {
|
||
+ default:
|
||
+ case AVR32_BUILTIN_SYNC:
|
||
+ icode = CODE_FOR_sync;
|
||
+ fname = "sync";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_MUSFR:
|
||
+ icode = CODE_FOR_musfr;
|
||
+ fname = "musfr";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_SSRF:
|
||
+ icode = CODE_FOR_ssrf;
|
||
+ fname = "ssrf";
|
||
+ break;
|
||
+ case AVR32_BUILTIN_CSRF:
|
||
+ icode = CODE_FOR_csrf;
|
||
+ fname = "csrf";
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ mode0 = insn_data[icode].operand[0].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0))
|
||
+ {
|
||
+ if (icode == CODE_FOR_musfr)
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+ else
|
||
+ {
|
||
+ error ("Parameter to __builtin_%s is illegal.", fname);
|
||
+ return gen_reg_rtx (mode0);
|
||
+ }
|
||
+ }
|
||
+ pat = GEN_FCN (icode) (op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+ case AVR32_BUILTIN_TLBR:
|
||
+ icode = CODE_FOR_tlbr;
|
||
+ pat = GEN_FCN (icode) (NULL_RTX);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_TLBS:
|
||
+ icode = CODE_FOR_tlbs;
|
||
+ pat = GEN_FCN (icode) (NULL_RTX);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_TLBW:
|
||
+ icode = CODE_FOR_tlbw;
|
||
+ pat = GEN_FCN (icode) (NULL_RTX);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_BREAKPOINT:
|
||
+ icode = CODE_FOR_breakpoint;
|
||
+ pat = GEN_FCN (icode) (NULL_RTX);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return NULL_RTX;
|
||
+ case AVR32_BUILTIN_XCHG:
|
||
+ icode = CODE_FOR_sync_lock_test_and_setsi;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+ mode1 = insn_data[icode].operand[2].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
|
||
+ {
|
||
+ op1 = copy_to_mode_reg (mode1, op1);
|
||
+ }
|
||
+
|
||
+ op0 = force_reg (GET_MODE (op0), op0);
|
||
+ op0 = gen_rtx_MEM (GET_MODE (op0), op0);
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 1 to __builtin_xchg must be a pointer to an integer.");
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ pat = GEN_FCN (icode) (target, op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+ case AVR32_BUILTIN_LDXI:
|
||
+ icode = CODE_FOR_ldxi;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+ mode1 = insn_data[icode].operand[2].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
|
||
+ {
|
||
+ op1 = copy_to_mode_reg (mode1, op1);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)");
|
||
+ return gen_reg_rtx (mode0);
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ pat = GEN_FCN (icode) (target, op0, op1, op2);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+ case AVR32_BUILTIN_BSWAP16:
|
||
+ {
|
||
+ icode = CODE_FOR_bswap_16;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+ if (arg0_mode != mode0)
|
||
+ arg0 = build1 (NOP_EXPR,
|
||
+ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0);
|
||
+
|
||
+ op0 = expand_expr (arg0, NULL_RTX, HImode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ if ( CONST_INT_P (op0) )
|
||
+ {
|
||
+ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) |
|
||
+ ((INTVAL (op0)&0xff00) >> 8) );
|
||
+ /* Sign extend 16-bit value to host wide int */
|
||
+ val <<= (HOST_BITS_PER_WIDE_INT - 16);
|
||
+ val >>= (HOST_BITS_PER_WIDE_INT - 16);
|
||
+ op0 = GEN_INT(val);
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ emit_move_insn(target, op0);
|
||
+ return target;
|
||
+ }
|
||
+ else
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ {
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ }
|
||
+
|
||
+
|
||
+ pat = GEN_FCN (icode) (target, op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_BSWAP32:
|
||
+ {
|
||
+ icode = CODE_FOR_bswap_32;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ if ( CONST_INT_P (op0) )
|
||
+ {
|
||
+ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) |
|
||
+ ((INTVAL (op0)&0x0000ff00) << 8) |
|
||
+ ((INTVAL (op0)&0x00ff0000) >> 8) |
|
||
+ ((INTVAL (op0)&0xff000000) >> 24) );
|
||
+ /* Sign extend 32-bit value to host wide int */
|
||
+ val <<= (HOST_BITS_PER_WIDE_INT - 32);
|
||
+ val >>= (HOST_BITS_PER_WIDE_INT - 32);
|
||
+ op0 = GEN_INT(val);
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+ emit_move_insn(target, op0);
|
||
+ return target;
|
||
+ }
|
||
+ else
|
||
+ op0 = copy_to_mode_reg (mode0, op0);
|
||
+ }
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+
|
||
+ pat = GEN_FCN (icode) (target, op0);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_MVCR_W:
|
||
+ case AVR32_BUILTIN_MVCR_D:
|
||
+ {
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ if (fcode == AVR32_BUILTIN_MVCR_W)
|
||
+ icode = CODE_FOR_mvcrsi;
|
||
+ else
|
||
+ icode = CODE_FOR_mvcrdi;
|
||
+
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+
|
||
+ if (target == 0
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
|
||
+ error ("Number should be between 0 and 7.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
|
||
+ error ("Number should be between 0 and 15.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ pat = GEN_FCN (icode) (target, op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_MACSATHH_W:
|
||
+ case AVR32_BUILTIN_MACWH_D:
|
||
+ case AVR32_BUILTIN_MACHH_D:
|
||
+ {
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w :
|
||
+ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d :
|
||
+ CODE_FOR_machh_d);
|
||
+
|
||
+ tmode = insn_data[icode].operand[0].mode;
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+ mode1 = insn_data[icode].operand[2].mode;
|
||
+
|
||
+
|
||
+ if (!target
|
||
+ || GET_MODE (target) != tmode
|
||
+ || !(*insn_data[icode].operand[0].predicate) (target, tmode))
|
||
+ target = gen_reg_rtx (tmode);
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode))
|
||
+ {
|
||
+ /* If op0 is already a reg we must cast it to the correct mode. */
|
||
+ if (REG_P (op0))
|
||
+ op0 = convert_to_mode (tmode, op0, 1);
|
||
+ else
|
||
+ op0 = copy_to_mode_reg (tmode, op0);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0))
|
||
+ {
|
||
+ /* If op1 is already a reg we must cast it to the correct mode. */
|
||
+ if (REG_P (op1))
|
||
+ op1 = convert_to_mode (mode0, op1, 1);
|
||
+ else
|
||
+ op1 = copy_to_mode_reg (mode0, op1);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1))
|
||
+ {
|
||
+ /* If op1 is already a reg we must cast it to the correct mode. */
|
||
+ if (REG_P (op2))
|
||
+ op2 = convert_to_mode (mode1, op2, 1);
|
||
+ else
|
||
+ op2 = copy_to_mode_reg (mode1, op2);
|
||
+ }
|
||
+
|
||
+ emit_move_insn (target, op0);
|
||
+
|
||
+ pat = GEN_FCN (icode) (target, op1, op2);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_MVRC_W:
|
||
+ case AVR32_BUILTIN_MVRC_D:
|
||
+ {
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ if (fcode == AVR32_BUILTIN_MVRC_W)
|
||
+ icode = CODE_FOR_mvrcsi;
|
||
+ else
|
||
+ icode = CODE_FOR_mvrcdi;
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
|
||
+ {
|
||
+ error ("Parameter 1 is not a valid coprocessor number.");
|
||
+ error ("Number should be between 0 and 7.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
|
||
+ {
|
||
+ error ("Parameter 2 is not a valid coprocessor register number.");
|
||
+ error ("Number should be between 0 and 15.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (GET_CODE (op2) == CONST_INT
|
||
+ || GET_CODE (op2) == CONST
|
||
+ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF)
|
||
+ {
|
||
+ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2);
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2)))
|
||
+ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
|
||
+
|
||
+
|
||
+ pat = GEN_FCN (icode) (op0, op1, op2);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+ case AVR32_BUILTIN_COP:
|
||
+ {
|
||
+ rtx op3, op4;
|
||
+ tree arg3, arg4;
|
||
+ icode = CODE_FOR_cop;
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
|
||
+ arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
|
||
+ arg4 =
|
||
+ TREE_VALUE (TREE_CHAIN
|
||
+ (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist)))));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
|
||
+ op3 = expand_expr (arg3, NULL_RTX, VOIDmode, 0);
|
||
+ op4 = expand_expr (arg4, NULL_RTX, VOIDmode, 0);
|
||
+
|
||
+ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 1 to __builtin_cop is not a valid coprocessor number.");
|
||
+ error ("Number should be between 0 and 7.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number.");
|
||
+ error ("Number should be between 0 and 15.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number.");
|
||
+ error ("Number should be between 0 and 15.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number.");
|
||
+ error ("Number should be between 0 and 15.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode))
|
||
+ {
|
||
+ error
|
||
+ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation.");
|
||
+ error ("Number should be between 0 and 127.");
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+
|
||
+ return target;
|
||
+ }
|
||
+ case AVR32_BUILTIN_MEMS:
|
||
+ case AVR32_BUILTIN_MEMC:
|
||
+ case AVR32_BUILTIN_MEMT:
|
||
+ {
|
||
+ if (!TARGET_RMW)
|
||
+ error ("Trying to use __builtin_mem(s/c/t) when target does not support RMW insns.");
|
||
+
|
||
+ switch (fcode) {
|
||
+ case AVR32_BUILTIN_MEMS:
|
||
+ icode = CODE_FOR_iorsi3;
|
||
+ break;
|
||
+ case AVR32_BUILTIN_MEMC:
|
||
+ icode = CODE_FOR_andsi3;
|
||
+ break;
|
||
+ case AVR32_BUILTIN_MEMT:
|
||
+ icode = CODE_FOR_xorsi3;
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ arg0 = TREE_VALUE (arglist);
|
||
+ arg1 = TREE_VALUE (TREE_CHAIN (arglist));
|
||
+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
|
||
+ if ( GET_CODE (op0) == SYMBOL_REF )
|
||
+ // This symbol must be RMW addressable
|
||
+ SYMBOL_REF_FLAGS (op0) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT);
|
||
+ op0 = gen_rtx_MEM(SImode, op0);
|
||
+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
|
||
+ mode0 = insn_data[icode].operand[1].mode;
|
||
+
|
||
+
|
||
+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
|
||
+ {
|
||
+ error ("Parameter 1 to __builtin_mem(s/c/t) must be a Ks15<<2 address or a rmw addressable symbol.");
|
||
+ }
|
||
+
|
||
+ if ( !CONST_INT_P (op1)
|
||
+ || INTVAL (op1) > 31
|
||
+ || INTVAL (op1) < 0 )
|
||
+ error ("Parameter 2 to __builtin_mem(s/c/t) must be a constant between 0 and 31.");
|
||
+
|
||
+ if ( fcode == AVR32_BUILTIN_MEMC )
|
||
+ op1 = GEN_INT((~(1 << INTVAL(op1)))&0xffffffff);
|
||
+ else
|
||
+ op1 = GEN_INT((1 << INTVAL(op1))&0xffffffff);
|
||
+ pat = GEN_FCN (icode) (op0, op0, op1);
|
||
+ if (!pat)
|
||
+ return 0;
|
||
+ emit_insn (pat);
|
||
+ return op0;
|
||
+ }
|
||
+
|
||
+ }
|
||
+
|
||
+ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
|
||
+ if (d->code == fcode)
|
||
+ return avr32_expand_binop_builtin (d->icode, arglist, target);
|
||
+
|
||
+
|
||
+ /* @@@ Should really do something sensible here. */
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+
|
||
+/* Handle an "interrupt" or "isr" attribute;
|
||
+ arguments as in struct attribute_spec.handler. */
|
||
+
|
||
+static tree
|
||
+avr32_handle_isr_attribute (tree * node, tree name, tree args,
|
||
+ int flags, bool * no_add_attrs)
|
||
+{
|
||
+ if (DECL_P (*node))
|
||
+ {
|
||
+ if (TREE_CODE (*node) != FUNCTION_DECL)
|
||
+ {
|
||
+ warning (OPT_Wattributes,"`%s' attribute only applies to functions",
|
||
+ IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ }
|
||
+ /* FIXME: the argument if any is checked for type attributes; should it
|
||
+ be checked for decl ones? */
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (TREE_CODE (*node) == FUNCTION_TYPE
|
||
+ || TREE_CODE (*node) == METHOD_TYPE)
|
||
+ {
|
||
+ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN)
|
||
+ {
|
||
+ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ }
|
||
+ }
|
||
+ else if (TREE_CODE (*node) == POINTER_TYPE
|
||
+ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
|
||
+ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
|
||
+ && avr32_isr_value (args) != AVR32_FT_UNKNOWN)
|
||
+ {
|
||
+ *node = build_variant_type_copy (*node);
|
||
+ TREE_TYPE (*node) = build_type_attribute_variant
|
||
+ (TREE_TYPE (*node),
|
||
+ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
|
||
+ *no_add_attrs = true;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Possibly pass this attribute on from the type to a decl. */
|
||
+ if (flags & ((int) ATTR_FLAG_DECL_NEXT
|
||
+ | (int) ATTR_FLAG_FUNCTION_NEXT
|
||
+ | (int) ATTR_FLAG_ARRAY_NEXT))
|
||
+ {
|
||
+ *no_add_attrs = true;
|
||
+ return tree_cons (name, args, NULL_TREE);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name));
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+/* Handle an attribute requiring a FUNCTION_DECL;
|
||
+ arguments as in struct attribute_spec.handler. */
|
||
+static tree
|
||
+avr32_handle_fndecl_attribute (tree * node, tree name,
|
||
+ tree args ATTRIBUTE_UNUSED,
|
||
+ int flags ATTRIBUTE_UNUSED,
|
||
+ bool * no_add_attrs)
|
||
+{
|
||
+ if (TREE_CODE (*node) != FUNCTION_DECL)
|
||
+ {
|
||
+ warning (OPT_Wattributes,"%qs attribute only applies to functions",
|
||
+ IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ }
|
||
+
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+
|
||
+/* Handle an acall attribute;
|
||
+ arguments as in struct attribute_spec.handler. */
|
||
+
|
||
+static tree
|
||
+avr32_handle_acall_attribute (tree * node, tree name,
|
||
+ tree args ATTRIBUTE_UNUSED,
|
||
+ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
|
||
+{
|
||
+ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE)
|
||
+ {
|
||
+ warning (OPT_Wattributes,"`%s' attribute not yet supported...",
|
||
+ IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ return NULL_TREE;
|
||
+ }
|
||
+
|
||
+ warning (OPT_Wattributes,"`%s' attribute only applies to functions",
|
||
+ IDENTIFIER_POINTER (name));
|
||
+ *no_add_attrs = true;
|
||
+ return NULL_TREE;
|
||
+}
|
||
+
|
||
+
|
||
+/* Return 0 if the attributes for two types are incompatible, 1 if they
|
||
+ are compatible, and 2 if they are nearly compatible (which causes a
|
||
+ warning to be generated). */
|
||
+
|
||
+static int
|
||
+avr32_comp_type_attributes (tree type1, tree type2)
|
||
+{
|
||
+ int acall1, acall2, isr1, isr2, naked1, naked2;
|
||
+
|
||
+ /* Check for mismatch of non-default calling convention. */
|
||
+ if (TREE_CODE (type1) != FUNCTION_TYPE)
|
||
+ return 1;
|
||
+
|
||
+ /* Check for mismatched call attributes. */
|
||
+ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL;
|
||
+ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL;
|
||
+ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL;
|
||
+ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL;
|
||
+ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
|
||
+ if (!isr1)
|
||
+ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
|
||
+
|
||
+ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
|
||
+ if (!isr2)
|
||
+ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
|
||
+
|
||
+ if ((acall1 && isr2)
|
||
+ || (acall2 && isr1) || (naked1 && isr2) || (naked2 && isr1))
|
||
+ return 0;
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+
|
||
+/* Computes the type of the current function. */
|
||
+
|
||
+static unsigned long
|
||
+avr32_compute_func_type (void)
|
||
+{
|
||
+ unsigned long type = AVR32_FT_UNKNOWN;
|
||
+ tree a;
|
||
+ tree attr;
|
||
+
|
||
+ if (TREE_CODE (current_function_decl) != FUNCTION_DECL)
|
||
+ abort ();
|
||
+
|
||
+ /* Decide if the current function is volatile. Such functions never
|
||
+ return, and many memory cycles can be saved by not storing register
|
||
+ values that will never be needed again. This optimization was added to
|
||
+ speed up context switching in a kernel application. */
|
||
+ if (optimize > 0
|
||
+ && TREE_NOTHROW (current_function_decl)
|
||
+ && TREE_THIS_VOLATILE (current_function_decl))
|
||
+ type |= AVR32_FT_VOLATILE;
|
||
+
|
||
+ if (cfun->static_chain_decl != NULL)
|
||
+ type |= AVR32_FT_NESTED;
|
||
+
|
||
+ attr = DECL_ATTRIBUTES (current_function_decl);
|
||
+
|
||
+ a = lookup_attribute ("isr", attr);
|
||
+ if (a == NULL_TREE)
|
||
+ a = lookup_attribute ("interrupt", attr);
|
||
+
|
||
+ if (a == NULL_TREE)
|
||
+ type |= AVR32_FT_NORMAL;
|
||
+ else
|
||
+ type |= avr32_isr_value (TREE_VALUE (a));
|
||
+
|
||
+
|
||
+ a = lookup_attribute ("acall", attr);
|
||
+ if (a != NULL_TREE)
|
||
+ type |= AVR32_FT_ACALL;
|
||
+
|
||
+ a = lookup_attribute ("naked", attr);
|
||
+ if (a != NULL_TREE)
|
||
+ type |= AVR32_FT_NAKED;
|
||
+
|
||
+ return type;
|
||
+}
|
||
+
|
||
+/* Returns the type of the current function. */
|
||
+
|
||
+static unsigned long
|
||
+avr32_current_func_type (void)
|
||
+{
|
||
+ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN)
|
||
+ cfun->machine->func_type = avr32_compute_func_type ();
|
||
+
|
||
+ return cfun->machine->func_type;
|
||
+}
|
||
+
|
||
+/*
|
||
+ This target hook should return true if we should not pass type solely
|
||
+ in registers. The file expr.h defines a definition that is usually appropriate,
|
||
+ refer to expr.h for additional documentation.
|
||
+*/
|
||
+bool
|
||
+avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type)
|
||
+{
|
||
+ if (type && AGGREGATE_TYPE_P (type)
|
||
+ /* If the alignment is less than the size then pass in the struct on
|
||
+ the stack. */
|
||
+ && ((unsigned int) TYPE_ALIGN_UNIT (type) <
|
||
+ (unsigned int) int_size_in_bytes (type))
|
||
+ /* If we support unaligned word accesses then structs of size 4 and 8
|
||
+ can have any alignment and still be passed in registers. */
|
||
+ && !(TARGET_UNALIGNED_WORD
|
||
+ && (int_size_in_bytes (type) == 4
|
||
+ || int_size_in_bytes (type) == 8))
|
||
+ /* Double word structs need only a word alignment. */
|
||
+ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4))
|
||
+ return true;
|
||
+
|
||
+ if (type && AGGREGATE_TYPE_P (type)
|
||
+ /* Structs of size 3,5,6,7 are always passed in registers. */
|
||
+ && (int_size_in_bytes (type) == 3
|
||
+ || int_size_in_bytes (type) == 5
|
||
+ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7))
|
||
+ return true;
|
||
+
|
||
+
|
||
+ return (type && TREE_ADDRESSABLE (type));
|
||
+}
|
||
+
|
||
+
|
||
+bool
|
||
+avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return true;
|
||
+}
|
||
+
|
||
+/*
|
||
+ This target hook should return true if an argument at the position indicated
|
||
+ by cum should be passed by reference. This predicate is queried after target
|
||
+ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type).
|
||
+
|
||
+ If the hook returns true, a copy of that argument is made in memory and a
|
||
+ pointer to the argument is passed instead of the argument itself. The pointer
|
||
+ is passed in whatever way is appropriate for passing a pointer to that type.
|
||
+*/
|
||
+bool
|
||
+avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ tree type, bool named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST));
|
||
+}
|
||
+
|
||
+static int
|
||
+avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ tree type ATTRIBUTE_UNUSED,
|
||
+ bool named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+
|
||
+struct gcc_target targetm = TARGET_INITIALIZER;
|
||
+
|
||
+/*
|
||
+ Table used to convert from register number in the assembler instructions and
|
||
+ the register numbers used in gcc.
|
||
+*/
|
||
+const int avr32_function_arg_reglist[] = {
|
||
+ INTERNAL_REGNUM (12),
|
||
+ INTERNAL_REGNUM (11),
|
||
+ INTERNAL_REGNUM (10),
|
||
+ INTERNAL_REGNUM (9),
|
||
+ INTERNAL_REGNUM (8)
|
||
+};
|
||
+
|
||
+rtx avr32_compare_op0 = NULL_RTX;
|
||
+rtx avr32_compare_op1 = NULL_RTX;
|
||
+rtx avr32_compare_operator = NULL_RTX;
|
||
+rtx avr32_acc_cache = NULL_RTX;
|
||
+
|
||
+/*
|
||
+ Returns nonzero if it is allowed to store a value of mode mode in hard
|
||
+ register number regno.
|
||
+*/
|
||
+int
|
||
+avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode)
|
||
+{
|
||
+ /* We allow only float modes in the fp-registers */
|
||
+ if (regnr >= FIRST_FP_REGNUM
|
||
+ && regnr <= LAST_FP_REGNUM && GET_MODE_CLASS (mode) != MODE_FLOAT)
|
||
+ {
|
||
+ return 0;
|
||
+ }
|
||
+
|
||
+ switch (mode)
|
||
+ {
|
||
+ case DImode: /* long long */
|
||
+ case DFmode: /* double */
|
||
+ case SCmode: /* __complex__ float */
|
||
+ case CSImode: /* __complex__ int */
|
||
+ if (regnr < 4)
|
||
+ { /* long long int not supported in r12, sp, lr
|
||
+ or pc. */
|
||
+ return 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (regnr % 2) /* long long int has to be refered in even
|
||
+ registers. */
|
||
+ return 0;
|
||
+ else
|
||
+ return 1;
|
||
+ }
|
||
+ case CDImode: /* __complex__ long long */
|
||
+ case DCmode: /* __complex__ double */
|
||
+ case TImode: /* 16 bytes */
|
||
+ if (regnr < 7)
|
||
+ return 0;
|
||
+ else if (regnr % 2)
|
||
+ return 0;
|
||
+ else
|
||
+ return 1;
|
||
+ default:
|
||
+ return 1;
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+int
|
||
+avr32_rnd_operands (rtx add, rtx shift)
|
||
+{
|
||
+ if (GET_CODE (shift) == CONST_INT &&
|
||
+ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0)
|
||
+ {
|
||
+ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add))
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+int
|
||
+avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str)
|
||
+{
|
||
+ switch (c)
|
||
+ {
|
||
+ case 'K':
|
||
+ case 'I':
|
||
+ {
|
||
+ HOST_WIDE_INT min_value = 0, max_value = 0;
|
||
+ char size_str[3];
|
||
+ int const_size;
|
||
+
|
||
+ size_str[0] = str[2];
|
||
+ size_str[1] = str[3];
|
||
+ size_str[2] = '\0';
|
||
+ const_size = atoi (size_str);
|
||
+
|
||
+ if (toupper (str[1]) == 'U')
|
||
+ {
|
||
+ min_value = 0;
|
||
+ max_value = (1 << const_size) - 1;
|
||
+ }
|
||
+ else if (toupper (str[1]) == 'S')
|
||
+ {
|
||
+ min_value = -(1 << (const_size - 1));
|
||
+ max_value = (1 << (const_size - 1)) - 1;
|
||
+ }
|
||
+
|
||
+ if (c == 'I')
|
||
+ {
|
||
+ value = -value;
|
||
+ }
|
||
+
|
||
+ if (value >= min_value && value <= max_value)
|
||
+ {
|
||
+ return 1;
|
||
+ }
|
||
+ break;
|
||
+ }
|
||
+ case 'M':
|
||
+ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode);
|
||
+ case 'J':
|
||
+ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode);
|
||
+ case 'O':
|
||
+ return one_bit_set_operand (GEN_INT (value), VOIDmode);
|
||
+ case 'N':
|
||
+ return one_bit_cleared_operand (GEN_INT (value), VOIDmode);
|
||
+ case 'L':
|
||
+ /* The lower 16-bits are set. */
|
||
+ return ((value & 0xffff) == 0xffff) ;
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+
|
||
+/*Compute mask of which floating-point registers needs saving upon
|
||
+ entry to this function*/
|
||
+static unsigned long
|
||
+avr32_compute_save_fp_reg_mask (void)
|
||
+{
|
||
+ unsigned long func_type = avr32_current_func_type ();
|
||
+ unsigned int save_reg_mask = 0;
|
||
+ unsigned int reg;
|
||
+ unsigned int max_reg = 7;
|
||
+ int save_all_call_used_regs = FALSE;
|
||
+
|
||
+ /* This only applies for hardware floating-point implementation. */
|
||
+ if (!TARGET_HARD_FLOAT)
|
||
+ return 0;
|
||
+
|
||
+ if (IS_INTERRUPT (func_type))
|
||
+ {
|
||
+
|
||
+ /* Interrupt functions must not corrupt any registers, even call
|
||
+ clobbered ones. If this is a leaf function we can just examine the
|
||
+ registers used by the RTL, but otherwise we have to assume that
|
||
+ whatever function is called might clobber anything, and so we have
|
||
+ to save all the call-clobbered registers as well. */
|
||
+ max_reg = 13;
|
||
+ save_all_call_used_regs = !current_function_is_leaf;
|
||
+ }
|
||
+
|
||
+ /* All used registers used must be saved */
|
||
+ for (reg = 0; reg <= max_reg; reg++)
|
||
+ if (regs_ever_live[INTERNAL_FP_REGNUM (reg)]
|
||
+ || (save_all_call_used_regs
|
||
+ && call_used_regs[INTERNAL_FP_REGNUM (reg)]))
|
||
+ save_reg_mask |= (1 << reg);
|
||
+
|
||
+ return save_reg_mask;
|
||
+}
|
||
+
|
||
+/*Compute mask of registers which needs saving upon function entry */
|
||
+static unsigned long
|
||
+avr32_compute_save_reg_mask (int push)
|
||
+{
|
||
+ unsigned long func_type;
|
||
+ unsigned int save_reg_mask = 0;
|
||
+ unsigned int reg;
|
||
+
|
||
+ func_type = avr32_current_func_type ();
|
||
+
|
||
+ if (IS_INTERRUPT (func_type))
|
||
+ {
|
||
+ unsigned int max_reg = 12;
|
||
+
|
||
+
|
||
+ /* Get the banking scheme for the interrupt */
|
||
+ switch (func_type)
|
||
+ {
|
||
+ case AVR32_FT_ISR_FULL:
|
||
+ max_reg = 0;
|
||
+ break;
|
||
+ case AVR32_FT_ISR_HALF:
|
||
+ max_reg = 7;
|
||
+ break;
|
||
+ case AVR32_FT_ISR_NONE:
|
||
+ max_reg = 12;
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ /* Interrupt functions must not corrupt any registers, even call
|
||
+ clobbered ones. If this is a leaf function we can just examine the
|
||
+ registers used by the RTL, but otherwise we have to assume that
|
||
+ whatever function is called might clobber anything, and so we have
|
||
+ to save all the call-clobbered registers as well. */
|
||
+
|
||
+ /* Need not push the registers r8-r12 for AVR32A architectures, as this
|
||
+ is automatially done in hardware. We also do not have any shadow
|
||
+ registers. */
|
||
+ if (TARGET_UARCH_AVR32A)
|
||
+ {
|
||
+ max_reg = 7;
|
||
+ func_type = AVR32_FT_ISR_NONE;
|
||
+ }
|
||
+
|
||
+ /* All registers which are used and is not shadowed must be saved */
|
||
+ for (reg = 0; reg <= max_reg; reg++)
|
||
+ if (regs_ever_live[INTERNAL_REGNUM (reg)]
|
||
+ || (!current_function_is_leaf
|
||
+ && call_used_regs[INTERNAL_REGNUM (reg)]))
|
||
+ save_reg_mask |= (1 << reg);
|
||
+
|
||
+ /* Check LR */
|
||
+ if ((regs_ever_live[LR_REGNUM]
|
||
+ || !current_function_is_leaf || frame_pointer_needed)
|
||
+ /* Only non-shadowed register models */
|
||
+ && (func_type == AVR32_FT_ISR_NONE))
|
||
+ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
|
||
+
|
||
+ /* Make sure that the GOT register is pushed. */
|
||
+ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)
|
||
+ && current_function_uses_pic_offset_table)
|
||
+ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
|
||
+
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ int use_pushm = optimize_size;
|
||
+
|
||
+ /* In the normal case we only need to save those registers which are
|
||
+ call saved and which are used by this function. */
|
||
+ for (reg = 0; reg <= 7; reg++)
|
||
+ if (regs_ever_live[INTERNAL_REGNUM (reg)]
|
||
+ && !call_used_regs[INTERNAL_REGNUM (reg)])
|
||
+ save_reg_mask |= (1 << reg);
|
||
+
|
||
+ /* Make sure that the GOT register is pushed. */
|
||
+ if (current_function_uses_pic_offset_table)
|
||
+ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM));
|
||
+
|
||
+
|
||
+ /* If we optimize for size and do not have anonymous arguments: use
|
||
+ popm/pushm always */
|
||
+ if (use_pushm)
|
||
+ {
|
||
+ if ((save_reg_mask & (1 << 0))
|
||
+ || (save_reg_mask & (1 << 1))
|
||
+ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3)))
|
||
+ save_reg_mask |= 0xf;
|
||
+
|
||
+ if ((save_reg_mask & (1 << 4))
|
||
+ || (save_reg_mask & (1 << 5))
|
||
+ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7)))
|
||
+ save_reg_mask |= 0xf0;
|
||
+
|
||
+ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9)))
|
||
+ save_reg_mask |= 0x300;
|
||
+ }
|
||
+
|
||
+
|
||
+ /* Check LR */
|
||
+ if ((regs_ever_live[LR_REGNUM]
|
||
+ || !current_function_is_leaf
|
||
+ || (optimize_size
|
||
+ && save_reg_mask
|
||
+ && !current_function_calls_eh_return) || frame_pointer_needed))
|
||
+ {
|
||
+ if (push
|
||
+ /* Never pop LR into PC for functions which
|
||
+ calls __builtin_eh_return, since we need to
|
||
+ fix the SP after the restoring of the registers
|
||
+ and before returning. */
|
||
+ || current_function_calls_eh_return)
|
||
+ {
|
||
+ /* Push/Pop LR */
|
||
+ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Pop PC */
|
||
+ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM));
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+
|
||
+ /* Save registers so the exception handler can modify them. */
|
||
+ if (current_function_calls_eh_return)
|
||
+ {
|
||
+ unsigned int i;
|
||
+
|
||
+ for (i = 0;; i++)
|
||
+ {
|
||
+ reg = EH_RETURN_DATA_REGNO (i);
|
||
+ if (reg == INVALID_REGNUM)
|
||
+ break;
|
||
+ save_reg_mask |= 1 << ASM_REGNUM (reg);
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return save_reg_mask;
|
||
+}
|
||
+
|
||
+/*Compute total size in bytes of all saved registers */
|
||
+static int
|
||
+avr32_get_reg_mask_size (int reg_mask)
|
||
+{
|
||
+ int reg, size;
|
||
+ size = 0;
|
||
+
|
||
+ for (reg = 0; reg <= 15; reg++)
|
||
+ if (reg_mask & (1 << reg))
|
||
+ size += 4;
|
||
+
|
||
+ return size;
|
||
+}
|
||
+
|
||
+/*Get a register from one of the registers which are saved onto the stack
|
||
+ upon function entry */
|
||
+
|
||
+static int
|
||
+avr32_get_saved_reg (int save_reg_mask)
|
||
+{
|
||
+ unsigned int reg;
|
||
+
|
||
+ /* Find the first register which is saved in the saved_reg_mask */
|
||
+ for (reg = 0; reg <= 15; reg++)
|
||
+ if (save_reg_mask & (1 << reg))
|
||
+ return reg;
|
||
+
|
||
+ return -1;
|
||
+}
|
||
+
|
||
+/* Return 1 if it is possible to return using a single instruction. */
|
||
+int
|
||
+avr32_use_return_insn (int iscond)
|
||
+{
|
||
+ unsigned int func_type = avr32_current_func_type ();
|
||
+ unsigned long saved_int_regs;
|
||
+ unsigned long saved_fp_regs;
|
||
+
|
||
+ /* Never use a return instruction before reload has run. */
|
||
+ if (!reload_completed)
|
||
+ return 0;
|
||
+
|
||
+ /* Must adjust the stack for vararg functions. */
|
||
+ if (current_function_args_info.uses_anonymous_args)
|
||
+ return 0;
|
||
+
|
||
+ /* If there a stack adjstment. */
|
||
+ if (get_frame_size ())
|
||
+ return 0;
|
||
+
|
||
+ saved_int_regs = avr32_compute_save_reg_mask (TRUE);
|
||
+ saved_fp_regs = avr32_compute_save_fp_reg_mask ();
|
||
+
|
||
+ /* Functions which have saved fp-regs on the stack can not be performed in
|
||
+ one instruction */
|
||
+ if (saved_fp_regs)
|
||
+ return 0;
|
||
+
|
||
+ /* Conditional returns can not be performed in one instruction if we need
|
||
+ to restore registers from the stack */
|
||
+ if (iscond && saved_int_regs)
|
||
+ return 0;
|
||
+
|
||
+ /* Conditional return can not be used for interrupt handlers. */
|
||
+ if (iscond && IS_INTERRUPT (func_type))
|
||
+ return 0;
|
||
+
|
||
+ /* For interrupt handlers which needs to pop registers */
|
||
+ if (saved_int_regs && IS_INTERRUPT (func_type))
|
||
+ return 0;
|
||
+
|
||
+
|
||
+ /* If there are saved registers but the LR isn't saved, then we need two
|
||
+ instructions for the return. */
|
||
+ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM))))
|
||
+ return 0;
|
||
+
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+
|
||
+/*Generate some function prologue info in the assembly file*/
|
||
+
|
||
+void
|
||
+avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size)
|
||
+{
|
||
+ if (IS_NAKED (avr32_current_func_type ()))
|
||
+ fprintf (f,
|
||
+ "\t# Function is naked: Prologue and epilogue provided by programmer\n");
|
||
+
|
||
+ if (IS_INTERRUPT (avr32_current_func_type ()))
|
||
+ {
|
||
+ switch (avr32_current_func_type ())
|
||
+ {
|
||
+ case AVR32_FT_ISR_FULL:
|
||
+ fprintf (f,
|
||
+ "\t# Interrupt Function: Fully shadowed register file\n");
|
||
+ break;
|
||
+ case AVR32_FT_ISR_HALF:
|
||
+ fprintf (f,
|
||
+ "\t# Interrupt Function: Half shadowed register file\n");
|
||
+ break;
|
||
+ default:
|
||
+ case AVR32_FT_ISR_NONE:
|
||
+ fprintf (f, "\t# Interrupt Function: No shadowed register file\n");
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+
|
||
+ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n",
|
||
+ current_function_args_size, frame_size,
|
||
+ current_function_pretend_args_size);
|
||
+
|
||
+ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n",
|
||
+ frame_pointer_needed, current_function_is_leaf);
|
||
+
|
||
+ fprintf (f, "\t# uses_anonymous_args = %i\n",
|
||
+ current_function_args_info.uses_anonymous_args);
|
||
+ if (current_function_calls_eh_return)
|
||
+ fprintf (f, "\t# Calls __builtin_eh_return.\n");
|
||
+
|
||
+}
|
||
+
|
||
+
|
||
+/* Generate and emit an insn that we will recognize as a pushm or stm.
|
||
+ Unfortunately, since this insn does not reflect very well the actual
|
||
+ semantics of the operation, we need to annotate the insn for the benefit
|
||
+ of DWARF2 frame unwind information. */
|
||
+
|
||
+int avr32_convert_to_reglist16 (int reglist8_vect);
|
||
+
|
||
+static rtx
|
||
+emit_multi_reg_push (int reglist, int usePUSHM)
|
||
+{
|
||
+ rtx insn;
|
||
+ rtx dwarf;
|
||
+ rtx tmp;
|
||
+ rtx reg;
|
||
+ int i;
|
||
+ int nr_regs;
|
||
+ int index = 0;
|
||
+
|
||
+ if (usePUSHM)
|
||
+ {
|
||
+ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist)));
|
||
+ reglist = avr32_convert_to_reglist16 (reglist);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ insn = emit_insn (gen_stm (stack_pointer_rtx,
|
||
+ gen_rtx_CONST_INT (SImode, reglist),
|
||
+ gen_rtx_CONST_INT (SImode, 1)));
|
||
+ }
|
||
+
|
||
+ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
|
||
+ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
|
||
+
|
||
+ for (i = 15; i >= 0; i--)
|
||
+ {
|
||
+ if (reglist & (1 << i))
|
||
+ {
|
||
+ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i));
|
||
+ tmp = gen_rtx_SET (VOIDmode,
|
||
+ gen_rtx_MEM (SImode,
|
||
+ plus_constant (stack_pointer_rtx,
|
||
+ 4 * index)), reg);
|
||
+ RTX_FRAME_RELATED_P (tmp) = 1;
|
||
+ XVECEXP (dwarf, 0, 1 + index++) = tmp;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ tmp = gen_rtx_SET (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ gen_rtx_PLUS (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ GEN_INT (-4 * nr_regs)));
|
||
+ RTX_FRAME_RELATED_P (tmp) = 1;
|
||
+ XVECEXP (dwarf, 0, 0) = tmp;
|
||
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
|
||
+ REG_NOTES (insn));
|
||
+ return insn;
|
||
+}
|
||
+
|
||
+
|
||
+static rtx
|
||
+emit_multi_fp_reg_push (int reglist)
|
||
+{
|
||
+ rtx insn;
|
||
+ rtx dwarf;
|
||
+ rtx tmp;
|
||
+ rtx reg;
|
||
+ int i;
|
||
+ int nr_regs;
|
||
+ int index = 0;
|
||
+
|
||
+ insn = emit_insn (gen_stm_fp (stack_pointer_rtx,
|
||
+ gen_rtx_CONST_INT (SImode, reglist),
|
||
+ gen_rtx_CONST_INT (SImode, 1)));
|
||
+
|
||
+ nr_regs = avr32_get_reg_mask_size (reglist) / 4;
|
||
+ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1));
|
||
+
|
||
+ for (i = 15; i >= 0; i--)
|
||
+ {
|
||
+ if (reglist & (1 << i))
|
||
+ {
|
||
+ reg = gen_rtx_REG (SImode, INTERNAL_FP_REGNUM (i));
|
||
+ tmp = gen_rtx_SET (VOIDmode,
|
||
+ gen_rtx_MEM (SImode,
|
||
+ plus_constant (stack_pointer_rtx,
|
||
+ 4 * index)), reg);
|
||
+ RTX_FRAME_RELATED_P (tmp) = 1;
|
||
+ XVECEXP (dwarf, 0, 1 + index++) = tmp;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ tmp = gen_rtx_SET (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ gen_rtx_PLUS (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ GEN_INT (-4 * nr_regs)));
|
||
+ RTX_FRAME_RELATED_P (tmp) = 1;
|
||
+ XVECEXP (dwarf, 0, 0) = tmp;
|
||
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
|
||
+ REG_NOTES (insn));
|
||
+ return insn;
|
||
+}
|
||
+
|
||
+rtx
|
||
+avr32_gen_load_multiple (rtx * regs, int count, rtx from,
|
||
+ int write_back, int in_struct_p, int scalar_p)
|
||
+{
|
||
+
|
||
+ rtx result;
|
||
+ int i = 0, j;
|
||
+
|
||
+ result =
|
||
+ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0)));
|
||
+
|
||
+ if (write_back)
|
||
+ {
|
||
+ XVECEXP (result, 0, 0)
|
||
+ = gen_rtx_SET (GET_MODE (from), from,
|
||
+ plus_constant (from, count * 4));
|
||
+ i = 1;
|
||
+ count++;
|
||
+ }
|
||
+
|
||
+
|
||
+ for (j = 0; i < count; i++, j++)
|
||
+ {
|
||
+ rtx unspec;
|
||
+ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4));
|
||
+ MEM_IN_STRUCT_P (mem) = in_struct_p;
|
||
+ MEM_SCALAR_P (mem) = scalar_p;
|
||
+ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM);
|
||
+ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec);
|
||
+ }
|
||
+
|
||
+ return result;
|
||
+}
|
||
+
|
||
+
|
||
+rtx
|
||
+avr32_gen_store_multiple (rtx * regs, int count, rtx to,
|
||
+ int in_struct_p, int scalar_p)
|
||
+{
|
||
+ rtx result;
|
||
+ int i = 0, j;
|
||
+
|
||
+ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
|
||
+
|
||
+ for (j = 0; i < count; i++, j++)
|
||
+ {
|
||
+ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4));
|
||
+ MEM_IN_STRUCT_P (mem) = in_struct_p;
|
||
+ MEM_SCALAR_P (mem) = scalar_p;
|
||
+ XVECEXP (result, 0, i)
|
||
+ = gen_rtx_SET (VOIDmode, mem,
|
||
+ gen_rtx_UNSPEC (VOIDmode,
|
||
+ gen_rtvec (1, regs[j]),
|
||
+ UNSPEC_STORE_MULTIPLE));
|
||
+ }
|
||
+
|
||
+ return result;
|
||
+}
|
||
+
|
||
+
|
||
+/* Move a block of memory if it is word aligned or we support unaligned
|
||
+ word memory accesses. The size must be maximum 64 bytes. */
|
||
+
|
||
+int
|
||
+avr32_gen_movmemsi (rtx * operands)
|
||
+{
|
||
+ HOST_WIDE_INT bytes_to_go;
|
||
+ rtx src, dst;
|
||
+ rtx st_src, st_dst;
|
||
+ int src_offset = 0, dst_offset = 0;
|
||
+ int block_size;
|
||
+ int dst_in_struct_p, src_in_struct_p;
|
||
+ int dst_scalar_p, src_scalar_p;
|
||
+ int unaligned;
|
||
+
|
||
+ if (GET_CODE (operands[2]) != CONST_INT
|
||
+ || GET_CODE (operands[3]) != CONST_INT
|
||
+ || INTVAL (operands[2]) > 64
|
||
+ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD))
|
||
+ return 0;
|
||
+
|
||
+ unaligned = (INTVAL (operands[3]) & 3) != 0;
|
||
+
|
||
+ block_size = 4;
|
||
+
|
||
+ st_dst = XEXP (operands[0], 0);
|
||
+ st_src = XEXP (operands[1], 0);
|
||
+
|
||
+ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]);
|
||
+ dst_scalar_p = MEM_SCALAR_P (operands[0]);
|
||
+ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]);
|
||
+ src_scalar_p = MEM_SCALAR_P (operands[1]);
|
||
+
|
||
+ dst = copy_to_mode_reg (SImode, st_dst);
|
||
+ src = copy_to_mode_reg (SImode, st_src);
|
||
+
|
||
+ bytes_to_go = INTVAL (operands[2]);
|
||
+
|
||
+ while (bytes_to_go)
|
||
+ {
|
||
+ enum machine_mode move_mode;
|
||
+ /* (Seems to be a problem with reloads for the movti pattern so this is
|
||
+ disabled until that problem is resolved)
|
||
+ UPDATE: Problem seems to be solved now.... */
|
||
+ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned
|
||
+ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */
|
||
+ && !TARGET_ARCH_UC)
|
||
+ move_mode = TImode;
|
||
+ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned)
|
||
+ move_mode = DImode;
|
||
+ else if (bytes_to_go >= GET_MODE_SIZE (SImode))
|
||
+ move_mode = SImode;
|
||
+ else
|
||
+ move_mode = QImode;
|
||
+
|
||
+ {
|
||
+ rtx src_mem;
|
||
+ rtx dst_mem = gen_rtx_MEM (move_mode,
|
||
+ gen_rtx_PLUS (SImode, dst,
|
||
+ GEN_INT (dst_offset)));
|
||
+ dst_offset += GET_MODE_SIZE (move_mode);
|
||
+ if ( 0 /* This causes an error in GCC. Think there is
|
||
+ something wrong in the gcse pass which causes REQ_EQUIV notes
|
||
+ to be wrong so disabling it for now. */
|
||
+ && move_mode == TImode
|
||
+ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) )
|
||
+ {
|
||
+ src_mem = gen_rtx_MEM (move_mode,
|
||
+ gen_rtx_POST_INC (SImode, src));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ src_mem = gen_rtx_MEM (move_mode,
|
||
+ gen_rtx_PLUS (SImode, src,
|
||
+ GEN_INT (src_offset)));
|
||
+ src_offset += GET_MODE_SIZE (move_mode);
|
||
+ }
|
||
+
|
||
+ bytes_to_go -= GET_MODE_SIZE (move_mode);
|
||
+
|
||
+ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p;
|
||
+ MEM_SCALAR_P (dst_mem) = dst_scalar_p;
|
||
+
|
||
+ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p;
|
||
+ MEM_SCALAR_P (src_mem) = src_scalar_p;
|
||
+ emit_move_insn (dst_mem, src_mem);
|
||
+
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/*Expand the prologue instruction*/
|
||
+void
|
||
+avr32_expand_prologue (void)
|
||
+{
|
||
+ rtx insn, dwarf;
|
||
+ unsigned long saved_reg_mask, saved_fp_reg_mask;
|
||
+ int reglist8 = 0;
|
||
+
|
||
+ /* Naked functions does not have a prologue */
|
||
+ if (IS_NAKED (avr32_current_func_type ()))
|
||
+ return;
|
||
+
|
||
+ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
|
||
+
|
||
+ if (saved_reg_mask)
|
||
+ {
|
||
+ /* Must push used registers */
|
||
+
|
||
+ /* Should we use POPM or LDM? */
|
||
+ int usePUSHM = TRUE;
|
||
+ reglist8 = 0;
|
||
+ if (((saved_reg_mask & (1 << 0)) ||
|
||
+ (saved_reg_mask & (1 << 1)) ||
|
||
+ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
|
||
+ {
|
||
+ /* One of R0-R3 should at least be pushed */
|
||
+ if (((saved_reg_mask & (1 << 0)) &&
|
||
+ (saved_reg_mask & (1 << 1)) &&
|
||
+ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
|
||
+ {
|
||
+ /* All should be pushed */
|
||
+ reglist8 |= 0x01;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePUSHM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (((saved_reg_mask & (1 << 4)) ||
|
||
+ (saved_reg_mask & (1 << 5)) ||
|
||
+ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
|
||
+ {
|
||
+ /* One of R4-R7 should at least be pushed */
|
||
+ if (((saved_reg_mask & (1 << 4)) &&
|
||
+ (saved_reg_mask & (1 << 5)) &&
|
||
+ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
|
||
+ {
|
||
+ if (usePUSHM)
|
||
+ /* All should be pushed */
|
||
+ reglist8 |= 0x02;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePUSHM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
|
||
+ {
|
||
+ /* One of R8-R9 should at least be pushed */
|
||
+ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
|
||
+ {
|
||
+ if (usePUSHM)
|
||
+ /* All should be pushed */
|
||
+ reglist8 |= 0x04;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePUSHM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (saved_reg_mask & (1 << 10))
|
||
+ reglist8 |= 0x08;
|
||
+
|
||
+ if (saved_reg_mask & (1 << 11))
|
||
+ reglist8 |= 0x10;
|
||
+
|
||
+ if (saved_reg_mask & (1 << 12))
|
||
+ reglist8 |= 0x20;
|
||
+
|
||
+ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
|
||
+ {
|
||
+ /* Push LR */
|
||
+ reglist8 |= 0x40;
|
||
+ }
|
||
+
|
||
+ if (usePUSHM)
|
||
+ {
|
||
+ insn = emit_multi_reg_push (reglist8, TRUE);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ insn = emit_multi_reg_push (saved_reg_mask, FALSE);
|
||
+ }
|
||
+ RTX_FRAME_RELATED_P (insn) = 1;
|
||
+
|
||
+ /* Prevent this instruction from being scheduled after any other
|
||
+ instructions. */
|
||
+ emit_insn (gen_blockage ());
|
||
+ }
|
||
+
|
||
+ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
|
||
+ if (saved_fp_reg_mask)
|
||
+ {
|
||
+ insn = emit_multi_fp_reg_push (saved_fp_reg_mask);
|
||
+ RTX_FRAME_RELATED_P (insn) = 1;
|
||
+
|
||
+ /* Prevent this instruction from being scheduled after any other
|
||
+ instructions. */
|
||
+ emit_insn (gen_blockage ());
|
||
+ }
|
||
+
|
||
+ /* Set frame pointer */
|
||
+ if (frame_pointer_needed)
|
||
+ {
|
||
+ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
|
||
+ RTX_FRAME_RELATED_P (insn) = 1;
|
||
+ }
|
||
+
|
||
+ if (get_frame_size () > 0)
|
||
+ {
|
||
+ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21"))
|
||
+ {
|
||
+ insn = emit_insn (gen_rtx_SET (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ gen_rtx_PLUS (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ gen_rtx_CONST_INT
|
||
+ (SImode,
|
||
+ -get_frame_size
|
||
+ ()))));
|
||
+ RTX_FRAME_RELATED_P (insn) = 1;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Immediate is larger than k21 We must either check if we can use
|
||
+ one of the pushed reegisters as temporary storage or we must
|
||
+ make us a temp register by pushing a register to the stack. */
|
||
+ rtx temp_reg, const_pool_entry, insn;
|
||
+ if (saved_reg_mask)
|
||
+ {
|
||
+ temp_reg =
|
||
+ gen_rtx_REG (SImode,
|
||
+ INTERNAL_REGNUM (avr32_get_saved_reg
|
||
+ (saved_reg_mask)));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7));
|
||
+ emit_move_insn (gen_rtx_MEM
|
||
+ (SImode,
|
||
+ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)),
|
||
+ temp_reg);
|
||
+ }
|
||
+
|
||
+ const_pool_entry =
|
||
+ force_const_mem (SImode,
|
||
+ gen_rtx_CONST_INT (SImode, get_frame_size ()));
|
||
+ emit_move_insn (temp_reg, const_pool_entry);
|
||
+
|
||
+ insn = emit_insn (gen_rtx_SET (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ gen_rtx_MINUS (SImode,
|
||
+ stack_pointer_rtx,
|
||
+ temp_reg)));
|
||
+
|
||
+ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
||
+ gen_rtx_PLUS (SImode, stack_pointer_rtx,
|
||
+ GEN_INT (-get_frame_size ())));
|
||
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
+ dwarf, REG_NOTES (insn));
|
||
+ RTX_FRAME_RELATED_P (insn) = 1;
|
||
+
|
||
+ if (!saved_reg_mask)
|
||
+ {
|
||
+ insn =
|
||
+ emit_move_insn (temp_reg,
|
||
+ gen_rtx_MEM (SImode,
|
||
+ gen_rtx_POST_INC (SImode,
|
||
+ gen_rtx_REG
|
||
+ (SImode,
|
||
+ 13))));
|
||
+ }
|
||
+
|
||
+ /* Mark the temp register as dead */
|
||
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg,
|
||
+ REG_NOTES (insn));
|
||
+
|
||
+
|
||
+ }
|
||
+
|
||
+ /* Prevent the the stack adjustment to be scheduled after any
|
||
+ instructions using the frame pointer. */
|
||
+ emit_insn (gen_blockage ());
|
||
+ }
|
||
+
|
||
+ /* Load GOT */
|
||
+ if (flag_pic)
|
||
+ {
|
||
+ avr32_load_pic_register ();
|
||
+
|
||
+ /* gcc does not know that load or call instructions might use the pic
|
||
+ register so it might schedule these instructions before the loading
|
||
+ of the pic register. To avoid this emit a barrier for now. TODO!
|
||
+ Find out a better way to let gcc know which instructions might use
|
||
+ the pic register. */
|
||
+ emit_insn (gen_blockage ());
|
||
+ }
|
||
+ return;
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_set_return_address (rtx source, rtx scratch)
|
||
+{
|
||
+ rtx addr;
|
||
+ unsigned long saved_regs;
|
||
+
|
||
+ saved_regs = avr32_compute_save_reg_mask (TRUE);
|
||
+
|
||
+ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM))))
|
||
+ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
|
||
+ else
|
||
+ {
|
||
+ if (frame_pointer_needed)
|
||
+ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM);
|
||
+ else
|
||
+ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16"))
|
||
+ {
|
||
+ addr = plus_constant (stack_pointer_rtx, get_frame_size ());
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ())));
|
||
+ addr = scratch;
|
||
+ }
|
||
+ emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/* Return the length of INSN. LENGTH is the initial length computed by
|
||
+ attributes in the machine-description file. */
|
||
+
|
||
+int
|
||
+avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED,
|
||
+ int length ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return length;
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED,
|
||
+ int iscond ATTRIBUTE_UNUSED,
|
||
+ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm)
|
||
+{
|
||
+
|
||
+ unsigned long saved_reg_mask, saved_fp_reg_mask;
|
||
+ int insert_ret = TRUE;
|
||
+ int reglist8 = 0;
|
||
+ int stack_adjustment = get_frame_size ();
|
||
+ unsigned int func_type = avr32_current_func_type ();
|
||
+ FILE *f = asm_out_file;
|
||
+
|
||
+ /* Naked functions does not have an epilogue */
|
||
+ if (IS_NAKED (func_type))
|
||
+ return;
|
||
+
|
||
+ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
|
||
+
|
||
+ saved_reg_mask = avr32_compute_save_reg_mask (FALSE);
|
||
+
|
||
+ /* Reset frame pointer */
|
||
+ if (stack_adjustment > 0)
|
||
+ {
|
||
+ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21"))
|
||
+ {
|
||
+ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n",
|
||
+ -stack_adjustment);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* TODO! Is it safe to use r8 as scratch?? */
|
||
+ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n",
|
||
+ -stack_adjustment);
|
||
+ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n",
|
||
+ -stack_adjustment);
|
||
+ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n");
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (saved_fp_reg_mask)
|
||
+ {
|
||
+ char reglist[64]; /* 64 bytes should be enough... */
|
||
+ avr32_make_fp_reglist_w (saved_fp_reg_mask, (char *) reglist);
|
||
+ fprintf (f, "\tldcm.w\tcp0, sp++, %s\n", reglist);
|
||
+ if (saved_fp_reg_mask & ~0xff)
|
||
+ {
|
||
+ saved_fp_reg_mask &= ~0xff;
|
||
+ avr32_make_fp_reglist_d (saved_fp_reg_mask, (char *) reglist);
|
||
+ fprintf (f, "\tldcm.d\tcp0, sp++, %s\n", reglist);
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (saved_reg_mask)
|
||
+ {
|
||
+ /* Must pop used registers */
|
||
+
|
||
+ /* Should we use POPM or LDM? */
|
||
+ int usePOPM = TRUE;
|
||
+ if (((saved_reg_mask & (1 << 0)) ||
|
||
+ (saved_reg_mask & (1 << 1)) ||
|
||
+ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3))))
|
||
+ {
|
||
+ /* One of R0-R3 should at least be popped */
|
||
+ if (((saved_reg_mask & (1 << 0)) &&
|
||
+ (saved_reg_mask & (1 << 1)) &&
|
||
+ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3))))
|
||
+ {
|
||
+ /* All should be popped */
|
||
+ reglist8 |= 0x01;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePOPM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (((saved_reg_mask & (1 << 4)) ||
|
||
+ (saved_reg_mask & (1 << 5)) ||
|
||
+ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7))))
|
||
+ {
|
||
+ /* One of R0-R3 should at least be popped */
|
||
+ if (((saved_reg_mask & (1 << 4)) &&
|
||
+ (saved_reg_mask & (1 << 5)) &&
|
||
+ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7))))
|
||
+ {
|
||
+ if (usePOPM)
|
||
+ /* All should be popped */
|
||
+ reglist8 |= 0x02;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePOPM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9))))
|
||
+ {
|
||
+ /* One of R8-R9 should at least be pushed */
|
||
+ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9))))
|
||
+ {
|
||
+ if (usePOPM)
|
||
+ /* All should be pushed */
|
||
+ reglist8 |= 0x04;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ usePOPM = FALSE;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (saved_reg_mask & (1 << 10))
|
||
+ reglist8 |= 0x08;
|
||
+
|
||
+ if (saved_reg_mask & (1 << 11))
|
||
+ reglist8 |= 0x10;
|
||
+
|
||
+ if (saved_reg_mask & (1 << 12))
|
||
+ reglist8 |= 0x20;
|
||
+
|
||
+ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM)))
|
||
+ /* Pop LR */
|
||
+ reglist8 |= 0x40;
|
||
+
|
||
+ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
|
||
+ /* Pop LR into PC. */
|
||
+ reglist8 |= 0x80;
|
||
+
|
||
+ if (usePOPM)
|
||
+ {
|
||
+ char reglist[64]; /* 64 bytes should be enough... */
|
||
+ avr32_make_reglist8 (reglist8, (char *) reglist);
|
||
+
|
||
+ if (reglist8 & 0x80)
|
||
+ /* This instruction is also a return */
|
||
+ insert_ret = FALSE;
|
||
+
|
||
+ if (r12_imm && !insert_ret)
|
||
+ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm));
|
||
+ else
|
||
+ fprintf (f, "\tpopm\t%s\n", reglist);
|
||
+
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ char reglist[64]; /* 64 bytes should be enough... */
|
||
+ avr32_make_reglist16 (saved_reg_mask, (char *) reglist);
|
||
+ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM)))
|
||
+ /* This instruction is also a return */
|
||
+ insert_ret = FALSE;
|
||
+
|
||
+ if (r12_imm && !insert_ret)
|
||
+ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist,
|
||
+ INTVAL (r12_imm));
|
||
+ else
|
||
+ fprintf (f, "\tldm\tsp++, %s\n", reglist);
|
||
+
|
||
+ }
|
||
+
|
||
+ }
|
||
+
|
||
+ /* Stack adjustment for exception handler. */
|
||
+ if (current_function_calls_eh_return)
|
||
+ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO));
|
||
+
|
||
+
|
||
+ if (IS_INTERRUPT (func_type))
|
||
+ {
|
||
+ fprintf (f, "\trete\n");
|
||
+ }
|
||
+ else if (insert_ret)
|
||
+ {
|
||
+ if (r12_imm)
|
||
+ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm));
|
||
+ else
|
||
+ fprintf (f, "\tretal\tr12\n");
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Function for converting a fp-register mask to a
|
||
+ reglistCPD8 register list string. */
|
||
+void
|
||
+avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string)
|
||
+{
|
||
+ int i;
|
||
+
|
||
+ /* Make sure reglist_string is empty */
|
||
+ reglist_string[0] = '\0';
|
||
+
|
||
+ for (i = 0; i < NUM_FP_REGS; i += 2)
|
||
+ {
|
||
+ if (reglist_mask & (1 << i))
|
||
+ {
|
||
+ strlen (reglist_string) ?
|
||
+ sprintf (reglist_string, "%s, %s-%s", reglist_string,
|
||
+ reg_names[INTERNAL_FP_REGNUM (i)],
|
||
+ reg_names[INTERNAL_FP_REGNUM (i + 1)]) :
|
||
+ sprintf (reglist_string, "%s-%s",
|
||
+ reg_names[INTERNAL_FP_REGNUM (i)],
|
||
+ reg_names[INTERNAL_FP_REGNUM (i + 1)]);
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Function for converting a fp-register mask to a
|
||
+ reglistCP8 register list string. */
|
||
+void
|
||
+avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string)
|
||
+{
|
||
+ int i;
|
||
+
|
||
+ /* Make sure reglist_string is empty */
|
||
+ reglist_string[0] = '\0';
|
||
+
|
||
+ for (i = 0; i < NUM_FP_REGS; ++i)
|
||
+ {
|
||
+ if (reglist_mask & (1 << i))
|
||
+ {
|
||
+ strlen (reglist_string) ?
|
||
+ sprintf (reglist_string, "%s, %s", reglist_string,
|
||
+ reg_names[INTERNAL_FP_REGNUM (i)]) :
|
||
+ sprintf (reglist_string, "%s", reg_names[INTERNAL_FP_REGNUM (i)]);
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_make_reglist16 (int reglist16_vect, char *reglist16_string)
|
||
+{
|
||
+ int i;
|
||
+
|
||
+ /* Make sure reglist16_string is empty */
|
||
+ reglist16_string[0] = '\0';
|
||
+
|
||
+ for (i = 0; i < 16; ++i)
|
||
+ {
|
||
+ if (reglist16_vect & (1 << i))
|
||
+ {
|
||
+ strlen (reglist16_string) ?
|
||
+ sprintf (reglist16_string, "%s, %s", reglist16_string,
|
||
+ reg_names[INTERNAL_REGNUM (i)]) :
|
||
+ sprintf (reglist16_string, "%s", reg_names[INTERNAL_REGNUM (i)]);
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_convert_to_reglist16 (int reglist8_vect)
|
||
+{
|
||
+ int reglist16_vect = 0;
|
||
+ if (reglist8_vect & 0x1)
|
||
+ reglist16_vect |= 0xF;
|
||
+ if (reglist8_vect & 0x2)
|
||
+ reglist16_vect |= 0xF0;
|
||
+ if (reglist8_vect & 0x4)
|
||
+ reglist16_vect |= 0x300;
|
||
+ if (reglist8_vect & 0x8)
|
||
+ reglist16_vect |= 0x400;
|
||
+ if (reglist8_vect & 0x10)
|
||
+ reglist16_vect |= 0x800;
|
||
+ if (reglist8_vect & 0x20)
|
||
+ reglist16_vect |= 0x1000;
|
||
+ if (reglist8_vect & 0x40)
|
||
+ reglist16_vect |= 0x4000;
|
||
+ if (reglist8_vect & 0x80)
|
||
+ reglist16_vect |= 0x8000;
|
||
+
|
||
+ return reglist16_vect;
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_make_reglist8 (int reglist8_vect, char *reglist8_string)
|
||
+{
|
||
+ /* Make sure reglist8_string is empty */
|
||
+ reglist8_string[0] = '\0';
|
||
+
|
||
+ if (reglist8_vect & 0x1)
|
||
+ sprintf (reglist8_string, "r0-r3");
|
||
+ if (reglist8_vect & 0x2)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r4-r7",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "r4-r7");
|
||
+ if (reglist8_vect & 0x4)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r8-r9",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "r8-r9");
|
||
+ if (reglist8_vect & 0x8)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r10",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "r10");
|
||
+ if (reglist8_vect & 0x10)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r11",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "r11");
|
||
+ if (reglist8_vect & 0x20)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, r12",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "r12");
|
||
+ if (reglist8_vect & 0x40)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, lr",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "lr");
|
||
+ if (reglist8_vect & 0x80)
|
||
+ strlen (reglist8_string) ? sprintf (reglist8_string, "%s, pc",
|
||
+ reglist8_string) :
|
||
+ sprintf (reglist8_string, "pc");
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_eh_return_data_regno (int n)
|
||
+{
|
||
+ if (n >= 0 && n <= 3)
|
||
+ return 8 + n;
|
||
+ else
|
||
+ return INVALID_REGNUM;
|
||
+}
|
||
+
|
||
+/* Compute the distance from register FROM to register TO.
|
||
+ These can be the arg pointer, the frame pointer or
|
||
+ the stack pointer.
|
||
+ Typical stack layout looks like this:
|
||
+
|
||
+ old stack pointer -> | |
|
||
+ ----
|
||
+ | | \
|
||
+ | | saved arguments for
|
||
+ | | vararg functions
|
||
+ arg_pointer -> | | /
|
||
+ --
|
||
+ | | \
|
||
+ | | call saved
|
||
+ | | registers
|
||
+ | | /
|
||
+ frame ptr -> --
|
||
+ | | \
|
||
+ | | local
|
||
+ | | variables
|
||
+ stack ptr --> | | /
|
||
+ --
|
||
+ | | \
|
||
+ | | outgoing
|
||
+ | | arguments
|
||
+ | | /
|
||
+ --
|
||
+
|
||
+ For a given funciton some or all of these stack compomnents
|
||
+ may not be needed, giving rise to the possibility of
|
||
+ eliminating some of the registers.
|
||
+
|
||
+ The values returned by this function must reflect the behaviour
|
||
+ of avr32_expand_prologue() and avr32_compute_save_reg_mask().
|
||
+
|
||
+ The sign of the number returned reflects the direction of stack
|
||
+ growth, so the values are positive for all eliminations except
|
||
+ from the soft frame pointer to the hard frame pointer. */
|
||
+
|
||
+
|
||
+int
|
||
+avr32_initial_elimination_offset (int from, int to)
|
||
+{
|
||
+ int i;
|
||
+ int call_saved_regs = 0;
|
||
+ unsigned long saved_reg_mask, saved_fp_reg_mask;
|
||
+ unsigned int local_vars = get_frame_size ();
|
||
+
|
||
+ saved_reg_mask = avr32_compute_save_reg_mask (TRUE);
|
||
+ saved_fp_reg_mask = avr32_compute_save_fp_reg_mask ();
|
||
+
|
||
+ for (i = 0; i < 16; ++i)
|
||
+ {
|
||
+ if (saved_reg_mask & (1 << i))
|
||
+ call_saved_regs += 4;
|
||
+ }
|
||
+
|
||
+ for (i = 0; i < NUM_FP_REGS; ++i)
|
||
+ {
|
||
+ if (saved_fp_reg_mask & (1 << i))
|
||
+ call_saved_regs += 4;
|
||
+ }
|
||
+
|
||
+ switch (from)
|
||
+ {
|
||
+ case ARG_POINTER_REGNUM:
|
||
+ switch (to)
|
||
+ {
|
||
+ case STACK_POINTER_REGNUM:
|
||
+ return call_saved_regs + local_vars;
|
||
+ case FRAME_POINTER_REGNUM:
|
||
+ return call_saved_regs;
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+ case FRAME_POINTER_REGNUM:
|
||
+ switch (to)
|
||
+ {
|
||
+ case STACK_POINTER_REGNUM:
|
||
+ return local_vars;
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+ default:
|
||
+ abort ();
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+ Returns a rtx used when passing the next argument to a function.
|
||
+ avr32_init_cumulative_args() and avr32_function_arg_advance() sets witch
|
||
+ register to use.
|
||
+*/
|
||
+rtx
|
||
+avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
|
||
+ tree type, int named)
|
||
+{
|
||
+ int index = -1;
|
||
+
|
||
+ HOST_WIDE_INT arg_size, arg_rsize;
|
||
+ if (type)
|
||
+ {
|
||
+ arg_size = int_size_in_bytes (type);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ arg_size = GET_MODE_SIZE (mode);
|
||
+ }
|
||
+ arg_rsize = PUSH_ROUNDING (arg_size);
|
||
+
|
||
+ /*
|
||
+ The last time this macro is called, it is called with mode == VOIDmode,
|
||
+ and its result is passed to the call or call_value pattern as operands 2
|
||
+ and 3 respectively. */
|
||
+ if (mode == VOIDmode)
|
||
+ {
|
||
+ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */
|
||
+ }
|
||
+
|
||
+ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named)
|
||
+ {
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+
|
||
+ if (arg_rsize == 8)
|
||
+ {
|
||
+ /* use r11:r10 or r9:r8. */
|
||
+ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2)))
|
||
+ index = 1;
|
||
+ else if (!(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4)))
|
||
+ index = 3;
|
||
+ else
|
||
+ index = -1;
|
||
+ }
|
||
+ else if (arg_rsize == 4)
|
||
+ { /* Use first available register */
|
||
+ index = 0;
|
||
+ while (index <= LAST_CUM_REG_INDEX && GET_USED_INDEX (cum, index))
|
||
+ index++;
|
||
+ if (index > LAST_CUM_REG_INDEX)
|
||
+ index = -1;
|
||
+ }
|
||
+
|
||
+ SET_REG_INDEX (cum, index);
|
||
+
|
||
+ if (GET_REG_INDEX (cum) >= 0)
|
||
+ return gen_rtx_REG (mode,
|
||
+ avr32_function_arg_reglist[GET_REG_INDEX (cum)]);
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Set the register used for passing the first argument to a function.
|
||
+*/
|
||
+void
|
||
+avr32_init_cumulative_args (CUMULATIVE_ARGS * cum,
|
||
+ tree fntype ATTRIBUTE_UNUSED,
|
||
+ rtx libname ATTRIBUTE_UNUSED,
|
||
+ tree fndecl ATTRIBUTE_UNUSED)
|
||
+ {
|
||
+ /* Set all registers as unused. */
|
||
+ SET_INDEXES_UNUSED (cum);
|
||
+
|
||
+ /* Reset uses_anonymous_args */
|
||
+ cum->uses_anonymous_args = 0;
|
||
+
|
||
+ /* Reset size of stack pushed arguments */
|
||
+ cum->stack_pushed_args_size = 0;
|
||
+ }
|
||
+
|
||
+/*
|
||
+ Set register used for passing the next argument to a function. Only the
|
||
+ Scratch Registers are used.
|
||
+
|
||
+ number name
|
||
+ 15 r15 PC
|
||
+ 14 r14 LR
|
||
+ 13 r13 _SP_________
|
||
+ FIRST_CUM_REG 12 r12 _||_
|
||
+ 10 r11 ||
|
||
+ 11 r10 _||_ Scratch Registers
|
||
+ 8 r9 ||
|
||
+ LAST_SCRATCH_REG 9 r8 _\/_________
|
||
+ 6 r7 /\
|
||
+ 7 r6 ||
|
||
+ 4 r5 ||
|
||
+ 5 r4 ||
|
||
+ 2 r3 ||
|
||
+ 3 r2 ||
|
||
+ 0 r1 ||
|
||
+ 1 r0 _||_________
|
||
+
|
||
+*/
|
||
+void
|
||
+avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
|
||
+ tree type, int named ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ HOST_WIDE_INT arg_size, arg_rsize;
|
||
+
|
||
+ if (type)
|
||
+ {
|
||
+ arg_size = int_size_in_bytes (type);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ arg_size = GET_MODE_SIZE (mode);
|
||
+ }
|
||
+ arg_rsize = PUSH_ROUNDING (arg_size);
|
||
+
|
||
+ /* It the argument had to be passed in stack, no register is used. */
|
||
+ if ((*targetm.calls.must_pass_in_stack) (mode, type))
|
||
+ {
|
||
+ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type));
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* Mark the used registers as "used". */
|
||
+ if (GET_REG_INDEX (cum) >= 0)
|
||
+ {
|
||
+ SET_USED_INDEX (cum, GET_REG_INDEX (cum));
|
||
+ if (arg_rsize == 8)
|
||
+ {
|
||
+ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1));
|
||
+ }
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Had to use stack */
|
||
+ cum->stack_pushed_args_size += arg_rsize;
|
||
+ }
|
||
+}
|
||
+
|
||
+/*
|
||
+ Defines witch direction to go to find the next register to use if the
|
||
+ argument is larger then one register or for arguments shorter than an
|
||
+ int which is not promoted, such as the last part of structures with
|
||
+ size not a multiple of 4. */
|
||
+enum direction
|
||
+avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ tree type)
|
||
+{
|
||
+ /* Pad upward for all aggregates except byte and halfword sized aggregates
|
||
+ which can be passed in registers. */
|
||
+ if (type
|
||
+ && AGGREGATE_TYPE_P (type)
|
||
+ && (int_size_in_bytes (type) != 1)
|
||
+ && !((int_size_in_bytes (type) == 2)
|
||
+ && TYPE_ALIGN_UNIT (type) >= 2)
|
||
+ && (int_size_in_bytes (type) & 0x3))
|
||
+ {
|
||
+ return upward;
|
||
+ }
|
||
+
|
||
+ return downward;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Return a rtx used for the return value from a function call.
|
||
+*/
|
||
+rtx
|
||
+avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ if (avr32_return_in_memory (type, func))
|
||
+ return NULL_RTX;
|
||
+
|
||
+ if (int_size_in_bytes (type) <= 4)
|
||
+ if (avr32_return_in_msb (type))
|
||
+ /* Aggregates of size less than a word which does align the data in the
|
||
+ MSB must use SImode for r12. */
|
||
+ return gen_rtx_REG (SImode, RET_REGISTER);
|
||
+ else
|
||
+ return gen_rtx_REG (TYPE_MODE (type), RET_REGISTER);
|
||
+ else if (int_size_in_bytes (type) <= 8)
|
||
+ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11));
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Return a rtx used for the return value from a library function call.
|
||
+*/
|
||
+rtx
|
||
+avr32_libcall_value (enum machine_mode mode)
|
||
+{
|
||
+
|
||
+ if (GET_MODE_SIZE (mode) <= 4)
|
||
+ return gen_rtx_REG (mode, RET_REGISTER);
|
||
+ else if (GET_MODE_SIZE (mode) <= 8)
|
||
+ return gen_rtx_REG (mode, INTERNAL_REGNUM (11));
|
||
+ else
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/* Return TRUE if X references a SYMBOL_REF. */
|
||
+int
|
||
+symbol_mentioned_p (rtx x)
|
||
+{
|
||
+ const char *fmt;
|
||
+ int i;
|
||
+
|
||
+ if (GET_CODE (x) == SYMBOL_REF)
|
||
+ return 1;
|
||
+
|
||
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
+
|
||
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
+ {
|
||
+ if (fmt[i] == 'E')
|
||
+ {
|
||
+ int j;
|
||
+
|
||
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
+ if (symbol_mentioned_p (XVECEXP (x, i, j)))
|
||
+ return 1;
|
||
+ }
|
||
+ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
|
||
+ return 1;
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Return TRUE if X references a LABEL_REF. */
|
||
+int
|
||
+label_mentioned_p (rtx x)
|
||
+{
|
||
+ const char *fmt;
|
||
+ int i;
|
||
+
|
||
+ if (GET_CODE (x) == LABEL_REF)
|
||
+ return 1;
|
||
+
|
||
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
+ {
|
||
+ if (fmt[i] == 'E')
|
||
+ {
|
||
+ int j;
|
||
+
|
||
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
+ if (label_mentioned_p (XVECEXP (x, i, j)))
|
||
+ return 1;
|
||
+ }
|
||
+ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
|
||
+ return 1;
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Return TRUE if X contains a MEM expression. */
|
||
+int
|
||
+mem_mentioned_p (rtx x)
|
||
+{
|
||
+ const char *fmt;
|
||
+ int i;
|
||
+
|
||
+ if (MEM_P (x))
|
||
+ return 1;
|
||
+
|
||
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
+ {
|
||
+ if (fmt[i] == 'E')
|
||
+ {
|
||
+ int j;
|
||
+
|
||
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
+ if (mem_mentioned_p (XVECEXP (x, i, j)))
|
||
+ return 1;
|
||
+ }
|
||
+ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i)))
|
||
+ return 1;
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_legitimate_pic_operand_p (rtx x)
|
||
+{
|
||
+
|
||
+ /* We can't have const, this must be broken down to a symbol. */
|
||
+ if (GET_CODE (x) == CONST)
|
||
+ return FALSE;
|
||
+
|
||
+ /* Can't access symbols or labels via the constant pool either */
|
||
+ if ((GET_CODE (x) == SYMBOL_REF
|
||
+ && CONSTANT_POOL_ADDRESS_P (x)
|
||
+ && (symbol_mentioned_p (get_pool_constant (x))
|
||
+ || label_mentioned_p (get_pool_constant (x)))))
|
||
+ return FALSE;
|
||
+
|
||
+ return TRUE;
|
||
+}
|
||
+
|
||
+
|
||
+rtx
|
||
+legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
+ rtx reg)
|
||
+{
|
||
+
|
||
+ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
|
||
+ {
|
||
+ int subregs = 0;
|
||
+
|
||
+ if (reg == 0)
|
||
+ {
|
||
+ if (no_new_pseudos)
|
||
+ abort ();
|
||
+ else
|
||
+ reg = gen_reg_rtx (Pmode);
|
||
+
|
||
+ subregs = 1;
|
||
+ }
|
||
+
|
||
+ emit_move_insn (reg, orig);
|
||
+
|
||
+ /* Only set current function as using pic offset table if flag_pic is
|
||
+ set. This is because this function is also used if
|
||
+ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */
|
||
+ if (flag_pic)
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+
|
||
+ /* Put a REG_EQUAL note on this insn, so that it can be optimized by
|
||
+ loop. */
|
||
+ return reg;
|
||
+ }
|
||
+ else if (GET_CODE (orig) == CONST)
|
||
+ {
|
||
+ rtx base, offset;
|
||
+
|
||
+ if (flag_pic
|
||
+ && GET_CODE (XEXP (orig, 0)) == PLUS
|
||
+ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
|
||
+ return orig;
|
||
+
|
||
+ if (reg == 0)
|
||
+ {
|
||
+ if (no_new_pseudos)
|
||
+ abort ();
|
||
+ else
|
||
+ reg = gen_reg_rtx (Pmode);
|
||
+ }
|
||
+
|
||
+ if (GET_CODE (XEXP (orig, 0)) == PLUS)
|
||
+ {
|
||
+ base =
|
||
+ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
||
+ offset =
|
||
+ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
||
+ base == reg ? 0 : reg);
|
||
+ }
|
||
+ else
|
||
+ abort ();
|
||
+
|
||
+ if (GET_CODE (offset) == CONST_INT)
|
||
+ {
|
||
+ /* The base register doesn't really matter, we only want to test
|
||
+ the index for the appropriate mode. */
|
||
+ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21"))
|
||
+ {
|
||
+ if (!no_new_pseudos)
|
||
+ offset = force_reg (Pmode, offset);
|
||
+ else
|
||
+ abort ();
|
||
+ }
|
||
+
|
||
+ if (GET_CODE (offset) == CONST_INT)
|
||
+ return plus_constant (base, INTVAL (offset));
|
||
+ }
|
||
+
|
||
+ return gen_rtx_PLUS (Pmode, base, offset);
|
||
+ }
|
||
+
|
||
+ return orig;
|
||
+}
|
||
+
|
||
+/* Generate code to load the PIC register. */
|
||
+void
|
||
+avr32_load_pic_register (void)
|
||
+{
|
||
+ rtx l1, pic_tmp;
|
||
+ rtx global_offset_table;
|
||
+
|
||
+ if ((current_function_uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT)
|
||
+ return;
|
||
+
|
||
+ if (!flag_pic)
|
||
+ abort ();
|
||
+
|
||
+ l1 = gen_label_rtx ();
|
||
+
|
||
+ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
+ pic_tmp =
|
||
+ gen_rtx_CONST (Pmode,
|
||
+ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1),
|
||
+ global_offset_table));
|
||
+ emit_insn (gen_pic_load_addr
|
||
+ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp)));
|
||
+ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1));
|
||
+
|
||
+ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp
|
||
+ can cause life info to screw up. */
|
||
+ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/* This hook should return true if values of type type are returned at the most
|
||
+ significant end of a register (in other words, if they are padded at the
|
||
+ least significant end). You can assume that type is returned in a register;
|
||
+ the caller is required to check this. Note that the register provided by
|
||
+ FUNCTION_VALUE must be able to hold the complete return value. For example,
|
||
+ if a 1-, 2- or 3-byte structure is returned at the most significant end of a
|
||
+ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */
|
||
+bool
|
||
+avr32_return_in_msb (tree type ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) ||
|
||
+ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return
|
||
+ false; else return true; */
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+ Returns one if a certain function value is going to be returned in memory
|
||
+ and zero if it is going to be returned in a register.
|
||
+
|
||
+ BLKmode and all other modes that is larger than 64 bits are returned in
|
||
+ memory.
|
||
+*/
|
||
+bool
|
||
+avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ if (TYPE_MODE (type) == VOIDmode)
|
||
+ return false;
|
||
+
|
||
+ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD)
|
||
+ || int_size_in_bytes (type) == -1)
|
||
+ {
|
||
+ return true;
|
||
+ }
|
||
+
|
||
+ /* If we have an aggregate then use the same mechanism as when checking if
|
||
+ it should be passed on the stack. */
|
||
+ if (type
|
||
+ && AGGREGATE_TYPE_P (type)
|
||
+ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type))
|
||
+ return true;
|
||
+
|
||
+ return false;
|
||
+}
|
||
+
|
||
+
|
||
+/* Output the constant part of the trampoline.
|
||
+ lddpc r0, pc[0x8:e] ; load static chain register
|
||
+ lddpc pc, pc[0x8:e] ; jump to subrutine
|
||
+ .long 0 ; Address to static chain,
|
||
+ ; filled in by avr32_initialize_trampoline()
|
||
+ .long 0 ; Address to subrutine,
|
||
+ ; filled in by avr32_initialize_trampoline()
|
||
+*/
|
||
+void
|
||
+avr32_trampoline_template (FILE * file)
|
||
+{
|
||
+ fprintf (file, "\tlddpc r0, pc[8]\n");
|
||
+ fprintf (file, "\tlddpc pc, pc[8]\n");
|
||
+ /* make room for the address of the static chain. */
|
||
+ fprintf (file, "\t.long\t0\n");
|
||
+ /* make room for the address to the subrutine. */
|
||
+ fprintf (file, "\t.long\t0\n");
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+ Initialize the variable parts of a trampoline.
|
||
+*/
|
||
+void
|
||
+avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
|
||
+{
|
||
+ /* Store the address to the static chain. */
|
||
+ emit_move_insn (gen_rtx_MEM
|
||
+ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)),
|
||
+ static_chain);
|
||
+
|
||
+ /* Store the address to the function. */
|
||
+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)),
|
||
+ fnaddr);
|
||
+
|
||
+ emit_insn (gen_cache (gen_rtx_REG (SImode, 13),
|
||
+ gen_rtx_CONST_INT (SImode,
|
||
+ AVR32_CACHE_INVALIDATE_ICACHE)));
|
||
+}
|
||
+
|
||
+/* Return nonzero if X is valid as an addressing register. */
|
||
+int
|
||
+avr32_address_register_rtx_p (rtx x, int strict_p)
|
||
+{
|
||
+ int regno;
|
||
+
|
||
+ if (!register_operand(x, GET_MODE(x)))
|
||
+ return 0;
|
||
+
|
||
+ /* If strict we require the register to be a hard register. */
|
||
+ if (strict_p
|
||
+ && !REG_P(x))
|
||
+ return 0;
|
||
+
|
||
+ regno = REGNO (x);
|
||
+
|
||
+ if (strict_p)
|
||
+ return REGNO_OK_FOR_BASE_P (regno);
|
||
+
|
||
+ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER);
|
||
+}
|
||
+
|
||
+/* Return nonzero if INDEX is valid for an address index operand. */
|
||
+int
|
||
+avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p)
|
||
+{
|
||
+ enum rtx_code code = GET_CODE (index);
|
||
+
|
||
+ if (GET_MODE_SIZE (mode) > 8)
|
||
+ return 0;
|
||
+
|
||
+ /* Standard coprocessor addressing modes. */
|
||
+ if (code == CONST_INT)
|
||
+ {
|
||
+ if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
|
||
+ /* Coprocessor mem insns has a smaller reach than ordinary mem insns */
|
||
+ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ku14");
|
||
+ else
|
||
+ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16");
|
||
+ }
|
||
+
|
||
+ if (avr32_address_register_rtx_p (index, strict_p))
|
||
+ return 1;
|
||
+
|
||
+ if (code == MULT)
|
||
+ {
|
||
+ rtx xiop0 = XEXP (index, 0);
|
||
+ rtx xiop1 = XEXP (index, 1);
|
||
+ return ((avr32_address_register_rtx_p (xiop0, strict_p)
|
||
+ && power_of_two_operand (xiop1, SImode)
|
||
+ && (INTVAL (xiop1) <= 8))
|
||
+ || (avr32_address_register_rtx_p (xiop1, strict_p)
|
||
+ && power_of_two_operand (xiop0, SImode)
|
||
+ && (INTVAL (xiop0) <= 8)));
|
||
+ }
|
||
+ else if (code == ASHIFT)
|
||
+ {
|
||
+ rtx op = XEXP (index, 1);
|
||
+
|
||
+ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p)
|
||
+ && GET_CODE (op) == CONST_INT
|
||
+ && INTVAL (op) > 0 && INTVAL (op) <= 3);
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if
|
||
+ the RTX x is a legitimate memory address.
|
||
+
|
||
+ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS
|
||
+ if it is.
|
||
+*/
|
||
+
|
||
+/* Forward declaration*/
|
||
+int is_minipool_label (rtx label);
|
||
+
|
||
+int
|
||
+avr32_legitimate_address (enum machine_mode mode, rtx x, int strict)
|
||
+{
|
||
+
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case REG:
|
||
+ return avr32_address_register_rtx_p (x, strict);
|
||
+ case CONST_INT:
|
||
+ return ((mode==SImode)
|
||
+ && CONST_OK_FOR_CONSTRAINT_P(INTVAL(x), 'K', "Ks17"));
|
||
+ case CONST:
|
||
+ {
|
||
+ rtx label = avr32_find_symbol (x);
|
||
+ if (label
|
||
+ &&
|
||
+ ((CONSTANT_POOL_ADDRESS_P (label)
|
||
+ && !(flag_pic
|
||
+ && (symbol_mentioned_p (get_pool_constant (label))
|
||
+ || label_mentioned_p (get_pool_constant (label)))))
|
||
+ /* TODO! Can this ever happen??? */
|
||
+ || ((GET_CODE (label) == LABEL_REF)
|
||
+ && GET_CODE (XEXP (label, 0)) == CODE_LABEL
|
||
+ && is_minipool_label (XEXP (label, 0)))
|
||
+ /*|| ((GET_CODE (label) == SYMBOL_REF)
|
||
+ && mode == SImode
|
||
+ && SYMBOL_REF_RMW_ADDR(label))*/))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+ }
|
||
+ break;
|
||
+ case LABEL_REF:
|
||
+ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL
|
||
+ && is_minipool_label (XEXP (x, 0)))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+ break;
|
||
+ case SYMBOL_REF:
|
||
+ {
|
||
+ if (CONSTANT_POOL_ADDRESS_P (x)
|
||
+ && !(flag_pic
|
||
+ && (symbol_mentioned_p (get_pool_constant (x))
|
||
+ || label_mentioned_p (get_pool_constant (x)))))
|
||
+ return TRUE;
|
||
+ else if (SYMBOL_REF_RCALL_FUNCTION_P (x)
|
||
+ || (mode == SImode
|
||
+ && SYMBOL_REF_RMW_ADDR (x)))
|
||
+ return TRUE;
|
||
+ break;
|
||
+ }
|
||
+ case PRE_DEC: /* (pre_dec (...)) */
|
||
+ case POST_INC: /* (post_inc (...)) */
|
||
+ return avr32_address_register_rtx_p (XEXP (x, 0), strict);
|
||
+ case PLUS: /* (plus (...) (...)) */
|
||
+ {
|
||
+ rtx xop0 = XEXP (x, 0);
|
||
+ rtx xop1 = XEXP (x, 1);
|
||
+
|
||
+ return ((avr32_address_register_rtx_p (xop0, strict)
|
||
+ && avr32_legitimate_index_p (mode, xop1, strict))
|
||
+ || (avr32_address_register_rtx_p (xop1, strict)
|
||
+ && avr32_legitimate_index_p (mode, xop0, strict)));
|
||
+ }
|
||
+ default:
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+
|
||
+int
|
||
+avr32_const_ok_for_move (HOST_WIDE_INT c)
|
||
+{
|
||
+ if ( TARGET_V2_INSNS )
|
||
+ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21")
|
||
+ /* movh instruction */
|
||
+ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) );
|
||
+ else
|
||
+ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21");
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_const_double_immediate (rtx value)
|
||
+{
|
||
+ HOST_WIDE_INT hi, lo;
|
||
+
|
||
+ if (GET_CODE (value) != CONST_DOUBLE)
|
||
+ return FALSE;
|
||
+
|
||
+ if (SCALAR_FLOAT_MODE_P (GET_MODE (value)))
|
||
+ {
|
||
+ HOST_WIDE_INT target_float[2];
|
||
+ hi = lo = 0;
|
||
+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value),
|
||
+ GET_MODE (value));
|
||
+ lo = target_float[0];
|
||
+ hi = target_float[1];
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ hi = CONST_DOUBLE_HIGH (value);
|
||
+ lo = CONST_DOUBLE_LOW (value);
|
||
+ }
|
||
+
|
||
+ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21")
|
||
+ && (GET_MODE (value) == SFmode
|
||
+ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21")))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+
|
||
+int
|
||
+avr32_legitimate_constant_p (rtx x)
|
||
+{
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case CONST_INT:
|
||
+ /* Check if we should put large immediate into constant pool
|
||
+ or load them directly with mov/orh.*/
|
||
+ if (!avr32_imm_in_const_pool)
|
||
+ return 1;
|
||
+
|
||
+ return avr32_const_ok_for_move (INTVAL (x));
|
||
+ case CONST_DOUBLE:
|
||
+ /* Check if we should put large immediate into constant pool
|
||
+ or load them directly with mov/orh.*/
|
||
+ if (!avr32_imm_in_const_pool)
|
||
+ return 1;
|
||
+
|
||
+ if (GET_MODE (x) == SFmode
|
||
+ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode)
|
||
+ return avr32_const_double_immediate (x);
|
||
+ else
|
||
+ return 0;
|
||
+ case LABEL_REF:
|
||
+ case SYMBOL_REF:
|
||
+ return avr32_find_symbol (x) && (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS);
|
||
+ case CONST:
|
||
+ case HIGH:
|
||
+ case CONST_VECTOR:
|
||
+ return 0;
|
||
+ default:
|
||
+ printf ("%s():\n", __FUNCTION__);
|
||
+ debug_rtx (x);
|
||
+ return 1;
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+/* Strip any special encoding from labels */
|
||
+const char *
|
||
+avr32_strip_name_encoding (const char *name)
|
||
+{
|
||
+ const char *stripped = name;
|
||
+
|
||
+ while (1)
|
||
+ {
|
||
+ switch (stripped[0])
|
||
+ {
|
||
+ case '#':
|
||
+ stripped = strchr (name + 1, '#') + 1;
|
||
+ break;
|
||
+ case '*':
|
||
+ stripped = &stripped[1];
|
||
+ break;
|
||
+ default:
|
||
+ return stripped;
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/* Do anything needed before RTL is emitted for each function. */
|
||
+static struct machine_function *
|
||
+avr32_init_machine_status (void)
|
||
+{
|
||
+ struct machine_function *machine;
|
||
+ machine =
|
||
+ (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
|
||
+
|
||
+#if AVR32_FT_UNKNOWN != 0
|
||
+ machine->func_type = AVR32_FT_UNKNOWN;
|
||
+#endif
|
||
+
|
||
+ machine->minipool_label_head = 0;
|
||
+ machine->minipool_label_tail = 0;
|
||
+ machine->ifcvt_after_reload = 0;
|
||
+ return machine;
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_init_expanders (void)
|
||
+{
|
||
+ /* Arrange to initialize and mark the machine per-function status. */
|
||
+ init_machine_status = avr32_init_machine_status;
|
||
+}
|
||
+
|
||
+
|
||
+/* Return an RTX indicating where the return address to the
|
||
+ calling function can be found. */
|
||
+
|
||
+rtx
|
||
+avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ if (count != 0)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ return get_hard_reg_initial_val (Pmode, LR_REGNUM);
|
||
+}
|
||
+
|
||
+
|
||
+void
|
||
+avr32_encode_section_info (tree decl, rtx rtl, int first)
|
||
+{
|
||
+ default_encode_section_info(decl, rtl, first);
|
||
+
|
||
+ if ( TREE_CODE (decl) == VAR_DECL
|
||
+ && (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF)
|
||
+ && (lookup_attribute ("rmw_addressable", DECL_ATTRIBUTES (decl))
|
||
+ || TARGET_RMW_ADDRESSABLE_DATA) ){
|
||
+ if ( !TARGET_RMW || flag_pic )
|
||
+ return;
|
||
+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT);
|
||
+ }
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_asm_output_label (FILE * stream, const char *name)
|
||
+{
|
||
+ name = avr32_strip_name_encoding (name);
|
||
+
|
||
+ /* Print the label. */
|
||
+ assemble_name (stream, name);
|
||
+ fprintf (stream, ":\n");
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+void
|
||
+avr32_asm_weaken_label (FILE * stream, const char *name)
|
||
+{
|
||
+ fprintf (stream, "\t.weak ");
|
||
+ assemble_name (stream, name);
|
||
+ fprintf (stream, "\n");
|
||
+}
|
||
+
|
||
+/*
|
||
+ Checks if a labelref is equal to a reserved word in the assembler. If it is,
|
||
+ insert a '_' before the label name.
|
||
+*/
|
||
+void
|
||
+avr32_asm_output_labelref (FILE * stream, const char *name)
|
||
+{
|
||
+ int verbatim = FALSE;
|
||
+ const char *stripped = name;
|
||
+ int strip_finished = FALSE;
|
||
+
|
||
+ while (!strip_finished)
|
||
+ {
|
||
+ switch (stripped[0])
|
||
+ {
|
||
+ case '#':
|
||
+ stripped = strchr (name + 1, '#') + 1;
|
||
+ break;
|
||
+ case '*':
|
||
+ stripped = &stripped[1];
|
||
+ verbatim = TRUE;
|
||
+ break;
|
||
+ default:
|
||
+ strip_finished = TRUE;
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (verbatim)
|
||
+ fputs (stripped, stream);
|
||
+ else
|
||
+ asm_fprintf (stream, "%U%s", stripped);
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+ Check if the comparison in compare_exp is redundant
|
||
+ for the condition given in next_cond given that the
|
||
+ needed flags are already set by an earlier instruction.
|
||
+ Uses cc_prev_status to check this.
|
||
+
|
||
+ Returns NULL_RTX if the compare is not redundant
|
||
+ or the new condition to use in the conditional
|
||
+ instruction if the compare is redundant.
|
||
+*/
|
||
+static rtx
|
||
+is_compare_redundant (rtx compare_exp, rtx next_cond)
|
||
+{
|
||
+ int z_flag_valid = FALSE;
|
||
+ int n_flag_valid = FALSE;
|
||
+ rtx new_cond;
|
||
+
|
||
+ if (GET_CODE (compare_exp) != COMPARE
|
||
+ && GET_CODE (compare_exp) != AND)
|
||
+ return NULL_RTX;
|
||
+
|
||
+
|
||
+ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp))
|
||
+ {
|
||
+ /* cc0 already contains the correct comparison -> delete cmp insn */
|
||
+ return next_cond;
|
||
+ }
|
||
+
|
||
+ if (GET_MODE (compare_exp) != SImode)
|
||
+ return NULL_RTX;
|
||
+
|
||
+ switch (cc_prev_status.mdep.flags)
|
||
+ {
|
||
+ case CC_SET_VNCZ:
|
||
+ case CC_SET_NCZ:
|
||
+ n_flag_valid = TRUE;
|
||
+ case CC_SET_CZ:
|
||
+ case CC_SET_Z:
|
||
+ z_flag_valid = TRUE;
|
||
+ }
|
||
+
|
||
+ if (cc_prev_status.mdep.value
|
||
+ && GET_CODE (compare_exp) == COMPARE
|
||
+ && REG_P (XEXP (compare_exp, 0))
|
||
+ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value)
|
||
+ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT
|
||
+ && next_cond != NULL_RTX)
|
||
+ {
|
||
+ if (INTVAL (XEXP (compare_exp, 1)) == 0
|
||
+ && z_flag_valid
|
||
+ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE))
|
||
+ /* We can skip comparison Z flag is already reflecting ops[0] */
|
||
+ return next_cond;
|
||
+ else if (n_flag_valid
|
||
+ && ((INTVAL (XEXP (compare_exp, 1)) == 0
|
||
+ && (GET_CODE (next_cond) == GE
|
||
+ || GET_CODE (next_cond) == LT))
|
||
+ || (INTVAL (XEXP (compare_exp, 1)) == -1
|
||
+ && (GET_CODE (next_cond) == GT
|
||
+ || GET_CODE (next_cond) == LE))))
|
||
+ {
|
||
+ /* We can skip comparison N flag is already reflecting ops[0],
|
||
+ which means that we can use the mi/pl conditions to check if
|
||
+ ops[0] is GE or LT 0. */
|
||
+ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT))
|
||
+ new_cond =
|
||
+ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
|
||
+ UNSPEC_COND_PL);
|
||
+ else
|
||
+ new_cond =
|
||
+ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx),
|
||
+ UNSPEC_COND_MI);
|
||
+ return new_cond;
|
||
+ }
|
||
+ }
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/* Updates cc_status. */
|
||
+void
|
||
+avr32_notice_update_cc (rtx exp, rtx insn)
|
||
+{
|
||
+ enum attr_cc attr_cc = get_attr_cc (insn);
|
||
+
|
||
+ if ( attr_cc == CC_SET_Z_IF_NOT_V2 )
|
||
+ if (TARGET_V2_INSNS)
|
||
+ attr_cc = CC_NONE;
|
||
+ else
|
||
+ attr_cc = CC_SET_Z;
|
||
+
|
||
+ switch (attr_cc)
|
||
+ {
|
||
+ case CC_CALL_SET:
|
||
+ CC_STATUS_INIT;
|
||
+ FPCC_STATUS_INIT;
|
||
+ /* Check if the function call returns a value in r12 */
|
||
+ if (REG_P (recog_data.operand[0])
|
||
+ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM)
|
||
+ {
|
||
+ cc_status.flags = 0;
|
||
+ cc_status.mdep.value =
|
||
+ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx);
|
||
+ cc_status.mdep.flags = CC_SET_VNCZ;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+
|
||
+ }
|
||
+ break;
|
||
+ case CC_COMPARE:
|
||
+ {
|
||
+ /* Check that compare will not be optimized away if so nothing should
|
||
+ be done */
|
||
+ rtx compare_exp = SET_SRC (exp);
|
||
+ /* Check if we have a tst expression. If so convert it to a
|
||
+ compare with 0. */
|
||
+ if ( REG_P (SET_SRC (exp)) )
|
||
+ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)),
|
||
+ SET_SRC (exp),
|
||
+ const0_rtx);
|
||
+
|
||
+ if (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) ==
|
||
+ NULL_RTX)
|
||
+ {
|
||
+
|
||
+ /* Reset the nonstandard flag */
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.flags = 0;
|
||
+ cc_status.mdep.value = compare_exp;
|
||
+ cc_status.mdep.flags = CC_SET_VNCZ;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ }
|
||
+ }
|
||
+ break;
|
||
+ case CC_CMP_COND_INSN:
|
||
+ {
|
||
+ /* Conditional insn that emit the compare itself. */
|
||
+ rtx cmp;
|
||
+ rtx cmp_op0, cmp_op1;
|
||
+ rtx cond;
|
||
+ rtx dest;
|
||
+ rtx next_insn = next_nonnote_insn (insn);
|
||
+
|
||
+ if ( GET_CODE (exp) == COND_EXEC )
|
||
+ {
|
||
+ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0);
|
||
+ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1);
|
||
+ cond = COND_EXEC_TEST (exp);
|
||
+ dest = SET_DEST (COND_EXEC_CODE (exp));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* If then else conditional. compare operands are in operands
|
||
+ 4 and 5. */
|
||
+ cmp_op0 = recog_data.operand[4];
|
||
+ cmp_op1 = recog_data.operand[5];
|
||
+ cond = recog_data.operand[1];
|
||
+ dest = SET_DEST (exp);
|
||
+ }
|
||
+
|
||
+ if ( GET_CODE (cmp_op0) == AND )
|
||
+ cmp = cmp_op0;
|
||
+ else
|
||
+ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0),
|
||
+ cmp_op0,
|
||
+ cmp_op1);
|
||
+
|
||
+ /* Check if the conditional insns updates a register present
|
||
+ in the comparison, if so then we must reset the cc_status. */
|
||
+ if (REG_P (dest)
|
||
+ && (reg_mentioned_p (dest, cmp_op0)
|
||
+ || reg_mentioned_p (dest, cmp_op1))
|
||
+ && GET_CODE (exp) != COND_EXEC )
|
||
+ {
|
||
+ CC_STATUS_INIT;
|
||
+ }
|
||
+ else if (is_compare_redundant (cmp, cond) == NULL_RTX)
|
||
+ {
|
||
+ /* Reset the nonstandard flag */
|
||
+ CC_STATUS_INIT;
|
||
+ if ( GET_CODE (cmp_op0) == AND )
|
||
+ {
|
||
+ cc_status.flags = CC_INVERTED;
|
||
+ cc_status.mdep.flags = CC_SET_Z;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ cc_status.flags = 0;
|
||
+ cc_status.mdep.flags = CC_SET_VNCZ;
|
||
+ }
|
||
+ cc_status.mdep.value = cmp;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ }
|
||
+
|
||
+
|
||
+ /* Check if we have a COND_EXEC insn which updates one
|
||
+ of the registers in the compare status. */
|
||
+ if (REG_P (dest)
|
||
+ && (reg_mentioned_p (dest, cmp_op0)
|
||
+ || reg_mentioned_p (dest, cmp_op1))
|
||
+ && GET_CODE (exp) == COND_EXEC )
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 1;
|
||
+
|
||
+ if ( cc_status.mdep.cond_exec_cmp_clobbered
|
||
+ && GET_CODE (exp) == COND_EXEC
|
||
+ && next_insn != NULL
|
||
+ && INSN_P (next_insn)
|
||
+ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC
|
||
+ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0)
|
||
+ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1)
|
||
+ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond)
|
||
+ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) )
|
||
+ {
|
||
+ /* We have a sequence of conditional insns where the compare status has been clobbered
|
||
+ since the compare no longer reflects the content of the values to compare. */
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 1;
|
||
+ }
|
||
+
|
||
+ }
|
||
+ break;
|
||
+ case CC_FPCOMPARE:
|
||
+ /* Check that floating-point compare will not be optimized away if so
|
||
+ nothing should be done */
|
||
+ if (!rtx_equal_p (cc_prev_status.mdep.fpvalue, SET_SRC (exp)))
|
||
+ {
|
||
+ /* cc0 already contains the correct comparison -> delete cmp insn */
|
||
+ /* Reset the nonstandard flag */
|
||
+ cc_status.mdep.fpvalue = SET_SRC (exp);
|
||
+ cc_status.mdep.fpflags = CC_SET_CZ;
|
||
+ }
|
||
+ break;
|
||
+ case CC_FROM_FPCC:
|
||
+ /* Flags are updated with flags from Floating-point coprocessor, set
|
||
+ CC_NOT_SIGNED flag since the flags are set so that unsigned
|
||
+ condidion codes can be used directly. */
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.flags = CC_NOT_SIGNED;
|
||
+ cc_status.mdep.value = cc_status.mdep.fpvalue;
|
||
+ cc_status.mdep.flags = cc_status.mdep.fpflags;
|
||
+ break;
|
||
+ case CC_BLD:
|
||
+ /* Bit load is kind of like an inverted testsi, because the Z flag is
|
||
+ inverted */
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.flags = CC_INVERTED;
|
||
+ cc_status.mdep.value = SET_SRC (exp);
|
||
+ cc_status.mdep.flags = CC_SET_Z;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ break;
|
||
+ case CC_NONE:
|
||
+ /* Insn does not affect CC at all. Check if the instruction updates
|
||
+ some of the register currently reflected in cc0 */
|
||
+
|
||
+ if ((GET_CODE (exp) == SET)
|
||
+ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value)
|
||
+ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1)
|
||
+ || reg_mentioned_p (SET_DEST (exp), cc_status.value2)
|
||
+ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value)))
|
||
+ {
|
||
+ CC_STATUS_INIT;
|
||
+ }
|
||
+
|
||
+ /* If this is a parallel we must step through each of the parallel
|
||
+ expressions */
|
||
+ if (GET_CODE (exp) == PARALLEL)
|
||
+ {
|
||
+ int i;
|
||
+ for (i = 0; i < XVECLEN (exp, 0); ++i)
|
||
+ {
|
||
+ rtx vec_exp = XVECEXP (exp, 0, i);
|
||
+ if ((GET_CODE (vec_exp) == SET)
|
||
+ && (cc_status.value1 || cc_status.value2
|
||
+ || cc_status.mdep.value)
|
||
+ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1)
|
||
+ || reg_mentioned_p (SET_DEST (vec_exp),
|
||
+ cc_status.value2)
|
||
+ || reg_mentioned_p (SET_DEST (vec_exp),
|
||
+ cc_status.mdep.value)))
|
||
+ {
|
||
+ CC_STATUS_INIT;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* Check if we have memory opartions with post_inc or pre_dec on the
|
||
+ register currently reflected in cc0 */
|
||
+ if (GET_CODE (exp) == SET
|
||
+ && GET_CODE (SET_SRC (exp)) == MEM
|
||
+ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC
|
||
+ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC)
|
||
+ &&
|
||
+ (reg_mentioned_p
|
||
+ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1)
|
||
+ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
|
||
+ cc_status.value2)
|
||
+ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0),
|
||
+ cc_status.mdep.value)))
|
||
+ CC_STATUS_INIT;
|
||
+
|
||
+ if (GET_CODE (exp) == SET
|
||
+ && GET_CODE (SET_DEST (exp)) == MEM
|
||
+ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC
|
||
+ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC)
|
||
+ &&
|
||
+ (reg_mentioned_p
|
||
+ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1)
|
||
+ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
|
||
+ cc_status.value2)
|
||
+ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0),
|
||
+ cc_status.mdep.value)))
|
||
+ CC_STATUS_INIT;
|
||
+ break;
|
||
+
|
||
+ case CC_SET_VNCZ:
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.mdep.value = recog_data.operand[0];
|
||
+ cc_status.mdep.flags = CC_SET_VNCZ;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ break;
|
||
+
|
||
+ case CC_SET_NCZ:
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.mdep.value = recog_data.operand[0];
|
||
+ cc_status.mdep.flags = CC_SET_NCZ;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ break;
|
||
+
|
||
+ case CC_SET_CZ:
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.mdep.value = recog_data.operand[0];
|
||
+ cc_status.mdep.flags = CC_SET_CZ;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ break;
|
||
+
|
||
+ case CC_SET_Z:
|
||
+ CC_STATUS_INIT;
|
||
+ cc_status.mdep.value = recog_data.operand[0];
|
||
+ cc_status.mdep.flags = CC_SET_Z;
|
||
+ cc_status.mdep.cond_exec_cmp_clobbered = 0;
|
||
+ break;
|
||
+
|
||
+ case CC_CLOBBER:
|
||
+ CC_STATUS_INIT;
|
||
+ break;
|
||
+
|
||
+ default:
|
||
+ CC_STATUS_INIT;
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+ Outputs to stdio stream stream the assembler syntax for an instruction
|
||
+ operand x. x is an RTL expression.
|
||
+*/
|
||
+void
|
||
+avr32_print_operand (FILE * stream, rtx x, int code)
|
||
+{
|
||
+ int error = 0;
|
||
+
|
||
+ if ( code == '?' )
|
||
+ {
|
||
+ /* Predicable instruction, print condition code */
|
||
+
|
||
+ /* If the insn should not be conditional then do nothing. */
|
||
+ if ( current_insn_predicate == NULL_RTX )
|
||
+ return;
|
||
+
|
||
+ /* Set x to the predicate to force printing
|
||
+ the condition later on. */
|
||
+ x = current_insn_predicate;
|
||
+
|
||
+ /* Reverse condition if useing bld insn. */
|
||
+ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND )
|
||
+ x = reversed_condition (current_insn_predicate);
|
||
+ }
|
||
+ else if ( code == '!' )
|
||
+ {
|
||
+ /* Output compare for conditional insn if needed. */
|
||
+ rtx new_cond;
|
||
+ gcc_assert ( current_insn_predicate != NULL_RTX );
|
||
+ new_cond = avr32_output_cmp(current_insn_predicate,
|
||
+ GET_MODE(XEXP(current_insn_predicate,0)),
|
||
+ XEXP(current_insn_predicate,0),
|
||
+ XEXP(current_insn_predicate,1));
|
||
+
|
||
+ /* Check if the new condition is a special avr32 condition
|
||
+ specified using UNSPECs. If so we must handle it differently. */
|
||
+ if ( GET_CODE (new_cond) == UNSPEC )
|
||
+ {
|
||
+ current_insn_predicate =
|
||
+ gen_rtx_UNSPEC (CCmode,
|
||
+ gen_rtvec (2,
|
||
+ XEXP(current_insn_predicate,0),
|
||
+ XEXP(current_insn_predicate,1)),
|
||
+ XINT (new_cond, 1));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ PUT_CODE(current_insn_predicate, GET_CODE(new_cond));
|
||
+ }
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case UNSPEC:
|
||
+ switch (XINT (x, 1))
|
||
+ {
|
||
+ case UNSPEC_COND_PL:
|
||
+ if (code == 'i')
|
||
+ fputs ("mi", stream);
|
||
+ else
|
||
+ fputs ("pl", stream);
|
||
+ break;
|
||
+ case UNSPEC_COND_MI:
|
||
+ if (code == 'i')
|
||
+ fputs ("pl", stream);
|
||
+ else
|
||
+ fputs ("mi", stream);
|
||
+ break;
|
||
+ default:
|
||
+ error = 1;
|
||
+ }
|
||
+ break;
|
||
+ case EQ:
|
||
+ if (code == 'i')
|
||
+ fputs ("ne", stream);
|
||
+ else
|
||
+ fputs ("eq", stream);
|
||
+ break;
|
||
+ case NE:
|
||
+ if (code == 'i')
|
||
+ fputs ("eq", stream);
|
||
+ else
|
||
+ fputs ("ne", stream);
|
||
+ break;
|
||
+ case GT:
|
||
+ if (code == 'i')
|
||
+ fputs ("le", stream);
|
||
+ else
|
||
+ fputs ("gt", stream);
|
||
+ break;
|
||
+ case GTU:
|
||
+ if (code == 'i')
|
||
+ fputs ("ls", stream);
|
||
+ else
|
||
+ fputs ("hi", stream);
|
||
+ break;
|
||
+ case LT:
|
||
+ if (code == 'i')
|
||
+ fputs ("ge", stream);
|
||
+ else
|
||
+ fputs ("lt", stream);
|
||
+ break;
|
||
+ case LTU:
|
||
+ if (code == 'i')
|
||
+ fputs ("hs", stream);
|
||
+ else
|
||
+ fputs ("lo", stream);
|
||
+ break;
|
||
+ case GE:
|
||
+ if (code == 'i')
|
||
+ fputs ("lt", stream);
|
||
+ else
|
||
+ fputs ("ge", stream);
|
||
+ break;
|
||
+ case GEU:
|
||
+ if (code == 'i')
|
||
+ fputs ("lo", stream);
|
||
+ else
|
||
+ fputs ("hs", stream);
|
||
+ break;
|
||
+ case LE:
|
||
+ if (code == 'i')
|
||
+ fputs ("gt", stream);
|
||
+ else
|
||
+ fputs ("le", stream);
|
||
+ break;
|
||
+ case LEU:
|
||
+ if (code == 'i')
|
||
+ fputs ("hi", stream);
|
||
+ else
|
||
+ fputs ("ls", stream);
|
||
+ break;
|
||
+ case CONST_INT:
|
||
+ {
|
||
+ HOST_WIDE_INT value = INTVAL (x);
|
||
+
|
||
+ switch (code)
|
||
+ {
|
||
+ case 'm':
|
||
+ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD )
|
||
+ {
|
||
+ /* A const_int can be used to represent DImode constants. */
|
||
+ value >>= BITS_PER_WORD;
|
||
+ }
|
||
+ /* We might get a const_int immediate for setting a DI register,
|
||
+ we then must then return the correct sign extended DI. The most
|
||
+ significant word is just a sign extension. */
|
||
+ else if (value < 0)
|
||
+ value = -1;
|
||
+ else
|
||
+ value = 0;
|
||
+ break;
|
||
+ case 'i':
|
||
+ value++;
|
||
+ break;
|
||
+ case 'p':
|
||
+ {
|
||
+ /* Set to bit position of first bit set in immediate */
|
||
+ int i, bitpos = 32;
|
||
+ for (i = 0; i < 32; i++)
|
||
+ if (value & (1 << i))
|
||
+ {
|
||
+ bitpos = i;
|
||
+ break;
|
||
+ }
|
||
+ value = bitpos;
|
||
+ }
|
||
+ break;
|
||
+ case 'z':
|
||
+ {
|
||
+ /* Set to bit position of first bit cleared in immediate */
|
||
+ int i, bitpos = 32;
|
||
+ for (i = 0; i < 32; i++)
|
||
+ if (!(value & (1 << i)))
|
||
+ {
|
||
+ bitpos = i;
|
||
+ break;
|
||
+ }
|
||
+ value = bitpos;
|
||
+ }
|
||
+ break;
|
||
+ case 'r':
|
||
+ {
|
||
+ /* Reglist 8 */
|
||
+ char op[50];
|
||
+ op[0] = '\0';
|
||
+
|
||
+ if (value & 0x01)
|
||
+ sprintf (op, "r0-r3");
|
||
+ if (value & 0x02)
|
||
+ strlen (op) ? sprintf (op, "%s, r4-r7", op) : sprintf (op,
|
||
+ "r4-r7");
|
||
+ if (value & 0x04)
|
||
+ strlen (op) ? sprintf (op, "%s, r8-r9", op) : sprintf (op,
|
||
+ "r8-r9");
|
||
+ if (value & 0x08)
|
||
+ strlen (op) ? sprintf (op, "%s, r10", op) : sprintf (op,
|
||
+ "r10");
|
||
+ if (value & 0x10)
|
||
+ strlen (op) ? sprintf (op, "%s, r11", op) : sprintf (op,
|
||
+ "r11");
|
||
+ if (value & 0x20)
|
||
+ strlen (op) ? sprintf (op, "%s, r12", op) : sprintf (op,
|
||
+ "r12");
|
||
+ if (value & 0x40)
|
||
+ strlen (op) ? sprintf (op, "%s, lr", op) : sprintf (op, "lr");
|
||
+ if (value & 0x80)
|
||
+ strlen (op) ? sprintf (op, "%s, pc", op) : sprintf (op, "pc");
|
||
+
|
||
+ fputs (op, stream);
|
||
+ return;
|
||
+ }
|
||
+ case 's':
|
||
+ {
|
||
+ /* Reglist 16 */
|
||
+ char reglist16_string[100];
|
||
+ int i;
|
||
+ reglist16_string[0] = '\0';
|
||
+
|
||
+ for (i = 0; i < 16; ++i)
|
||
+ {
|
||
+ if (value & (1 << i))
|
||
+ {
|
||
+ strlen (reglist16_string) ? sprintf (reglist16_string,
|
||
+ "%s, %s",
|
||
+ reglist16_string,
|
||
+ reg_names
|
||
+ [INTERNAL_REGNUM
|
||
+ (i)]) :
|
||
+ sprintf (reglist16_string, "%s",
|
||
+ reg_names[INTERNAL_REGNUM (i)]);
|
||
+ }
|
||
+ }
|
||
+ fputs (reglist16_string, stream);
|
||
+ return;
|
||
+ }
|
||
+ case 'C':
|
||
+ {
|
||
+ /* RegListCP8 */
|
||
+ char reglist_string[100];
|
||
+ avr32_make_fp_reglist_w (value, (char *) reglist_string);
|
||
+ fputs (reglist_string, stream);
|
||
+ return;
|
||
+ }
|
||
+ case 'D':
|
||
+ {
|
||
+ /* RegListCPD8 */
|
||
+ char reglist_string[100];
|
||
+ avr32_make_fp_reglist_d (value, (char *) reglist_string);
|
||
+ fputs (reglist_string, stream);
|
||
+ return;
|
||
+ }
|
||
+ case 'h':
|
||
+ /* Print halfword part of word */
|
||
+ fputs (value ? "b" : "t", stream);
|
||
+ return;
|
||
+ }
|
||
+
|
||
+ /* Print Value */
|
||
+ fprintf (stream, "%d", value);
|
||
+ break;
|
||
+ }
|
||
+ case CONST_DOUBLE:
|
||
+ {
|
||
+ HOST_WIDE_INT hi, lo;
|
||
+ if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
|
||
+ {
|
||
+ HOST_WIDE_INT target_float[2];
|
||
+ hi = lo = 0;
|
||
+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x),
|
||
+ GET_MODE (x));
|
||
+ /* For doubles the most significant part starts at index 0. */
|
||
+ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
||
+ {
|
||
+ hi = target_float[0];
|
||
+ lo = target_float[1];
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ lo = target_float[0];
|
||
+ }
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ hi = CONST_DOUBLE_HIGH (x);
|
||
+ lo = CONST_DOUBLE_LOW (x);
|
||
+ }
|
||
+
|
||
+ if (code == 'm')
|
||
+ fprintf (stream, "%ld", hi);
|
||
+ else
|
||
+ fprintf (stream, "%ld", lo);
|
||
+
|
||
+ break;
|
||
+ }
|
||
+ case CONST:
|
||
+ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
|
||
+ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1)));
|
||
+ break;
|
||
+ case REG:
|
||
+ /* Swap register name if the register is DImode or DFmode. */
|
||
+ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
|
||
+ {
|
||
+ /* Double register must have an even numbered address */
|
||
+ gcc_assert (!(REGNO (x) % 2));
|
||
+ if (code == 'm')
|
||
+ fputs (reg_names[true_regnum (x)], stream);
|
||
+ else
|
||
+ fputs (reg_names[true_regnum (x) + 1], stream);
|
||
+ }
|
||
+ else if (GET_MODE (x) == TImode)
|
||
+ {
|
||
+ switch (code)
|
||
+ {
|
||
+ case 'T':
|
||
+ fputs (reg_names[true_regnum (x)], stream);
|
||
+ break;
|
||
+ case 'U':
|
||
+ fputs (reg_names[true_regnum (x) + 1], stream);
|
||
+ break;
|
||
+ case 'L':
|
||
+ fputs (reg_names[true_regnum (x) + 2], stream);
|
||
+ break;
|
||
+ case 'B':
|
||
+ fputs (reg_names[true_regnum (x) + 3], stream);
|
||
+ break;
|
||
+ default:
|
||
+ fprintf (stream, "%s, %s, %s, %s",
|
||
+ reg_names[true_regnum (x) + 3],
|
||
+ reg_names[true_regnum (x) + 2],
|
||
+ reg_names[true_regnum (x) + 1],
|
||
+ reg_names[true_regnum (x)]);
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ fputs (reg_names[true_regnum (x)], stream);
|
||
+ }
|
||
+ break;
|
||
+ case CODE_LABEL:
|
||
+ case LABEL_REF:
|
||
+ case SYMBOL_REF:
|
||
+ output_addr_const (stream, x);
|
||
+ break;
|
||
+ case MEM:
|
||
+ switch (GET_CODE (XEXP (x, 0)))
|
||
+ {
|
||
+ case LABEL_REF:
|
||
+ case SYMBOL_REF:
|
||
+ output_addr_const (stream, XEXP (x, 0));
|
||
+ break;
|
||
+ case MEM:
|
||
+ switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
|
||
+ {
|
||
+ case SYMBOL_REF:
|
||
+ output_addr_const (stream, XEXP (XEXP (x, 0), 0));
|
||
+ break;
|
||
+ default:
|
||
+ error = 1;
|
||
+ break;
|
||
+ }
|
||
+ break;
|
||
+ case REG:
|
||
+ avr32_print_operand (stream, XEXP (x, 0), 0);
|
||
+ if (code != 'p')
|
||
+ fputs ("[0]", stream);
|
||
+ break;
|
||
+ case PRE_DEC:
|
||
+ fputs ("--", stream);
|
||
+ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
|
||
+ break;
|
||
+ case POST_INC:
|
||
+ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0);
|
||
+ fputs ("++", stream);
|
||
+ break;
|
||
+ case PLUS:
|
||
+ {
|
||
+ rtx op0 = XEXP (XEXP (x, 0), 0);
|
||
+ rtx op1 = XEXP (XEXP (x, 0), 1);
|
||
+ rtx base = NULL_RTX, offset = NULL_RTX;
|
||
+
|
||
+ if (avr32_address_register_rtx_p (op0, 1))
|
||
+ {
|
||
+ base = op0;
|
||
+ offset = op1;
|
||
+ }
|
||
+ else if (avr32_address_register_rtx_p (op1, 1))
|
||
+ {
|
||
+ /* Operands are switched. */
|
||
+ base = op1;
|
||
+ offset = op0;
|
||
+ }
|
||
+
|
||
+ gcc_assert (base && offset
|
||
+ && avr32_address_register_rtx_p (base, 1)
|
||
+ && avr32_legitimate_index_p (GET_MODE (x), offset,
|
||
+ 1));
|
||
+
|
||
+ avr32_print_operand (stream, base, 0);
|
||
+ fputs ("[", stream);
|
||
+ avr32_print_operand (stream, offset, 0);
|
||
+ fputs ("]", stream);
|
||
+ break;
|
||
+ }
|
||
+ case CONST:
|
||
+ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0));
|
||
+ fprintf (stream, " + %ld",
|
||
+ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)));
|
||
+ break;
|
||
+ case CONST_INT:
|
||
+ avr32_print_operand (stream, XEXP (x, 0), 0);
|
||
+ break;
|
||
+ default:
|
||
+ error = 1;
|
||
+ }
|
||
+ break;
|
||
+ case MULT:
|
||
+ {
|
||
+ int value = INTVAL (XEXP (x, 1));
|
||
+
|
||
+ /* Convert immediate in multiplication into a shift immediate */
|
||
+ switch (value)
|
||
+ {
|
||
+ case 2:
|
||
+ value = 1;
|
||
+ break;
|
||
+ case 4:
|
||
+ value = 2;
|
||
+ break;
|
||
+ case 8:
|
||
+ value = 3;
|
||
+ break;
|
||
+ default:
|
||
+ value = 0;
|
||
+ }
|
||
+ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
|
||
+ value);
|
||
+ break;
|
||
+ }
|
||
+ case ASHIFT:
|
||
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
+ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))],
|
||
+ (int) INTVAL (XEXP (x, 1)));
|
||
+ else if (REG_P (XEXP (x, 1)))
|
||
+ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))],
|
||
+ reg_names[true_regnum (XEXP (x, 1))]);
|
||
+ else
|
||
+ {
|
||
+ error = 1;
|
||
+ }
|
||
+ break;
|
||
+ case LSHIFTRT:
|
||
+ if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
+ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))],
|
||
+ (int) INTVAL (XEXP (x, 1)));
|
||
+ else if (REG_P (XEXP (x, 1)))
|
||
+ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))],
|
||
+ reg_names[true_regnum (XEXP (x, 1))]);
|
||
+ else
|
||
+ {
|
||
+ error = 1;
|
||
+ }
|
||
+ fprintf (stream, ">>");
|
||
+ break;
|
||
+ case PARALLEL:
|
||
+ {
|
||
+ /* Load store multiple */
|
||
+ int i;
|
||
+ int count = XVECLEN (x, 0);
|
||
+ int reglist16 = 0;
|
||
+ char reglist16_string[100];
|
||
+
|
||
+ for (i = 0; i < count; ++i)
|
||
+ {
|
||
+ rtx vec_elm = XVECEXP (x, 0, i);
|
||
+ if (GET_MODE (vec_elm) != SET)
|
||
+ {
|
||
+ debug_rtx (vec_elm);
|
||
+ internal_error ("Unknown element in parallel expression!");
|
||
+ }
|
||
+ if (GET_MODE (XEXP (vec_elm, 0)) == REG)
|
||
+ {
|
||
+ /* Load multiple */
|
||
+ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0)));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Store multiple */
|
||
+ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1)));
|
||
+ }
|
||
+ }
|
||
+
|
||
+ avr32_make_reglist16 (reglist16, reglist16_string);
|
||
+ fputs (reglist16_string, stream);
|
||
+
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ case PLUS:
|
||
+ {
|
||
+ rtx op0 = XEXP (x, 0);
|
||
+ rtx op1 = XEXP (x, 1);
|
||
+ rtx base = NULL_RTX, offset = NULL_RTX;
|
||
+
|
||
+ if (avr32_address_register_rtx_p (op0, 1))
|
||
+ {
|
||
+ base = op0;
|
||
+ offset = op1;
|
||
+ }
|
||
+ else if (avr32_address_register_rtx_p (op1, 1))
|
||
+ {
|
||
+ /* Operands are switched. */
|
||
+ base = op1;
|
||
+ offset = op0;
|
||
+ }
|
||
+
|
||
+ gcc_assert (base && offset
|
||
+ && avr32_address_register_rtx_p (base, 1)
|
||
+ && avr32_legitimate_index_p (GET_MODE (x), offset, 1));
|
||
+
|
||
+ avr32_print_operand (stream, base, 0);
|
||
+ fputs ("[", stream);
|
||
+ avr32_print_operand (stream, offset, 0);
|
||
+ fputs ("]", stream);
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ default:
|
||
+ error = 1;
|
||
+ }
|
||
+
|
||
+ if (error)
|
||
+ {
|
||
+ debug_rtx (x);
|
||
+ internal_error ("Illegal expression for avr32_print_operand");
|
||
+ }
|
||
+}
|
||
+
|
||
+rtx
|
||
+avr32_get_note_reg_equiv (rtx insn)
|
||
+{
|
||
+ rtx note;
|
||
+
|
||
+ note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
+
|
||
+ if (note != NULL_RTX)
|
||
+ return XEXP (note, 0);
|
||
+ else
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Outputs to stdio stream stream the assembler syntax for an instruction
|
||
+ operand that is a memory reference whose address is x. x is an RTL
|
||
+ expression.
|
||
+
|
||
+ ToDo: fixme.
|
||
+*/
|
||
+void
|
||
+avr32_print_operand_address (FILE * stream, rtx x)
|
||
+{
|
||
+ fprintf (stream, "(%d) /* address */", REGNO (x));
|
||
+}
|
||
+
|
||
+/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */
|
||
+bool
|
||
+avr32_got_mentioned_p (rtx addr)
|
||
+{
|
||
+ if (GET_CODE (addr) == MEM)
|
||
+ addr = XEXP (addr, 0);
|
||
+ while (GET_CODE (addr) == CONST)
|
||
+ addr = XEXP (addr, 0);
|
||
+ if (GET_CODE (addr) == SYMBOL_REF)
|
||
+ {
|
||
+ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_");
|
||
+ }
|
||
+ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS)
|
||
+ {
|
||
+ bool l1, l2;
|
||
+
|
||
+ l1 = avr32_got_mentioned_p (XEXP (addr, 0));
|
||
+ l2 = avr32_got_mentioned_p (XEXP (addr, 1));
|
||
+ return l1 || l2;
|
||
+ }
|
||
+ return false;
|
||
+}
|
||
+
|
||
+
|
||
+/* Find the symbol in an address expression. */
|
||
+
|
||
+rtx
|
||
+avr32_find_symbol (rtx addr)
|
||
+{
|
||
+ if (GET_CODE (addr) == MEM)
|
||
+ addr = XEXP (addr, 0);
|
||
+
|
||
+ while (GET_CODE (addr) == CONST)
|
||
+ addr = XEXP (addr, 0);
|
||
+
|
||
+ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
|
||
+ return addr;
|
||
+ if (GET_CODE (addr) == PLUS)
|
||
+ {
|
||
+ rtx l1, l2;
|
||
+
|
||
+ l1 = avr32_find_symbol (XEXP (addr, 0));
|
||
+ l2 = avr32_find_symbol (XEXP (addr, 1));
|
||
+ if (l1 != NULL_RTX && l2 == NULL_RTX)
|
||
+ return l1;
|
||
+ else if (l1 == NULL_RTX && l2 != NULL_RTX)
|
||
+ return l2;
|
||
+ }
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+
|
||
+/* Routines for manipulation of the constant pool. */
|
||
+
|
||
+/* AVR32 instructions cannot load a large constant directly into a
|
||
+ register; they have to come from a pc relative load. The constant
|
||
+ must therefore be placed in the addressable range of the pc
|
||
+ relative load. Depending on the precise pc relative load
|
||
+ instruction the range is somewhere between 256 bytes and 4k. This
|
||
+ means that we often have to dump a constant inside a function, and
|
||
+ generate code to branch around it.
|
||
+
|
||
+ It is important to minimize this, since the branches will slow
|
||
+ things down and make the code larger.
|
||
+
|
||
+ Normally we can hide the table after an existing unconditional
|
||
+ branch so that there is no interruption of the flow, but in the
|
||
+ worst case the code looks like this:
|
||
+
|
||
+ lddpc rn, L1
|
||
+ ...
|
||
+ rjmp L2
|
||
+ align
|
||
+ L1: .long value
|
||
+ L2:
|
||
+ ...
|
||
+
|
||
+ lddpc rn, L3
|
||
+ ...
|
||
+ rjmp L4
|
||
+ align
|
||
+ L3: .long value
|
||
+ L4:
|
||
+ ...
|
||
+
|
||
+ We fix this by performing a scan after scheduling, which notices
|
||
+ which instructions need to have their operands fetched from the
|
||
+ constant table and builds the table.
|
||
+
|
||
+ The algorithm starts by building a table of all the constants that
|
||
+ need fixing up and all the natural barriers in the function (places
|
||
+ where a constant table can be dropped without breaking the flow).
|
||
+ For each fixup we note how far the pc-relative replacement will be
|
||
+ able to reach and the offset of the instruction into the function.
|
||
+
|
||
+ Having built the table we then group the fixes together to form
|
||
+ tables that are as large as possible (subject to addressing
|
||
+ constraints) and emit each table of constants after the last
|
||
+ barrier that is within range of all the instructions in the group.
|
||
+ If a group does not contain a barrier, then we forcibly create one
|
||
+ by inserting a jump instruction into the flow. Once the table has
|
||
+ been inserted, the insns are then modified to reference the
|
||
+ relevant entry in the pool.
|
||
+
|
||
+ Possible enhancements to the algorithm (not implemented) are:
|
||
+
|
||
+ 1) For some processors and object formats, there may be benefit in
|
||
+ aligning the pools to the start of cache lines; this alignment
|
||
+ would need to be taken into account when calculating addressability
|
||
+ of a pool. */
|
||
+
|
||
+/* These typedefs are located at the start of this file, so that
|
||
+ they can be used in the prototypes there. This comment is to
|
||
+ remind readers of that fact so that the following structures
|
||
+ can be understood more easily.
|
||
+
|
||
+ typedef struct minipool_node Mnode;
|
||
+ typedef struct minipool_fixup Mfix; */
|
||
+
|
||
+struct minipool_node
|
||
+{
|
||
+ /* Doubly linked chain of entries. */
|
||
+ Mnode *next;
|
||
+ Mnode *prev;
|
||
+ /* The maximum offset into the code that this entry can be placed. While
|
||
+ pushing fixes for forward references, all entries are sorted in order of
|
||
+ increasing max_address. */
|
||
+ HOST_WIDE_INT max_address;
|
||
+ /* Similarly for an entry inserted for a backwards ref. */
|
||
+ HOST_WIDE_INT min_address;
|
||
+ /* The number of fixes referencing this entry. This can become zero if we
|
||
+ "unpush" an entry. In this case we ignore the entry when we come to
|
||
+ emit the code. */
|
||
+ int refcount;
|
||
+ /* The offset from the start of the minipool. */
|
||
+ HOST_WIDE_INT offset;
|
||
+ /* The value in table. */
|
||
+ rtx value;
|
||
+ /* The mode of value. */
|
||
+ enum machine_mode mode;
|
||
+ /* The size of the value. */
|
||
+ int fix_size;
|
||
+};
|
||
+
|
||
+struct minipool_fixup
|
||
+{
|
||
+ Mfix *next;
|
||
+ rtx insn;
|
||
+ HOST_WIDE_INT address;
|
||
+ rtx *loc;
|
||
+ enum machine_mode mode;
|
||
+ int fix_size;
|
||
+ rtx value;
|
||
+ Mnode *minipool;
|
||
+ HOST_WIDE_INT forwards;
|
||
+ HOST_WIDE_INT backwards;
|
||
+};
|
||
+
|
||
+
|
||
+/* Fixes less than a word need padding out to a word boundary. */
|
||
+#define MINIPOOL_FIX_SIZE(mode, value) \
|
||
+ (IS_FORCE_MINIPOOL(value) ? 0 : \
|
||
+ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4))
|
||
+
|
||
+#define IS_FORCE_MINIPOOL(x) \
|
||
+ (GET_CODE(x) == UNSPEC && \
|
||
+ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL)
|
||
+
|
||
+static Mnode *minipool_vector_head;
|
||
+static Mnode *minipool_vector_tail;
|
||
+
|
||
+/* The linked list of all minipool fixes required for this function. */
|
||
+Mfix *minipool_fix_head;
|
||
+Mfix *minipool_fix_tail;
|
||
+/* The fix entry for the current minipool, once it has been placed. */
|
||
+Mfix *minipool_barrier;
|
||
+
|
||
+/* Determines if INSN is the start of a jump table. Returns the end
|
||
+ of the TABLE or NULL_RTX. */
|
||
+static rtx
|
||
+is_jump_table (rtx insn)
|
||
+{
|
||
+ rtx table;
|
||
+
|
||
+ if (GET_CODE (insn) == JUMP_INSN
|
||
+ && JUMP_LABEL (insn) != NULL
|
||
+ && ((table = next_real_insn (JUMP_LABEL (insn)))
|
||
+ == next_real_insn (insn))
|
||
+ && table != NULL
|
||
+ && GET_CODE (table) == JUMP_INSN
|
||
+ && (GET_CODE (PATTERN (table)) == ADDR_VEC
|
||
+ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
|
||
+ return table;
|
||
+
|
||
+ return NULL_RTX;
|
||
+}
|
||
+
|
||
+static HOST_WIDE_INT
|
||
+get_jump_table_size (rtx insn)
|
||
+{
|
||
+ /* ADDR_VECs only take room if read-only data does into the text section. */
|
||
+ if (JUMP_TABLES_IN_TEXT_SECTION
|
||
+#if !defined(READONLY_DATA_SECTION_ASM_OP)
|
||
+ || 1
|
||
+#endif
|
||
+ )
|
||
+ {
|
||
+ rtx body = PATTERN (insn);
|
||
+ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
|
||
+
|
||
+ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
|
||
+ }
|
||
+
|
||
+ return 0;
|
||
+}
|
||
+
|
||
+/* Move a minipool fix MP from its current location to before MAX_MP.
|
||
+ If MAX_MP is NULL, then MP doesn't need moving, but the addressing
|
||
+ constraints may need updating. */
|
||
+static Mnode *
|
||
+move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp,
|
||
+ HOST_WIDE_INT max_address)
|
||
+{
|
||
+ /* This should never be true and the code below assumes these are
|
||
+ different. */
|
||
+ if (mp == max_mp)
|
||
+ abort ();
|
||
+
|
||
+ if (max_mp == NULL)
|
||
+ {
|
||
+ if (max_address < mp->max_address)
|
||
+ mp->max_address = max_address;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (max_address > max_mp->max_address - mp->fix_size)
|
||
+ mp->max_address = max_mp->max_address - mp->fix_size;
|
||
+ else
|
||
+ mp->max_address = max_address;
|
||
+
|
||
+ /* Unlink MP from its current position. Since max_mp is non-null,
|
||
+ mp->prev must be non-null. */
|
||
+ mp->prev->next = mp->next;
|
||
+ if (mp->next != NULL)
|
||
+ mp->next->prev = mp->prev;
|
||
+ else
|
||
+ minipool_vector_tail = mp->prev;
|
||
+
|
||
+ /* Re-insert it before MAX_MP. */
|
||
+ mp->next = max_mp;
|
||
+ mp->prev = max_mp->prev;
|
||
+ max_mp->prev = mp;
|
||
+
|
||
+ if (mp->prev != NULL)
|
||
+ mp->prev->next = mp;
|
||
+ else
|
||
+ minipool_vector_head = mp;
|
||
+ }
|
||
+
|
||
+ /* Save the new entry. */
|
||
+ max_mp = mp;
|
||
+
|
||
+ /* Scan over the preceding entries and adjust their addresses as required.
|
||
+ */
|
||
+ while (mp->prev != NULL
|
||
+ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
|
||
+ {
|
||
+ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
|
||
+ mp = mp->prev;
|
||
+ }
|
||
+
|
||
+ return max_mp;
|
||
+}
|
||
+
|
||
+/* Add a constant to the minipool for a forward reference. Returns the
|
||
+ node added or NULL if the constant will not fit in this pool. */
|
||
+static Mnode *
|
||
+add_minipool_forward_ref (Mfix * fix)
|
||
+{
|
||
+ /* If set, max_mp is the first pool_entry that has a lower constraint than
|
||
+ the one we are trying to add. */
|
||
+ Mnode *max_mp = NULL;
|
||
+ HOST_WIDE_INT max_address = fix->address + fix->forwards;
|
||
+ Mnode *mp;
|
||
+
|
||
+ /* If this fix's address is greater than the address of the first entry,
|
||
+ then we can't put the fix in this pool. We subtract the size of the
|
||
+ current fix to ensure that if the table is fully packed we still have
|
||
+ enough room to insert this value by suffling the other fixes forwards. */
|
||
+ if (minipool_vector_head &&
|
||
+ fix->address >= minipool_vector_head->max_address - fix->fix_size)
|
||
+ return NULL;
|
||
+
|
||
+ /* Scan the pool to see if a constant with the same value has already been
|
||
+ added. While we are doing this, also note the location where we must
|
||
+ insert the constant if it doesn't already exist. */
|
||
+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
||
+ {
|
||
+ if (GET_CODE (fix->value) == GET_CODE (mp->value)
|
||
+ && fix->mode == mp->mode
|
||
+ && (GET_CODE (fix->value) != CODE_LABEL
|
||
+ || (CODE_LABEL_NUMBER (fix->value)
|
||
+ == CODE_LABEL_NUMBER (mp->value)))
|
||
+ && rtx_equal_p (fix->value, mp->value))
|
||
+ {
|
||
+ /* More than one fix references this entry. */
|
||
+ mp->refcount++;
|
||
+ return move_minipool_fix_forward_ref (mp, max_mp, max_address);
|
||
+ }
|
||
+
|
||
+ /* Note the insertion point if necessary. */
|
||
+ if (max_mp == NULL && mp->max_address > max_address)
|
||
+ max_mp = mp;
|
||
+
|
||
+ }
|
||
+
|
||
+ /* The value is not currently in the minipool, so we need to create a new
|
||
+ entry for it. If MAX_MP is NULL, the entry will be put on the end of
|
||
+ the list since the placement is less constrained than any existing
|
||
+ entry. Otherwise, we insert the new fix before MAX_MP and, if
|
||
+ necessary, adjust the constraints on the other entries. */
|
||
+ mp = xmalloc (sizeof (*mp));
|
||
+ mp->fix_size = fix->fix_size;
|
||
+ mp->mode = fix->mode;
|
||
+ mp->value = fix->value;
|
||
+ mp->refcount = 1;
|
||
+ /* Not yet required for a backwards ref. */
|
||
+ mp->min_address = -65536;
|
||
+
|
||
+ if (max_mp == NULL)
|
||
+ {
|
||
+ mp->max_address = max_address;
|
||
+ mp->next = NULL;
|
||
+ mp->prev = minipool_vector_tail;
|
||
+
|
||
+ if (mp->prev == NULL)
|
||
+ {
|
||
+ minipool_vector_head = mp;
|
||
+ minipool_vector_label = gen_label_rtx ();
|
||
+ }
|
||
+ else
|
||
+ mp->prev->next = mp;
|
||
+
|
||
+ minipool_vector_tail = mp;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (max_address > max_mp->max_address - mp->fix_size)
|
||
+ mp->max_address = max_mp->max_address - mp->fix_size;
|
||
+ else
|
||
+ mp->max_address = max_address;
|
||
+
|
||
+ mp->next = max_mp;
|
||
+ mp->prev = max_mp->prev;
|
||
+ max_mp->prev = mp;
|
||
+ if (mp->prev != NULL)
|
||
+ mp->prev->next = mp;
|
||
+ else
|
||
+ minipool_vector_head = mp;
|
||
+ }
|
||
+
|
||
+ /* Save the new entry. */
|
||
+ max_mp = mp;
|
||
+
|
||
+ /* Scan over the preceding entries and adjust their addresses as required.
|
||
+ */
|
||
+ while (mp->prev != NULL
|
||
+ && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
|
||
+ {
|
||
+ mp->prev->max_address = mp->max_address - mp->prev->fix_size;
|
||
+ mp = mp->prev;
|
||
+ }
|
||
+
|
||
+ return max_mp;
|
||
+}
|
||
+
|
||
+static Mnode *
|
||
+move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp,
|
||
+ HOST_WIDE_INT min_address)
|
||
+{
|
||
+ HOST_WIDE_INT offset;
|
||
+
|
||
+ /* This should never be true, and the code below assumes these are
|
||
+ different. */
|
||
+ if (mp == min_mp)
|
||
+ abort ();
|
||
+
|
||
+ if (min_mp == NULL)
|
||
+ {
|
||
+ if (min_address > mp->min_address)
|
||
+ mp->min_address = min_address;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* We will adjust this below if it is too loose. */
|
||
+ mp->min_address = min_address;
|
||
+
|
||
+ /* Unlink MP from its current position. Since min_mp is non-null,
|
||
+ mp->next must be non-null. */
|
||
+ mp->next->prev = mp->prev;
|
||
+ if (mp->prev != NULL)
|
||
+ mp->prev->next = mp->next;
|
||
+ else
|
||
+ minipool_vector_head = mp->next;
|
||
+
|
||
+ /* Reinsert it after MIN_MP. */
|
||
+ mp->prev = min_mp;
|
||
+ mp->next = min_mp->next;
|
||
+ min_mp->next = mp;
|
||
+ if (mp->next != NULL)
|
||
+ mp->next->prev = mp;
|
||
+ else
|
||
+ minipool_vector_tail = mp;
|
||
+ }
|
||
+
|
||
+ min_mp = mp;
|
||
+
|
||
+ offset = 0;
|
||
+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
||
+ {
|
||
+ mp->offset = offset;
|
||
+ if (mp->refcount > 0)
|
||
+ offset += mp->fix_size;
|
||
+
|
||
+ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
|
||
+ mp->next->min_address = mp->min_address + mp->fix_size;
|
||
+ }
|
||
+
|
||
+ return min_mp;
|
||
+}
|
||
+
|
||
+/* Add a constant to the minipool for a backward reference. Returns the
|
||
+ node added or NULL if the constant will not fit in this pool.
|
||
+
|
||
+ Note that the code for insertion for a backwards reference can be
|
||
+ somewhat confusing because the calculated offsets for each fix do
|
||
+ not take into account the size of the pool (which is still under
|
||
+ construction. */
|
||
+static Mnode *
|
||
+add_minipool_backward_ref (Mfix * fix)
|
||
+{
|
||
+ /* If set, min_mp is the last pool_entry that has a lower constraint than
|
||
+ the one we are trying to add. */
|
||
+ Mnode *min_mp = NULL;
|
||
+ /* This can be negative, since it is only a constraint. */
|
||
+ HOST_WIDE_INT min_address = fix->address - fix->backwards;
|
||
+ Mnode *mp;
|
||
+
|
||
+ /* If we can't reach the current pool from this insn, or if we can't insert
|
||
+ this entry at the end of the pool without pushing other fixes out of
|
||
+ range, then we don't try. This ensures that we can't fail later on. */
|
||
+ if (min_address >= minipool_barrier->address
|
||
+ || (minipool_vector_tail->min_address + fix->fix_size
|
||
+ >= minipool_barrier->address))
|
||
+ return NULL;
|
||
+
|
||
+ /* Scan the pool to see if a constant with the same value has already been
|
||
+ added. While we are doing this, also note the location where we must
|
||
+ insert the constant if it doesn't already exist. */
|
||
+ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
|
||
+ {
|
||
+ if (GET_CODE (fix->value) == GET_CODE (mp->value)
|
||
+ && fix->mode == mp->mode
|
||
+ && (GET_CODE (fix->value) != CODE_LABEL
|
||
+ || (CODE_LABEL_NUMBER (fix->value)
|
||
+ == CODE_LABEL_NUMBER (mp->value)))
|
||
+ && rtx_equal_p (fix->value, mp->value)
|
||
+ /* Check that there is enough slack to move this entry to the end
|
||
+ of the table (this is conservative). */
|
||
+ && (mp->max_address
|
||
+ > (minipool_barrier->address
|
||
+ + minipool_vector_tail->offset
|
||
+ + minipool_vector_tail->fix_size)))
|
||
+ {
|
||
+ mp->refcount++;
|
||
+ return move_minipool_fix_backward_ref (mp, min_mp, min_address);
|
||
+ }
|
||
+
|
||
+ if (min_mp != NULL)
|
||
+ mp->min_address += fix->fix_size;
|
||
+ else
|
||
+ {
|
||
+ /* Note the insertion point if necessary. */
|
||
+ if (mp->min_address < min_address)
|
||
+ {
|
||
+ min_mp = mp;
|
||
+ }
|
||
+ else if (mp->max_address
|
||
+ < minipool_barrier->address + mp->offset + fix->fix_size)
|
||
+ {
|
||
+ /* Inserting before this entry would push the fix beyond its
|
||
+ maximum address (which can happen if we have re-located a
|
||
+ forwards fix); force the new fix to come after it. */
|
||
+ min_mp = mp;
|
||
+ min_address = mp->min_address + fix->fix_size;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* We need to create a new entry. */
|
||
+ mp = xmalloc (sizeof (*mp));
|
||
+ mp->fix_size = fix->fix_size;
|
||
+ mp->mode = fix->mode;
|
||
+ mp->value = fix->value;
|
||
+ mp->refcount = 1;
|
||
+ mp->max_address = minipool_barrier->address + 65536;
|
||
+
|
||
+ mp->min_address = min_address;
|
||
+
|
||
+ if (min_mp == NULL)
|
||
+ {
|
||
+ mp->prev = NULL;
|
||
+ mp->next = minipool_vector_head;
|
||
+
|
||
+ if (mp->next == NULL)
|
||
+ {
|
||
+ minipool_vector_tail = mp;
|
||
+ minipool_vector_label = gen_label_rtx ();
|
||
+ }
|
||
+ else
|
||
+ mp->next->prev = mp;
|
||
+
|
||
+ minipool_vector_head = mp;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ mp->next = min_mp->next;
|
||
+ mp->prev = min_mp;
|
||
+ min_mp->next = mp;
|
||
+
|
||
+ if (mp->next != NULL)
|
||
+ mp->next->prev = mp;
|
||
+ else
|
||
+ minipool_vector_tail = mp;
|
||
+ }
|
||
+
|
||
+ /* Save the new entry. */
|
||
+ min_mp = mp;
|
||
+
|
||
+ if (mp->prev)
|
||
+ mp = mp->prev;
|
||
+ else
|
||
+ mp->offset = 0;
|
||
+
|
||
+ /* Scan over the following entries and adjust their offsets. */
|
||
+ while (mp->next != NULL)
|
||
+ {
|
||
+ if (mp->next->min_address < mp->min_address + mp->fix_size)
|
||
+ mp->next->min_address = mp->min_address + mp->fix_size;
|
||
+
|
||
+ if (mp->refcount)
|
||
+ mp->next->offset = mp->offset + mp->fix_size;
|
||
+ else
|
||
+ mp->next->offset = mp->offset;
|
||
+
|
||
+ mp = mp->next;
|
||
+ }
|
||
+
|
||
+ return min_mp;
|
||
+}
|
||
+
|
||
+static void
|
||
+assign_minipool_offsets (Mfix * barrier)
|
||
+{
|
||
+ HOST_WIDE_INT offset = 0;
|
||
+ Mnode *mp;
|
||
+
|
||
+ minipool_barrier = barrier;
|
||
+
|
||
+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
|
||
+ {
|
||
+ mp->offset = offset;
|
||
+
|
||
+ if (mp->refcount > 0)
|
||
+ offset += mp->fix_size;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Print a symbolic form of X to the debug file, F. */
|
||
+static void
|
||
+avr32_print_value (FILE * f, rtx x)
|
||
+{
|
||
+ switch (GET_CODE (x))
|
||
+ {
|
||
+ case CONST_INT:
|
||
+ fprintf (f, "0x%x", (int) INTVAL (x));
|
||
+ return;
|
||
+
|
||
+ case CONST_DOUBLE:
|
||
+ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3));
|
||
+ return;
|
||
+
|
||
+ case CONST_VECTOR:
|
||
+ {
|
||
+ int i;
|
||
+
|
||
+ fprintf (f, "<");
|
||
+ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
|
||
+ {
|
||
+ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i)));
|
||
+ if (i < (CONST_VECTOR_NUNITS (x) - 1))
|
||
+ fputc (',', f);
|
||
+ }
|
||
+ fprintf (f, ">");
|
||
+ }
|
||
+ return;
|
||
+
|
||
+ case CONST_STRING:
|
||
+ fprintf (f, "\"%s\"", XSTR (x, 0));
|
||
+ return;
|
||
+
|
||
+ case SYMBOL_REF:
|
||
+ fprintf (f, "`%s'", XSTR (x, 0));
|
||
+ return;
|
||
+
|
||
+ case LABEL_REF:
|
||
+ fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
|
||
+ return;
|
||
+
|
||
+ case CONST:
|
||
+ avr32_print_value (f, XEXP (x, 0));
|
||
+ return;
|
||
+
|
||
+ case PLUS:
|
||
+ avr32_print_value (f, XEXP (x, 0));
|
||
+ fprintf (f, "+");
|
||
+ avr32_print_value (f, XEXP (x, 1));
|
||
+ return;
|
||
+
|
||
+ case PC:
|
||
+ fprintf (f, "pc");
|
||
+ return;
|
||
+
|
||
+ default:
|
||
+ fprintf (f, "????");
|
||
+ return;
|
||
+ }
|
||
+}
|
||
+
|
||
+int
|
||
+is_minipool_label (rtx label)
|
||
+{
|
||
+ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head;
|
||
+
|
||
+ if (GET_CODE (label) != CODE_LABEL)
|
||
+ return FALSE;
|
||
+
|
||
+ while (cur_mp_label)
|
||
+ {
|
||
+ if (CODE_LABEL_NUMBER (label)
|
||
+ == CODE_LABEL_NUMBER (cur_mp_label->label))
|
||
+ return TRUE;
|
||
+ cur_mp_label = cur_mp_label->next;
|
||
+ }
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+static void
|
||
+new_minipool_label (rtx label)
|
||
+{
|
||
+ if (!cfun->machine->minipool_label_head)
|
||
+ {
|
||
+ cfun->machine->minipool_label_head =
|
||
+ ggc_alloc (sizeof (minipool_labels));
|
||
+ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head;
|
||
+ cfun->machine->minipool_label_head->label = label;
|
||
+ cfun->machine->minipool_label_head->next = 0;
|
||
+ cfun->machine->minipool_label_head->prev = 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ cfun->machine->minipool_label_tail->next =
|
||
+ ggc_alloc (sizeof (minipool_labels));
|
||
+ cfun->machine->minipool_label_tail->next->label = label;
|
||
+ cfun->machine->minipool_label_tail->next->next = 0;
|
||
+ cfun->machine->minipool_label_tail->next->prev =
|
||
+ cfun->machine->minipool_label_tail;
|
||
+ cfun->machine->minipool_label_tail =
|
||
+ cfun->machine->minipool_label_tail->next;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Output the literal table */
|
||
+static void
|
||
+dump_minipool (rtx scan)
|
||
+{
|
||
+ Mnode *mp;
|
||
+ Mnode *nmp;
|
||
+
|
||
+ if (dump_file)
|
||
+ fprintf (dump_file,
|
||
+ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
|
||
+ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4);
|
||
+
|
||
+ scan = emit_insn_after (gen_consttable_start (), scan);
|
||
+ scan = emit_insn_after (gen_align_4 (), scan);
|
||
+ scan = emit_label_after (minipool_vector_label, scan);
|
||
+ new_minipool_label (minipool_vector_label);
|
||
+
|
||
+ for (mp = minipool_vector_head; mp != NULL; mp = nmp)
|
||
+ {
|
||
+ if (mp->refcount > 0)
|
||
+ {
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Offset %u, min %ld, max %ld ",
|
||
+ (unsigned) mp->offset, (unsigned long) mp->min_address,
|
||
+ (unsigned long) mp->max_address);
|
||
+ avr32_print_value (dump_file, mp->value);
|
||
+ fputc ('\n', dump_file);
|
||
+ }
|
||
+
|
||
+ switch (mp->fix_size)
|
||
+ {
|
||
+#ifdef HAVE_consttable_4
|
||
+ case 4:
|
||
+ scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
|
||
+ break;
|
||
+
|
||
+#endif
|
||
+#ifdef HAVE_consttable_8
|
||
+ case 8:
|
||
+ scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
|
||
+ break;
|
||
+
|
||
+#endif
|
||
+#ifdef HAVE_consttable_16
|
||
+ case 16:
|
||
+ scan = emit_insn_after (gen_consttable_16 (mp->value), scan);
|
||
+ break;
|
||
+
|
||
+#endif
|
||
+ case 0:
|
||
+ /* This can happen for force-minipool entries which just are
|
||
+ there to force the minipool to be generate. */
|
||
+ break;
|
||
+ default:
|
||
+ abort ();
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ nmp = mp->next;
|
||
+ free (mp);
|
||
+ }
|
||
+
|
||
+ minipool_vector_head = minipool_vector_tail = NULL;
|
||
+ scan = emit_insn_after (gen_consttable_end (), scan);
|
||
+ scan = emit_barrier_after (scan);
|
||
+}
|
||
+
|
||
+/* Return the cost of forcibly inserting a barrier after INSN. */
|
||
+static int
|
||
+avr32_barrier_cost (rtx insn)
|
||
+{
|
||
+ /* Basing the location of the pool on the loop depth is preferable, but at
|
||
+ the moment, the basic block information seems to be corrupt by this
|
||
+ stage of the compilation. */
|
||
+ int base_cost = 50;
|
||
+ rtx next = next_nonnote_insn (insn);
|
||
+
|
||
+ if (next != NULL && GET_CODE (next) == CODE_LABEL)
|
||
+ base_cost -= 20;
|
||
+
|
||
+ switch (GET_CODE (insn))
|
||
+ {
|
||
+ case CODE_LABEL:
|
||
+ /* It will always be better to place the table before the label, rather
|
||
+ than after it. */
|
||
+ return 50;
|
||
+
|
||
+ case INSN:
|
||
+ case CALL_INSN:
|
||
+ return base_cost;
|
||
+
|
||
+ case JUMP_INSN:
|
||
+ return base_cost - 10;
|
||
+
|
||
+ default:
|
||
+ return base_cost + 10;
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Find the best place in the insn stream in the range
|
||
+ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
|
||
+ Create the barrier by inserting a jump and add a new fix entry for
|
||
+ it. */
|
||
+static Mfix *
|
||
+create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address)
|
||
+{
|
||
+ HOST_WIDE_INT count = 0;
|
||
+ rtx barrier;
|
||
+ rtx from = fix->insn;
|
||
+ rtx selected = from;
|
||
+ int selected_cost;
|
||
+ HOST_WIDE_INT selected_address;
|
||
+ Mfix *new_fix;
|
||
+ HOST_WIDE_INT max_count = max_address - fix->address;
|
||
+ rtx label = gen_label_rtx ();
|
||
+
|
||
+ selected_cost = avr32_barrier_cost (from);
|
||
+ selected_address = fix->address;
|
||
+
|
||
+ while (from && count < max_count)
|
||
+ {
|
||
+ rtx tmp;
|
||
+ int new_cost;
|
||
+
|
||
+ /* This code shouldn't have been called if there was a natural barrier
|
||
+ within range. */
|
||
+ if (GET_CODE (from) == BARRIER)
|
||
+ abort ();
|
||
+
|
||
+ /* Count the length of this insn. */
|
||
+ count += get_attr_length (from);
|
||
+
|
||
+ /* If there is a jump table, add its length. */
|
||
+ tmp = is_jump_table (from);
|
||
+ if (tmp != NULL)
|
||
+ {
|
||
+ count += get_jump_table_size (tmp);
|
||
+
|
||
+ /* Jump tables aren't in a basic block, so base the cost on the
|
||
+ dispatch insn. If we select this location, we will still put
|
||
+ the pool after the table. */
|
||
+ new_cost = avr32_barrier_cost (from);
|
||
+
|
||
+ if (count < max_count && new_cost <= selected_cost)
|
||
+ {
|
||
+ selected = tmp;
|
||
+ selected_cost = new_cost;
|
||
+ selected_address = fix->address + count;
|
||
+ }
|
||
+
|
||
+ /* Continue after the dispatch table. */
|
||
+ from = NEXT_INSN (tmp);
|
||
+ continue;
|
||
+ }
|
||
+
|
||
+ new_cost = avr32_barrier_cost (from);
|
||
+
|
||
+ if (count < max_count && new_cost <= selected_cost)
|
||
+ {
|
||
+ selected = from;
|
||
+ selected_cost = new_cost;
|
||
+ selected_address = fix->address + count;
|
||
+ }
|
||
+
|
||
+ from = NEXT_INSN (from);
|
||
+ }
|
||
+
|
||
+ /* Create a new JUMP_INSN that branches around a barrier. */
|
||
+ from = emit_jump_insn_after (gen_jump (label), selected);
|
||
+ JUMP_LABEL (from) = label;
|
||
+ barrier = emit_barrier_after (from);
|
||
+ emit_label_after (label, barrier);
|
||
+
|
||
+ /* Create a minipool barrier entry for the new barrier. */
|
||
+ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix));
|
||
+ new_fix->insn = barrier;
|
||
+ new_fix->address = selected_address;
|
||
+ new_fix->next = fix->next;
|
||
+ fix->next = new_fix;
|
||
+
|
||
+ return new_fix;
|
||
+}
|
||
+
|
||
+/* Record that there is a natural barrier in the insn stream at
|
||
+ ADDRESS. */
|
||
+static void
|
||
+push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
|
||
+{
|
||
+ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
|
||
+
|
||
+ fix->insn = insn;
|
||
+ fix->address = address;
|
||
+
|
||
+ fix->next = NULL;
|
||
+ if (minipool_fix_head != NULL)
|
||
+ minipool_fix_tail->next = fix;
|
||
+ else
|
||
+ minipool_fix_head = fix;
|
||
+
|
||
+ minipool_fix_tail = fix;
|
||
+}
|
||
+
|
||
+/* Record INSN, which will need fixing up to load a value from the
|
||
+ minipool. ADDRESS is the offset of the insn since the start of the
|
||
+ function; LOC is a pointer to the part of the insn which requires
|
||
+ fixing; VALUE is the constant that must be loaded, which is of type
|
||
+ MODE. */
|
||
+static void
|
||
+push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc,
|
||
+ enum machine_mode mode, rtx value)
|
||
+{
|
||
+ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix));
|
||
+ rtx body = PATTERN (insn);
|
||
+
|
||
+ fix->insn = insn;
|
||
+ fix->address = address;
|
||
+ fix->loc = loc;
|
||
+ fix->mode = mode;
|
||
+ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value);
|
||
+ fix->value = value;
|
||
+
|
||
+ if (GET_CODE (body) == PARALLEL)
|
||
+ {
|
||
+ /* Mcall : Ks16 << 2 */
|
||
+ fix->forwards = ((1 << 15) - 1) << 2;
|
||
+ fix->backwards = (1 << 15) << 2;
|
||
+ }
|
||
+ else if (GET_CODE (body) == SET
|
||
+ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4)
|
||
+ {
|
||
+ /* Word Load */
|
||
+ if (TARGET_HARD_FLOAT
|
||
+ && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
|
||
+ {
|
||
+ /* Ldc0.w : Ku12 << 2 */
|
||
+ fix->forwards = ((1 << 12) - 1) << 2;
|
||
+ fix->backwards = 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if (optimize_size)
|
||
+ {
|
||
+ /* Lddpc : Ku7 << 2 */
|
||
+ fix->forwards = ((1 << 7) - 1) << 2;
|
||
+ fix->backwards = 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Ld.w : Ks16 */
|
||
+ fix->forwards = ((1 << 15) - 4);
|
||
+ fix->backwards = (1 << 15);
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ else if (GET_CODE (body) == SET
|
||
+ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8)
|
||
+ {
|
||
+ /* Double word load */
|
||
+ if (TARGET_HARD_FLOAT
|
||
+ && GET_MODE_CLASS (GET_MODE (SET_DEST (body))) == MODE_FLOAT)
|
||
+ {
|
||
+ /* Ldc0.d : Ku12 << 2 */
|
||
+ fix->forwards = ((1 << 12) - 1) << 2;
|
||
+ fix->backwards = 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Ld.d : Ks16 */
|
||
+ fix->forwards = ((1 << 15) - 4);
|
||
+ fix->backwards = (1 << 15);
|
||
+ }
|
||
+ }
|
||
+ else if (GET_CODE (body) == UNSPEC_VOLATILE
|
||
+ && XINT (body, 1) == VUNSPEC_MVRC)
|
||
+ {
|
||
+ /* Coprocessor load */
|
||
+ /* Ldc : Ku8 << 2 */
|
||
+ fix->forwards = ((1 << 8) - 1) << 2;
|
||
+ fix->backwards = 0;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Assume worst case which is lddpc insn. */
|
||
+ fix->forwards = ((1 << 7) - 1) << 2;
|
||
+ fix->backwards = 0;
|
||
+ }
|
||
+
|
||
+ fix->minipool = NULL;
|
||
+
|
||
+ /* If an insn doesn't have a range defined for it, then it isn't expecting
|
||
+ to be reworked by this code. Better to abort now than to generate duff
|
||
+ assembly code. */
|
||
+ if (fix->forwards == 0 && fix->backwards == 0)
|
||
+ abort ();
|
||
+
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
|
||
+ GET_MODE_NAME (mode),
|
||
+ INSN_UID (insn), (unsigned long) address,
|
||
+ -1 * (long) fix->backwards, (long) fix->forwards);
|
||
+ avr32_print_value (dump_file, fix->value);
|
||
+ fprintf (dump_file, "\n");
|
||
+ }
|
||
+
|
||
+ /* Add it to the chain of fixes. */
|
||
+ fix->next = NULL;
|
||
+
|
||
+ if (minipool_fix_head != NULL)
|
||
+ minipool_fix_tail->next = fix;
|
||
+ else
|
||
+ minipool_fix_head = fix;
|
||
+
|
||
+ minipool_fix_tail = fix;
|
||
+}
|
||
+
|
||
+/* Scan INSN and note any of its operands that need fixing.
|
||
+ If DO_PUSHES is false we do not actually push any of the fixups
|
||
+ needed. The function returns TRUE is any fixups were needed/pushed.
|
||
+ This is used by avr32_memory_load_p() which needs to know about loads
|
||
+ of constants that will be converted into minipool loads. */
|
||
+static bool
|
||
+note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
|
||
+{
|
||
+ bool result = false;
|
||
+ int opno;
|
||
+
|
||
+ extract_insn (insn);
|
||
+
|
||
+ if (!constrain_operands (1))
|
||
+ fatal_insn_not_found (insn);
|
||
+
|
||
+ if (recog_data.n_alternatives == 0)
|
||
+ return false;
|
||
+
|
||
+ /* Fill in recog_op_alt with information about the constraints of this
|
||
+ insn. */
|
||
+ preprocess_constraints ();
|
||
+
|
||
+ for (opno = 0; opno < recog_data.n_operands; opno++)
|
||
+ {
|
||
+ rtx op;
|
||
+
|
||
+ /* Things we need to fix can only occur in inputs. */
|
||
+ if (recog_data.operand_type[opno] != OP_IN)
|
||
+ continue;
|
||
+
|
||
+ op = recog_data.operand[opno];
|
||
+
|
||
+ if (avr32_const_pool_ref_operand (op, GET_MODE (op)))
|
||
+ {
|
||
+ if (do_pushes)
|
||
+ {
|
||
+ rtx cop = avoid_constant_pool_reference (op);
|
||
+
|
||
+ /* Casting the address of something to a mode narrower than a
|
||
+ word can cause avoid_constant_pool_reference() to return the
|
||
+ pool reference itself. That's no good to us here. Lets
|
||
+ just hope that we can use the constant pool value directly.
|
||
+ */
|
||
+ if (op == cop)
|
||
+ cop = get_pool_constant (XEXP (op, 0));
|
||
+
|
||
+ push_minipool_fix (insn, address,
|
||
+ recog_data.operand_loc[opno],
|
||
+ recog_data.operand_mode[opno], cop);
|
||
+ }
|
||
+
|
||
+ result = true;
|
||
+ }
|
||
+ else if (TARGET_HAS_ASM_ADDR_PSEUDOS
|
||
+ && avr32_address_operand (op, GET_MODE (op)))
|
||
+ {
|
||
+ /* Handle pseudo instructions using a direct address. These pseudo
|
||
+ instructions might need entries in the constant pool and we must
|
||
+ therefor create a constant pool for them, in case the
|
||
+ assembler/linker needs to insert entries. */
|
||
+ if (do_pushes)
|
||
+ {
|
||
+ /* Push a dummy constant pool entry so that the .cpool
|
||
+ directive should be inserted on the appropriate place in the
|
||
+ code even if there are no real constant pool entries. This
|
||
+ is used by the assembler and linker to know where to put
|
||
+ generated constant pool entries. */
|
||
+ push_minipool_fix (insn, address,
|
||
+ recog_data.operand_loc[opno],
|
||
+ recog_data.operand_mode[opno],
|
||
+ gen_rtx_UNSPEC (VOIDmode,
|
||
+ gen_rtvec (1, const0_rtx),
|
||
+ UNSPEC_FORCE_MINIPOOL));
|
||
+ result = true;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ return result;
|
||
+}
|
||
+
|
||
+
|
||
+static int
|
||
+avr32_insn_is_cast (rtx insn)
|
||
+{
|
||
+
|
||
+ if (NONJUMP_INSN_P (insn)
|
||
+ && GET_CODE (PATTERN (insn)) == SET
|
||
+ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND
|
||
+ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND)
|
||
+ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0))
|
||
+ && REG_P (SET_DEST (PATTERN (insn))))
|
||
+ return true;
|
||
+ return false;
|
||
+}
|
||
+
|
||
+/*
|
||
+ Replace all occurances of reg FROM with reg TO in X */
|
||
+
|
||
+rtx
|
||
+avr32_replace_reg (rtx x, rtx from, rtx to)
|
||
+{
|
||
+ int i, j;
|
||
+ const char *fmt;
|
||
+
|
||
+ gcc_assert ( REG_P (from) && REG_P (to) );
|
||
+
|
||
+ /* Allow this function to make replacements in EXPR_LISTs. */
|
||
+ if (x == 0)
|
||
+ return 0;
|
||
+
|
||
+ if (rtx_equal_p (x, from))
|
||
+ return to;
|
||
+
|
||
+ if (GET_CODE (x) == SUBREG)
|
||
+ {
|
||
+ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to);
|
||
+
|
||
+ if (GET_CODE (new) == CONST_INT)
|
||
+ {
|
||
+ x = simplify_subreg (GET_MODE (x), new,
|
||
+ GET_MODE (SUBREG_REG (x)),
|
||
+ SUBREG_BYTE (x));
|
||
+ gcc_assert (x);
|
||
+ }
|
||
+ else
|
||
+ SUBREG_REG (x) = new;
|
||
+
|
||
+ return x;
|
||
+ }
|
||
+ else if (GET_CODE (x) == ZERO_EXTEND)
|
||
+ {
|
||
+ rtx new = avr32_replace_reg (XEXP (x, 0), from, to);
|
||
+
|
||
+ if (GET_CODE (new) == CONST_INT)
|
||
+ {
|
||
+ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
|
||
+ new, GET_MODE (XEXP (x, 0)));
|
||
+ gcc_assert (x);
|
||
+ }
|
||
+ else
|
||
+ XEXP (x, 0) = new;
|
||
+
|
||
+ return x;
|
||
+ }
|
||
+
|
||
+ fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
+ {
|
||
+ if (fmt[i] == 'e')
|
||
+ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to);
|
||
+ else if (fmt[i] == 'E')
|
||
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
+ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to);
|
||
+ }
|
||
+
|
||
+ return x;
|
||
+}
|
||
+
|
||
+
|
||
+/* FIXME: The level of nesting in this function is way too deep. It needs to be
|
||
+ torn apart. */
|
||
+static void
|
||
+avr32_reorg_optimization (void)
|
||
+{
|
||
+ rtx first = get_first_nonnote_insn ();
|
||
+ rtx insn;
|
||
+
|
||
+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
|
||
+ {
|
||
+
|
||
+ /* Scan through all insns looking for cast operations. */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file, ";; Deleting redundant cast operations:\n");
|
||
+ }
|
||
+ for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
+ {
|
||
+ rtx reg, src_reg, scan;
|
||
+ enum machine_mode mode;
|
||
+ int unused_cast;
|
||
+ rtx label_ref;
|
||
+
|
||
+ if (avr32_insn_is_cast (insn)
|
||
+ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode
|
||
+ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode))
|
||
+ {
|
||
+ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0));
|
||
+ reg = SET_DEST (PATTERN (insn));
|
||
+ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ continue;
|
||
+ }
|
||
+
|
||
+ unused_cast = false;
|
||
+ label_ref = NULL_RTX;
|
||
+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
|
||
+ {
|
||
+ /* Check if we have reached the destination of a simple
|
||
+ conditional jump which we have already scanned past. If so,
|
||
+ we can safely continue scanning. */
|
||
+ if (LABEL_P (scan) && label_ref != NULL_RTX)
|
||
+ {
|
||
+ if (CODE_LABEL_NUMBER (scan) ==
|
||
+ CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
|
||
+ label_ref = NULL_RTX;
|
||
+ else
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ if (!INSN_P (scan))
|
||
+ continue;
|
||
+
|
||
+ /* For conditional jumps we can manage to keep on scanning if
|
||
+ we meet the destination label later on before any new jump
|
||
+ insns occure. */
|
||
+ if (GET_CODE (scan) == JUMP_INSN)
|
||
+ {
|
||
+ if (any_condjump_p (scan) && label_ref == NULL_RTX)
|
||
+ label_ref = condjump_label (scan);
|
||
+ else
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ /* Check if we have a call and the register is used as an argument. */
|
||
+ if (CALL_P (scan)
|
||
+ && find_reg_fusage (scan, USE, reg) )
|
||
+ break;
|
||
+
|
||
+ if (!reg_mentioned_p (reg, PATTERN (scan)))
|
||
+ continue;
|
||
+
|
||
+ /* Check if casted register is used in this insn */
|
||
+ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX)
|
||
+ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) ==
|
||
+ GET_MODE (reg)))
|
||
+ {
|
||
+ /* If not used in the source to the set or in a memory
|
||
+ expression in the destiantion then the register is used
|
||
+ as a destination and is really dead. */
|
||
+ if (single_set (scan)
|
||
+ && GET_CODE (PATTERN (scan)) == SET
|
||
+ && REG_P (SET_DEST (PATTERN (scan)))
|
||
+ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan)))
|
||
+ && label_ref == NULL_RTX)
|
||
+ {
|
||
+ unused_cast = true;
|
||
+ }
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ /* Check if register is dead or set in this insn */
|
||
+ if (dead_or_set_p (scan, reg))
|
||
+ {
|
||
+ unused_cast = true;
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* Check if we have unresolved conditional jumps */
|
||
+ if (label_ref != NULL_RTX)
|
||
+ continue;
|
||
+
|
||
+ if (unused_cast)
|
||
+ {
|
||
+ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0)))
|
||
+ {
|
||
+ /* One operand cast, safe to delete */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; INSN %i removed, casted register %i value not used.\n",
|
||
+ INSN_UID (insn), REGNO (reg));
|
||
+ }
|
||
+ SET_INSN_DELETED (insn);
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (insn) = -1;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Two operand cast, which really could be substituted with
|
||
+ a move, if the source register is dead after the cast
|
||
+ insn and then the insn which sets the source register
|
||
+ could instead directly set the destination register for
|
||
+ the cast. As long as there are no insns in between which
|
||
+ uses the register. */
|
||
+ rtx link = NULL_RTX;
|
||
+ rtx set;
|
||
+ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0);
|
||
+ unused_cast = false;
|
||
+
|
||
+ if (!find_reg_note (insn, REG_DEAD, src_reg))
|
||
+ continue;
|
||
+
|
||
+ /* Search for the insn which sets the source register */
|
||
+ for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
|
||
+ {
|
||
+ if (REG_NOTE_KIND (link) != 0)
|
||
+ continue;
|
||
+ set = single_set (XEXP (link, 0));
|
||
+ if (set && rtx_equal_p (src_reg, SET_DEST (set)))
|
||
+ {
|
||
+ link = XEXP (link, 0);
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* Found no link or link is a call insn where we can not
|
||
+ change the destination register */
|
||
+ if (link == NULL_RTX || CALL_P (link))
|
||
+ continue;
|
||
+
|
||
+ /* Scan through all insn between link and insn */
|
||
+ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
|
||
+ {
|
||
+ /* Don't try to trace forward past a CODE_LABEL if we
|
||
+ haven't seen INSN yet. Ordinarily, we will only
|
||
+ find the setting insn in LOG_LINKS if it is in the
|
||
+ same basic block. However, cross-jumping can insert
|
||
+ code labels in between the load and the call, and
|
||
+ can result in situations where a single call insn
|
||
+ may have two targets depending on where we came
|
||
+ from. */
|
||
+
|
||
+ if (GET_CODE (scan) == CODE_LABEL)
|
||
+ break;
|
||
+
|
||
+ if (!INSN_P (scan))
|
||
+ continue;
|
||
+
|
||
+ /* Don't try to trace forward past a JUMP. To optimize
|
||
+ safely, we would have to check that all the
|
||
+ instructions at the jump destination did not use REG.
|
||
+ */
|
||
+
|
||
+ if (GET_CODE (scan) == JUMP_INSN)
|
||
+ {
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ if (!reg_mentioned_p (src_reg, PATTERN (scan)))
|
||
+ continue;
|
||
+
|
||
+ /* We have reached the cast insn */
|
||
+ if (scan == insn)
|
||
+ {
|
||
+ /* We can remove cast and replace the destination
|
||
+ register of the link insn with the destination
|
||
+ of the cast */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; INSN %i removed, casted value unused. "
|
||
+ "Destination of removed cast operation: register %i, folded into INSN %i.\n",
|
||
+ INSN_UID (insn), REGNO (reg),
|
||
+ INSN_UID (link));
|
||
+ }
|
||
+ /* Update link insn */
|
||
+ SET_DEST (PATTERN (link)) =
|
||
+ gen_rtx_REG (mode, REGNO (reg));
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (link) = -1;
|
||
+
|
||
+ /* Delete insn */
|
||
+ SET_INSN_DELETED (insn);
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (insn) = -1;
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
|
||
+ {
|
||
+
|
||
+ /* Scan through all insns looking for shifted add operations */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Deleting redundant shifted add operations:\n");
|
||
+ }
|
||
+ for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
+ {
|
||
+ rtx reg, mem_expr, scan, op0, op1;
|
||
+ int add_only_used_as_pointer;
|
||
+
|
||
+ if (INSN_P (insn)
|
||
+ && GET_CODE (PATTERN (insn)) == SET
|
||
+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
|
||
+ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT
|
||
+ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT)
|
||
+ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) ==
|
||
+ CONST_INT && REG_P (SET_DEST (PATTERN (insn)))
|
||
+ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1))
|
||
+ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0)))
|
||
+ {
|
||
+ reg = SET_DEST (PATTERN (insn));
|
||
+ mem_expr = SET_SRC (PATTERN (insn));
|
||
+ op0 = XEXP (XEXP (mem_expr, 0), 0);
|
||
+ op1 = XEXP (mem_expr, 1);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ continue;
|
||
+ }
|
||
+
|
||
+ /* Scan forward the check if the result of the shifted add
|
||
+ operation is only used as an address in memory operations and
|
||
+ that the operands to the shifted add are not clobbered. */
|
||
+ add_only_used_as_pointer = false;
|
||
+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
|
||
+ {
|
||
+ if (!INSN_P (scan))
|
||
+ continue;
|
||
+
|
||
+ /* Don't try to trace forward past a JUMP or CALL. To optimize
|
||
+ safely, we would have to check that all the instructions at
|
||
+ the jump destination did not use REG. */
|
||
+
|
||
+ if (GET_CODE (scan) == JUMP_INSN)
|
||
+ {
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ /* If used in a call insn then we cannot optimize it away */
|
||
+ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg)))
|
||
+ break;
|
||
+
|
||
+ /* If any of the operands of the shifted add are clobbered we
|
||
+ cannot optimize the shifted adda away */
|
||
+ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg)))
|
||
+ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg))))
|
||
+ break;
|
||
+
|
||
+ if (!reg_mentioned_p (reg, PATTERN (scan)))
|
||
+ continue;
|
||
+
|
||
+ /* If used any other place than as a pointer or as the
|
||
+ destination register we failed */
|
||
+ if (!(single_set (scan)
|
||
+ && GET_CODE (PATTERN (scan)) == SET
|
||
+ && ((MEM_P (SET_DEST (PATTERN (scan)))
|
||
+ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
|
||
+ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg))
|
||
+ || (MEM_P (SET_SRC (PATTERN (scan)))
|
||
+ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0))
|
||
+ && REGNO (XEXP
|
||
+ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg))))
|
||
+ && !(GET_CODE (PATTERN (scan)) == SET
|
||
+ && REG_P (SET_DEST (PATTERN (scan)))
|
||
+ && !regno_use_in (REGNO (reg),
|
||
+ SET_SRC (PATTERN (scan)))))
|
||
+ break;
|
||
+
|
||
+ /* We cannot replace the pointer in TImode insns
|
||
+ as these has a differene addressing mode than the other
|
||
+ memory insns. */
|
||
+ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode )
|
||
+ break;
|
||
+
|
||
+ /* Check if register is dead or set in this insn */
|
||
+ if (dead_or_set_p (scan, reg))
|
||
+ {
|
||
+ add_only_used_as_pointer = true;
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ if (add_only_used_as_pointer)
|
||
+ {
|
||
+ /* Lets delete the add insn and replace all memory references
|
||
+ which uses the pointer with the full expression. */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Deleting INSN %i since address expression can be folded into all "
|
||
+ "memory references using this expression\n",
|
||
+ INSN_UID (insn));
|
||
+ }
|
||
+ SET_INSN_DELETED (insn);
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (insn) = -1;
|
||
+
|
||
+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan))
|
||
+ {
|
||
+ if (!INSN_P (scan))
|
||
+ continue;
|
||
+
|
||
+ if (!reg_mentioned_p (reg, PATTERN (scan)))
|
||
+ continue;
|
||
+
|
||
+ /* If used any other place than as a pointer or as the
|
||
+ destination register we failed */
|
||
+ if ((single_set (scan)
|
||
+ && GET_CODE (PATTERN (scan)) == SET
|
||
+ && ((MEM_P (SET_DEST (PATTERN (scan)))
|
||
+ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0))
|
||
+ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) ==
|
||
+ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan)))
|
||
+ &&
|
||
+ REG_P (XEXP
|
||
+ (SET_SRC (PATTERN (scan)),
|
||
+ 0))
|
||
+ &&
|
||
+ REGNO (XEXP
|
||
+ (SET_SRC (PATTERN (scan)),
|
||
+ 0)) == REGNO (reg)))))
|
||
+ {
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Register %i replaced by indexed address in INSN %i\n",
|
||
+ REGNO (reg), INSN_UID (scan));
|
||
+ }
|
||
+ if (MEM_P (SET_DEST (PATTERN (scan))))
|
||
+ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr;
|
||
+ else
|
||
+ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr;
|
||
+ }
|
||
+
|
||
+ /* Check if register is dead or set in this insn */
|
||
+ if (dead_or_set_p (scan, reg))
|
||
+ {
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+
|
||
+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0)))
|
||
+ {
|
||
+
|
||
+ /* Scan through all insns looking for conditional register to
|
||
+ register move operations */
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Folding redundant conditional move operations:\n");
|
||
+ }
|
||
+ for (insn = first; insn; insn = next_nonnote_insn (insn))
|
||
+ {
|
||
+ rtx src_reg, dst_reg, scan, test;
|
||
+
|
||
+ if (INSN_P (insn)
|
||
+ && GET_CODE (PATTERN (insn)) == COND_EXEC
|
||
+ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET
|
||
+ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn))))
|
||
+ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn))))
|
||
+ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn)))))
|
||
+ {
|
||
+ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn)));
|
||
+ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn)));
|
||
+ test = COND_EXEC_TEST (PATTERN (insn));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ continue;
|
||
+ }
|
||
+
|
||
+ /* Scan backward through the rest of insns in this if-then or if-else
|
||
+ block and check if we can fold the move into another of the conditional
|
||
+ insns in the same block. */
|
||
+ scan = prev_nonnote_insn (insn);
|
||
+ while (INSN_P (scan)
|
||
+ && GET_CODE (PATTERN (scan)) == COND_EXEC
|
||
+ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test))
|
||
+ {
|
||
+ rtx pattern = COND_EXEC_CODE (PATTERN (scan));
|
||
+ if ( GET_CODE (pattern) == PARALLEL )
|
||
+ pattern = XVECEXP (pattern, 0, 0);
|
||
+
|
||
+ if ( reg_set_p (src_reg, pattern) )
|
||
+ {
|
||
+ /* Fold in the destination register for the cond. move
|
||
+ into this insn. */
|
||
+ SET_DEST (pattern) = dst_reg;
|
||
+ if (dump_file)
|
||
+ {
|
||
+ fprintf (dump_file,
|
||
+ ";; Deleting INSN %i since this operation can be folded into INSN %i\n",
|
||
+ INSN_UID (insn), INSN_UID (scan));
|
||
+ }
|
||
+
|
||
+ /* Scan and check if any of the insns in between uses the src_reg. We
|
||
+ must then replace it with the dst_reg. */
|
||
+ while ( (scan = next_nonnote_insn (scan)) != insn ){
|
||
+ avr32_replace_reg (scan, src_reg, dst_reg);
|
||
+ }
|
||
+ /* Delete the insn. */
|
||
+ SET_INSN_DELETED (insn);
|
||
+
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (insn) = -1;
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ /* If the destination register is used but not set in this insn
|
||
+ we cannot fold. */
|
||
+ if ( reg_mentioned_p (dst_reg, pattern) )
|
||
+ break;
|
||
+
|
||
+ scan = prev_nonnote_insn (scan);
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+}
|
||
+
|
||
+/* Exported to toplev.c.
|
||
+
|
||
+ Do a final pass over the function, just before delayed branch
|
||
+ scheduling. */
|
||
+
|
||
+static void
|
||
+avr32_reorg (void)
|
||
+{
|
||
+ rtx insn;
|
||
+ HOST_WIDE_INT address = 0;
|
||
+ Mfix *fix;
|
||
+
|
||
+ minipool_fix_head = minipool_fix_tail = NULL;
|
||
+
|
||
+ /* The first insn must always be a note, or the code below won't scan it
|
||
+ properly. */
|
||
+ insn = get_insns ();
|
||
+ if (GET_CODE (insn) != NOTE)
|
||
+ abort ();
|
||
+
|
||
+ /* Scan all the insns and record the operands that will need fixing. */
|
||
+ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
|
||
+ {
|
||
+ if (GET_CODE (insn) == BARRIER)
|
||
+ push_minipool_barrier (insn, address);
|
||
+ else if (INSN_P (insn))
|
||
+ {
|
||
+ rtx table;
|
||
+
|
||
+ note_invalid_constants (insn, address, true);
|
||
+ address += get_attr_length (insn);
|
||
+
|
||
+ /* If the insn is a vector jump, add the size of the table and skip
|
||
+ the table. */
|
||
+ if ((table = is_jump_table (insn)) != NULL)
|
||
+ {
|
||
+ address += get_jump_table_size (table);
|
||
+ insn = table;
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ fix = minipool_fix_head;
|
||
+
|
||
+ /* Now scan the fixups and perform the required changes. */
|
||
+ while (fix)
|
||
+ {
|
||
+ Mfix *ftmp;
|
||
+ Mfix *fdel;
|
||
+ Mfix *last_added_fix;
|
||
+ Mfix *last_barrier = NULL;
|
||
+ Mfix *this_fix;
|
||
+
|
||
+ /* Skip any further barriers before the next fix. */
|
||
+ while (fix && GET_CODE (fix->insn) == BARRIER)
|
||
+ fix = fix->next;
|
||
+
|
||
+ /* No more fixes. */
|
||
+ if (fix == NULL)
|
||
+ break;
|
||
+
|
||
+ last_added_fix = NULL;
|
||
+
|
||
+ for (ftmp = fix; ftmp; ftmp = ftmp->next)
|
||
+ {
|
||
+ if (GET_CODE (ftmp->insn) == BARRIER)
|
||
+ {
|
||
+ if (ftmp->address >= minipool_vector_head->max_address)
|
||
+ break;
|
||
+
|
||
+ last_barrier = ftmp;
|
||
+ }
|
||
+ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
|
||
+ break;
|
||
+
|
||
+ last_added_fix = ftmp; /* Keep track of the last fix added.
|
||
+ */
|
||
+ }
|
||
+
|
||
+ /* If we found a barrier, drop back to that; any fixes that we could
|
||
+ have reached but come after the barrier will now go in the next
|
||
+ mini-pool. */
|
||
+ if (last_barrier != NULL)
|
||
+ {
|
||
+ /* Reduce the refcount for those fixes that won't go into this pool
|
||
+ after all. */
|
||
+ for (fdel = last_barrier->next;
|
||
+ fdel && fdel != ftmp; fdel = fdel->next)
|
||
+ {
|
||
+ fdel->minipool->refcount--;
|
||
+ fdel->minipool = NULL;
|
||
+ }
|
||
+
|
||
+ ftmp = last_barrier;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* ftmp is first fix that we can't fit into this pool and there no
|
||
+ natural barriers that we could use. Insert a new barrier in the
|
||
+ code somewhere between the previous fix and this one, and
|
||
+ arrange to jump around it. */
|
||
+ HOST_WIDE_INT max_address;
|
||
+
|
||
+ /* The last item on the list of fixes must be a barrier, so we can
|
||
+ never run off the end of the list of fixes without last_barrier
|
||
+ being set. */
|
||
+ if (ftmp == NULL)
|
||
+ abort ();
|
||
+
|
||
+ max_address = minipool_vector_head->max_address;
|
||
+ /* Check that there isn't another fix that is in range that we
|
||
+ couldn't fit into this pool because the pool was already too
|
||
+ large: we need to put the pool before such an instruction. */
|
||
+ if (ftmp->address < max_address)
|
||
+ max_address = ftmp->address;
|
||
+
|
||
+ last_barrier = create_fix_barrier (last_added_fix, max_address);
|
||
+ }
|
||
+
|
||
+ assign_minipool_offsets (last_barrier);
|
||
+
|
||
+ while (ftmp)
|
||
+ {
|
||
+ if (GET_CODE (ftmp->insn) != BARRIER
|
||
+ && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
|
||
+ == NULL))
|
||
+ break;
|
||
+
|
||
+ ftmp = ftmp->next;
|
||
+ }
|
||
+
|
||
+ /* Scan over the fixes we have identified for this pool, fixing them up
|
||
+ and adding the constants to the pool itself. */
|
||
+ for (this_fix = fix; this_fix && ftmp != this_fix;
|
||
+ this_fix = this_fix->next)
|
||
+ if (GET_CODE (this_fix->insn) != BARRIER
|
||
+ /* Do nothing for entries present just to force the insertion of
|
||
+ a minipool. */
|
||
+ && !IS_FORCE_MINIPOOL (this_fix->value))
|
||
+ {
|
||
+ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
|
||
+ minipool_vector_label),
|
||
+ this_fix->minipool->offset);
|
||
+ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
|
||
+ }
|
||
+
|
||
+ dump_minipool (last_barrier->insn);
|
||
+ fix = ftmp;
|
||
+ }
|
||
+
|
||
+ /* Free the minipool memory. */
|
||
+ obstack_free (&minipool_obstack, minipool_startobj);
|
||
+
|
||
+ avr32_reorg_optimization ();
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+ Hook for doing some final scanning of instructions. Does nothing yet...*/
|
||
+void
|
||
+avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
|
||
+ rtx * opvec ATTRIBUTE_UNUSED,
|
||
+ int noperands ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ return;
|
||
+}
|
||
+
|
||
+
|
||
+/* Function for changing the condition on the next instruction,
|
||
+ should be used when emmiting compare instructions and
|
||
+ the condition of the next instruction needs to change.
|
||
+*/
|
||
+int
|
||
+set_next_insn_cond (rtx cur_insn, rtx new_cond)
|
||
+{
|
||
+ rtx next_insn = next_nonnote_insn (cur_insn);
|
||
+ if ((next_insn != NULL_RTX)
|
||
+ && (INSN_P (next_insn)))
|
||
+ {
|
||
+ if ((GET_CODE (PATTERN (next_insn)) == SET)
|
||
+ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
|
||
+ {
|
||
+ /* Branch instructions */
|
||
+ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond;
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (next_insn) = -1;
|
||
+ return TRUE;
|
||
+ }
|
||
+ else if ((GET_CODE (PATTERN (next_insn)) == SET)
|
||
+ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)),
|
||
+ GET_MODE (SET_SRC (PATTERN (next_insn)))))
|
||
+ {
|
||
+ /* scc with no compare */
|
||
+ SET_SRC (PATTERN (next_insn)) = new_cond;
|
||
+ /* Force the instruction to be recognized again */
|
||
+ INSN_CODE (next_insn) = -1;
|
||
+ return TRUE;
|
||
+ }
|
||
+ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC)
|
||
+ {
|
||
+ if ( GET_CODE (new_cond) == UNSPEC )
|
||
+ {
|
||
+ COND_EXEC_TEST (PATTERN (next_insn)) =
|
||
+ gen_rtx_UNSPEC (CCmode,
|
||
+ gen_rtvec (2,
|
||
+ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0),
|
||
+ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)),
|
||
+ XINT (new_cond, 1));
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond));
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+/* Function for obtaining the condition for the next instruction
|
||
+ after cur_insn.
|
||
+*/
|
||
+rtx
|
||
+get_next_insn_cond (rtx cur_insn)
|
||
+{
|
||
+ rtx next_insn = next_nonnote_insn (cur_insn);
|
||
+ rtx cond = NULL_RTX;
|
||
+ if (next_insn != NULL_RTX
|
||
+ && INSN_P (next_insn))
|
||
+ {
|
||
+ if ((GET_CODE (PATTERN (next_insn)) == SET)
|
||
+ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE))
|
||
+ {
|
||
+ /* Branch and cond if then else instructions */
|
||
+ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0);
|
||
+ }
|
||
+ else if ((GET_CODE (PATTERN (next_insn)) == SET)
|
||
+ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)),
|
||
+ GET_MODE (SET_SRC (PATTERN (next_insn)))))
|
||
+ {
|
||
+ /* scc with no compare */
|
||
+ cond = SET_SRC (PATTERN (next_insn));
|
||
+ }
|
||
+ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC)
|
||
+ {
|
||
+ cond = COND_EXEC_TEST (PATTERN (next_insn));
|
||
+ }
|
||
+ }
|
||
+ return cond;
|
||
+}
|
||
+
|
||
+
|
||
+rtx
|
||
+avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1)
|
||
+{
|
||
+
|
||
+ rtx new_cond = NULL_RTX;
|
||
+ rtx ops[2];
|
||
+ rtx compare_pattern;
|
||
+ ops[0] = op0;
|
||
+ ops[1] = op1;
|
||
+
|
||
+ if ( GET_CODE (op0) == AND )
|
||
+ compare_pattern = op0;
|
||
+ else
|
||
+ compare_pattern = gen_rtx_COMPARE (mode, op0, op1);
|
||
+
|
||
+ new_cond = is_compare_redundant (compare_pattern, cond);
|
||
+
|
||
+ if (new_cond != NULL_RTX)
|
||
+ return new_cond;
|
||
+
|
||
+ /* Check if we are inserting a bit-load instead of a compare. */
|
||
+ if ( GET_CODE (op0) == AND )
|
||
+ {
|
||
+ ops[0] = XEXP (op0, 0);
|
||
+ ops[1] = XEXP (op0, 1);
|
||
+ output_asm_insn ("bld\t%0, %p1", ops);
|
||
+ return cond;
|
||
+ }
|
||
+
|
||
+ /* Insert compare */
|
||
+ switch (mode)
|
||
+ {
|
||
+ case QImode:
|
||
+ output_asm_insn ("cp.b\t%0, %1", ops);
|
||
+ break;
|
||
+ case HImode:
|
||
+ output_asm_insn ("cp.h\t%0, %1", ops);
|
||
+ break;
|
||
+ case SImode:
|
||
+ output_asm_insn ("cp.w\t%0, %1", ops);
|
||
+ break;
|
||
+ case DImode:
|
||
+ if (GET_CODE (op1) != REG)
|
||
+ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops);
|
||
+ else
|
||
+ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops);
|
||
+ break;
|
||
+ default:
|
||
+ internal_error ("Unknown comparison mode");
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ return cond;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_load_multiple_operation (rtx op,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int count = XVECLEN (op, 0);
|
||
+ unsigned int dest_regno;
|
||
+ rtx src_addr;
|
||
+ rtx elt;
|
||
+ int i = 1, base = 0;
|
||
+
|
||
+ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
|
||
+ return 0;
|
||
+
|
||
+ /* Check to see if this might be a write-back. */
|
||
+ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS)
|
||
+ {
|
||
+ i++;
|
||
+ base = 1;
|
||
+
|
||
+ /* Now check it more carefully. */
|
||
+ if (GET_CODE (SET_DEST (elt)) != REG
|
||
+ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG
|
||
+ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT
|
||
+ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4)
|
||
+ return 0;
|
||
+ }
|
||
+
|
||
+ /* Perform a quick check so we don't blow up below. */
|
||
+ if (count <= 1
|
||
+ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
|
||
+ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG
|
||
+ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
|
||
+ return 0;
|
||
+
|
||
+ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1)));
|
||
+ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0);
|
||
+
|
||
+ for (; i < count; i++)
|
||
+ {
|
||
+ elt = XVECEXP (op, 0, i);
|
||
+
|
||
+ if (GET_CODE (elt) != SET
|
||
+ || GET_CODE (SET_DEST (elt)) != REG
|
||
+ || GET_MODE (SET_DEST (elt)) != SImode
|
||
+ || GET_CODE (SET_SRC (elt)) != UNSPEC)
|
||
+ return 0;
|
||
+ }
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_store_multiple_operation (rtx op,
|
||
+ enum machine_mode mode ATTRIBUTE_UNUSED)
|
||
+{
|
||
+ int count = XVECLEN (op, 0);
|
||
+ int src_regno;
|
||
+ rtx dest_addr;
|
||
+ rtx elt;
|
||
+ int i = 1;
|
||
+
|
||
+ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET)
|
||
+ return 0;
|
||
+
|
||
+ /* Perform a quick check so we don't blow up below. */
|
||
+ if (count <= i
|
||
+ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET
|
||
+ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM
|
||
+ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC)
|
||
+ return 0;
|
||
+
|
||
+ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1)));
|
||
+ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0);
|
||
+
|
||
+ for (; i < count; i++)
|
||
+ {
|
||
+ elt = XVECEXP (op, 0, i);
|
||
+
|
||
+ if (GET_CODE (elt) != SET
|
||
+ || GET_CODE (SET_DEST (elt)) != MEM
|
||
+ || GET_MODE (SET_DEST (elt)) != SImode
|
||
+ || GET_CODE (SET_SRC (elt)) != UNSPEC)
|
||
+ return 0;
|
||
+ }
|
||
+
|
||
+ return 1;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /* Check if they use the same accumulator */
|
||
+ if (rtx_equal_p
|
||
+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /*
|
||
+ Check if the mul instruction produces the accumulator for the mac
|
||
+ instruction. */
|
||
+ if (rtx_equal_p
|
||
+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_store_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /* Only valid bypass if the output result is used as an src in the store
|
||
+ instruction, NOT if used as a pointer or base. */
|
||
+ if (rtx_equal_p
|
||
+ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in))))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_mul_waw_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /* Check if the register holding the result from the mul instruction is
|
||
+ used as a result register in the input instruction. */
|
||
+ if (rtx_equal_p
|
||
+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in))))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+int
|
||
+avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /* Check if the first loaded word in insn_out is used in insn_in. */
|
||
+ rtx dst_reg;
|
||
+ rtx second_loaded_reg;
|
||
+
|
||
+ /* If this is a double alu operation then the bypass is not valid */
|
||
+ if ((get_attr_type (insn_in) == TYPE_ALU
|
||
+ || get_attr_type (insn_in) == TYPE_ALU2)
|
||
+ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4))
|
||
+ return FALSE;
|
||
+
|
||
+ /* Get the destination register in the load */
|
||
+ if (!REG_P (SET_DEST (PATTERN (insn_out))))
|
||
+ return FALSE;
|
||
+
|
||
+ dst_reg = SET_DEST (PATTERN (insn_out));
|
||
+ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1);
|
||
+
|
||
+ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in)))
|
||
+ return TRUE;
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+
|
||
+int
|
||
+avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in)
|
||
+{
|
||
+ /*
|
||
+ Check if the two first loaded word in insn_out are used in insn_in. */
|
||
+ rtx dst_reg;
|
||
+ rtx third_loaded_reg, fourth_loaded_reg;
|
||
+
|
||
+ /* Get the destination register in the load */
|
||
+ if (!REG_P (SET_DEST (PATTERN (insn_out))))
|
||
+ return FALSE;
|
||
+
|
||
+ dst_reg = SET_DEST (PATTERN (insn_out));
|
||
+ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2);
|
||
+ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3);
|
||
+
|
||
+ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in))
|
||
+ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in)))
|
||
+ {
|
||
+ return TRUE;
|
||
+ }
|
||
+
|
||
+ return FALSE;
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+rtx
|
||
+avr32_ifcvt_modify_test (ce_if_block_t *ce_info,
|
||
+ rtx test ){
|
||
+ rtx branch_insn;
|
||
+ rtx cmp_test;
|
||
+ rtx compare_op0;
|
||
+ rtx compare_op1;
|
||
+
|
||
+
|
||
+ if ( !ce_info
|
||
+ || test == NULL_RTX
|
||
+ || !reg_mentioned_p (cc0_rtx, test))
|
||
+ return test;
|
||
+
|
||
+ branch_insn = BB_END (ce_info->test_bb);
|
||
+ cmp_test = PATTERN(prev_nonnote_insn (branch_insn));
|
||
+
|
||
+ if (GET_CODE(cmp_test) != SET
|
||
+ || !CC0_P(XEXP(cmp_test, 0)) )
|
||
+ return cmp_test;
|
||
+
|
||
+ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){
|
||
+ compare_op0 = XEXP(SET_SRC(cmp_test), 0);
|
||
+ compare_op1 = XEXP(SET_SRC(cmp_test), 1);
|
||
+ } else {
|
||
+ compare_op0 = SET_SRC(cmp_test);
|
||
+ compare_op1 = const0_rtx;
|
||
+ }
|
||
+
|
||
+ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0),
|
||
+ compare_op0, compare_op1);
|
||
+}
|
||
+
|
||
+
|
||
+
|
||
+rtx
|
||
+avr32_ifcvt_modify_insn (ce_if_block_t *ce_info,
|
||
+ rtx pattern,
|
||
+ rtx insn,
|
||
+ int *num_true_changes){
|
||
+ rtx test = COND_EXEC_TEST(pattern);
|
||
+ rtx op = COND_EXEC_CODE(pattern);
|
||
+ rtx cmp_insn;
|
||
+ rtx cond_exec_insn;
|
||
+ int inputs_set_outside_ifblock = 1;
|
||
+ basic_block current_bb = BLOCK_FOR_INSN (insn);
|
||
+ rtx bb_insn ;
|
||
+ enum machine_mode mode = GET_MODE (XEXP (op, 0));
|
||
+
|
||
+ if (CC0_P(XEXP(test, 0)))
|
||
+ test = avr32_ifcvt_modify_test (ce_info,
|
||
+ test );
|
||
+
|
||
+ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op);
|
||
+
|
||
+ if ( !reload_completed )
|
||
+ {
|
||
+ rtx start;
|
||
+ int num_insns;
|
||
+ int max_insns = MAX_CONDITIONAL_EXECUTE;
|
||
+
|
||
+ if ( !ce_info )
|
||
+ return op;
|
||
+
|
||
+ /* Check if the insn is not suitable for conditional
|
||
+ execution. */
|
||
+ start_sequence ();
|
||
+ cond_exec_insn = emit_insn (pattern);
|
||
+ if ( recog_memoized (cond_exec_insn) < 0
|
||
+ && !no_new_pseudos )
|
||
+ {
|
||
+ /* Insn is not suitable for conditional execution, try
|
||
+ to fix it up by using an extra scratch register or
|
||
+ by pulling the operation outside the if-then-else
|
||
+ and then emiting a conditional move inside the if-then-else. */
|
||
+ end_sequence ();
|
||
+ if ( GET_CODE (op) != SET
|
||
+ || !REG_P (SET_DEST (op))
|
||
+ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE
|
||
+ || GET_MODE_SIZE (mode) > UNITS_PER_WORD )
|
||
+ return NULL_RTX;
|
||
+
|
||
+ /* Check if any of the input operands to the insn is set inside the
|
||
+ current block. */
|
||
+ if ( current_bb->index == ce_info->then_bb->index )
|
||
+ start = PREV_INSN (BB_HEAD (ce_info->then_bb));
|
||
+ else
|
||
+ start = PREV_INSN (BB_HEAD (ce_info->else_bb));
|
||
+
|
||
+
|
||
+ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) )
|
||
+ {
|
||
+ rtx set = single_set (bb_insn);
|
||
+
|
||
+ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op)))
|
||
+ {
|
||
+ inputs_set_outside_ifblock = 0;
|
||
+ break;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb));
|
||
+
|
||
+
|
||
+ /* Check if we can insert more insns. */
|
||
+ num_insns = ( ce_info->num_then_insns +
|
||
+ ce_info->num_else_insns +
|
||
+ ce_info->num_cond_clobber_insns +
|
||
+ ce_info->num_extra_move_insns );
|
||
+
|
||
+ if ( ce_info->num_else_insns != 0 )
|
||
+ max_insns *=2;
|
||
+
|
||
+ if ( num_insns >= max_insns )
|
||
+ return NULL_RTX;
|
||
+
|
||
+ /* Check if we have an instruction which might be converted to
|
||
+ conditional form if we give it a scratch register to clobber. */
|
||
+ {
|
||
+ rtx clobber_insn;
|
||
+ rtx scratch_reg = gen_reg_rtx (mode);
|
||
+ rtx new_pattern = copy_rtx (pattern);
|
||
+ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern));
|
||
+
|
||
+ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg);
|
||
+ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber };
|
||
+ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec));
|
||
+
|
||
+ start_sequence ();
|
||
+ clobber_insn = emit_insn (new_pattern);
|
||
+
|
||
+ if ( recog_memoized (clobber_insn) >= 0
|
||
+ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2
|
||
+ && CONST_INT_P (XEXP (set_src, 1))
|
||
+ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") )
|
||
+ || !ce_info->else_bb
|
||
+ || current_bb->index == ce_info->else_bb->index ))
|
||
+ {
|
||
+ end_sequence ();
|
||
+ /* Force the insn to be recognized again. */
|
||
+ INSN_CODE (insn) = -1;
|
||
+
|
||
+ /* If this is the first change in this IF-block then
|
||
+ signal that we have made a change. */
|
||
+ if ( ce_info->num_cond_clobber_insns == 0
|
||
+ && ce_info->num_extra_move_insns == 0 )
|
||
+ *num_true_changes += 1;
|
||
+
|
||
+ ce_info->num_cond_clobber_insns++;
|
||
+
|
||
+ if (dump_file)
|
||
+ fprintf (dump_file,
|
||
+ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n",
|
||
+ INSN_UID (insn));
|
||
+
|
||
+ return COND_EXEC_CODE (new_pattern);
|
||
+ }
|
||
+ end_sequence ();
|
||
+ }
|
||
+
|
||
+ if ( inputs_set_outside_ifblock )
|
||
+ {
|
||
+ /* Check if the insn before the cmp is an and which used
|
||
+ together with the cmp can be optimized into a bld. If
|
||
+ so then we should try to put the insn before the and
|
||
+ so that we can catch the bld peephole. */
|
||
+ rtx set;
|
||
+ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn);
|
||
+ if (insn_before_cmp_insn
|
||
+ && (set = single_set (insn_before_cmp_insn))
|
||
+ && GET_CODE (SET_SRC (set)) == AND
|
||
+ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode)
|
||
+ /* Also make sure that the insn does not set any
|
||
+ of the input operands to the insn we are pulling out. */
|
||
+ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) )
|
||
+ cmp_insn = prev_nonnote_insn (cmp_insn);
|
||
+
|
||
+ /* We can try to put the operation outside the if-then-else
|
||
+ blocks and insert a move. */
|
||
+ if ( !insn_invalid_p (insn)
|
||
+ /* Do not allow conditional insns to be moved outside the
|
||
+ if-then-else. */
|
||
+ && !reg_mentioned_p (cc0_rtx, insn)
|
||
+ /* We cannot move memory loads outside of the if-then-else
|
||
+ since the memory access should not be perfomed if the
|
||
+ condition is not met. */
|
||
+ && !mem_mentioned_p (SET_SRC (op)) )
|
||
+ {
|
||
+ rtx scratch_reg = gen_reg_rtx (mode);
|
||
+ rtx op_pattern = copy_rtx (op);
|
||
+ rtx new_insn, seq;
|
||
+ rtx link, prev_link;
|
||
+ op = copy_rtx (op);
|
||
+ /* Emit the operation to a temp reg before the compare,
|
||
+ and emit a move inside the if-then-else, hoping that the
|
||
+ whole if-then-else can be converted to conditional
|
||
+ execution. */
|
||
+ SET_DEST (op_pattern) = scratch_reg;
|
||
+ start_sequence ();
|
||
+ new_insn = emit_insn (op_pattern);
|
||
+ seq = get_insns();
|
||
+ end_sequence ();
|
||
+
|
||
+ /* Check again that the insn is valid. For some insns the insn might
|
||
+ become invalid if the destination register is changed. Ie. for mulacc
|
||
+ operations. */
|
||
+ if ( insn_invalid_p (new_insn) )
|
||
+ return NULL_RTX;
|
||
+
|
||
+ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn));
|
||
+
|
||
+ if (dump_file)
|
||
+ fprintf (dump_file,
|
||
+ "\nMoving INSN %d out of IF-block by adding INSN %d...\n",
|
||
+ INSN_UID (insn), INSN_UID (new_insn));
|
||
+
|
||
+ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn;
|
||
+ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn;
|
||
+ XEXP (op, 1) = scratch_reg;
|
||
+ /* Force the insn to be recognized again. */
|
||
+ INSN_CODE (insn) = -1;
|
||
+
|
||
+ /* Move REG_DEAD notes to the moved insn. */
|
||
+ prev_link = NULL_RTX;
|
||
+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
+ {
|
||
+ if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
+ {
|
||
+ /* Add the REG_DEAD note to the new insn. */
|
||
+ rtx dead_reg = XEXP (link, 0);
|
||
+ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn));
|
||
+ /* Remove the REG_DEAD note from the insn we convert to a move. */
|
||
+ if ( prev_link )
|
||
+ XEXP (prev_link, 1) = XEXP (link, 1);
|
||
+ else
|
||
+ REG_NOTES (insn) = XEXP (link, 1);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ prev_link = link;
|
||
+ }
|
||
+ }
|
||
+ /* Add a REG_DEAD note to signal that the scratch register is dead. */
|
||
+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn));
|
||
+
|
||
+ /* If this is the first change in this IF-block then
|
||
+ signal that we have made a change. */
|
||
+ if ( ce_info->num_cond_clobber_insns == 0
|
||
+ && ce_info->num_extra_move_insns == 0 )
|
||
+ *num_true_changes += 1;
|
||
+
|
||
+ ce_info->num_extra_move_insns++;
|
||
+ return op;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* We failed to fixup the insns, so this if-then-else can not be made
|
||
+ conditional. Just return NULL_RTX so that the if-then-else conversion
|
||
+ for this if-then-else will be cancelled. */
|
||
+ return NULL_RTX;
|
||
+ }
|
||
+ end_sequence ();
|
||
+ return op;
|
||
+ }
|
||
+
|
||
+ /* Signal that we have started if conversion after reload, which means
|
||
+ that it should be safe to split all the predicable clobber insns which
|
||
+ did not become cond_exec back into a simpler form if possible. */
|
||
+ cfun->machine->ifcvt_after_reload = 1;
|
||
+
|
||
+ return pattern;
|
||
+}
|
||
+
|
||
+
|
||
+void
|
||
+avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info,
|
||
+ int *num_true_changes)
|
||
+{
|
||
+ int n;
|
||
+
|
||
+ if ( ce_info->num_extra_move_insns > 0
|
||
+ && ce_info->num_cond_clobber_insns == 0)
|
||
+ /* Signal that we did not do any changes after all. */
|
||
+ *num_true_changes -= 1;
|
||
+
|
||
+ /* Remove any inserted move insns. */
|
||
+ for ( n = 0; n < ce_info->num_extra_move_insns; n++ )
|
||
+ {
|
||
+ rtx link, prev_link;
|
||
+
|
||
+ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */
|
||
+ prev_link = NULL_RTX;
|
||
+ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1))
|
||
+ {
|
||
+ if (REG_NOTE_KIND (link) == REG_DEAD)
|
||
+ {
|
||
+ if ( prev_link )
|
||
+ XEXP (prev_link, 1) = XEXP (link, 1);
|
||
+ else
|
||
+ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1);
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ prev_link = link;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ /* Revert all reg_notes for the moved insn. */
|
||
+ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1))
|
||
+ {
|
||
+ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
|
||
+ XEXP (link, 0),
|
||
+ REG_NOTES (ce_info->extra_move_insns[n]));
|
||
+ }
|
||
+
|
||
+ /* Remove the moved insn. */
|
||
+ remove_insn ( ce_info->moved_insns[n] );
|
||
+ }
|
||
+}
|
||
+
|
||
+/* Function returning TRUE if INSN with OPERANDS is a splittable
|
||
+ conditional immediate clobber insn. We assume that the insn is
|
||
+ already a conditional immediate clobber insns and do not check
|
||
+ for that. */
|
||
+int
|
||
+avr32_cond_imm_clobber_splittable (rtx insn,
|
||
+ rtx operands[])
|
||
+{
|
||
+ if ( (REGNO (operands[0]) != REGNO (operands[1]))
|
||
+ && (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode)
|
||
+ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS
|
||
+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16"))
|
||
+ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS
|
||
+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) )
|
||
+ return FALSE;
|
||
+
|
||
+ return TRUE;
|
||
+}
|
||
+
|
||
+/* Function for getting an integer value from a const_int or const_double
|
||
+ expression regardless of the HOST_WIDE_INT size. Each target cpu word
|
||
+ will be put into the val array where the LSW will be stored at the lowest
|
||
+ address and so forth. Assumes that const_expr is either a const_int or
|
||
+ const_double. Only valid for modes which have sizes that are a multiple
|
||
+ of the word size.
|
||
+*/
|
||
+void
|
||
+avr32_get_intval (enum machine_mode mode,
|
||
+ rtx const_expr,
|
||
+ HOST_WIDE_INT *val)
|
||
+{
|
||
+ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD;
|
||
+ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
|
||
+
|
||
+ if ( GET_CODE(const_expr) == CONST_DOUBLE ){
|
||
+ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr);
|
||
+ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr);
|
||
+ /* Evaluate hi and lo values of const_double. */
|
||
+ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0),
|
||
+ GEN_INT (lo),
|
||
+ &val[0]);
|
||
+ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0),
|
||
+ GEN_INT (hi),
|
||
+ &val[words_in_const_int]);
|
||
+ } else if ( GET_CODE(const_expr) == CONST_INT ){
|
||
+ HOST_WIDE_INT value = INTVAL(const_expr);
|
||
+ int word;
|
||
+ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){
|
||
+ /* Shift word up to the MSW and shift down again to extract the
|
||
+ word and sign-extend. */
|
||
+ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD;
|
||
+ int rshift = (words_in_const_int-1) * BITS_PER_WORD;
|
||
+ val[word] = (value << lshift) >> rshift;
|
||
+ }
|
||
+
|
||
+ for ( ; word < words_in_mode; word++ ){
|
||
+ /* Just put the sign bits in the remaining words. */
|
||
+ val[word] = value < 0 ? -1 : 0;
|
||
+ }
|
||
+ }
|
||
+}
|
||
+
|
||
+void
|
||
+avr32_split_const_expr (enum machine_mode mode,
|
||
+ enum machine_mode new_mode,
|
||
+ rtx expr,
|
||
+ rtx *split_expr)
|
||
+{
|
||
+ int i, word;
|
||
+ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD;
|
||
+ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD;
|
||
+ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
|
||
+ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD);
|
||
+
|
||
+ avr32_get_intval (mode, expr, val);
|
||
+
|
||
+ for ( i=0; i < (words_in_intval/words_in_split_values); i++ )
|
||
+ {
|
||
+ HOST_WIDE_INT value_lo = 0, value_hi = 0;
|
||
+ for ( word = 0; word < words_in_split_values; word++ )
|
||
+ {
|
||
+ if ( word >= words_in_const_int )
|
||
+ value_hi |= ((val[i * words_in_split_values + word] &
|
||
+ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1))
|
||
+ << (BITS_PER_WORD * (word - words_in_const_int)));
|
||
+ else
|
||
+ value_lo |= ((val[i * words_in_split_values + word] &
|
||
+ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1))
|
||
+ << (BITS_PER_WORD * word));
|
||
+ }
|
||
+ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode);
|
||
+ }
|
||
+}
|
||
+
|
||
+
|
||
+/* Set up library functions to comply to AVR32 ABI */
|
||
+
|
||
+static void
|
||
+avr32_init_libfuncs (void)
|
||
+{
|
||
+ /* Convert gcc run-time function names to AVR32 ABI names */
|
||
+
|
||
+ /* Double-precision floating-point arithmetic. */
|
||
+ set_optab_libfunc (neg_optab, DFmode, NULL);
|
||
+
|
||
+ /* Double-precision comparisons. */
|
||
+ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq");
|
||
+ set_optab_libfunc (ne_optab, DFmode, NULL);
|
||
+ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt");
|
||
+ set_optab_libfunc (le_optab, DFmode, NULL);
|
||
+ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge");
|
||
+ set_optab_libfunc (gt_optab, DFmode, NULL);
|
||
+
|
||
+ /* Single-precision floating-point arithmetic. */
|
||
+ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul");
|
||
+ set_optab_libfunc (neg_optab, SFmode, NULL);
|
||
+
|
||
+ /* Single-precision comparisons. */
|
||
+ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq");
|
||
+ set_optab_libfunc (ne_optab, SFmode, NULL);
|
||
+ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt");
|
||
+ set_optab_libfunc (le_optab, SFmode, NULL);
|
||
+ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge");
|
||
+ set_optab_libfunc (gt_optab, SFmode, NULL);
|
||
+
|
||
+ /* Floating-point to integer conversions. */
|
||
+ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32");
|
||
+ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32");
|
||
+ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64");
|
||
+ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64");
|
||
+ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32");
|
||
+ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32");
|
||
+ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64");
|
||
+ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64");
|
||
+
|
||
+ /* Conversions between floating types. */
|
||
+ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32");
|
||
+ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64");
|
||
+
|
||
+ /* Integer to floating-point conversions. Table 8. */
|
||
+ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64");
|
||
+ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64");
|
||
+ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32");
|
||
+ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32");
|
||
+ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64");
|
||
+ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32");
|
||
+ /* TODO: Add these to gcc library functions */
|
||
+ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL);
|
||
+ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL);
|
||
+
|
||
+ /* Long long. Table 9. */
|
||
+ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64");
|
||
+ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64");
|
||
+ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64");
|
||
+ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64");
|
||
+ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64");
|
||
+ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64");
|
||
+ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64");
|
||
+ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64");
|
||
+
|
||
+ /* Floating point library functions which have fast versions. */
|
||
+ if ( TARGET_FAST_FLOAT )
|
||
+ {
|
||
+ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast");
|
||
+ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast");
|
||
+ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast");
|
||
+ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast");
|
||
+ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast");
|
||
+ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast");
|
||
+ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast");
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div");
|
||
+ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul");
|
||
+ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add");
|
||
+ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub");
|
||
+ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add");
|
||
+ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub");
|
||
+ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div");
|
||
+ }
|
||
+}
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32-elf.h
|
||
@@ -0,0 +1,84 @@
|
||
+/*
|
||
+ Elf specific definitions.
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+
|
||
+/*****************************************************************************
|
||
+ * Controlling the Compilator Driver, 'gcc'
|
||
+ *****************************************************************************/
|
||
+
|
||
+/* Run-time Target Specification. */
|
||
+#undef TARGET_VERSION
|
||
+#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr);
|
||
+
|
||
+/*
|
||
+Another C string constant used much like LINK_SPEC. The
|
||
+difference between the two is that STARTFILE_SPEC is used at
|
||
+the very beginning of the command given to the linker.
|
||
+
|
||
+If this macro is not defined, a default is provided that loads the
|
||
+standard C startup file from the usual place. See gcc.c.
|
||
+*/
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s"
|
||
+
|
||
+#undef LINK_SPEC
|
||
+#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}"
|
||
+
|
||
+
|
||
+/*
|
||
+Another C string constant used much like LINK_SPEC. The
|
||
+difference between the two is that ENDFILE_SPEC is used at
|
||
+the very end of the command given to the linker.
|
||
+
|
||
+Do not define this macro if it does not need to do anything.
|
||
+*/
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC "crtend%O%s crtn%O%s"
|
||
+
|
||
+
|
||
+/* Target CPU builtins. */
|
||
+#define TARGET_CPU_CPP_BUILTINS() \
|
||
+ do \
|
||
+ { \
|
||
+ builtin_define ("__avr32__"); \
|
||
+ builtin_define ("__AVR32__"); \
|
||
+ builtin_define ("__AVR32_ELF__"); \
|
||
+ builtin_define (avr32_part->macro); \
|
||
+ builtin_define (avr32_arch->macro); \
|
||
+ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
|
||
+ builtin_define ("__AVR32_AVR32A__"); \
|
||
+ else \
|
||
+ builtin_define ("__AVR32_AVR32B__"); \
|
||
+ if (TARGET_UNALIGNED_WORD) \
|
||
+ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
|
||
+ if (TARGET_SIMD) \
|
||
+ builtin_define ("__AVR32_HAS_SIMD__"); \
|
||
+ if (TARGET_DSP) \
|
||
+ builtin_define ("__AVR32_HAS_DSP__"); \
|
||
+ if (TARGET_RMW) \
|
||
+ builtin_define ("__AVR32_HAS_RMW__"); \
|
||
+ if (TARGET_BRANCH_PRED) \
|
||
+ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
|
||
+ if (TARGET_FAST_FLOAT) \
|
||
+ builtin_define ("__AVR32_FAST_FLOAT__"); \
|
||
+ } \
|
||
+ while (0)
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32.h
|
||
@@ -0,0 +1,3347 @@
|
||
+/*
|
||
+ Definitions of target machine for AVR32.
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+ Initial porting by Anders <20>dland.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+#ifndef GCC_AVR32_H
|
||
+#define GCC_AVR32_H
|
||
+
|
||
+
|
||
+#ifndef OBJECT_FORMAT_ELF
|
||
+#error avr32.h included before elfos.h
|
||
+#endif
|
||
+
|
||
+#ifndef LOCAL_LABEL_PREFIX
|
||
+#define LOCAL_LABEL_PREFIX "."
|
||
+#endif
|
||
+
|
||
+#ifndef SUBTARGET_CPP_SPEC
|
||
+#define SUBTARGET_CPP_SPEC "-D__ELF__"
|
||
+#endif
|
||
+
|
||
+
|
||
+extern struct rtx_def *avr32_compare_op0;
|
||
+extern struct rtx_def *avr32_compare_op1;
|
||
+
|
||
+
|
||
+extern struct rtx_def *avr32_acc_cache;
|
||
+
|
||
+/* cache instruction op5 codes */
|
||
+#define AVR32_CACHE_INVALIDATE_ICACHE 1
|
||
+
|
||
+/* These bits describe the different types of function supported
|
||
+ by the AVR32 backend. They are exclusive. ie a function cannot be both a
|
||
+ normal function and an interworked function, for example. Knowing the
|
||
+ type of a function is important for determining its prologue and
|
||
+ epilogue sequences.
|
||
+ Note value 7 is currently unassigned. Also note that the interrupt
|
||
+ function types all have bit 2 set, so that they can be tested for easily.
|
||
+ Note that 0 is deliberately chosen for AVR32_FT_UNKNOWN so that when the
|
||
+ machine_function structure is initialized (to zero) func_type will
|
||
+ default to unknown. This will force the first use of avr32_current_func_type
|
||
+ to call avr32_compute_func_type. */
|
||
+#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined.
|
||
+ */
|
||
+#define AVR32_FT_NORMAL 1 /* Your normal, straightforward
|
||
+ function. */
|
||
+#define AVR32_FT_ACALL 2 /* An acall function. */
|
||
+#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */
|
||
+#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */
|
||
+#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */
|
||
+#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */
|
||
+
|
||
+#define AVR32_FT_TYPE_MASK ((1 << 3) - 1)
|
||
+
|
||
+/* In addition functions can have several type modifiers,
|
||
+ outlined by these bit masks: */
|
||
+#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR
|
||
+ and above. */
|
||
+#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */
|
||
+#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */
|
||
+#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another
|
||
+ func. */
|
||
+
|
||
+/* Some macros to test these flags. */
|
||
+#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK)
|
||
+#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT)
|
||
+#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE)
|
||
+#define IS_NAKED(t) (t & AVR32_FT_NAKED)
|
||
+#define IS_NESTED(t) (t & AVR32_FT_NESTED)
|
||
+
|
||
+#define SYMBOL_FLAG_RMW_ADDR_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
|
||
+#define SYMBOL_REF_RMW_ADDR(RTX) \
|
||
+ ((SYMBOL_REF_FLAGS (RTX) & (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT)) != 0)
|
||
+
|
||
+
|
||
+typedef struct minipool_labels
|
||
+GTY ((chain_next ("%h.next"), chain_prev ("%h.prev")))
|
||
+{
|
||
+ rtx label;
|
||
+ struct minipool_labels *prev;
|
||
+ struct minipool_labels *next;
|
||
+} minipool_labels;
|
||
+
|
||
+/* A C structure for machine-specific, per-function data.
|
||
+ This is added to the cfun structure. */
|
||
+
|
||
+typedef struct machine_function
|
||
+GTY (())
|
||
+{
|
||
+ /* Records the type of the current function. */
|
||
+ unsigned long func_type;
|
||
+ /* List of minipool labels, use for checking if code label is valid in a
|
||
+ memory expression */
|
||
+ minipool_labels *minipool_label_head;
|
||
+ minipool_labels *minipool_label_tail;
|
||
+ int ifcvt_after_reload;
|
||
+} machine_function;
|
||
+
|
||
+/* Initialize data used by insn expanders. This is called from insn_emit,
|
||
+ once for every function before code is generated. */
|
||
+#define INIT_EXPANDERS avr32_init_expanders ()
|
||
+
|
||
+/******************************************************************************
|
||
+ * SPECS
|
||
+ *****************************************************************************/
|
||
+
|
||
+#ifndef ASM_SPEC
|
||
+#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}"
|
||
+#endif
|
||
+
|
||
+#ifndef MULTILIB_DEFAULTS
|
||
+#define MULTILIB_DEFAULTS { "march=ap", "" }
|
||
+#endif
|
||
+
|
||
+/******************************************************************************
|
||
+ * Run-time Target Specification
|
||
+ *****************************************************************************/
|
||
+#ifndef TARGET_VERSION
|
||
+#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)");
|
||
+#endif
|
||
+
|
||
+
|
||
+/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/
|
||
+enum part_type
|
||
+{
|
||
+ PART_TYPE_AVR32_NONE,
|
||
+ PART_TYPE_AVR32_AP7000,
|
||
+ PART_TYPE_AVR32_AP7001,
|
||
+ PART_TYPE_AVR32_AP7002,
|
||
+ PART_TYPE_AVR32_AP7200,
|
||
+ PART_TYPE_AVR32_UC3A0128,
|
||
+ PART_TYPE_AVR32_UC3A0256,
|
||
+ PART_TYPE_AVR32_UC3A0512,
|
||
+ PART_TYPE_AVR32_UC3A0512ES,
|
||
+ PART_TYPE_AVR32_UC3A1128,
|
||
+ PART_TYPE_AVR32_UC3A1256,
|
||
+ PART_TYPE_AVR32_UC3A1512,
|
||
+ PART_TYPE_AVR32_UC3A1512ES,
|
||
+ PART_TYPE_AVR32_UC3A3REVD,
|
||
+ PART_TYPE_AVR32_UC3A364,
|
||
+ PART_TYPE_AVR32_UC3A364S,
|
||
+ PART_TYPE_AVR32_UC3A3128,
|
||
+ PART_TYPE_AVR32_UC3A3128S,
|
||
+ PART_TYPE_AVR32_UC3A3256,
|
||
+ PART_TYPE_AVR32_UC3A3256S,
|
||
+ PART_TYPE_AVR32_UC3B064,
|
||
+ PART_TYPE_AVR32_UC3B0128,
|
||
+ PART_TYPE_AVR32_UC3B0256,
|
||
+ PART_TYPE_AVR32_UC3B0256ES,
|
||
+ PART_TYPE_AVR32_UC3B164,
|
||
+ PART_TYPE_AVR32_UC3B1128,
|
||
+ PART_TYPE_AVR32_UC3B1256,
|
||
+ PART_TYPE_AVR32_UC3B1256ES
|
||
+};
|
||
+
|
||
+/* Microarchitectures. */
|
||
+enum microarchitecture_type
|
||
+{
|
||
+ UARCH_TYPE_AVR32A,
|
||
+ UARCH_TYPE_AVR32B,
|
||
+ UARCH_TYPE_NONE
|
||
+};
|
||
+
|
||
+/* Architectures types which specifies the pipeline.
|
||
+ Keep this in sync with avr32_arch_types in avr32.c
|
||
+ and the pipeline attribute in avr32.md */
|
||
+enum architecture_type
|
||
+{
|
||
+ ARCH_TYPE_AVR32_AP,
|
||
+ ARCH_TYPE_AVR32_UCR1,
|
||
+ ARCH_TYPE_AVR32_UCR2,
|
||
+ ARCH_TYPE_AVR32_UCR2NOMUL,
|
||
+ ARCH_TYPE_AVR32_NONE
|
||
+};
|
||
+
|
||
+/* Flag specifying if the cpu has support for DSP instructions.*/
|
||
+#define FLAG_AVR32_HAS_DSP (1 << 0)
|
||
+/* Flag specifying if the cpu has support for Read-Modify-Write
|
||
+ instructions.*/
|
||
+#define FLAG_AVR32_HAS_RMW (1 << 1)
|
||
+/* Flag specifying if the cpu has support for SIMD instructions. */
|
||
+#define FLAG_AVR32_HAS_SIMD (1 << 2)
|
||
+/* Flag specifying if the cpu has support for unaligned memory word access. */
|
||
+#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3)
|
||
+/* Flag specifying if the cpu has support for branch prediction. */
|
||
+#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4)
|
||
+/* Flag specifying if the cpu has support for a return stack. */
|
||
+#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5)
|
||
+/* Flag specifying if the cpu has caches. */
|
||
+#define FLAG_AVR32_HAS_CACHES (1 << 6)
|
||
+/* Flag specifying if the cpu has support for v2 insns. */
|
||
+#define FLAG_AVR32_HAS_V2_INSNS (1 << 7)
|
||
+/* Flag specifying that the cpu has buggy mul insns. */
|
||
+#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8)
|
||
+
|
||
+/* Structure for holding information about different avr32 CPUs/parts */
|
||
+struct part_type_s
|
||
+{
|
||
+ const char *const name;
|
||
+ enum part_type part_type;
|
||
+ enum architecture_type arch_type;
|
||
+ /* Must lie outside user's namespace. NULL == no macro. */
|
||
+ const char *const macro;
|
||
+};
|
||
+
|
||
+/* Structure for holding information about different avr32 pipeline
|
||
+ architectures. */
|
||
+struct arch_type_s
|
||
+{
|
||
+ const char *const name;
|
||
+ enum architecture_type arch_type;
|
||
+ enum microarchitecture_type uarch_type;
|
||
+ const unsigned long feature_flags;
|
||
+ /* Must lie outside user's namespace. NULL == no macro. */
|
||
+ const char *const macro;
|
||
+};
|
||
+
|
||
+extern const struct part_type_s *avr32_part;
|
||
+extern const struct arch_type_s *avr32_arch;
|
||
+
|
||
+#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD)
|
||
+#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP)
|
||
+#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW)
|
||
+#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD)
|
||
+#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED)
|
||
+#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK)
|
||
+#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS)
|
||
+#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES)
|
||
+#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS)
|
||
+#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP)
|
||
+#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1)
|
||
+#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2)
|
||
+#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2)
|
||
+#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A)
|
||
+#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B)
|
||
+
|
||
+#define CAN_DEBUG_WITHOUT_FP
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Storage Layout
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+Define this macro to have the value 1 if the most significant bit in a
|
||
+byte has the lowest number; otherwise define it to have the value zero.
|
||
+This means that bit-field instructions count from the most significant
|
||
+bit. If the machine has no bit-field instructions, then this must still
|
||
+be defined, but it doesn't matter which value it is defined to. This
|
||
+macro need not be a constant.
|
||
+
|
||
+This macro does not affect the way structure fields are packed into
|
||
+bytes or words; that is controlled by BYTES_BIG_ENDIAN.
|
||
+*/
|
||
+#define BITS_BIG_ENDIAN 0
|
||
+
|
||
+/*
|
||
+Define this macro to have the value 1 if the most significant byte in a
|
||
+word has the lowest number. This macro need not be a constant.
|
||
+*/
|
||
+/*
|
||
+ Data is stored in an big-endian way.
|
||
+*/
|
||
+#define BYTES_BIG_ENDIAN 1
|
||
+
|
||
+/*
|
||
+Define this macro to have the value 1 if, in a multiword object, the
|
||
+most significant word has the lowest number. This applies to both
|
||
+memory locations and registers; GCC fundamentally assumes that the
|
||
+order of words in memory is the same as the order in registers. This
|
||
+macro need not be a constant.
|
||
+*/
|
||
+/*
|
||
+ Data is stored in an bin-endian way.
|
||
+*/
|
||
+#define WORDS_BIG_ENDIAN 1
|
||
+
|
||
+/*
|
||
+Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a
|
||
+constant value with the same meaning as WORDS_BIG_ENDIAN, which will be
|
||
+used only when compiling libgcc2.c. Typically the value will be set
|
||
+based on preprocessor defines.
|
||
+*/
|
||
+#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN
|
||
+
|
||
+/*
|
||
+Define this macro to have the value 1 if DFmode, XFmode or
|
||
+TFmode floating point numbers are stored in memory with the word
|
||
+containing the sign bit at the lowest address; otherwise define it to
|
||
+have the value 0. This macro need not be a constant.
|
||
+
|
||
+You need not define this macro if the ordering is the same as for
|
||
+multi-word integers.
|
||
+*/
|
||
+/* #define FLOAT_WORDS_BIG_ENDIAN 1 */
|
||
+
|
||
+/*
|
||
+Define this macro to be the number of bits in an addressable storage
|
||
+unit (byte); normally 8.
|
||
+*/
|
||
+#define BITS_PER_UNIT 8
|
||
+
|
||
+/*
|
||
+Number of bits in a word; normally 32.
|
||
+*/
|
||
+#define BITS_PER_WORD 32
|
||
+
|
||
+/*
|
||
+Maximum number of bits in a word. If this is undefined, the default is
|
||
+BITS_PER_WORD. Otherwise, it is the constant value that is the
|
||
+largest value that BITS_PER_WORD can have at run-time.
|
||
+*/
|
||
+/* MAX_BITS_PER_WORD not defined*/
|
||
+
|
||
+/*
|
||
+Number of storage units in a word; normally 4.
|
||
+*/
|
||
+#define UNITS_PER_WORD 4
|
||
+
|
||
+/*
|
||
+Minimum number of units in a word. If this is undefined, the default is
|
||
+UNITS_PER_WORD. Otherwise, it is the constant value that is the
|
||
+smallest value that UNITS_PER_WORD can have at run-time.
|
||
+*/
|
||
+/* MIN_UNITS_PER_WORD not defined */
|
||
+
|
||
+/*
|
||
+Width of a pointer, in bits. You must specify a value no wider than the
|
||
+width of Pmode. If it is not equal to the width of Pmode,
|
||
+you must define POINTERS_EXTEND_UNSIGNED.
|
||
+*/
|
||
+#define POINTER_SIZE 32
|
||
+
|
||
+/*
|
||
+A C expression whose value is greater than zero if pointers that need to be
|
||
+extended from being POINTER_SIZE bits wide to Pmode are to
|
||
+be zero-extended and zero if they are to be sign-extended. If the value
|
||
+is less then zero then there must be an "ptr_extend" instruction that
|
||
+extends a pointer from POINTER_SIZE to Pmode.
|
||
+
|
||
+You need not define this macro if the POINTER_SIZE is equal
|
||
+to the width of Pmode.
|
||
+*/
|
||
+/* #define POINTERS_EXTEND_UNSIGNED */
|
||
+
|
||
+/*
|
||
+A Macro to update M and UNSIGNEDP when an object whose type
|
||
+is TYPE and which has the specified mode and signedness is to be
|
||
+stored in a register. This macro is only called when TYPE is a
|
||
+scalar type.
|
||
+
|
||
+On most RISC machines, which only have operations that operate on a full
|
||
+register, define this macro to set M to word_mode if
|
||
+M is an integer mode narrower than BITS_PER_WORD. In most
|
||
+cases, only integer modes should be widened because wider-precision
|
||
+floating-point operations are usually more expensive than their narrower
|
||
+counterparts.
|
||
+
|
||
+For most machines, the macro definition does not change UNSIGNEDP.
|
||
+However, some machines, have instructions that preferentially handle
|
||
+either signed or unsigned quantities of certain modes. For example, on
|
||
+the DEC Alpha, 32-bit loads from memory and 32-bit add instructions
|
||
+sign-extend the result to 64 bits. On such machines, set
|
||
+UNSIGNEDP according to which kind of extension is more efficient.
|
||
+
|
||
+Do not define this macro if it would never modify M.
|
||
+*/
|
||
+#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \
|
||
+ { \
|
||
+ if (GET_MODE_CLASS (M) == MODE_INT \
|
||
+ && GET_MODE_SIZE (M) < 4) \
|
||
+ { \
|
||
+ if (M == QImode) \
|
||
+ UNSIGNEDP = 1; \
|
||
+ else if (M == SImode) \
|
||
+ UNSIGNEDP = 0; \
|
||
+ (M) = SImode; \
|
||
+ } \
|
||
+ }
|
||
+
|
||
+#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \
|
||
+ { \
|
||
+ if (GET_MODE_CLASS (M) == MODE_INT \
|
||
+ && GET_MODE_SIZE (M) < 4) \
|
||
+ { \
|
||
+ (M) = SImode; \
|
||
+ } \
|
||
+ }
|
||
+
|
||
+/* Define if operations between registers always perform the operation
|
||
+ on the full register even if a narrower mode is specified. */
|
||
+#define WORD_REGISTER_OPERATIONS
|
||
+
|
||
+/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
+ will either zero-extend or sign-extend. The value of this macro should
|
||
+ be the code that says which one of the two operations is implicitly
|
||
+ done, UNKNOWN if not known. */
|
||
+#define LOAD_EXTEND_OP(MODE) \
|
||
+ (((MODE) == QImode) ? ZERO_EXTEND \
|
||
+ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro if the promotion described by PROMOTE_MODE
|
||
+should only be performed for outgoing function arguments or
|
||
+function return values, as specified by PROMOTE_FUNCTION_ARGS
|
||
+and PROMOTE_FUNCTION_RETURN, respectively.
|
||
+*/
|
||
+/* #define PROMOTE_FOR_CALL_ONLY */
|
||
+
|
||
+/*
|
||
+Normal alignment required for function parameters on the stack, in
|
||
+bits. All stack parameters receive at least this much alignment
|
||
+regardless of data type. On most machines, this is the same as the
|
||
+size of an integer.
|
||
+*/
|
||
+#define PARM_BOUNDARY 32
|
||
+
|
||
+/*
|
||
+Define this macro to the minimum alignment enforced by hardware for the
|
||
+stack pointer on this machine. The definition is a C expression for the
|
||
+desired alignment (measured in bits). This value is used as a default
|
||
+if PREFERRED_STACK_BOUNDARY is not defined. On most machines,
|
||
+this should be the same as PARM_BOUNDARY.
|
||
+*/
|
||
+#define STACK_BOUNDARY 32
|
||
+
|
||
+/*
|
||
+Define this macro if you wish to preserve a certain alignment for the
|
||
+stack pointer, greater than what the hardware enforces. The definition
|
||
+is a C expression for the desired alignment (measured in bits). This
|
||
+macro must evaluate to a value equal to or larger than
|
||
+STACK_BOUNDARY.
|
||
+*/
|
||
+#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
|
||
+
|
||
+/*
|
||
+Alignment required for a function entry point, in bits.
|
||
+*/
|
||
+#define FUNCTION_BOUNDARY 16
|
||
+
|
||
+/*
|
||
+Biggest alignment that any data type can require on this machine, in bits.
|
||
+*/
|
||
+#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 )
|
||
+
|
||
+/*
|
||
+If defined, the smallest alignment, in bits, that can be given to an
|
||
+object that can be referenced in one operation, without disturbing any
|
||
+nearby object. Normally, this is BITS_PER_UNIT, but may be larger
|
||
+on machines that don't have byte or half-word store operations.
|
||
+*/
|
||
+#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT
|
||
+
|
||
+
|
||
+/*
|
||
+An integer expression for the size in bits of the largest integer machine mode that
|
||
+should actually be used. All integer machine modes of this size or smaller can be
|
||
+used for structures and unions with the appropriate sizes. If this macro is undefined,
|
||
+GET_MODE_BITSIZE (DImode) is assumed.*/
|
||
+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
|
||
+
|
||
+
|
||
+/*
|
||
+If defined, a C expression to compute the alignment given to a constant
|
||
+that is being placed in memory. CONSTANT is the constant and
|
||
+BASIC_ALIGN is the alignment that the object would ordinarily
|
||
+have. The value of this macro is used instead of that alignment to
|
||
+align the object.
|
||
+
|
||
+If this macro is not defined, then BASIC_ALIGN is used.
|
||
+
|
||
+The typical use of this macro is to increase alignment for string
|
||
+constants to be word aligned so that strcpy calls that copy
|
||
+constants can be done inline.
|
||
+*/
|
||
+#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \
|
||
+ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN)
|
||
+
|
||
+/* Try to align string to a word. */
|
||
+#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
+ ({(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
|
||
+
|
||
+/* Try to align local store strings to a word. */
|
||
+#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
|
||
+ ({(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));})
|
||
+
|
||
+/*
|
||
+Define this macro to be the value 1 if instructions will fail to work
|
||
+if given data not on the nominal alignment. If instructions will merely
|
||
+go slower in that case, define this macro as 0.
|
||
+*/
|
||
+#define STRICT_ALIGNMENT 1
|
||
+
|
||
+/*
|
||
+Define this if you wish to imitate the way many other C compilers handle
|
||
+alignment of bit-fields and the structures that contain them.
|
||
+
|
||
+The behavior is that the type written for a bit-field (int,
|
||
+short, or other integer type) imposes an alignment for the
|
||
+entire structure, as if the structure really did contain an ordinary
|
||
+field of that type. In addition, the bit-field is placed within the
|
||
+structure so that it would fit within such a field, not crossing a
|
||
+boundary for it.
|
||
+
|
||
+Thus, on most machines, a bit-field whose type is written as int
|
||
+would not cross a four-byte boundary, and would force four-byte
|
||
+alignment for the whole structure. (The alignment used may not be four
|
||
+bytes; it is controlled by the other alignment parameters.)
|
||
+
|
||
+If the macro is defined, its definition should be a C expression;
|
||
+a nonzero value for the expression enables this behavior.
|
||
+
|
||
+Note that if this macro is not defined, or its value is zero, some
|
||
+bit-fields may cross more than one alignment boundary. The compiler can
|
||
+support such references if there are insv, extv, and
|
||
+extzv insns that can directly reference memory.
|
||
+
|
||
+The other known way of making bit-fields work is to define
|
||
+STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT.
|
||
+Then every structure can be accessed with fullwords.
|
||
+
|
||
+Unless the machine has bit-field instructions or you define
|
||
+STRUCTURE_SIZE_BOUNDARY that way, you must define
|
||
+PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.
|
||
+
|
||
+If your aim is to make GCC use the same conventions for laying out
|
||
+bit-fields as are used by another compiler, here is how to investigate
|
||
+what the other compiler does. Compile and run this program:
|
||
+
|
||
+struct foo1
|
||
+{
|
||
+ char x;
|
||
+ char :0;
|
||
+ char y;
|
||
+};
|
||
+
|
||
+struct foo2
|
||
+{
|
||
+ char x;
|
||
+ int :0;
|
||
+ char y;
|
||
+};
|
||
+
|
||
+main ()
|
||
+{
|
||
+ printf ("Size of foo1 is %d\n",
|
||
+ sizeof (struct foo1));
|
||
+ printf ("Size of foo2 is %d\n",
|
||
+ sizeof (struct foo2));
|
||
+ exit (0);
|
||
+}
|
||
+
|
||
+If this prints 2 and 5, then the compiler's behavior is what you would
|
||
+get from PCC_BITFIELD_TYPE_MATTERS.
|
||
+*/
|
||
+#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Layout of Source Language Data Types
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the type int on the
|
||
+target machine. If you don't define this, the default is one word.
|
||
+*/
|
||
+#define INT_TYPE_SIZE 32
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the type short on the
|
||
+target machine. If you don't define this, the default is half a word. (If
|
||
+this would be less than one storage unit, it is rounded up to one unit.)
|
||
+*/
|
||
+#define SHORT_TYPE_SIZE 16
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the type long on the
|
||
+target machine. If you don't define this, the default is one word.
|
||
+*/
|
||
+#define LONG_TYPE_SIZE 32
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the type long long on the
|
||
+target machine. If you don't define this, the default is two
|
||
+words. If you want to support GNU Ada on your machine, the value of this
|
||
+macro must be at least 64.
|
||
+*/
|
||
+#define LONG_LONG_TYPE_SIZE 64
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the type char on the
|
||
+target machine. If you don't define this, the default is
|
||
+BITS_PER_UNIT.
|
||
+*/
|
||
+#define CHAR_TYPE_SIZE 8
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the C++ type bool and
|
||
+C99 type _Bool on the target machine. If you don't define
|
||
+this, and you probably shouldn't, the default is CHAR_TYPE_SIZE.
|
||
+*/
|
||
+#define BOOL_TYPE_SIZE 8
|
||
+
|
||
+
|
||
+/*
|
||
+An expression whose value is 1 or 0, according to whether the type
|
||
+char should be signed or unsigned by default. The user can
|
||
+always override this default with the options -fsigned-char
|
||
+and -funsigned-char.
|
||
+*/
|
||
+/* We are using unsigned char */
|
||
+#define DEFAULT_SIGNED_CHAR 0
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for a string describing the name of the data type to use
|
||
+for size values. The typedef name size_t is defined using the
|
||
+contents of the string.
|
||
+
|
||
+The string can contain more than one keyword. If so, separate them with
|
||
+spaces, and write first any length keyword, then unsigned if
|
||
+appropriate, and finally int. The string must exactly match one
|
||
+of the data type names defined in the function
|
||
+init_decl_processing in the file c-decl.c. You may not
|
||
+omit int or change the order - that would cause the compiler to
|
||
+crash on startup.
|
||
+
|
||
+If you don't define this macro, the default is "long unsigned int".
|
||
+*/
|
||
+#define SIZE_TYPE "long unsigned int"
|
||
+
|
||
+/*
|
||
+A C expression for a string describing the name of the data type to use
|
||
+for the result of subtracting two pointers. The typedef name
|
||
+ptrdiff_t is defined using the contents of the string. See
|
||
+SIZE_TYPE above for more information.
|
||
+
|
||
+If you don't define this macro, the default is "long int".
|
||
+*/
|
||
+#define PTRDIFF_TYPE "long int"
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the size in bits of the data type for wide
|
||
+characters. This is used in cpp, which cannot make use of
|
||
+WCHAR_TYPE.
|
||
+*/
|
||
+#define WCHAR_TYPE_SIZE 32
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for a string describing the name of the data type to
|
||
+use for wide characters passed to printf and returned from
|
||
+getwc. The typedef name wint_t is defined using the
|
||
+contents of the string. See SIZE_TYPE above for more
|
||
+information.
|
||
+
|
||
+If you don't define this macro, the default is "unsigned int".
|
||
+*/
|
||
+#define WINT_TYPE "unsigned int"
|
||
+
|
||
+/*
|
||
+A C expression for a string describing the name of the data type that
|
||
+can represent any value of any standard or extended signed integer type.
|
||
+The typedef name intmax_t is defined using the contents of the
|
||
+string. See SIZE_TYPE above for more information.
|
||
+
|
||
+If you don't define this macro, the default is the first of
|
||
+"int", "long int", or "long long int" that has as
|
||
+much precision as long long int.
|
||
+*/
|
||
+#define INTMAX_TYPE "long long int"
|
||
+
|
||
+/*
|
||
+A C expression for a string describing the name of the data type that
|
||
+can represent any value of any standard or extended unsigned integer
|
||
+type. The typedef name uintmax_t is defined using the contents
|
||
+of the string. See SIZE_TYPE above for more information.
|
||
+
|
||
+If you don't define this macro, the default is the first of
|
||
+"unsigned int", "long unsigned int", or "long long unsigned int"
|
||
+that has as much precision as long long unsigned int.
|
||
+*/
|
||
+#define UINTMAX_TYPE "long long unsigned int"
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Register Usage
|
||
+ *****************************************************************************/
|
||
+
|
||
+/* Convert from gcc internal register number to register number
|
||
+ used in assembly code */
|
||
+#define ASM_REGNUM(reg) (LAST_REGNUM - (reg))
|
||
+#define ASM_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
|
||
+
|
||
+/* Convert between register number used in assembly to gcc
|
||
+ internal register number */
|
||
+#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg))
|
||
+#define INTERNAL_FP_REGNUM(reg) (LAST_FP_REGNUM - (reg))
|
||
+
|
||
+/** Basic Characteristics of Registers **/
|
||
+
|
||
+/*
|
||
+Number of hardware registers known to the compiler. They receive
|
||
+numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first
|
||
+pseudo register's number really is assigned the number
|
||
+FIRST_PSEUDO_REGISTER.
|
||
+*/
|
||
+#define FIRST_PSEUDO_REGISTER (LAST_FP_REGNUM + 1)
|
||
+
|
||
+#define FIRST_REGNUM 0
|
||
+#define LAST_REGNUM 15
|
||
+#define NUM_FP_REGS 16
|
||
+#define FIRST_FP_REGNUM 16
|
||
+#define LAST_FP_REGNUM (16+NUM_FP_REGS-1)
|
||
+
|
||
+/*
|
||
+An initializer that says which registers are used for fixed purposes
|
||
+all throughout the compiled code and are therefore not available for
|
||
+general allocation. These would include the stack pointer, the frame
|
||
+pointer (except on machines where that can be used as a general
|
||
+register when no frame pointer is needed), the program counter on
|
||
+machines where that is considered one of the addressable registers,
|
||
+and any other numbered register with a standard use.
|
||
+
|
||
+This information is expressed as a sequence of numbers, separated by
|
||
+commas and surrounded by braces. The nth number is 1 if
|
||
+register n is fixed, 0 otherwise.
|
||
+
|
||
+The table initialized from this macro, and the table initialized by
|
||
+the following one, may be overridden at run time either automatically,
|
||
+by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by
|
||
+the user with the command options -ffixed-[reg],
|
||
+-fcall-used-[reg] and -fcall-saved-[reg].
|
||
+*/
|
||
+
|
||
+/* The internal gcc register numbers are reversed
|
||
+ compared to the real register numbers since
|
||
+ gcc expects data types stored over multiple
|
||
+ registers in the register file to be big endian
|
||
+ if the memory layout is big endian. But this
|
||
+ is not the case for avr32 so we fake a big
|
||
+ endian register file. */
|
||
+
|
||
+#define FIXED_REGISTERS { \
|
||
+ 1, /* Program Counter */ \
|
||
+ 0, /* Link Register */ \
|
||
+ 1, /* Stack Pointer */ \
|
||
+ 0, /* r12 */ \
|
||
+ 0, /* r11 */ \
|
||
+ 0, /* r10 */ \
|
||
+ 0, /* r9 */ \
|
||
+ 0, /* r8 */ \
|
||
+ 0, /* r7 */ \
|
||
+ 0, /* r6 */ \
|
||
+ 0, /* r5 */ \
|
||
+ 0, /* r4 */ \
|
||
+ 0, /* r3 */ \
|
||
+ 0, /* r2 */ \
|
||
+ 0, /* r1 */ \
|
||
+ 0, /* r0 */ \
|
||
+ 0, /* f15 */ \
|
||
+ 0, /* f14 */ \
|
||
+ 0, /* f13 */ \
|
||
+ 0, /* f12 */ \
|
||
+ 0, /* f11 */ \
|
||
+ 0, /* f10 */ \
|
||
+ 0, /* f9 */ \
|
||
+ 0, /* f8 */ \
|
||
+ 0, /* f7 */ \
|
||
+ 0, /* f6 */ \
|
||
+ 0, /* f5 */ \
|
||
+ 0, /* f4 */ \
|
||
+ 0, /* f3 */ \
|
||
+ 0, /* f2*/ \
|
||
+ 0, /* f1 */ \
|
||
+ 0 /* f0 */ \
|
||
+}
|
||
+
|
||
+/*
|
||
+Like FIXED_REGISTERS but has 1 for each register that is
|
||
+clobbered (in general) by function calls as well as for fixed
|
||
+registers. This macro therefore identifies the registers that are not
|
||
+available for general allocation of values that must live across
|
||
+function calls.
|
||
+
|
||
+If a register has 0 in CALL_USED_REGISTERS, the compiler
|
||
+automatically saves it on function entry and restores it on function
|
||
+exit, if the register is used within the function.
|
||
+*/
|
||
+#define CALL_USED_REGISTERS { \
|
||
+ 1, /* Program Counter */ \
|
||
+ 0, /* Link Register */ \
|
||
+ 1, /* Stack Pointer */ \
|
||
+ 1, /* r12 */ \
|
||
+ 1, /* r11 */ \
|
||
+ 1, /* r10 */ \
|
||
+ 1, /* r9 */ \
|
||
+ 1, /* r8 */ \
|
||
+ 0, /* r7 */ \
|
||
+ 0, /* r6 */ \
|
||
+ 0, /* r5 */ \
|
||
+ 0, /* r4 */ \
|
||
+ 0, /* r3 */ \
|
||
+ 0, /* r2 */ \
|
||
+ 0, /* r1 */ \
|
||
+ 0, /* r0 */ \
|
||
+ 1, /* f15 */ \
|
||
+ 1, /* f14 */ \
|
||
+ 1, /* f13 */ \
|
||
+ 1, /* f12 */ \
|
||
+ 1, /* f11 */ \
|
||
+ 1, /* f10 */ \
|
||
+ 1, /* f9 */ \
|
||
+ 1, /* f8 */ \
|
||
+ 0, /* f7 */ \
|
||
+ 0, /* f6 */ \
|
||
+ 0, /* f5 */ \
|
||
+ 0, /* f4 */ \
|
||
+ 0, /* f3 */ \
|
||
+ 0, /* f2*/ \
|
||
+ 0, /* f1*/ \
|
||
+ 0, /* f0 */ \
|
||
+}
|
||
+
|
||
+/* Interrupt functions can only use registers that have already been
|
||
+ saved by the prologue, even if they would normally be
|
||
+ call-clobbered. */
|
||
+#define HARD_REGNO_RENAME_OK(SRC, DST) \
|
||
+ (! IS_INTERRUPT (cfun->machine->func_type) || \
|
||
+ regs_ever_live[DST])
|
||
+
|
||
+
|
||
+/*
|
||
+Zero or more C statements that may conditionally modify five variables
|
||
+fixed_regs, call_used_regs, global_regs,
|
||
+reg_names, and reg_class_contents, to take into account
|
||
+any dependence of these register sets on target flags. The first three
|
||
+of these are of type char [] (interpreted as Boolean vectors).
|
||
+global_regs is a const char *[], and
|
||
+reg_class_contents is a HARD_REG_SET. Before the macro is
|
||
+called, fixed_regs, call_used_regs,
|
||
+reg_class_contents, and reg_names have been initialized
|
||
+from FIXED_REGISTERS, CALL_USED_REGISTERS,
|
||
+REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively.
|
||
+global_regs has been cleared, and any -ffixed-[reg],
|
||
+-fcall-used-[reg] and -fcall-saved-[reg]
|
||
+command options have been applied.
|
||
+
|
||
+You need not define this macro if it has no work to do.
|
||
+
|
||
+If the usage of an entire class of registers depends on the target
|
||
+flags, you may indicate this to GCC by using this macro to modify
|
||
+fixed_regs and call_used_regs to 1 for each of the
|
||
+registers in the classes which should not be used by GCC. Also define
|
||
+the macro REG_CLASS_FROM_LETTER to return NO_REGS if it
|
||
+is called with a letter for a class that shouldn't be used.
|
||
+
|
||
+ (However, if this class is not included in GENERAL_REGS and all
|
||
+of the insn patterns whose constraints permit this class are
|
||
+controlled by target switches, then GCC will automatically avoid using
|
||
+these registers when the target switches are opposed to them.)
|
||
+*/
|
||
+#define CONDITIONAL_REGISTER_USAGE \
|
||
+ do \
|
||
+ { \
|
||
+ int regno; \
|
||
+ \
|
||
+ if (TARGET_SOFT_FLOAT) \
|
||
+ { \
|
||
+ for (regno = FIRST_FP_REGNUM; \
|
||
+ regno <= LAST_FP_REGNUM; ++regno) \
|
||
+ fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
+ } \
|
||
+ if (flag_pic) \
|
||
+ { \
|
||
+ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
+ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
||
+ } \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+
|
||
+/*
|
||
+If the program counter has a register number, define this as that
|
||
+register number. Otherwise, do not define it.
|
||
+*/
|
||
+
|
||
+#define LAST_AVR32_REGNUM 16
|
||
+
|
||
+
|
||
+/** Order of Allocation of Registers **/
|
||
+
|
||
+/*
|
||
+If defined, an initializer for a vector of integers, containing the
|
||
+numbers of hard registers in the order in which GCC should prefer
|
||
+to use them (from most preferred to least).
|
||
+
|
||
+If this macro is not defined, registers are used lowest numbered first
|
||
+(all else being equal).
|
||
+
|
||
+One use of this macro is on machines where the highest numbered
|
||
+registers must always be saved and the save-multiple-registers
|
||
+instruction supports only sequences of consecutive registers. On such
|
||
+machines, define REG_ALLOC_ORDER to be an initializer that lists
|
||
+the highest numbered allocable register first.
|
||
+*/
|
||
+#define REG_ALLOC_ORDER \
|
||
+{ \
|
||
+ INTERNAL_REGNUM(8), \
|
||
+ INTERNAL_REGNUM(9), \
|
||
+ INTERNAL_REGNUM(10), \
|
||
+ INTERNAL_REGNUM(11), \
|
||
+ INTERNAL_REGNUM(12), \
|
||
+ LR_REGNUM, \
|
||
+ INTERNAL_REGNUM(7), \
|
||
+ INTERNAL_REGNUM(6), \
|
||
+ INTERNAL_REGNUM(5), \
|
||
+ INTERNAL_REGNUM(4), \
|
||
+ INTERNAL_REGNUM(3), \
|
||
+ INTERNAL_REGNUM(2), \
|
||
+ INTERNAL_REGNUM(1), \
|
||
+ INTERNAL_REGNUM(0), \
|
||
+ INTERNAL_FP_REGNUM(15), \
|
||
+ INTERNAL_FP_REGNUM(14), \
|
||
+ INTERNAL_FP_REGNUM(13), \
|
||
+ INTERNAL_FP_REGNUM(12), \
|
||
+ INTERNAL_FP_REGNUM(11), \
|
||
+ INTERNAL_FP_REGNUM(10), \
|
||
+ INTERNAL_FP_REGNUM(9), \
|
||
+ INTERNAL_FP_REGNUM(8), \
|
||
+ INTERNAL_FP_REGNUM(7), \
|
||
+ INTERNAL_FP_REGNUM(6), \
|
||
+ INTERNAL_FP_REGNUM(5), \
|
||
+ INTERNAL_FP_REGNUM(4), \
|
||
+ INTERNAL_FP_REGNUM(3), \
|
||
+ INTERNAL_FP_REGNUM(2), \
|
||
+ INTERNAL_FP_REGNUM(1), \
|
||
+ INTERNAL_FP_REGNUM(0), \
|
||
+ SP_REGNUM, \
|
||
+ PC_REGNUM \
|
||
+}
|
||
+
|
||
+
|
||
+/** How Values Fit in Registers **/
|
||
+
|
||
+/*
|
||
+A C expression for the number of consecutive hard registers, starting
|
||
+at register number REGNO, required to hold a value of mode
|
||
+MODE.
|
||
+
|
||
+On a machine where all registers are exactly one word, a suitable
|
||
+definition of this macro is
|
||
+
|
||
+#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
|
||
+ / UNITS_PER_WORD)
|
||
+*/
|
||
+#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
+ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD))
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if it is permissible to store a value
|
||
+of mode MODE in hard register number REGNO (or in several
|
||
+registers starting with that one). For a machine where all registers
|
||
+are equivalent, a suitable definition is
|
||
+
|
||
+ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
|
||
+
|
||
+You need not include code to check for the numbers of fixed registers,
|
||
+because the allocation mechanism considers them to be always occupied.
|
||
+
|
||
+On some machines, double-precision values must be kept in even/odd
|
||
+register pairs. You can implement that by defining this macro to reject
|
||
+odd register numbers for such modes.
|
||
+
|
||
+The minimum requirement for a mode to be OK in a register is that the
|
||
+mov[mode] instruction pattern support moves between the
|
||
+register and other hard register in the same class and that moving a
|
||
+value into the register and back out not alter it.
|
||
+
|
||
+Since the same instruction used to move word_mode will work for
|
||
+all narrower integer modes, it is not necessary on any machine for
|
||
+HARD_REGNO_MODE_OK to distinguish between these modes, provided
|
||
+you define patterns movhi, etc., to take advantage of this. This
|
||
+is useful because of the interaction between HARD_REGNO_MODE_OK
|
||
+and MODES_TIEABLE_P; it is very desirable for all integer modes
|
||
+to be tieable.
|
||
+
|
||
+Many machines have special registers for floating point arithmetic.
|
||
+Often people assume that floating point machine modes are allowed only
|
||
+in floating point registers. This is not true. Any registers that
|
||
+can hold integers can safely hold a floating point machine
|
||
+mode, whether or not floating arithmetic can be done on it in those
|
||
+registers. Integer move instructions can be used to move the values.
|
||
+
|
||
+On some machines, though, the converse is true: fixed-point machine
|
||
+modes may not go in floating registers. This is true if the floating
|
||
+registers normalize any value stored in them, because storing a
|
||
+non-floating value there would garble it. In this case,
|
||
+HARD_REGNO_MODE_OK should reject fixed-point machine modes in
|
||
+floating registers. But if the floating registers do not automatically
|
||
+normalize, if you can store any bit pattern in one and retrieve it
|
||
+unchanged without a trap, then any machine mode may go in a floating
|
||
+register, so you can define this macro to say so.
|
||
+
|
||
+The primary significance of special floating registers is rather that
|
||
+they are the registers acceptable in floating point arithmetic
|
||
+instructions. However, this is of no concern to
|
||
+HARD_REGNO_MODE_OK. You handle it by writing the proper
|
||
+constraints for those instructions.
|
||
+
|
||
+On some machines, the floating registers are especially slow to access,
|
||
+so that it is better to store a value in a stack frame than in such a
|
||
+register if floating point arithmetic is not being done. As long as the
|
||
+floating registers are not in class GENERAL_REGS, they will not
|
||
+be used unless some pattern's constraint asks for one.
|
||
+*/
|
||
+#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE)
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if a value of mode
|
||
+MODE1 is accessible in mode MODE2 without copying.
|
||
+
|
||
+If HARD_REGNO_MODE_OK(R, MODE1) and
|
||
+HARD_REGNO_MODE_OK(R, MODE2) are always the same for
|
||
+any R, then MODES_TIEABLE_P(MODE1, MODE2)
|
||
+should be nonzero. If they differ for any R, you should define
|
||
+this macro to return zero unless some other mechanism ensures the
|
||
+accessibility of the value in a narrower mode.
|
||
+
|
||
+You should define this macro to return nonzero in as many cases as
|
||
+possible since doing so will allow GCC to perform better register
|
||
+allocation.
|
||
+*/
|
||
+#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
+ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
||
+
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Register Classes
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+An enumeral type that must be defined with all the register class names
|
||
+as enumeral values. NO_REGS must be first. ALL_REGS
|
||
+must be the last register class, followed by one more enumeral value,
|
||
+LIM_REG_CLASSES, which is not a register class but rather
|
||
+tells how many classes there are.
|
||
+
|
||
+Each register class has a number, which is the value of casting
|
||
+the class name to type int. The number serves as an index
|
||
+in many of the tables described below.
|
||
+*/
|
||
+enum reg_class
|
||
+{
|
||
+ NO_REGS,
|
||
+ GENERAL_REGS,
|
||
+ FP_REGS,
|
||
+ ALL_REGS,
|
||
+ LIM_REG_CLASSES
|
||
+};
|
||
+
|
||
+/*
|
||
+The number of distinct register classes, defined as follows:
|
||
+ #define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
+*/
|
||
+#define N_REG_CLASSES (int)LIM_REG_CLASSES
|
||
+
|
||
+/*
|
||
+An initializer containing the names of the register classes as C string
|
||
+constants. These names are used in writing some of the debugging dumps.
|
||
+*/
|
||
+#define REG_CLASS_NAMES \
|
||
+{ \
|
||
+ "NO_REGS", \
|
||
+ "GENERAL_REGS", \
|
||
+ "FLOATING_POINT_REGS", \
|
||
+ "ALL_REGS" \
|
||
+}
|
||
+
|
||
+/*
|
||
+An initializer containing the contents of the register classes, as integers
|
||
+which are bit masks. The nth integer specifies the contents of class
|
||
+n. The way the integer mask is interpreted is that
|
||
+register r is in the class if mask & (1 << r) is 1.
|
||
+
|
||
+When the machine has more than 32 registers, an integer does not suffice.
|
||
+Then the integers are replaced by sub-initializers, braced groupings containing
|
||
+several integers. Each sub-initializer must be suitable as an initializer
|
||
+for the type HARD_REG_SET which is defined in hard-reg-set.h.
|
||
+In this situation, the first integer in each sub-initializer corresponds to
|
||
+registers 0 through 31, the second integer to registers 32 through 63, and
|
||
+so on.
|
||
+*/
|
||
+#define REG_CLASS_CONTENTS { \
|
||
+ {0x00000000}, /* NO_REGS */ \
|
||
+ {0x0000FFFF}, /* GENERAL_REGS */ \
|
||
+ {0xFFFF0000}, /* FP_REGS */ \
|
||
+ {0x7FFFFFFF}, /* ALL_REGS */ \
|
||
+}
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression whose value is a register class containing hard register
|
||
+REGNO. In general there is more than one such class; choose a class
|
||
+which is minimal, meaning that no smaller class also contains the
|
||
+register.
|
||
+*/
|
||
+#define REGNO_REG_CLASS(REGNO) ((REGNO < 16) ? GENERAL_REGS : FP_REGS)
|
||
+
|
||
+/*
|
||
+A macro whose definition is the name of the class to which a valid
|
||
+base register must belong. A base register is one used in an address
|
||
+which is the register value plus a displacement.
|
||
+*/
|
||
+#define BASE_REG_CLASS GENERAL_REGS
|
||
+
|
||
+/*
|
||
+This is a variation of the BASE_REG_CLASS macro which allows
|
||
+the selection of a base register in a mode depenedent manner. If
|
||
+mode is VOIDmode then it should return the same value as
|
||
+BASE_REG_CLASS.
|
||
+*/
|
||
+#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS
|
||
+
|
||
+/*
|
||
+A macro whose definition is the name of the class to which a valid
|
||
+index register must belong. An index register is one used in an
|
||
+address where its value is either multiplied by a scale factor or
|
||
+added to another register (as well as added to a displacement).
|
||
+*/
|
||
+#define INDEX_REG_CLASS BASE_REG_CLASS
|
||
+
|
||
+/*
|
||
+A C expression which defines the machine-dependent operand constraint
|
||
+letters for register classes. If CHAR is such a letter, the
|
||
+value should be the register class corresponding to it. Otherwise,
|
||
+the value should be NO_REGS. The register letter r,
|
||
+corresponding to class GENERAL_REGS, will not be passed
|
||
+to this macro; you do not need to handle it.
|
||
+*/
|
||
+#define REG_CLASS_FROM_LETTER(CHAR) ((CHAR) == 'f' ? FP_REGS : NO_REGS)
|
||
+
|
||
+
|
||
+/* These assume that REGNO is a hard or pseudo reg number.
|
||
+ They give nonzero only if REGNO is a hard reg of the suitable class
|
||
+ or a pseudo reg currently allocated to a suitable hard reg.
|
||
+ Since they use reg_renumber, they are safe only once reg_renumber
|
||
+ has been allocated, which happens in local-alloc.c. */
|
||
+#define TEST_REGNO(R, TEST, VALUE) \
|
||
+ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
|
||
+
|
||
+/*
|
||
+A C expression which is nonzero if register number num is suitable for use as a base
|
||
+register in operand addresses. It may be either a suitable hard register or a pseudo
|
||
+register that has been allocated such a hard register.
|
||
+*/
|
||
+#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
|
||
+
|
||
+/*
|
||
+A C expression which is nonzero if register number NUM is
|
||
+suitable for use as an index register in operand addresses. It may be
|
||
+either a suitable hard register or a pseudo register that has been
|
||
+allocated such a hard register.
|
||
+
|
||
+The difference between an index register and a base register is that
|
||
+the index register may be scaled. If an address involves the sum of
|
||
+two registers, neither one of them scaled, then either one may be
|
||
+labeled the ``base'' and the other the ``index''; but whichever
|
||
+labeling is used must fit the machine's constraints of which registers
|
||
+may serve in each capacity. The compiler will try both labelings,
|
||
+looking for one that is valid, and will reload one or both registers
|
||
+only if neither labeling works.
|
||
+*/
|
||
+#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM)
|
||
+
|
||
+/*
|
||
+A C expression that places additional restrictions on the register class
|
||
+to use when it is necessary to copy value X into a register in class
|
||
+CLASS. The value is a register class; perhaps CLASS, or perhaps
|
||
+another, smaller class. On many machines, the following definition is
|
||
+safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
|
||
+
|
||
+Sometimes returning a more restrictive class makes better code. For
|
||
+example, on the 68000, when X is an integer constant that is in range
|
||
+for a 'moveq' instruction, the value of this macro is always
|
||
+DATA_REGS as long as CLASS includes the data registers.
|
||
+Requiring a data register guarantees that a 'moveq' will be used.
|
||
+
|
||
+If X is a const_double, by returning NO_REGS
|
||
+you can force X into a memory constant. This is useful on
|
||
+certain machines where immediate floating values cannot be loaded into
|
||
+certain kinds of registers.
|
||
+*/
|
||
+#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the maximum number of consecutive registers
|
||
+of class CLASS needed to hold a value of mode MODE.
|
||
+
|
||
+This is closely related to the macro HARD_REGNO_NREGS. In fact,
|
||
+the value of the macro CLASS_MAX_NREGS(CLASS, MODE)
|
||
+should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE)
|
||
+for all REGNO values in the class CLASS.
|
||
+
|
||
+This macro helps control the handling of multiple-word values
|
||
+in the reload pass.
|
||
+*/
|
||
+#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \
|
||
+ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
+
|
||
+
|
||
+/*
|
||
+ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P
|
||
+ in order to support constraints with more than one letter.
|
||
+ Only two letters are then used for constant constraints,
|
||
+ the letter 'K' and the letter 'I'. The constraint starting with
|
||
+ these letters must consist of four characters. The character following
|
||
+ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify
|
||
+ if the constant is zero or sign extended. The last two characters specify
|
||
+ the length in bits of the constant. The base constraint letter 'I' means
|
||
+ that this is an negated constant, meaning that actually -VAL should be
|
||
+ checked to lie withing the valid range instead of VAL which is used when
|
||
+ 'K' is the base constraint letter.
|
||
+
|
||
+*/
|
||
+
|
||
+#define CONSTRAINT_LEN(C, STR) \
|
||
+ ( ((C) == 'K' || (C) == 'I') ? 4 : \
|
||
+ ((C) == 'R') ? 5 : \
|
||
+ ((C) == 'P') ? -1 : \
|
||
+ DEFAULT_CONSTRAINT_LEN((C), (STR)) )
|
||
+
|
||
+#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
|
||
+ avr32_const_ok_for_constraint_p(VALUE, C, STR)
|
||
+
|
||
+/*
|
||
+A C expression that defines the machine-dependent operand constraint
|
||
+letters that specify particular ranges of const_double values ('G' or 'H').
|
||
+
|
||
+If C is one of those letters, the expression should check that
|
||
+VALUE, an RTX of code const_double, is in the appropriate
|
||
+range and return 1 if so, 0 otherwise. If C is not one of those
|
||
+letters, the value should be 0 regardless of VALUE.
|
||
+
|
||
+const_double is used for all floating-point constants and for
|
||
+DImode fixed-point constants. A given letter can accept either
|
||
+or both kinds of values. It can use GET_MODE to distinguish
|
||
+between these kinds.
|
||
+*/
|
||
+#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
|
||
+ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0)
|
||
+
|
||
+/*
|
||
+A C expression that defines the optional machine-dependent constraint
|
||
+letters that can be used to segregate specific types of operands, usually
|
||
+memory references, for the target machine. Any letter that is not
|
||
+elsewhere defined and not matched by REG_CLASS_FROM_LETTER
|
||
+may be used. Normally this macro will not be defined.
|
||
+
|
||
+If it is required for a particular target machine, it should return 1
|
||
+if VALUE corresponds to the operand type represented by the
|
||
+constraint letter C. If C is not defined as an extra
|
||
+constraint, the value returned should be 0 regardless of VALUE.
|
||
+
|
||
+For example, on the ROMP, load instructions cannot have their output
|
||
+in r0 if the memory reference contains a symbolic address. Constraint
|
||
+letter 'Q' is defined as representing a memory address that does
|
||
+not contain a symbolic address. An alternative is specified with
|
||
+a 'Q' constraint on the input and 'r' on the output. The next
|
||
+alternative specifies 'm' on the input and a register class that
|
||
+does not include r0 on the output.
|
||
+*/
|
||
+#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
|
||
+ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \
|
||
+ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \
|
||
+ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \
|
||
+ && avr32_const_ok_for_constraint_p( \
|
||
+ INTVAL(XEXP(XEXP(OP, 0), 1)), \
|
||
+ (STR)[1], &(STR)[1]))) : \
|
||
+ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \
|
||
+ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \
|
||
+ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \
|
||
+ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \
|
||
+ (C) == 'Q' ? avr32_non_rmw_memory_operand(OP, GET_MODE(OP)) : \
|
||
+ (C) == 'Y' ? avr32_rmw_memory_operand(OP, GET_MODE(OP)) : \
|
||
+ 0)
|
||
+
|
||
+
|
||
+#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \
|
||
+ ((C) == 'Q') || \
|
||
+ ((C) == 'S') || \
|
||
+ ((C) == 'Y') || \
|
||
+ ((C) == 'Z') )
|
||
+
|
||
+
|
||
+/* Returns nonzero if op is a function SYMBOL_REF which
|
||
+ can be called using an rcall instruction */
|
||
+#define SYMBOL_REF_RCALL_FUNCTION_P(op) \
|
||
+ ( GET_CODE(op) == SYMBOL_REF \
|
||
+ && SYMBOL_REF_FUNCTION_P(op) \
|
||
+ && SYMBOL_REF_LOCAL_P(op) \
|
||
+ && !SYMBOL_REF_EXTERNAL_P(op) \
|
||
+ && !TARGET_HAS_ASM_ADDR_PSEUDOS )
|
||
+
|
||
+/******************************************************************************
|
||
+ * Stack Layout and Calling Conventions
|
||
+ *****************************************************************************/
|
||
+
|
||
+/** Basic Stack Layout **/
|
||
+
|
||
+/*
|
||
+Define this macro if pushing a word onto the stack moves the stack
|
||
+pointer to a smaller address.
|
||
+
|
||
+When we say, ``define this macro if ...,'' it means that the
|
||
+compiler checks this macro only with #ifdef so the precise
|
||
+definition used does not matter.
|
||
+*/
|
||
+/* pushm decrece SP: *(--SP) <-- Rx */
|
||
+#define STACK_GROWS_DOWNWARD
|
||
+
|
||
+/*
|
||
+This macro defines the operation used when something is pushed
|
||
+on the stack. In RTL, a push operation will be
|
||
+(set (mem (STACK_PUSH_CODE (reg sp))) ...)
|
||
+
|
||
+The choices are PRE_DEC, POST_DEC, PRE_INC,
|
||
+and POST_INC. Which of these is correct depends on
|
||
+the stack direction and on whether the stack pointer points
|
||
+to the last item on the stack or whether it points to the
|
||
+space for the next item on the stack.
|
||
+
|
||
+The default is PRE_DEC when STACK_GROWS_DOWNWARD is
|
||
+defined, which is almost always right, and PRE_INC otherwise,
|
||
+which is often wrong.
|
||
+*/
|
||
+/* pushm: *(--SP) <-- Rx */
|
||
+#define STACK_PUSH_CODE PRE_DEC
|
||
+
|
||
+/* Define this to nonzero if the nominal address of the stack frame
|
||
+ is at the high-address end of the local variables;
|
||
+ that is, each additional local variable allocated
|
||
+ goes at a more negative offset in the frame. */
|
||
+#define FRAME_GROWS_DOWNWARD 1
|
||
+
|
||
+
|
||
+/*
|
||
+Offset from the frame pointer to the first local variable slot to be allocated.
|
||
+
|
||
+If FRAME_GROWS_DOWNWARD, find the next slot's offset by
|
||
+subtracting the first slot's length from STARTING_FRAME_OFFSET.
|
||
+Otherwise, it is found by adding the length of the first slot to the
|
||
+value STARTING_FRAME_OFFSET.
|
||
+ (i'm not sure if the above is still correct.. had to change it to get
|
||
+ rid of an overfull. --mew 2feb93 )
|
||
+*/
|
||
+#define STARTING_FRAME_OFFSET 0
|
||
+
|
||
+/*
|
||
+Offset from the stack pointer register to the first location at which
|
||
+outgoing arguments are placed. If not specified, the default value of
|
||
+zero is used. This is the proper value for most machines.
|
||
+
|
||
+If ARGS_GROW_DOWNWARD, this is the offset to the location above
|
||
+the first location at which outgoing arguments are placed.
|
||
+*/
|
||
+#define STACK_POINTER_OFFSET 0
|
||
+
|
||
+/*
|
||
+Offset from the argument pointer register to the first argument's
|
||
+address. On some machines it may depend on the data type of the
|
||
+function.
|
||
+
|
||
+If ARGS_GROW_DOWNWARD, this is the offset to the location above
|
||
+the first argument's address.
|
||
+*/
|
||
+#define FIRST_PARM_OFFSET(FUNDECL) 0
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression whose value is RTL representing the address in a stack
|
||
+frame where the pointer to the caller's frame is stored. Assume that
|
||
+FRAMEADDR is an RTL expression for the address of the stack frame
|
||
+itself.
|
||
+
|
||
+If you don't define this macro, the default is to return the value
|
||
+of FRAMEADDR - that is, the stack frame address is also the
|
||
+address of the stack word that points to the previous frame.
|
||
+*/
|
||
+#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4)
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression whose value is RTL representing the value of the return
|
||
+address for the frame COUNT steps up from the current frame, after
|
||
+the prologue. FRAMEADDR is the frame pointer of the COUNT
|
||
+frame, or the frame pointer of the COUNT - 1 frame if
|
||
+RETURN_ADDR_IN_PREVIOUS_FRAME is defined.
|
||
+
|
||
+The value of the expression must always be the correct address when
|
||
+COUNT is zero, but may be NULL_RTX if there is not way to
|
||
+determine the return address of other frames.
|
||
+*/
|
||
+#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR)
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression whose value is RTL representing the location of the
|
||
+incoming return address at the beginning of any function, before the
|
||
+prologue. This RTL is either a REG, indicating that the return
|
||
+value is saved in 'REG', or a MEM representing a location in
|
||
+the stack.
|
||
+
|
||
+You only need to define this macro if you want to support call frame
|
||
+debugging information like that provided by DWARF 2.
|
||
+
|
||
+If this RTL is a REG, you should also define
|
||
+DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO).
|
||
+*/
|
||
+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression whose value is an integer giving the offset, in bytes,
|
||
+from the value of the stack pointer register to the top of the stack
|
||
+frame at the beginning of any function, before the prologue. The top of
|
||
+the frame is defined to be the value of the stack pointer in the
|
||
+previous frame, just before the call instruction.
|
||
+
|
||
+You only need to define this macro if you want to support call frame
|
||
+debugging information like that provided by DWARF 2.
|
||
+*/
|
||
+#define INCOMING_FRAME_SP_OFFSET 0
|
||
+
|
||
+
|
||
+/** Exception Handling Support **/
|
||
+
|
||
+/* Use setjump/longjump for exception handling. */
|
||
+#define DWARF2_UNWIND_INFO 0
|
||
+#define MUST_USE_SJLJ_EXCEPTIONS 1
|
||
+
|
||
+/*
|
||
+A C expression whose value is the Nth register number used for
|
||
+data by exception handlers, or INVALID_REGNUM if fewer than
|
||
+N registers are usable.
|
||
+
|
||
+The exception handling library routines communicate with the exception
|
||
+handlers via a set of agreed upon registers. Ideally these registers
|
||
+should be call-clobbered; it is possible to use call-saved registers,
|
||
+but may negatively impact code size. The target must support at least
|
||
+2 data registers, but should define 4 if there are enough free registers.
|
||
+
|
||
+You must define this macro if you want to support call frame exception
|
||
+handling like that provided by DWARF 2.
|
||
+*/
|
||
+/*
|
||
+ Use r9-r11
|
||
+*/
|
||
+#define EH_RETURN_DATA_REGNO(N) \
|
||
+ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM)
|
||
+
|
||
+/*
|
||
+A C expression whose value is RTL representing a location in which
|
||
+to store a stack adjustment to be applied before function return.
|
||
+This is used to unwind the stack to an exception handler's call frame.
|
||
+It will be assigned zero on code paths that return normally.
|
||
+
|
||
+Typically this is a call-clobbered hard register that is otherwise
|
||
+untouched by the epilogue, but could also be a stack slot.
|
||
+
|
||
+You must define this macro if you want to support call frame exception
|
||
+handling like that provided by DWARF 2.
|
||
+*/
|
||
+/*
|
||
+ Use r8
|
||
+*/
|
||
+#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8)
|
||
+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO)
|
||
+
|
||
+/*
|
||
+A C expression whose value is RTL representing a location in which
|
||
+to store the address of an exception handler to which we should
|
||
+return. It will not be assigned on code paths that return normally.
|
||
+
|
||
+Typically this is the location in the call frame at which the normal
|
||
+return address is stored. For targets that return by popping an
|
||
+address off the stack, this might be a memory address just below
|
||
+the target call frame rather than inside the current call
|
||
+frame. EH_RETURN_STACKADJ_RTX will have already been assigned,
|
||
+so it may be used to calculate the location of the target call frame.
|
||
+
|
||
+Some targets have more complex requirements than storing to an
|
||
+address calculable during initial code generation. In that case
|
||
+the eh_return instruction pattern should be used instead.
|
||
+
|
||
+If you want to support call frame exception handling, you must
|
||
+define either this macro or the eh_return instruction pattern.
|
||
+*/
|
||
+/*
|
||
+ We define the eh_return instruction pattern, so this isn't needed.
|
||
+*/
|
||
+/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */
|
||
+
|
||
+/*
|
||
+ This macro chooses the encoding of pointers embedded in the
|
||
+ exception handling sections. If at all possible, this should be
|
||
+ defined such that the exception handling section will not require
|
||
+ dynamic relocations, and so may be read-only.
|
||
+
|
||
+ code is 0 for data, 1 for code labels, 2 for function
|
||
+ pointers. global is true if the symbol may be affected by dynamic
|
||
+ relocations. The macro should return a combination of the DW_EH_PE_*
|
||
+ defines as found in dwarf2.h.
|
||
+
|
||
+ If this macro is not defined, pointers will not be encoded but
|
||
+ represented directly.
|
||
+*/
|
||
+#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
||
+ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
|
||
+ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
|
||
+ | DW_EH_PE_sdata4)
|
||
+
|
||
+/* ToDo: The rest of this subsection */
|
||
+
|
||
+/** Specifying How Stack Checking is Done **/
|
||
+/* ToDo: All in this subsection */
|
||
+
|
||
+/** Registers That Address the Stack Frame **/
|
||
+
|
||
+/*
|
||
+The register number of the stack pointer register, which must also be a
|
||
+fixed register according to FIXED_REGISTERS. On most machines,
|
||
+the hardware determines which register this is.
|
||
+*/
|
||
+/* Using r13 as stack pointer. */
|
||
+#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13)
|
||
+
|
||
+/*
|
||
+The register number of the frame pointer register, which is used to
|
||
+access automatic variables in the stack frame. On some machines, the
|
||
+hardware determines which register this is. On other machines, you can
|
||
+choose any register you wish for this purpose.
|
||
+*/
|
||
+/* Use r7 */
|
||
+#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7)
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+The register number of the arg pointer register, which is used to access
|
||
+the function's argument list. On some machines, this is the same as the
|
||
+frame pointer register. On some machines, the hardware determines which
|
||
+register this is. On other machines, you can choose any register you
|
||
+wish for this purpose. If this is not the same register as the frame
|
||
+pointer register, then you must mark it as a fixed register according to
|
||
+FIXED_REGISTERS, or arrange to be able to eliminate it (see Section
|
||
+10.10.5 [Elimination], page 224).
|
||
+*/
|
||
+/* Using r5 */
|
||
+#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4)
|
||
+
|
||
+
|
||
+/*
|
||
+Register numbers used for passing a function's static chain pointer. If
|
||
+register windows are used, the register number as seen by the called
|
||
+function is STATIC_CHAIN_INCOMING_REGNUM, while the register
|
||
+number as seen by the calling function is STATIC_CHAIN_REGNUM. If
|
||
+these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need
|
||
+not be defined.
|
||
+
|
||
+The static chain register need not be a fixed register.
|
||
+
|
||
+If the static chain is passed in memory, these macros should not be
|
||
+defined; instead, the next two macros should be defined.
|
||
+*/
|
||
+/* Using r0 */
|
||
+#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0)
|
||
+
|
||
+
|
||
+/** Eliminating Frame Pointer and Arg Pointer **/
|
||
+
|
||
+/*
|
||
+A C expression which is nonzero if a function must have and use a frame
|
||
+pointer. This expression is evaluated in the reload pass. If its value is
|
||
+nonzero the function will have a frame pointer.
|
||
+
|
||
+The expression can in principle examine the current function and decide
|
||
+according to the facts, but on most machines the constant 0 or the
|
||
+constant 1 suffices. Use 0 when the machine allows code to be generated
|
||
+with no frame pointer, and doing so saves some time or space. Use 1
|
||
+when there is no possible advantage to avoiding a frame pointer.
|
||
+
|
||
+In certain cases, the compiler does not know how to produce valid code
|
||
+without a frame pointer. The compiler recognizes those cases and
|
||
+automatically gives the function a frame pointer regardless of what
|
||
+FRAME_POINTER_REQUIRED says. You don't need to worry about
|
||
+them.
|
||
+
|
||
+In a function that does not require a frame pointer, the frame pointer
|
||
+register can be allocated for ordinary usage, unless you mark it as a
|
||
+fixed register. See FIXED_REGISTERS for more information.
|
||
+*/
|
||
+/* We need the frame pointer when compiling for profiling */
|
||
+#define FRAME_POINTER_REQUIRED (current_function_profile)
|
||
+
|
||
+/*
|
||
+A C statement to store in the variable DEPTH_VAR the difference
|
||
+between the frame pointer and the stack pointer values immediately after
|
||
+the function prologue. The value would be computed from information
|
||
+such as the result of get_frame_size () and the tables of
|
||
+registers regs_ever_live and call_used_regs.
|
||
+
|
||
+If ELIMINABLE_REGS is defined, this macro will be not be used and
|
||
+need not be defined. Otherwise, it must be defined even if
|
||
+FRAME_POINTER_REQUIRED is defined to always be true; in that
|
||
+case, you may set DEPTH_VAR to anything.
|
||
+*/
|
||
+#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size())
|
||
+
|
||
+/*
|
||
+If defined, this macro specifies a table of register pairs used to
|
||
+eliminate unneeded registers that point into the stack frame. If it is not
|
||
+defined, the only elimination attempted by the compiler is to replace
|
||
+references to the frame pointer with references to the stack pointer.
|
||
+
|
||
+The definition of this macro is a list of structure initializations, each
|
||
+of which specifies an original and replacement register.
|
||
+
|
||
+On some machines, the position of the argument pointer is not known until
|
||
+the compilation is completed. In such a case, a separate hard register
|
||
+must be used for the argument pointer. This register can be eliminated by
|
||
+replacing it with either the frame pointer or the argument pointer,
|
||
+depending on whether or not the frame pointer has been eliminated.
|
||
+
|
||
+In this case, you might specify:
|
||
+ #define ELIMINABLE_REGS \
|
||
+ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
||
+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
|
||
+
|
||
+Note that the elimination of the argument pointer with the stack pointer is
|
||
+specified first since that is the preferred elimination.
|
||
+*/
|
||
+#define ELIMINABLE_REGS \
|
||
+{ \
|
||
+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
||
+ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
||
+ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \
|
||
+}
|
||
+
|
||
+/*
|
||
+A C expression that returns nonzero if the compiler is allowed to try
|
||
+to replace register number FROM with register number
|
||
+TO. This macro need only be defined if ELIMINABLE_REGS
|
||
+is defined, and will usually be the constant 1, since most of the cases
|
||
+preventing register elimination are things that the compiler already
|
||
+knows about.
|
||
+*/
|
||
+#define CAN_ELIMINATE(FROM, TO) 1
|
||
+
|
||
+/*
|
||
+This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It
|
||
+specifies the initial difference between the specified pair of
|
||
+registers. This macro must be defined if ELIMINABLE_REGS is
|
||
+defined.
|
||
+*/
|
||
+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
+ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO))
|
||
+
|
||
+/** Passing Function Arguments on the Stack **/
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression. If nonzero, push insns will be used to pass
|
||
+outgoing arguments.
|
||
+If the target machine does not have a push instruction, set it to zero.
|
||
+That directs GCC to use an alternate strategy: to
|
||
+allocate the entire argument block and then store the arguments into
|
||
+it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too.
|
||
+*/
|
||
+#define PUSH_ARGS 1
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression that is the number of bytes actually pushed onto the
|
||
+stack when an instruction attempts to push NPUSHED bytes.
|
||
+
|
||
+On some machines, the definition
|
||
+
|
||
+ #define PUSH_ROUNDING(BYTES) (BYTES)
|
||
+
|
||
+will suffice. But on other machines, instructions that appear
|
||
+to push one byte actually push two bytes in an attempt to maintain
|
||
+alignment. Then the definition should be
|
||
+
|
||
+ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
|
||
+*/
|
||
+/* Push 4 bytes at the time. */
|
||
+#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
|
||
+
|
||
+/*
|
||
+A C expression. If nonzero, the maximum amount of space required for
|
||
+outgoing arguments will be computed and placed into the variable
|
||
+current_function_outgoing_args_size. No space will be pushed
|
||
+onto the stack for each call; instead, the function prologue should
|
||
+increase the stack frame size by this amount.
|
||
+
|
||
+Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper.
|
||
+*/
|
||
+#define ACCUMULATE_OUTGOING_ARGS 0
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression that should indicate the number of bytes of its own
|
||
+arguments that a function pops on returning, or 0 if the
|
||
+function pops no arguments and the caller must therefore pop them all
|
||
+after the function returns.
|
||
+
|
||
+FUNDECL is a C variable whose value is a tree node that describes
|
||
+the function in question. Normally it is a node of type
|
||
+FUNCTION_DECL that describes the declaration of the function.
|
||
+From this you can obtain the DECL_ATTRIBUTES of the function.
|
||
+
|
||
+FUNTYPE is a C variable whose value is a tree node that
|
||
+describes the function in question. Normally it is a node of type
|
||
+FUNCTION_TYPE that describes the data type of the function.
|
||
+From this it is possible to obtain the data types of the value and
|
||
+arguments (if known).
|
||
+
|
||
+When a call to a library function is being considered, FUNDECL
|
||
+will contain an identifier node for the library function. Thus, if
|
||
+you need to distinguish among various library functions, you can do so
|
||
+by their names. Note that ``library function'' in this context means
|
||
+a function used to perform arithmetic, whose name is known specially
|
||
+in the compiler and was not mentioned in the C code being compiled.
|
||
+
|
||
+STACK_SIZE is the number of bytes of arguments passed on the
|
||
+stack. If a variable number of bytes is passed, it is zero, and
|
||
+argument popping will always be the responsibility of the calling function.
|
||
+
|
||
+On the VAX, all functions always pop their arguments, so the definition
|
||
+of this macro is STACK_SIZE. On the 68000, using the standard
|
||
+calling convention, no functions pop their arguments, so the value of
|
||
+the macro is always 0 in this case. But an alternative calling
|
||
+convention is available in which functions that take a fixed number of
|
||
+arguments pop them but other functions (such as printf) pop
|
||
+nothing (the caller pops all). When this convention is in use,
|
||
+FUNTYPE is examined to determine whether a function takes a fixed
|
||
+number of arguments.
|
||
+*/
|
||
+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
|
||
+
|
||
+
|
||
+/*Return true if this function can we use a single return instruction*/
|
||
+#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND)
|
||
+
|
||
+/*
|
||
+A C expression that should indicate the number of bytes a call sequence
|
||
+pops off the stack. It is added to the value of RETURN_POPS_ARGS
|
||
+when compiling a function call.
|
||
+
|
||
+CUM is the variable in which all arguments to the called function
|
||
+have been accumulated.
|
||
+
|
||
+On certain architectures, such as the SH5, a call trampoline is used
|
||
+that pops certain registers off the stack, depending on the arguments
|
||
+that have been passed to the function. Since this is a property of the
|
||
+call site, not of the called function, RETURN_POPS_ARGS is not
|
||
+appropriate.
|
||
+*/
|
||
+#define CALL_POPS_ARGS(CUM) 0
|
||
+
|
||
+/* Passing Arguments in Registers */
|
||
+
|
||
+/*
|
||
+A C expression that controls whether a function argument is passed
|
||
+in a register, and which register.
|
||
+
|
||
+The arguments are CUM, which summarizes all the previous
|
||
+arguments; MODE, the machine mode of the argument; TYPE,
|
||
+the data type of the argument as a tree node or 0 if that is not known
|
||
+(which happens for C support library functions); and NAMED,
|
||
+which is 1 for an ordinary argument and 0 for nameless arguments that
|
||
+correspond to '...' in the called function's prototype.
|
||
+TYPE can be an incomplete type if a syntax error has previously
|
||
+occurred.
|
||
+
|
||
+The value of the expression is usually either a reg RTX for the
|
||
+hard register in which to pass the argument, or zero to pass the
|
||
+argument on the stack.
|
||
+
|
||
+For machines like the VAX and 68000, where normally all arguments are
|
||
+pushed, zero suffices as a definition.
|
||
+
|
||
+The value of the expression can also be a parallel RTX. This is
|
||
+used when an argument is passed in multiple locations. The mode of the
|
||
+of the parallel should be the mode of the entire argument. The
|
||
+parallel holds any number of expr_list pairs; each one
|
||
+describes where part of the argument is passed. In each
|
||
+expr_list the first operand must be a reg RTX for the hard
|
||
+register in which to pass this part of the argument, and the mode of the
|
||
+register RTX indicates how large this part of the argument is. The
|
||
+second operand of the expr_list is a const_int which gives
|
||
+the offset in bytes into the entire argument of where this part starts.
|
||
+As a special exception the first expr_list in the parallel
|
||
+RTX may have a first operand of zero. This indicates that the entire
|
||
+argument is also stored on the stack.
|
||
+
|
||
+The last time this macro is called, it is called with MODE == VOIDmode,
|
||
+and its result is passed to the call or call_value
|
||
+pattern as operands 2 and 3 respectively.
|
||
+
|
||
+The usual way to make the ISO library 'stdarg.h' work on a machine
|
||
+where some arguments are usually passed in registers, is to cause
|
||
+nameless arguments to be passed on the stack instead. This is done
|
||
+by making FUNCTION_ARG return 0 whenever NAMED is 0.
|
||
+
|
||
+You may use the macro MUST_PASS_IN_STACK (MODE, TYPE)
|
||
+in the definition of this macro to determine if this argument is of a
|
||
+type that must be passed in the stack. If REG_PARM_STACK_SPACE
|
||
+is not defined and FUNCTION_ARG returns nonzero for such an
|
||
+argument, the compiler will abort. If REG_PARM_STACK_SPACE is
|
||
+defined, the argument will be computed in the stack and then loaded into
|
||
+a register. */
|
||
+
|
||
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
+ avr32_function_arg(&(CUM), MODE, TYPE, NAMED)
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C type for declaring a variable that is used as the first argument of
|
||
+FUNCTION_ARG and other related values. For some target machines,
|
||
+the type int suffices and can hold the number of bytes of
|
||
+argument so far.
|
||
+
|
||
+There is no need to record in CUMULATIVE_ARGS anything about the
|
||
+arguments that have been passed on the stack. The compiler has other
|
||
+variables to keep track of that. For target machines on which all
|
||
+arguments are passed on the stack, there is no need to store anything in
|
||
+CUMULATIVE_ARGS; however, the data structure must exist and
|
||
+should not be empty, so use int.
|
||
+*/
|
||
+typedef struct avr32_args
|
||
+{
|
||
+ /* Index representing the argument register the current function argument
|
||
+ will occupy */
|
||
+ int index;
|
||
+ /* A mask with bits representing the argument registers: if a bit is set
|
||
+ then this register is used for an arguemnt */
|
||
+ int used_index;
|
||
+ /* TRUE if this function has anonymous arguments */
|
||
+ int uses_anonymous_args;
|
||
+ /* The size in bytes of the named arguments pushed on the stack */
|
||
+ int stack_pushed_args_size;
|
||
+ /* Set to true if this function needs a Return Value Pointer */
|
||
+ int use_rvp;
|
||
+
|
||
+} CUMULATIVE_ARGS;
|
||
+
|
||
+
|
||
+#define FIRST_CUM_REG_INDEX 0
|
||
+#define LAST_CUM_REG_INDEX 4
|
||
+#define GET_REG_INDEX(CUM) ((CUM)->index)
|
||
+#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX));
|
||
+#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX)))
|
||
+#define SET_USED_INDEX(CUM, INDEX) \
|
||
+ do \
|
||
+ { \
|
||
+ if (INDEX >= 0) \
|
||
+ (CUM)->used_index |= (1 << (INDEX)); \
|
||
+ } \
|
||
+ while (0)
|
||
+#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0)
|
||
+
|
||
+
|
||
+/*
|
||
+ A C statement (sans semicolon) for initializing the variable cum for the
|
||
+ state at the beginning of the argument list. The variable has type
|
||
+ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of
|
||
+ the function which will receive the args, or 0 if the args are to a compiler
|
||
+ support library function. For direct calls that are not libcalls, FNDECL
|
||
+ contain the declaration node of the function. FNDECL is also set when
|
||
+ INIT_CUMULATIVE_ARGS is used to find arguments for the function being
|
||
+ compiled. N_NAMED_ARGS is set to the number of named arguments, including a
|
||
+ structure return address if it is passed as a parameter, when making a call.
|
||
+ When processing incoming arguments, N_NAMED_ARGS is set to -1.
|
||
+
|
||
+ When processing a call to a compiler support library function, LIBNAME
|
||
+ identifies which one. It is a symbol_ref rtx which contains the name of the
|
||
+ function, as a string. LIBNAME is 0 when an ordinary C function call is
|
||
+ being processed. Thus, each time this macro is called, either LIBNAME or
|
||
+ FNTYPE is nonzero, but never both of them at once.
|
||
+*/
|
||
+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
||
+ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL)
|
||
+
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to update the summarizer variable
|
||
+CUM to advance past an argument in the argument list. The
|
||
+values MODE, TYPE and NAMED describe that argument.
|
||
+Once this is done, the variable CUM is suitable for analyzing
|
||
+the following argument with FUNCTION_ARG, etc.
|
||
+
|
||
+This macro need not do anything if the argument in question was passed
|
||
+on the stack. The compiler knows how to track the amount of stack space
|
||
+used for arguments without any special help.
|
||
+*/
|
||
+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
+ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED)
|
||
+
|
||
+/*
|
||
+If defined, a C expression which determines whether, and in which direction,
|
||
+to pad out an argument with extra space. The value should be of type
|
||
+enum direction: either 'upward' to pad above the argument,
|
||
+'downward' to pad below, or 'none' to inhibit padding.
|
||
+
|
||
+The amount of padding is always just enough to reach the next
|
||
+multiple of FUNCTION_ARG_BOUNDARY; this macro does not control
|
||
+it.
|
||
+
|
||
+This macro has a default definition which is right for most systems.
|
||
+For little-endian machines, the default is to pad upward. For
|
||
+big-endian machines, the default is to pad downward for an argument of
|
||
+constant size shorter than an int, and upward otherwise.
|
||
+*/
|
||
+#define FUNCTION_ARG_PADDING(MODE, TYPE) \
|
||
+ avr32_function_arg_padding(MODE, TYPE)
|
||
+
|
||
+/*
|
||
+ Specify padding for the last element of a block move between registers
|
||
+ and memory. First is nonzero if this is the only element. Defining
|
||
+ this macro allows better control of register function parameters on
|
||
+ big-endian machines, without using PARALLEL rtl. In particular,
|
||
+ MUST_PASS_IN_STACK need not test padding and mode of types in registers,
|
||
+ as there is no longer a "wrong" part of a register; For example, a three
|
||
+ byte aggregate may be passed in the high part of a register if so required.
|
||
+*/
|
||
+#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
|
||
+ avr32_function_arg_padding(MODE, TYPE)
|
||
+
|
||
+/*
|
||
+If defined, a C expression which determines whether the default
|
||
+implementation of va_arg will attempt to pad down before reading the
|
||
+next argument, if that argument is smaller than its aligned space as
|
||
+controlled by PARM_BOUNDARY. If this macro is not defined, all such
|
||
+arguments are padded down if BYTES_BIG_ENDIAN is true.
|
||
+*/
|
||
+#define PAD_VARARGS_DOWN \
|
||
+ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if REGNO is the number of a hard
|
||
+register in which function arguments are sometimes passed. This does
|
||
+not include implicit arguments such as the static chain and
|
||
+the structure-value address. On many machines, no registers can be
|
||
+used for this purpose since all function arguments are pushed on the
|
||
+stack.
|
||
+*/
|
||
+/*
|
||
+ Use r8 - r12 for function arguments.
|
||
+*/
|
||
+#define FUNCTION_ARG_REGNO_P(REGNO) \
|
||
+ (REGNO >= 3 && REGNO <= 7)
|
||
+
|
||
+/* Number of registers used for passing function arguments */
|
||
+#define NUM_ARG_REGS 5
|
||
+
|
||
+/*
|
||
+If defined, the order in which arguments are loaded into their
|
||
+respective argument registers is reversed so that the last
|
||
+argument is loaded first. This macro only affects arguments
|
||
+passed in registers.
|
||
+*/
|
||
+/* #define LOAD_ARGS_REVERSED */
|
||
+
|
||
+/** How Scalar Function Values Are Returned **/
|
||
+
|
||
+/* AVR32 is using r12 as return register. */
|
||
+#define RET_REGISTER (15 - 12)
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression to create an RTX representing the place where a library
|
||
+function returns a value of mode MODE. If the precise function
|
||
+being called is known, FUNC is a tree node
|
||
+(FUNCTION_DECL) for it; otherwise, func is a null
|
||
+pointer. This makes it possible to use a different value-returning
|
||
+convention for specific functions when all their calls are
|
||
+known.
|
||
+
|
||
+Note that "library function" in this context means a compiler
|
||
+support routine, used to perform arithmetic, whose name is known
|
||
+specially by the compiler and was not mentioned in the C code being
|
||
+compiled.
|
||
+
|
||
+The definition of LIBRARY_VALUE need not be concerned aggregate
|
||
+data types, because none of the library functions returns such types.
|
||
+*/
|
||
+#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE)
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if REGNO is the number of a hard
|
||
+register in which the values of called function may come back.
|
||
+
|
||
+A register whose use for returning values is limited to serving as the
|
||
+second of a pair (for a value of type double, say) need not be
|
||
+recognized by this macro. So for most machines, this definition
|
||
+suffices:
|
||
+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
|
||
+
|
||
+If the machine has register windows, so that the caller and the called
|
||
+function use different registers for the return value, this macro
|
||
+should recognize only the caller's register numbers.
|
||
+*/
|
||
+/*
|
||
+ When returning a value of mode DImode, r11:r10 is used, else r12 is used.
|
||
+*/
|
||
+#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \
|
||
+ || (REGNO) == INTERNAL_REGNUM(11))
|
||
+
|
||
+
|
||
+/** How Large Values Are Returned **/
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro to be 1 if all structure and union return values must be
|
||
+in memory. Since this results in slower code, this should be defined
|
||
+only if needed for compatibility with other compilers or with an ABI.
|
||
+If you define this macro to be 0, then the conventions used for structure
|
||
+and union return values are decided by the RETURN_IN_MEMORY macro.
|
||
+
|
||
+If not defined, this defaults to the value 1.
|
||
+*/
|
||
+#define DEFAULT_PCC_STRUCT_RETURN 0
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+/** Generating Code for Profiling **/
|
||
+
|
||
+/*
|
||
+A C statement or compound statement to output to FILE some
|
||
+assembler code to call the profiling subroutine mcount.
|
||
+
|
||
+The details of how mcount expects to be called are determined by
|
||
+your operating system environment, not by GCC. To figure them out,
|
||
+compile a small program for profiling using the system's installed C
|
||
+compiler and look at the assembler code that results.
|
||
+
|
||
+Older implementations of mcount expect the address of a counter
|
||
+variable to be loaded into some register. The name of this variable is
|
||
+'LP' followed by the number LABELNO, so you would generate
|
||
+the name using 'LP%d' in a fprintf.
|
||
+*/
|
||
+/* ToDo: fixme */
|
||
+#ifndef FUNCTION_PROFILER
|
||
+#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
+ fprintf((FILE), "/* profiler %d */", (LABELNO))
|
||
+#endif
|
||
+
|
||
+
|
||
+/*****************************************************************************
|
||
+ * Trampolines for Nested Functions *
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+A C statement to output, on the stream FILE, assembler code for a
|
||
+block of data that contains the constant parts of a trampoline. This
|
||
+code should not include a label - the label is taken care of
|
||
+automatically.
|
||
+
|
||
+If you do not define this macro, it means no template is needed
|
||
+for the target. Do not define this macro on systems where the block move
|
||
+code to copy the trampoline into place would be larger than the code
|
||
+to generate it on the spot.
|
||
+*/
|
||
+/* ToDo: correct? */
|
||
+#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE);
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the size in bytes of the trampoline, as an integer.
|
||
+*/
|
||
+/* ToDo: fixme */
|
||
+#define TRAMPOLINE_SIZE 0x0C
|
||
+
|
||
+/*
|
||
+Alignment required for trampolines, in bits.
|
||
+
|
||
+If you don't define this macro, the value of BIGGEST_ALIGNMENT
|
||
+is used for aligning trampolines.
|
||
+*/
|
||
+#define TRAMPOLINE_ALIGNMENT 16
|
||
+
|
||
+/*
|
||
+A C statement to initialize the variable parts of a trampoline.
|
||
+ADDR is an RTX for the address of the trampoline; FNADDR is
|
||
+an RTX for the address of the nested function; STATIC_CHAIN is an
|
||
+RTX for the static chain value that should be passed to the function
|
||
+when it is called.
|
||
+*/
|
||
+#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
|
||
+ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN)
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Implicit Calls to Library Routines
|
||
+ *****************************************************************************/
|
||
+
|
||
+/* Tail calling. */
|
||
+
|
||
+/* A C expression that evaluates to true if it is ok to perform a sibling
|
||
+ call to DECL. */
|
||
+#define FUNCTION_OK_FOR_SIBCALL(DECL) 0
|
||
+
|
||
+#define OVERRIDE_OPTIONS avr32_override_options ()
|
||
+
|
||
+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE)
|
||
+
|
||
+/******************************************************************************
|
||
+ * Addressing Modes
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if the machine supports pre-increment,
|
||
+pre-decrement, post-increment, or post-decrement addressing respectively.
|
||
+*/
|
||
+/*
|
||
+ AVR32 supports Rp++ and --Rp
|
||
+*/
|
||
+#define HAVE_PRE_INCREMENT 0
|
||
+#define HAVE_PRE_DECREMENT 1
|
||
+#define HAVE_POST_INCREMENT 1
|
||
+#define HAVE_POST_DECREMENT 0
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if the machine supports pre- or
|
||
+post-address side-effect generation involving constants other than
|
||
+the size of the memory operand.
|
||
+*/
|
||
+#define HAVE_PRE_MODIFY_DISP 0
|
||
+#define HAVE_POST_MODIFY_DISP 0
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if the machine supports pre- or
|
||
+post-address side-effect generation involving a register displacement.
|
||
+*/
|
||
+#define HAVE_PRE_MODIFY_REG 0
|
||
+#define HAVE_POST_MODIFY_REG 0
|
||
+
|
||
+/*
|
||
+A C expression that is 1 if the RTX X is a constant which
|
||
+is a valid address. On most machines, this can be defined as
|
||
+CONSTANT_P (X), but a few machines are more restrictive
|
||
+in which constant addresses are supported.
|
||
+
|
||
+CONSTANT_P accepts integer-values expressions whose values are
|
||
+not explicitly known, such as symbol_ref, label_ref, and
|
||
+high expressions and const arithmetic expressions, in
|
||
+addition to const_int and const_double expressions.
|
||
+*/
|
||
+#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X)
|
||
+
|
||
+/*
|
||
+A number, the maximum number of registers that can appear in a valid
|
||
+memory address. Note that it is up to you to specify a value equal to
|
||
+the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever
|
||
+accept.
|
||
+*/
|
||
+#define MAX_REGS_PER_ADDRESS 2
|
||
+
|
||
+/*
|
||
+A C compound statement with a conditional goto LABEL;
|
||
+executed if X (an RTX) is a legitimate memory address on the
|
||
+target machine for a memory operand of mode MODE.
|
||
+
|
||
+It usually pays to define several simpler macros to serve as
|
||
+subroutines for this one. Otherwise it may be too complicated to
|
||
+understand.
|
||
+
|
||
+This macro must exist in two variants: a strict variant and a
|
||
+non-strict one. The strict variant is used in the reload pass. It
|
||
+must be defined so that any pseudo-register that has not been
|
||
+allocated a hard register is considered a memory reference. In
|
||
+contexts where some kind of register is required, a pseudo-register
|
||
+with no hard register must be rejected.
|
||
+
|
||
+The non-strict variant is used in other passes. It must be defined to
|
||
+accept all pseudo-registers in every context where some kind of
|
||
+register is required.
|
||
+
|
||
+Compiler source files that want to use the strict variant of this
|
||
+macro define the macro REG_OK_STRICT. You should use an
|
||
+#ifdef REG_OK_STRICT conditional to define the strict variant
|
||
+in that case and the non-strict variant otherwise.
|
||
+
|
||
+Subroutines to check for acceptable registers for various purposes (one
|
||
+for base registers, one for index registers, and so on) are typically
|
||
+among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS.
|
||
+Then only these subroutine macros need have two variants; the higher
|
||
+levels of macros may be the same whether strict or not.
|
||
+
|
||
+Normally, constant addresses which are the sum of a symbol_ref
|
||
+and an integer are stored inside a const RTX to mark them as
|
||
+constant. Therefore, there is no need to recognize such sums
|
||
+specifically as legitimate addresses. Normally you would simply
|
||
+recognize any const as legitimate.
|
||
+
|
||
+Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant
|
||
+sums that are not marked with const. It assumes that a naked
|
||
+plus indicates indexing. If so, then you must reject such
|
||
+naked constant sums as illegitimate addresses, so that none of them will
|
||
+be given to PRINT_OPERAND_ADDRESS.
|
||
+
|
||
+On some machines, whether a symbolic address is legitimate depends on
|
||
+the section that the address refers to. On these machines, define the
|
||
+macro ENCODE_SECTION_INFO to store the information into the
|
||
+symbol_ref, and then check for it here. When you see a
|
||
+const, you will have to look inside it to find the
|
||
+symbol_ref in order to determine the section.
|
||
+
|
||
+The best way to modify the name string is by adding text to the
|
||
+beginning, with suitable punctuation to prevent any ambiguity. Allocate
|
||
+the new name in saveable_obstack. You will have to modify
|
||
+ASM_OUTPUT_LABELREF to remove and decode the added text and
|
||
+output the name accordingly, and define STRIP_NAME_ENCODING to
|
||
+access the original name string.
|
||
+
|
||
+You can check the information stored here into the symbol_ref in
|
||
+the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and
|
||
+PRINT_OPERAND_ADDRESS.
|
||
+*/
|
||
+#ifdef REG_OK_STRICT
|
||
+# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
+ do \
|
||
+ { \
|
||
+ if (avr32_legitimate_address(MODE, X, 1)) \
|
||
+ goto LABEL; \
|
||
+ } \
|
||
+ while (0)
|
||
+#else
|
||
+# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
+ do \
|
||
+ { \
|
||
+ if (avr32_legitimate_address(MODE, X, 0)) \
|
||
+ goto LABEL; \
|
||
+ } \
|
||
+ while (0)
|
||
+#endif
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C compound statement that attempts to replace X with a valid
|
||
+memory address for an operand of mode MODE. win will be a
|
||
+C statement label elsewhere in the code; the macro definition may use
|
||
+
|
||
+ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
|
||
+
|
||
+to avoid further processing if the address has become legitimate.
|
||
+
|
||
+X will always be the result of a call to break_out_memory_refs,
|
||
+and OLDX will be the operand that was given to that function to produce
|
||
+X.
|
||
+
|
||
+The code generated by this macro should not alter the substructure of
|
||
+X. If it transforms X into a more legitimate form, it
|
||
+should assign X (which will always be a C variable) a new value.
|
||
+
|
||
+It is not necessary for this macro to come up with a legitimate
|
||
+address. The compiler has standard ways of doing so in all cases. In
|
||
+fact, it is safe for this macro to do nothing. But often a
|
||
+machine-dependent strategy can generate better code.
|
||
+*/
|
||
+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
+ do \
|
||
+ { \
|
||
+ if (GET_CODE(X) == PLUS \
|
||
+ && GET_CODE(XEXP(X, 0)) == REG \
|
||
+ && GET_CODE(XEXP(X, 1)) == CONST_INT \
|
||
+ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \
|
||
+ 'K', "Ks16")) \
|
||
+ { \
|
||
+ rtx index = force_reg(SImode, XEXP(X, 1)); \
|
||
+ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \
|
||
+ } \
|
||
+ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \
|
||
+ } \
|
||
+ while(0)
|
||
+
|
||
+
|
||
+/*
|
||
+A C statement or compound statement with a conditional
|
||
+goto LABEL; executed if memory address X (an RTX) can have
|
||
+different meanings depending on the machine mode of the memory
|
||
+reference it is used for or if the address is valid for some modes
|
||
+but not others.
|
||
+
|
||
+Autoincrement and autodecrement addresses typically have mode-dependent
|
||
+effects because the amount of the increment or decrement is the size
|
||
+of the operand being addressed. Some machines have other mode-dependent
|
||
+addresses. Many RISC machines have no mode-dependent addresses.
|
||
+
|
||
+You may assume that ADDR is a valid address for the machine.
|
||
+*/
|
||
+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
|
||
+ do \
|
||
+ { \
|
||
+ if (GET_CODE (ADDR) == POST_INC \
|
||
+ || GET_CODE (ADDR) == PRE_DEC) \
|
||
+ goto LABEL; \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if X is a legitimate constant for
|
||
+an immediate operand on the target machine. You can assume that
|
||
+X satisfies CONSTANT_P, so you need not check this. In fact,
|
||
+'1' is a suitable definition for this macro on machines where
|
||
+anything CONSTANT_P is valid.
|
||
+*/
|
||
+#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X)
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Condition Code Status
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+C code for a data type which is used for declaring the mdep
|
||
+component of cc_status. It defaults to int.
|
||
+
|
||
+This macro is not used on machines that do not use cc0.
|
||
+*/
|
||
+
|
||
+typedef struct
|
||
+{
|
||
+ int flags;
|
||
+ rtx value;
|
||
+ int fpflags;
|
||
+ rtx fpvalue;
|
||
+ int cond_exec_cmp_clobbered;
|
||
+} avr32_status_reg;
|
||
+
|
||
+
|
||
+#define CC_STATUS_MDEP avr32_status_reg
|
||
+
|
||
+/*
|
||
+A C expression to initialize the mdep field to "empty".
|
||
+The default definition does nothing, since most machines don't use
|
||
+the field anyway. If you want to use the field, you should probably
|
||
+define this macro to initialize it.
|
||
+
|
||
+This macro is not used on machines that do not use cc0.
|
||
+*/
|
||
+
|
||
+#define CC_STATUS_MDEP_INIT \
|
||
+ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0)
|
||
+
|
||
+#define FPCC_STATUS_INIT \
|
||
+ (cc_status.mdep.fpflags = CC_NONE , cc_status.mdep.fpvalue = 0)
|
||
+
|
||
+/*
|
||
+A C compound statement to set the components of cc_status
|
||
+appropriately for an insn INSN whose body is EXP. It is
|
||
+this macro's responsibility to recognize insns that set the condition
|
||
+code as a byproduct of other activity as well as those that explicitly
|
||
+set (cc0).
|
||
+
|
||
+This macro is not used on machines that do not use cc0.
|
||
+
|
||
+If there are insns that do not set the condition code but do alter
|
||
+other machine registers, this macro must check to see whether they
|
||
+invalidate the expressions that the condition code is recorded as
|
||
+reflecting. For example, on the 68000, insns that store in address
|
||
+registers do not set the condition code, which means that usually
|
||
+NOTICE_UPDATE_CC can leave cc_status unaltered for such
|
||
+insns. But suppose that the previous insn set the condition code
|
||
+based on location 'a4@@(102)' and the current insn stores a new
|
||
+value in 'a4'. Although the condition code is not changed by
|
||
+this, it will no longer be true that it reflects the contents of
|
||
+'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter
|
||
+cc_status in this case to say that nothing is known about the
|
||
+condition code value.
|
||
+
|
||
+The definition of NOTICE_UPDATE_CC must be prepared to deal
|
||
+with the results of peephole optimization: insns whose patterns are
|
||
+parallel RTXs containing various reg, mem or
|
||
+constants which are just the operands. The RTL structure of these
|
||
+insns is not sufficient to indicate what the insns actually do. What
|
||
+NOTICE_UPDATE_CC should do when it sees one is just to run
|
||
+CC_STATUS_INIT.
|
||
+
|
||
+A possible definition of NOTICE_UPDATE_CC is to call a function
|
||
+that looks at an attribute (see Insn Attributes) named, for example,
|
||
+'cc'. This avoids having detailed information about patterns in
|
||
+two places, the 'md' file and in NOTICE_UPDATE_CC.
|
||
+*/
|
||
+
|
||
+#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN)
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Describing Relative Costs of Operations
|
||
+ *****************************************************************************/
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression for the cost of moving data of mode MODE from a
|
||
+register in class FROM to one in class TO. The classes are
|
||
+expressed using the enumeration values such as GENERAL_REGS. A
|
||
+value of 2 is the default; other values are interpreted relative to
|
||
+that.
|
||
+
|
||
+It is not required that the cost always equal 2 when FROM is the
|
||
+same as TO; on some machines it is expensive to move between
|
||
+registers if they are not general registers.
|
||
+
|
||
+If reload sees an insn consisting of a single set between two
|
||
+hard registers, and if REGISTER_MOVE_COST applied to their
|
||
+classes returns a value of 2, reload does not check to ensure that the
|
||
+constraints of the insn are met. Setting a cost of other than 2 will
|
||
+allow reload to verify that the constraints are met. You should do this
|
||
+if the movm pattern's constraints do not allow such copying.
|
||
+*/
|
||
+#define REGISTER_MOVE_COST(MODE, FROM, TO) \
|
||
+ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \
|
||
+ (GET_MODE_SIZE(MODE) <= 8) ? 3: \
|
||
+ 4)
|
||
+
|
||
+/*
|
||
+A C expression for the cost of moving data of mode MODE between a
|
||
+register of class CLASS and memory; IN is zero if the value
|
||
+is to be written to memory, nonzero if it is to be read in. This cost
|
||
+is relative to those in REGISTER_MOVE_COST. If moving between
|
||
+registers and memory is more expensive than between two registers, you
|
||
+should define this macro to express the relative cost.
|
||
+
|
||
+If you do not define this macro, GCC uses a default cost of 4 plus
|
||
+the cost of copying via a secondary reload register, if one is
|
||
+needed. If your machine requires a secondary reload register to copy
|
||
+between memory and a register of CLASS but the reload mechanism is
|
||
+more complex than copying via an intermediate, define this macro to
|
||
+reflect the actual cost of the move.
|
||
+
|
||
+GCC defines the function memory_move_secondary_cost if
|
||
+secondary reloads are needed. It computes the costs due to copying via
|
||
+a secondary register. If your machine copies from memory using a
|
||
+secondary register in the conventional way but the default base value of
|
||
+4 is not correct for your machine, define this macro to add some other
|
||
+value to the result of that function. The arguments to that function
|
||
+are the same as to this macro.
|
||
+*/
|
||
+/*
|
||
+ Memory moves are costly
|
||
+*/
|
||
+#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
|
||
+ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \
|
||
+ (GET_MODE_SIZE(MODE) > 8) ? 6 : \
|
||
+ 3) \
|
||
+ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3)))
|
||
+
|
||
+/*
|
||
+A C expression for the cost of a branch instruction. A value of 1 is
|
||
+the default; other values are interpreted relative to that.
|
||
+*/
|
||
+ /* Try to use conditionals as much as possible */
|
||
+#define BRANCH_COST (TARGET_BRANCH_PRED ? 3 : 4)
|
||
+
|
||
+/*A C expression for the maximum number of instructions to execute via conditional
|
||
+ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default
|
||
+ if the machine does not use cc0, and 1 if it does use cc0.*/
|
||
+#define MAX_CONDITIONAL_EXECUTE 4
|
||
+
|
||
+/*
|
||
+Define this macro as a C expression which is nonzero if accessing less
|
||
+than a word of memory (i.e.: a char or a short) is no
|
||
+faster than accessing a word of memory, i.e., if such access
|
||
+require more than one instruction or if there is no difference in cost
|
||
+between byte and (aligned) word loads.
|
||
+
|
||
+When this macro is not defined, the compiler will access a field by
|
||
+finding the smallest containing object; when it is defined, a fullword
|
||
+load will be used if alignment permits. Unless bytes accesses are
|
||
+faster than word accesses, using word accesses is preferable since it
|
||
+may eliminate subsequent memory access if subsequent accesses occur to
|
||
+other fields in the same word of the structure, but to different bytes.
|
||
+*/
|
||
+#define SLOW_BYTE_ACCESS 1
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro if it is as good or better to call a constant
|
||
+function address than to call an address kept in a register.
|
||
+*/
|
||
+#define NO_FUNCTION_CSE
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Adjusting the Instruction Scheduler
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*****************************************************************************
|
||
+ * Dividing the Output into Sections (Texts, Data, ...) *
|
||
+ *****************************************************************************/
|
||
+
|
||
+/*
|
||
+A C expression whose value is a string, including spacing, containing the
|
||
+assembler operation that should precede instructions and read-only data.
|
||
+Normally "\t.text" is right.
|
||
+*/
|
||
+#define TEXT_SECTION_ASM_OP "\t.text"
|
||
+/*
|
||
+A C statement that switches to the default section containing instructions.
|
||
+Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP
|
||
+is enough. The MIPS port uses this to sort all functions after all data
|
||
+declarations.
|
||
+*/
|
||
+/* #define TEXT_SECTION */
|
||
+
|
||
+/*
|
||
+A C expression whose value is a string, including spacing, containing the
|
||
+assembler operation to identify the following data as writable initialized
|
||
+data. Normally "\t.data" is right.
|
||
+*/
|
||
+#define DATA_SECTION_ASM_OP "\t.data"
|
||
+
|
||
+/*
|
||
+If defined, a C expression whose value is a string, including spacing,
|
||
+containing the assembler operation to identify the following data as
|
||
+shared data. If not defined, DATA_SECTION_ASM_OP will be used.
|
||
+*/
|
||
+
|
||
+/*
|
||
+A C expression whose value is a string, including spacing, containing
|
||
+the assembler operation to identify the following data as read-only
|
||
+initialized data.
|
||
+*/
|
||
+#undef READONLY_DATA_SECTION_ASM_OP
|
||
+#define READONLY_DATA_SECTION_ASM_OP \
|
||
+ ((TARGET_USE_RODATA_SECTION) ? \
|
||
+ "\t.section\t.rodata" : \
|
||
+ TEXT_SECTION_ASM_OP )
|
||
+
|
||
+
|
||
+/*
|
||
+If defined, a C expression whose value is a string, including spacing,
|
||
+containing the assembler operation to identify the following data as
|
||
+uninitialized global data. If not defined, and neither
|
||
+ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined,
|
||
+uninitialized global data will be output in the data section if
|
||
+-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be
|
||
+used.
|
||
+*/
|
||
+#define BSS_SECTION_ASM_OP "\t.section\t.bss"
|
||
+
|
||
+/*
|
||
+If defined, a C expression whose value is a string, including spacing,
|
||
+containing the assembler operation to identify the following data as
|
||
+uninitialized global shared data. If not defined, and
|
||
+BSS_SECTION_ASM_OP is, the latter will be used.
|
||
+*/
|
||
+/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/
|
||
+/*
|
||
+If defined, a C expression whose value is a string, including spacing,
|
||
+containing the assembler operation to identify the following data as
|
||
+initialization code. If not defined, GCC will assume such a section does
|
||
+not exist.
|
||
+*/
|
||
+#undef INIT_SECTION_ASM_OP
|
||
+#define INIT_SECTION_ASM_OP "\t.section\t.init"
|
||
+
|
||
+/*
|
||
+If defined, a C expression whose value is a string, including spacing,
|
||
+containing the assembler operation to identify the following data as
|
||
+finalization code. If not defined, GCC will assume such a section does
|
||
+not exist.
|
||
+*/
|
||
+#undef FINI_SECTION_ASM_OP
|
||
+#define FINI_SECTION_ASM_OP "\t.section\t.fini"
|
||
+
|
||
+/*
|
||
+If defined, an ASM statement that switches to a different section
|
||
+via SECTION_OP, calls FUNCTION, and switches back to
|
||
+the text section. This is used in crtstuff.c if
|
||
+INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls
|
||
+to initialization and finalization functions from the init and fini
|
||
+sections. By default, this macro uses a simple function call. Some
|
||
+ports need hand-crafted assembly code to avoid dependencies on
|
||
+registers initialized in the function prologue or to ensure that
|
||
+constant pools don't end up too far way in the text section.
|
||
+*/
|
||
+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
||
+ asm ( SECTION_OP "\n" \
|
||
+ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \
|
||
+ TEXT_SECTION_ASM_OP);
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro to be an expression with a nonzero value if jump
|
||
+tables (for tablejump insns) should be output in the text
|
||
+section, along with the assembler instructions. Otherwise, the
|
||
+readonly data section is used.
|
||
+
|
||
+This macro is irrelevant if there is no separate readonly data section.
|
||
+*/
|
||
+/* Put jump tables in text section if we have caches. Otherwise assume that
|
||
+ loading data from code memory is slow. */
|
||
+#define JUMP_TABLES_IN_TEXT_SECTION \
|
||
+ (TARGET_CACHES ? 1 : 0)
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Position Independent Code (PIC)
|
||
+ *****************************************************************************/
|
||
+
|
||
+#ifndef AVR32_ALWAYS_PIC
|
||
+#define AVR32_ALWAYS_PIC 0
|
||
+#endif
|
||
+
|
||
+/* GOT is set to r6 */
|
||
+#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6)
|
||
+
|
||
+/*
|
||
+A C expression that is nonzero if X is a legitimate immediate
|
||
+operand on the target machine when generating position independent code.
|
||
+You can assume that X satisfies CONSTANT_P, so you need not
|
||
+check this. You can also assume flag_pic is true, so you need not
|
||
+check it either. You need not define this macro if all constants
|
||
+(including SYMBOL_REF) can be immediate operands when generating
|
||
+position independent code.
|
||
+*/
|
||
+/* We can't directly access anything that contains a symbol,
|
||
+ nor can we indirect via the constant pool. */
|
||
+#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X)
|
||
+
|
||
+
|
||
+/* We need to know when we are making a constant pool; this determines
|
||
+ whether data needs to be in the GOT or can be referenced via a GOT
|
||
+ offset. */
|
||
+extern int making_const_table;
|
||
+
|
||
+/******************************************************************************
|
||
+ * Defining the Output Assembler Language
|
||
+ *****************************************************************************/
|
||
+
|
||
+
|
||
+/*
|
||
+A C string constant describing how to begin a comment in the target
|
||
+assembler language. The compiler assumes that the comment will end at
|
||
+the end of the line.
|
||
+*/
|
||
+#define ASM_COMMENT_START "# "
|
||
+
|
||
+/*
|
||
+A C string constant for text to be output before each asm
|
||
+statement or group of consecutive ones. Normally this is
|
||
+"#APP", which is a comment that has no effect on most
|
||
+assemblers but tells the GNU assembler that it must check the lines
|
||
+that follow for all valid assembler constructs.
|
||
+*/
|
||
+#undef ASM_APP_ON
|
||
+#define ASM_APP_ON "#APP\n"
|
||
+
|
||
+/*
|
||
+A C string constant for text to be output after each asm
|
||
+statement or group of consecutive ones. Normally this is
|
||
+"#NO_APP", which tells the GNU assembler to resume making the
|
||
+time-saving assumptions that are valid for ordinary compiler output.
|
||
+*/
|
||
+#undef ASM_APP_OFF
|
||
+#define ASM_APP_OFF "#NO_APP\n"
|
||
+
|
||
+
|
||
+
|
||
+#define FILE_ASM_OP "\t.file\n"
|
||
+#define IDENT_ASM_OP "\t.ident\t"
|
||
+#define SET_ASM_OP "\t.set\t"
|
||
+
|
||
+
|
||
+/*
|
||
+ * Output assembly directives to switch to section name. The section
|
||
+ * should have attributes as specified by flags, which is a bit mask
|
||
+ * of the SECTION_* flags defined in 'output.h'. If align is nonzero,
|
||
+ * it contains an alignment in bytes to be used for the section,
|
||
+ * otherwise some target default should be used. Only targets that
|
||
+ * must specify an alignment within the section directive need pay
|
||
+ * attention to align -- we will still use ASM_OUTPUT_ALIGN.
|
||
+ *
|
||
+ * NOTE: This one must not be moved to avr32.c
|
||
+ */
|
||
+#undef TARGET_ASM_NAMED_SECTION
|
||
+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
|
||
+
|
||
+
|
||
+/*
|
||
+You may define this macro as a C expression. You should define the
|
||
+expression to have a nonzero value if GCC should output the constant
|
||
+pool for a function before the code for the function, or a zero value if
|
||
+GCC should output the constant pool after the function. If you do
|
||
+not define this macro, the usual case, GCC will output the constant
|
||
+pool before the function.
|
||
+*/
|
||
+#define CONSTANT_POOL_BEFORE_FUNCTION 0
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro as a C expression which is nonzero if the constant
|
||
+EXP, of type tree, should be output after the code for a
|
||
+function. The compiler will normally output all constants before the
|
||
+function; you need not define this macro if this is OK.
|
||
+*/
|
||
+#define CONSTANT_AFTER_FUNCTION_P(EXP) 1
|
||
+
|
||
+
|
||
+/*
|
||
+Define this macro as a C expression which is nonzero if C is
|
||
+used as a logical line separator by the assembler.
|
||
+
|
||
+If you do not define this macro, the default is that only
|
||
+the character ';' is treated as a logical line separator.
|
||
+*/
|
||
+#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '\n')
|
||
+
|
||
+
|
||
+/** Output of Uninitialized Variables **/
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to output to the stdio stream
|
||
+STREAM the assembler definition of a common-label named
|
||
+NAME whose size is SIZE bytes. The variable ROUNDED
|
||
+is the size rounded up to whatever alignment the caller wants.
|
||
+
|
||
+Use the expression assemble_name(STREAM, NAME) to
|
||
+output the name itself; before and after that, output the additional
|
||
+assembler syntax for defining the name, and a newline.
|
||
+
|
||
+This macro controls how the assembler definitions of uninitialized
|
||
+common global variables are output.
|
||
+*/
|
||
+/*
|
||
+#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
|
||
+ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED)
|
||
+*/
|
||
+
|
||
+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
+ do \
|
||
+ { \
|
||
+ fputs ("\t.comm ", (FILE)); \
|
||
+ assemble_name ((FILE), (NAME)); \
|
||
+ fprintf ((FILE), ",%d\n", (SIZE)); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/*
|
||
+ * Like ASM_OUTPUT_BSS except takes the required alignment as a
|
||
+ * separate, explicit argument. If you define this macro, it is used
|
||
+ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in
|
||
+ * handling the required alignment of the variable. The alignment is
|
||
+ * specified as the number of bits.
|
||
+ *
|
||
+ * Try to use function asm_output_aligned_bss defined in file varasm.c
|
||
+ * when defining this macro.
|
||
+ */
|
||
+#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \
|
||
+ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT)
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to output to the stdio stream
|
||
+STREAM the assembler definition of a local-common-label named
|
||
+NAME whose size is SIZE bytes. The variable ROUNDED
|
||
+is the size rounded up to whatever alignment the caller wants.
|
||
+
|
||
+Use the expression assemble_name(STREAM, NAME) to
|
||
+output the name itself; before and after that, output the additional
|
||
+assembler syntax for defining the name, and a newline.
|
||
+
|
||
+This macro controls how the assembler definitions of uninitialized
|
||
+static variables are output.
|
||
+*/
|
||
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
+ do \
|
||
+ { \
|
||
+ fputs ("\t.lcomm ", (FILE)); \
|
||
+ assemble_name ((FILE), (NAME)); \
|
||
+ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to output to the stdio stream
|
||
+STREAM the assembler definition of a label named NAME.
|
||
+Use the expression assemble_name(STREAM, NAME) to
|
||
+output the name itself; before and after that, output the additional
|
||
+assembler syntax for defining the name, and a newline.
|
||
+*/
|
||
+#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME)
|
||
+
|
||
+/* A C string containing the appropriate assembler directive to
|
||
+ * specify the size of a symbol, without any arguments. On systems
|
||
+ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"';
|
||
+ * on other systems, the default is not to define this macro.
|
||
+ *
|
||
+ * Define this macro only if it is correct to use the default
|
||
+ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and
|
||
+ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own
|
||
+ * custom definitions of those macros, or if you do not need explicit
|
||
+ * symbol sizes at all, do not define this macro.
|
||
+ */
|
||
+#define SIZE_ASM_OP "\t.size\t"
|
||
+
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to output to the stdio stream
|
||
+STREAM some commands that will make the label NAME global;
|
||
+that is, available for reference from other files. Use the expression
|
||
+assemble_name(STREAM, NAME) to output the name
|
||
+itself; before and after that, output the additional assembler syntax
|
||
+for making that name global, and a newline.
|
||
+*/
|
||
+#define GLOBAL_ASM_OP "\t.globl\t"
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression which evaluates to true if the target supports weak symbols.
|
||
+
|
||
+If you don't define this macro, defaults.h provides a default
|
||
+definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL
|
||
+is defined, the default definition is '1'; otherwise, it is
|
||
+'0'. Define this macro if you want to control weak symbol support
|
||
+with a compiler flag such as -melf.
|
||
+*/
|
||
+#define SUPPORTS_WEAK 1
|
||
+
|
||
+/*
|
||
+A C statement (sans semicolon) to output to the stdio stream
|
||
+STREAM a reference in assembler syntax to a label named
|
||
+NAME. This should add '_' to the front of the name, if that
|
||
+is customary on your operating system, as it is in most Berkeley Unix
|
||
+systems. This macro is used in assemble_name.
|
||
+*/
|
||
+#define ASM_OUTPUT_LABELREF(STREAM, NAME) \
|
||
+ avr32_asm_output_labelref(STREAM, NAME)
|
||
+
|
||
+
|
||
+
|
||
+/*
|
||
+A C expression to assign to OUTVAR (which is a variable of type
|
||
+char *) a newly allocated string made from the string
|
||
+NAME and the number NUMBER, with some suitable punctuation
|
||
+added. Use alloca to get space for the string.
|
||
+
|
||
+The string will be used as an argument to ASM_OUTPUT_LABELREF to
|
||
+produce an assembler label for an internal static variable whose name is
|
||
+NAME. Therefore, the string must be such as to result in valid
|
||
+assembler code. The argument NUMBER is different each time this
|
||
+macro is executed; it prevents conflicts between similarly-named
|
||
+internal static variables in different scopes.
|
||
+
|
||
+Ideally this string should not be a valid C identifier, to prevent any
|
||
+conflict with the user's own symbols. Most assemblers allow periods
|
||
+or percent signs in assembler symbols; putting at least one of these
|
||
+between the name and the number will suffice.
|
||
+*/
|
||
+#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \
|
||
+ do \
|
||
+ { \
|
||
+ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \
|
||
+ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+
|
||
+/** Macros Controlling Initialization Routines **/
|
||
+
|
||
+
|
||
+/*
|
||
+If defined, main will not call __main as described above.
|
||
+This macro should be defined for systems that control start-up code
|
||
+on a symbol-by-symbol basis, such as OSF/1, and should not
|
||
+be defined explicitly for systems that support INIT_SECTION_ASM_OP.
|
||
+*/
|
||
+/*
|
||
+ __main is not defined when debugging.
|
||
+*/
|
||
+#define HAS_INIT_SECTION
|
||
+
|
||
+
|
||
+/** Output of Assembler Instructions **/
|
||
+
|
||
+/*
|
||
+A C initializer containing the assembler's names for the machine
|
||
+registers, each one as a C string constant. This is what translates
|
||
+register numbers in the compiler into assembler language.
|
||
+*/
|
||
+
|
||
+#define REGISTER_NAMES \
|
||
+{ \
|
||
+ "pc", "lr", \
|
||
+ "sp", "r12", \
|
||
+ "r11", "r10", \
|
||
+ "r9", "r8", \
|
||
+ "r7", "r6", \
|
||
+ "r5", "r4", \
|
||
+ "r3", "r2", \
|
||
+ "r1", "r0", \
|
||
+ "f15","f14", \
|
||
+ "f13","f12", \
|
||
+ "f11","f10", \
|
||
+ "f9", "f8", \
|
||
+ "f7", "f6", \
|
||
+ "f5", "f4", \
|
||
+ "f3", "f2", \
|
||
+ "f1", "f0" \
|
||
+}
|
||
+
|
||
+/*
|
||
+A C compound statement to output to stdio stream STREAM the
|
||
+assembler syntax for an instruction operand X. X is an
|
||
+RTL expression.
|
||
+
|
||
+CODE is a value that can be used to specify one of several ways
|
||
+of printing the operand. It is used when identical operands must be
|
||
+printed differently depending on the context. CODE comes from
|
||
+the '%' specification that was used to request printing of the
|
||
+operand. If the specification was just '%digit' then
|
||
+CODE is 0; if the specification was '%ltr digit'
|
||
+then CODE is the ASCII code for ltr.
|
||
+
|
||
+If X is a register, this macro should print the register's name.
|
||
+The names can be found in an array reg_names whose type is
|
||
+char *[]. reg_names is initialized from REGISTER_NAMES.
|
||
+
|
||
+When the machine description has a specification '%punct'
|
||
+(a '%' followed by a punctuation character), this macro is called
|
||
+with a null pointer for X and the punctuation character for
|
||
+CODE.
|
||
+*/
|
||
+#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE)
|
||
+
|
||
+/* A C statement to be executed just prior to the output of
|
||
+ assembler code for INSN, to modify the extracted operands so
|
||
+ they will be output differently.
|
||
+
|
||
+ Here the argument OPVEC is the vector containing the operands
|
||
+ extracted from INSN, and NOPERANDS is the number of elements of
|
||
+ the vector which contain meaningful data for this insn.
|
||
+ The contents of this vector are what will be used to convert the insn
|
||
+ template into assembler code, so you can change the assembler output
|
||
+ by changing the contents of the vector. */
|
||
+#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
+ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
|
||
+
|
||
+/*
|
||
+A C expression which evaluates to true if CODE is a valid
|
||
+punctuation character for use in the PRINT_OPERAND macro. If
|
||
+PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no
|
||
+punctuation characters (except for the standard one, '%') are used
|
||
+in this way.
|
||
+*/
|
||
+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
+ (((CODE) == '?') \
|
||
+ || ((CODE) == '!'))
|
||
+
|
||
+/*
|
||
+A C compound statement to output to stdio stream STREAM the
|
||
+assembler syntax for an instruction operand that is a memory reference
|
||
+whose address is X. X is an RTL expression.
|
||
+
|
||
+On some machines, the syntax for a symbolic address depends on the
|
||
+section that the address refers to. On these machines, define the macro
|
||
+ENCODE_SECTION_INFO to store the information into the
|
||
+symbol_ref, and then check for it here. (see Assembler Format.)
|
||
+*/
|
||
+#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X)
|
||
+
|
||
+
|
||
+/** Output of Dispatch Tables **/
|
||
+
|
||
+/*
|
||
+ * A C statement to output to the stdio stream stream an assembler
|
||
+ * pseudo-instruction to generate a difference between two
|
||
+ * labels. value and rel are the numbers of two internal labels. The
|
||
+ * definitions of these labels are output using
|
||
+ * (*targetm.asm_out.internal_label), and they must be printed in the
|
||
+ * same way here. For example,
|
||
+ *
|
||
+ * fprintf (stream, "\t.word L%d-L%d\n",
|
||
+ * value, rel)
|
||
+ *
|
||
+ * You must provide this macro on machines where the addresses in a
|
||
+ * dispatch table are relative to the table's own address. If defined,
|
||
+ * GCC will also use this macro on all machines when producing
|
||
+ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that
|
||
+ * the mode and flags can be read.
|
||
+ */
|
||
+#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
|
||
+ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
|
||
+
|
||
+/*
|
||
+This macro should be provided on machines where the addresses
|
||
+in a dispatch table are absolute.
|
||
+
|
||
+The definition should be a C statement to output to the stdio stream
|
||
+STREAM an assembler pseudo-instruction to generate a reference to
|
||
+a label. VALUE is the number of an internal label whose
|
||
+definition is output using ASM_OUTPUT_INTERNAL_LABEL.
|
||
+For example,
|
||
+
|
||
+fprintf(STREAM, "\t.word L%d\n", VALUE)
|
||
+*/
|
||
+
|
||
+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
||
+ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
|
||
+
|
||
+/** Assembler Commands for Exception Regions */
|
||
+
|
||
+/* ToDo: All of this subsection */
|
||
+
|
||
+/** Assembler Commands for Alignment */
|
||
+
|
||
+
|
||
+/*
|
||
+A C statement to output to the stdio stream STREAM an assembler
|
||
+command to advance the location counter to a multiple of 2 to the
|
||
+POWER bytes. POWER will be a C expression of type int.
|
||
+*/
|
||
+#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
|
||
+ do \
|
||
+ { \
|
||
+ if ((POWER) != 0) \
|
||
+ fprintf(STREAM, "\t.align\t%d\n", POWER); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+/*
|
||
+Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if
|
||
+necessary.
|
||
+*/
|
||
+#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
|
||
+ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER))
|
||
+
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Controlling Debugging Information Format
|
||
+ *****************************************************************************/
|
||
+
|
||
+/* How to renumber registers for dbx and gdb. */
|
||
+#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO)
|
||
+
|
||
+/* The DWARF 2 CFA column which tracks the return address. */
|
||
+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM)
|
||
+
|
||
+/*
|
||
+Define this macro if GCC should produce dwarf version 2 format
|
||
+debugging output in response to the -g option.
|
||
+
|
||
+To support optional call frame debugging information, you must also
|
||
+define INCOMING_RETURN_ADDR_RTX and either set
|
||
+RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the
|
||
+prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save
|
||
+as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't.
|
||
+*/
|
||
+#define DWARF2_DEBUGGING_INFO 1
|
||
+
|
||
+
|
||
+#define DWARF2_ASM_LINE_DEBUG_INFO 1
|
||
+#define DWARF2_FRAME_INFO 1
|
||
+
|
||
+
|
||
+/******************************************************************************
|
||
+ * Miscellaneous Parameters
|
||
+ *****************************************************************************/
|
||
+
|
||
+/* ToDo: a lot */
|
||
+
|
||
+/*
|
||
+An alias for a machine mode name. This is the machine mode that
|
||
+elements of a jump-table should have.
|
||
+*/
|
||
+#define CASE_VECTOR_MODE SImode
|
||
+
|
||
+/*
|
||
+Define this macro to be a C expression to indicate when jump-tables
|
||
+should contain relative addresses. If jump-tables never contain
|
||
+relative addresses, then you need not define this macro.
|
||
+*/
|
||
+#define CASE_VECTOR_PC_RELATIVE 0
|
||
+
|
||
+/* Increase the threshold for using table jumps on the UC arch. */
|
||
+#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7)
|
||
+
|
||
+/*
|
||
+The maximum number of bytes that a single instruction can move quickly
|
||
+between memory and registers or between two memory locations.
|
||
+*/
|
||
+#define MOVE_MAX (2*UNITS_PER_WORD)
|
||
+
|
||
+
|
||
+/* A C expression that is nonzero if on this machine the number of bits actually used
|
||
+ for the count of a shift operation is equal to the number of bits needed to represent
|
||
+ the size of the object being shifted. When this macro is nonzero, the compiler will
|
||
+ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and'
|
||
+ instructions that truncates the count of a shift operation. On machines that have
|
||
+ instructions that act on bit-fields at variable positions, which may include 'bit test'
|
||
+ 378 GNU Compiler Collection (GCC) Internals
|
||
+ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations
|
||
+ of the values that serve as arguments to bit-field instructions.
|
||
+ If both types of instructions truncate the count (for shifts) and position (for bit-field
|
||
+ operations), or if no variable-position bit-field instructions exist, you should define
|
||
+ this macro.
|
||
+ However, on some machines, such as the 80386 and the 680x0, truncation only applies
|
||
+ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_
|
||
+ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file
|
||
+ that include the implied truncation of the shift instructions.
|
||
+ You need not dene this macro if it would always have the value of zero. */
|
||
+#define SHIFT_COUNT_TRUNCATED 1
|
||
+
|
||
+/*
|
||
+A C expression which is nonzero if on this machine it is safe to
|
||
+convert an integer of INPREC bits to one of OUTPREC
|
||
+bits (where OUTPREC is smaller than INPREC) by merely
|
||
+operating on it as if it had only OUTPREC bits.
|
||
+
|
||
+On many machines, this expression can be 1.
|
||
+
|
||
+When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for
|
||
+modes for which MODES_TIEABLE_P is 0, suboptimal code can result.
|
||
+If this is the case, making TRULY_NOOP_TRUNCATION return 0 in
|
||
+such cases may improve things.
|
||
+*/
|
||
+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
+
|
||
+/*
|
||
+An alias for the machine mode for pointers. On most machines, define
|
||
+this to be the integer mode corresponding to the width of a hardware
|
||
+pointer; SImode on 32-bit machine or DImode on 64-bit machines.
|
||
+On some machines you must define this to be one of the partial integer
|
||
+modes, such as PSImode.
|
||
+
|
||
+The width of Pmode must be at least as large as the value of
|
||
+POINTER_SIZE. If it is not equal, you must define the macro
|
||
+POINTERS_EXTEND_UNSIGNED to specify how pointers are extended
|
||
+to Pmode.
|
||
+*/
|
||
+#define Pmode SImode
|
||
+
|
||
+/*
|
||
+An alias for the machine mode used for memory references to functions
|
||
+being called, in call RTL expressions. On most machines this
|
||
+should be QImode.
|
||
+*/
|
||
+#define FUNCTION_MODE SImode
|
||
+
|
||
+
|
||
+#define REG_S_P(x) \
|
||
+ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0))))
|
||
+
|
||
+
|
||
+/* If defined, modifies the length assigned to instruction INSN as a
|
||
+ function of the context in which it is used. LENGTH is an lvalue
|
||
+ that contains the initially computed length of the insn and should
|
||
+ be updated with the correct length of the insn. */
|
||
+#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
|
||
+ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH)))
|
||
+
|
||
+
|
||
+#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \
|
||
+ (value = 32, (mode == SImode))
|
||
+
|
||
+#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \
|
||
+ (value = 32, (mode == SImode))
|
||
+
|
||
+#define UNITS_PER_SIMD_WORD UNITS_PER_WORD
|
||
+
|
||
+#define STORE_FLAG_VALUE 1
|
||
+
|
||
+
|
||
+/* IF-conversion macros. */
|
||
+#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \
|
||
+ { \
|
||
+ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \
|
||
+ }
|
||
+
|
||
+#define IFCVT_EXTRA_FIELDS \
|
||
+ int num_cond_clobber_insns; \
|
||
+ int num_extra_move_insns; \
|
||
+ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \
|
||
+ rtx moved_insns[MAX_CONDITIONAL_EXECUTE];
|
||
+
|
||
+#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \
|
||
+ { \
|
||
+ (CE_INFO)->num_cond_clobber_insns = 0; \
|
||
+ (CE_INFO)->num_extra_move_insns = 0; \
|
||
+ }
|
||
+
|
||
+
|
||
+#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes)
|
||
+
|
||
+#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1
|
||
+#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD)
|
||
+
|
||
+enum avr32_builtins
|
||
+{
|
||
+ AVR32_BUILTIN_MTSR,
|
||
+ AVR32_BUILTIN_MFSR,
|
||
+ AVR32_BUILTIN_MTDR,
|
||
+ AVR32_BUILTIN_MFDR,
|
||
+ AVR32_BUILTIN_CACHE,
|
||
+ AVR32_BUILTIN_SYNC,
|
||
+ AVR32_BUILTIN_SSRF,
|
||
+ AVR32_BUILTIN_CSRF,
|
||
+ AVR32_BUILTIN_TLBR,
|
||
+ AVR32_BUILTIN_TLBS,
|
||
+ AVR32_BUILTIN_TLBW,
|
||
+ AVR32_BUILTIN_BREAKPOINT,
|
||
+ AVR32_BUILTIN_XCHG,
|
||
+ AVR32_BUILTIN_LDXI,
|
||
+ AVR32_BUILTIN_BSWAP16,
|
||
+ AVR32_BUILTIN_BSWAP32,
|
||
+ AVR32_BUILTIN_COP,
|
||
+ AVR32_BUILTIN_MVCR_W,
|
||
+ AVR32_BUILTIN_MVRC_W,
|
||
+ AVR32_BUILTIN_MVCR_D,
|
||
+ AVR32_BUILTIN_MVRC_D,
|
||
+ AVR32_BUILTIN_MULSATHH_H,
|
||
+ AVR32_BUILTIN_MULSATHH_W,
|
||
+ AVR32_BUILTIN_MULSATRNDHH_H,
|
||
+ AVR32_BUILTIN_MULSATRNDWH_W,
|
||
+ AVR32_BUILTIN_MULSATWH_W,
|
||
+ AVR32_BUILTIN_MACSATHH_W,
|
||
+ AVR32_BUILTIN_SATADD_H,
|
||
+ AVR32_BUILTIN_SATSUB_H,
|
||
+ AVR32_BUILTIN_SATADD_W,
|
||
+ AVR32_BUILTIN_SATSUB_W,
|
||
+ AVR32_BUILTIN_MULWH_D,
|
||
+ AVR32_BUILTIN_MULNWH_D,
|
||
+ AVR32_BUILTIN_MACWH_D,
|
||
+ AVR32_BUILTIN_MACHH_D,
|
||
+ AVR32_BUILTIN_MUSFR,
|
||
+ AVR32_BUILTIN_MUSTR,
|
||
+ AVR32_BUILTIN_SATS,
|
||
+ AVR32_BUILTIN_SATU,
|
||
+ AVR32_BUILTIN_SATRNDS,
|
||
+ AVR32_BUILTIN_SATRNDU,
|
||
+ AVR32_BUILTIN_MEMS,
|
||
+ AVR32_BUILTIN_MEMC,
|
||
+ AVR32_BUILTIN_MEMT
|
||
+};
|
||
+
|
||
+
|
||
+#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \
|
||
+ ((MODE == SFmode) || (MODE == DFmode))
|
||
+
|
||
+#define RENAME_LIBRARY_SET ".set"
|
||
+
|
||
+/* Make ABI_NAME an alias for __GCC_NAME. */
|
||
+#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \
|
||
+ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \
|
||
+ ".set\t__avr32_" #ABI_NAME \
|
||
+ ", __" #GCC_NAME "\n");
|
||
+
|
||
+/* Give libgcc functions avr32 ABI name. */
|
||
+#ifdef L_muldi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64)
|
||
+#endif
|
||
+#ifdef L_divdi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64)
|
||
+#endif
|
||
+#ifdef L_udivdi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64)
|
||
+#endif
|
||
+#ifdef L_moddi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64)
|
||
+#endif
|
||
+#ifdef L_umoddi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64)
|
||
+#endif
|
||
+#ifdef L_ashldi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64)
|
||
+#endif
|
||
+#ifdef L_lshrdi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64)
|
||
+#endif
|
||
+#ifdef L_ashrdi3
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64)
|
||
+#endif
|
||
+
|
||
+#ifdef L_fixsfdi
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64)
|
||
+#endif
|
||
+#ifdef L_fixunssfdi
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64)
|
||
+#endif
|
||
+#ifdef L_floatdidf
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64)
|
||
+#endif
|
||
+#ifdef L_floatdisf
|
||
+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32)
|
||
+#endif
|
||
+
|
||
+#endif
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32.md
|
||
@@ -0,0 +1,4893 @@
|
||
+;; AVR32 machine description file.
|
||
+;; Copyright 2003-2006 Atmel Corporation.
|
||
+;;
|
||
+;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+;;
|
||
+;; This file is part of GCC.
|
||
+;;
|
||
+;; This program is free software; you can redistribute it and/or modify
|
||
+;; it under the terms of the GNU General Public License as published by
|
||
+;; the Free Software Foundation; either version 2 of the License, or
|
||
+;; (at your option) any later version.
|
||
+;;
|
||
+;; This program is distributed in the hope that it will be useful,
|
||
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+;; GNU General Public License for more details.
|
||
+;;
|
||
+;; You should have received a copy of the GNU General Public License
|
||
+;; along with this program; if not, write to the Free Software
|
||
+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
+
|
||
+;; -*- Mode: Scheme -*-
|
||
+
|
||
+(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm"
|
||
+ (const_string "alu"))
|
||
+
|
||
+
|
||
+(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc"
|
||
+ (const_string "none"))
|
||
+
|
||
+
|
||
+; NB! Keep this in sync with enum architecture_type in avr32.h
|
||
+(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul"
|
||
+ (const (symbol_ref "avr32_arch->arch_type")))
|
||
+
|
||
+; Insn length in bytes
|
||
+(define_attr "length" ""
|
||
+ (const_int 4))
|
||
+
|
||
+; Signal if an insn is predicable and hence can be conditionally executed.
|
||
+(define_attr "predicable" "no,yes" (const_string "no"))
|
||
+
|
||
+;; Uses of UNSPEC in this file:
|
||
+(define_constants
|
||
+ [(UNSPEC_PUSHM 0)
|
||
+ (UNSPEC_POPM 1)
|
||
+ (UNSPEC_UDIVMODSI4_INTERNAL 2)
|
||
+ (UNSPEC_DIVMODSI4_INTERNAL 3)
|
||
+ (UNSPEC_STM 4)
|
||
+ (UNSPEC_LDM 5)
|
||
+ (UNSPEC_MOVSICC 6)
|
||
+ (UNSPEC_ADDSICC 7)
|
||
+ (UNSPEC_COND_MI 8)
|
||
+ (UNSPEC_COND_PL 9)
|
||
+ (UNSPEC_PIC_SYM 10)
|
||
+ (UNSPEC_PIC_BASE 11)
|
||
+ (UNSPEC_STORE_MULTIPLE 12)
|
||
+ (UNSPEC_STMFP 13)
|
||
+ (UNSPEC_FPCC_TO_REG 14)
|
||
+ (UNSPEC_REG_TO_CC 15)
|
||
+ (UNSPEC_FORCE_MINIPOOL 16)
|
||
+ (UNSPEC_SATS 17)
|
||
+ (UNSPEC_SATU 18)
|
||
+ (UNSPEC_SATRNDS 19)
|
||
+ (UNSPEC_SATRNDU 20)
|
||
+ ])
|
||
+
|
||
+(define_constants
|
||
+ [(VUNSPEC_EPILOGUE 0)
|
||
+ (VUNSPEC_CACHE 1)
|
||
+ (VUNSPEC_MTSR 2)
|
||
+ (VUNSPEC_MFSR 3)
|
||
+ (VUNSPEC_BLOCKAGE 4)
|
||
+ (VUNSPEC_SYNC 5)
|
||
+ (VUNSPEC_TLBR 6)
|
||
+ (VUNSPEC_TLBW 7)
|
||
+ (VUNSPEC_TLBS 8)
|
||
+ (VUNSPEC_BREAKPOINT 9)
|
||
+ (VUNSPEC_MTDR 10)
|
||
+ (VUNSPEC_MFDR 11)
|
||
+ (VUNSPEC_MVCR 12)
|
||
+ (VUNSPEC_MVRC 13)
|
||
+ (VUNSPEC_COP 14)
|
||
+ (VUNSPEC_ALIGN 15)
|
||
+ (VUNSPEC_POOL_START 16)
|
||
+ (VUNSPEC_POOL_END 17)
|
||
+ (VUNSPEC_POOL_4 18)
|
||
+ (VUNSPEC_POOL_8 19)
|
||
+ (VUNSPEC_POOL_16 20)
|
||
+ (VUNSPEC_MUSFR 21)
|
||
+ (VUNSPEC_MUSTR 22)
|
||
+ (VUNSPEC_SYNC_CMPXCHG 23)
|
||
+ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24)
|
||
+ (VUNSPEC_SYNC_STORE_IF_LOCK 25)
|
||
+ (VUNSPEC_EH_RETURN 26)
|
||
+ (VUNSPEC_FRS 27)
|
||
+ (VUNSPEC_CSRF 28)
|
||
+ (VUNSPEC_SSRF 29)
|
||
+ ])
|
||
+
|
||
+(define_constants
|
||
+ [
|
||
+ ;; R7 = 15-7 = 8
|
||
+ (FP_REGNUM 8)
|
||
+ ;; Return Register = R12 = 15 - 12 = 3
|
||
+ (RETVAL_REGNUM 3)
|
||
+ ;; SP = R13 = 15 - 13 = 2
|
||
+ (SP_REGNUM 2)
|
||
+ ;; LR = R14 = 15 - 14 = 1
|
||
+ (LR_REGNUM 1)
|
||
+ ;; PC = R15 = 15 - 15 = 0
|
||
+ (PC_REGNUM 0)
|
||
+ ;; FPSR = GENERAL_REGS + 1 = 17
|
||
+ (FPCC_REGNUM 17)
|
||
+ ])
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+;;******************************************************************************
|
||
+;; Macros
|
||
+;;******************************************************************************
|
||
+
|
||
+;; Integer Modes for basic alu insns
|
||
+(define_mode_macro INTM [SI HI QI])
|
||
+(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")])
|
||
+
|
||
+;; Move word modes
|
||
+(define_mode_macro MOVM [SI V2HI V4QI])
|
||
+
|
||
+;; For mov/addcc insns
|
||
+(define_mode_macro ADDCC [SI HI QI])
|
||
+(define_mode_macro MOVCC [SF SI HI QI])
|
||
+(define_mode_macro CMP [DI SI HI QI])
|
||
+(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")])
|
||
+(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")])
|
||
+(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")])
|
||
+(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")])
|
||
+(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")])
|
||
+(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")])
|
||
+(define_mode_attr cmp_predicate [(DI "register_immediate_operand")
|
||
+ (SI "register_const_int_operand")
|
||
+ (HI "register_operand")
|
||
+ (QI "register_operand")])
|
||
+(define_mode_attr cmp_length [(DI "6")
|
||
+ (SI "4")
|
||
+ (HI "4")
|
||
+ (QI "4")])
|
||
+
|
||
+;; For all conditional insns
|
||
+(define_code_macro any_cond [eq ne gt ge lt le gtu geu ltu leu])
|
||
+(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le")
|
||
+ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")])
|
||
+(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt")
|
||
+ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")])
|
||
+
|
||
+;; For logical operations
|
||
+(define_code_macro logical [and ior xor])
|
||
+(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")])
|
||
+
|
||
+;; Predicable operations with three register operands
|
||
+(define_code_macro predicable_op3 [and ior xor plus minus])
|
||
+(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")])
|
||
+(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")])
|
||
+
|
||
+;; Load the predicates
|
||
+(include "predicates.md")
|
||
+
|
||
+
|
||
+;;******************************************************************************
|
||
+;; Automaton pipeline description for avr32
|
||
+;;******************************************************************************
|
||
+
|
||
+(define_automaton "avr32_ap")
|
||
+
|
||
+
|
||
+(define_cpu_unit "is" "avr32_ap")
|
||
+(define_cpu_unit "a1,m1,da" "avr32_ap")
|
||
+(define_cpu_unit "a2,m2,d" "avr32_ap")
|
||
+
|
||
+;;Alu instructions
|
||
+(define_insn_reservation "alu_op" 1
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "alu"))
|
||
+ "is,a1,a2")
|
||
+
|
||
+(define_insn_reservation "alu2_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "alu2"))
|
||
+ "is,is+a1,a1+a2,a2")
|
||
+
|
||
+(define_insn_reservation "alu_sat_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "alu_sat"))
|
||
+ "is,a1,a2")
|
||
+
|
||
+
|
||
+;;Mul instructions
|
||
+(define_insn_reservation "mulhh_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "mulhh,mulwh"))
|
||
+ "is,m1,m2")
|
||
+
|
||
+(define_insn_reservation "mulww_w_op" 3
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "mulww_w"))
|
||
+ "is,m1,m1+m2,m2")
|
||
+
|
||
+(define_insn_reservation "mulww_d_op" 5
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "mulww_d"))
|
||
+ "is,m1,m1+m2,m1+m2,m2,m2")
|
||
+
|
||
+(define_insn_reservation "div_op" 33
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "div"))
|
||
+ "is,m1,m1*31 + m2*31,m2")
|
||
+
|
||
+(define_insn_reservation "machh_w_op" 3
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "machh_w"))
|
||
+ "is*2,m1,m2")
|
||
+
|
||
+
|
||
+(define_insn_reservation "macww_w_op" 4
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "macww_w"))
|
||
+ "is*2,m1,m1,m2")
|
||
+
|
||
+
|
||
+(define_insn_reservation "macww_d_op" 6
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "macww_d"))
|
||
+ "is*2,m1,m1+m2,m1+m2,m2")
|
||
+
|
||
+;;Bypasses for Mac instructions, because of accumulator cache.
|
||
+;;Set latency as low as possible in order to let the compiler let
|
||
+;;mul -> mac and mac -> mac combinations which use the same
|
||
+;;accumulator cache be placed close together to avoid any
|
||
+;;instructions which can ruin the accumulator cache come inbetween.
|
||
+(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+
|
||
+(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass")
|
||
+
|
||
+
|
||
+;;Bypasses for all mul/mac instructions followed by an instruction
|
||
+;;which reads the output AND writes the result to the same register.
|
||
+;;This will generate an Write After Write hazard which gives an
|
||
+;;extra cycle before the result is ready.
|
||
+(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass")
|
||
+(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass")
|
||
+(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass")
|
||
+
|
||
+(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass")
|
||
+(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass")
|
||
+(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass")
|
||
+
|
||
+;;Branch and call instructions
|
||
+;;We assume that all branches and rcalls are predicted correctly :-)
|
||
+;;while calls use a lot of cycles.
|
||
+(define_insn_reservation "branch_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "branch"))
|
||
+ "nothing")
|
||
+
|
||
+(define_insn_reservation "call_op" 10
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "call"))
|
||
+ "nothing")
|
||
+
|
||
+
|
||
+;;Load store instructions
|
||
+(define_insn_reservation "load_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "load"))
|
||
+ "is,da,d")
|
||
+
|
||
+(define_insn_reservation "load_rm_op" 3
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "load_rm"))
|
||
+ "is,da,d")
|
||
+
|
||
+
|
||
+(define_insn_reservation "store_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "store"))
|
||
+ "is,da,d")
|
||
+
|
||
+
|
||
+(define_insn_reservation "load_double_op" 3
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "load2"))
|
||
+ "is,da,da+d,d")
|
||
+
|
||
+(define_insn_reservation "load_quad_op" 4
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "load4"))
|
||
+ "is,da,da+d,da+d,d")
|
||
+
|
||
+(define_insn_reservation "store_double_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "store2"))
|
||
+ "is,da,da+d,d")
|
||
+
|
||
+
|
||
+(define_insn_reservation "store_quad_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "store4"))
|
||
+ "is,da,da+d,da+d,d")
|
||
+
|
||
+;;For store the operand to write to memory is read in d and
|
||
+;;the real latency between any instruction and a store is therefore
|
||
+;;one less than for the instructions which reads the operands in the first
|
||
+;;excecution stage
|
||
+(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass")
|
||
+(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass")
|
||
+(define_bypass 1 "load_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" )
|
||
+(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass")
|
||
+(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass")
|
||
+
|
||
+
|
||
+; Bypass for load double operation. If only the first loaded word is needed
|
||
+; then the latency is 2
|
||
+(define_bypass 2 "load_double_op"
|
||
+ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
|
||
+ mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
|
||
+ "avr32_valid_load_double_bypass")
|
||
+
|
||
+; Bypass for load quad operation. If only the first or second loaded word is needed
|
||
+; we set the latency to 2
|
||
+(define_bypass 2 "load_quad_op"
|
||
+ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op,
|
||
+ mulww_d_op, machh_w_op, macww_w_op, macww_d_op"
|
||
+ "avr32_valid_load_quad_bypass")
|
||
+
|
||
+
|
||
+;;******************************************************************************
|
||
+;; End of Automaton pipeline description for avr32
|
||
+;;******************************************************************************
|
||
+
|
||
+(define_cond_exec
|
||
+ [(match_operator 0 "avr32_comparison_operator"
|
||
+ [(match_operand:CMP 1 "register_operand" "r")
|
||
+ (match_operand:CMP 2 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "%!"
|
||
+)
|
||
+
|
||
+(define_cond_exec
|
||
+ [(match_operator 0 "avr32_comparison_operator"
|
||
+ [(and:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "one_bit_set_operand" "i"))
|
||
+ (const_int 0)])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "%!"
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; move
|
||
+;;-----------------------------------------------------------------------------
|
||
+
|
||
+
|
||
+;;== char - 8 bits ============================================================
|
||
+(define_expand "movqi"
|
||
+ [(set (match_operand:QI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:QI 1 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ if ( !no_new_pseudos ){
|
||
+ if (GET_CODE (operands[1]) == MEM && optimize){
|
||
+ rtx reg = gen_reg_rtx (SImode);
|
||
+
|
||
+ emit_insn (gen_zero_extendqisi2 (reg, operands[1]));
|
||
+ operands[1] = gen_lowpart (QImode, reg);
|
||
+ }
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) == MEM)
|
||
+ operands[1] = force_reg (QImode, operands[1]);
|
||
+ }
|
||
+
|
||
+ })
|
||
+
|
||
+(define_insn "*movqi_internal"
|
||
+ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r")
|
||
+ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))]
|
||
+ "register_operand (operands[0], QImode)
|
||
+ || register_operand (operands[1], QImode)"
|
||
+ "@
|
||
+ mov\t%0, %1
|
||
+ ld.ub\t%0, %1
|
||
+ st.b\t%0, %1
|
||
+ mov\t%0, %1"
|
||
+ [(set_attr "length" "2,4,4,4")
|
||
+ (set_attr "type" "alu,load_rm,store,alu")])
|
||
+
|
||
+
|
||
+
|
||
+;;== short - 16 bits ==========================================================
|
||
+(define_expand "movhi"
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:HI 1 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ if ( !no_new_pseudos ){
|
||
+ if (GET_CODE (operands[1]) == MEM && optimize){
|
||
+ rtx reg = gen_reg_rtx (SImode);
|
||
+
|
||
+ emit_insn (gen_extendhisi2 (reg, operands[1]));
|
||
+ operands[1] = gen_lowpart (HImode, reg);
|
||
+ }
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) == MEM)
|
||
+ operands[1] = force_reg (HImode, operands[1]);
|
||
+ }
|
||
+
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn "*movhi_internal"
|
||
+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r")
|
||
+ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))]
|
||
+ "register_operand (operands[0], HImode)
|
||
+ || register_operand (operands[1], HImode)"
|
||
+ "@
|
||
+ mov\t%0, %1
|
||
+ ld.sh\t%0, %1
|
||
+ st.h\t%0, %1
|
||
+ mov\t%0, %1"
|
||
+ [(set_attr "length" "2,4,4,4")
|
||
+ (set_attr "type" "alu,load_rm,store,alu")])
|
||
+
|
||
+
|
||
+;;== int - 32 bits ============================================================
|
||
+
|
||
+(define_expand "movmisalignsi"
|
||
+ [(set (match_operand:SI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SI 1 "nonimmediate_operand" ""))]
|
||
+ "TARGET_UNALIGNED_WORD"
|
||
+ {
|
||
+ }
|
||
+)
|
||
+
|
||
+
|
||
+(define_expand "mov<mode>"
|
||
+ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "")
|
||
+ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) == MEM)
|
||
+ operands[1] = force_reg (<MODE>mode, operands[1]);
|
||
+
|
||
+
|
||
+ /* Check for out of range immediate constants as these may
|
||
+ occur during reloading, since it seems like reload does
|
||
+ not check if the immediate is legitimate. Don't know if
|
||
+ this is a bug? */
|
||
+ if ( reload_in_progress
|
||
+ && avr32_imm_in_const_pool
|
||
+ && GET_CODE(operands[1]) == CONST_INT
|
||
+ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){
|
||
+ operands[1] = force_const_mem(SImode, operands[1]);
|
||
+ }
|
||
+
|
||
+ /* Check for RMW memory operands. They are not allowed for mov operations
|
||
+ only the atomic memc/s/t operations */
|
||
+ if ( !reload_in_progress
|
||
+ && avr32_rmw_memory_operand (operands[0], <MODE>mode) ){
|
||
+ operands[0] = copy_rtx (operands[0]);
|
||
+ XEXP(operands[0], 0) = force_reg (<MODE>mode, XEXP(operands[0], 0));
|
||
+ }
|
||
+
|
||
+ if ( !reload_in_progress
|
||
+ && avr32_rmw_memory_operand (operands[1], <MODE>mode) ){
|
||
+ operands[1] = copy_rtx (operands[1]);
|
||
+ XEXP(operands[1], 0) = force_reg (<MODE>mode, XEXP(operands[1], 0));
|
||
+ }
|
||
+
|
||
+ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS)
|
||
+ && !avr32_legitimate_pic_operand_p(operands[1]) )
|
||
+ operands[1] = legitimize_pic_address (operands[1], <MODE>mode,
|
||
+ (no_new_pseudos ? operands[0] : 0));
|
||
+ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) )
|
||
+ /* If we have an address operand then this function uses the pic register. */
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ })
|
||
+
|
||
+
|
||
+
|
||
+(define_insn "mov<mode>_internal"
|
||
+ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "=r, r, r,r,r,Q,r")
|
||
+ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" "rKs08,Ks21,J,n,Q,r,W"))]
|
||
+ "(register_operand (operands[0], <MODE>mode)
|
||
+ || register_operand (operands[1], <MODE>mode))
|
||
+ && !avr32_rmw_memory_operand (operands[0], <MODE>mode)
|
||
+ && !avr32_rmw_memory_operand (operands[1], <MODE>mode)"
|
||
+ {
|
||
+ switch (which_alternative) {
|
||
+ case 0:
|
||
+ case 1: return "mov\t%0, %1";
|
||
+ case 2:
|
||
+ if ( TARGET_V2_INSNS )
|
||
+ return "movh\t%0, hi(%1)";
|
||
+ /* Fallthrough */
|
||
+ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)";
|
||
+ case 4:
|
||
+ if ( (REG_P(XEXP(operands[1], 0))
|
||
+ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
|
||
+ || (GET_CODE(XEXP(operands[1], 0)) == PLUS
|
||
+ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
|
||
+ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
|
||
+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
|
||
+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
|
||
+ return "lddsp\t%0, %1";
|
||
+ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
|
||
+ return "lddpc\t%0, %1";
|
||
+ else
|
||
+ return "ld.w\t%0, %1";
|
||
+ case 5:
|
||
+ if ( (REG_P(XEXP(operands[0], 0))
|
||
+ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
|
||
+ || (GET_CODE(XEXP(operands[0], 0)) == PLUS
|
||
+ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
|
||
+ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
|
||
+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
|
||
+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
|
||
+ return "stdsp\t%0, %1";
|
||
+ else
|
||
+ return "st.w\t%0, %1";
|
||
+ case 6:
|
||
+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
|
||
+ return "lda.w\t%0, %1";
|
||
+ else
|
||
+ return "ld.w\t%0, r6[%1@got]";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "2,4,4,8,4,4,8")
|
||
+ (set_attr "type" "alu,alu,alu,alu2,load,store,load")
|
||
+ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")])
|
||
+
|
||
+
|
||
+(define_expand "reload_out_rmw_memory_operand"
|
||
+ [(set (match_operand:SI 2 "register_operand" "=r")
|
||
+ (match_operand:SI 0 "address_operand" ""))
|
||
+ (set (mem:SI (match_dup 2))
|
||
+ (match_operand:SI 1 "register_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ operands[0] = XEXP(operands[0], 0);
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_expand "reload_in_rmw_memory_operand"
|
||
+ [(set (match_operand:SI 2 "register_operand" "=r")
|
||
+ (match_operand:SI 1 "address_operand" ""))
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (mem:SI (match_dup 2)))]
|
||
+ ""
|
||
+ {
|
||
+ operands[1] = XEXP(operands[1], 0);
|
||
+ }
|
||
+)
|
||
+
|
||
+
|
||
+;; These instructions are for loading constants which cannot be loaded
|
||
+;; directly from the constant pool because the offset is too large
|
||
+;; high and lo_sum are used even tough for our case it should be
|
||
+;; low and high sum :-)
|
||
+(define_insn "mov_symbol_lo"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))]
|
||
+ ""
|
||
+ "mov\t%0, lo(%1)"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")]
|
||
+)
|
||
+
|
||
+(define_insn "add_symbol_hi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (lo_sum:SI (match_dup 0)
|
||
+ (match_operand:SI 1 "immediate_operand" "i" )))]
|
||
+ ""
|
||
+ "orh\t%0, hi(%1)"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")]
|
||
+)
|
||
+
|
||
+
|
||
+
|
||
+;; When generating pic, we need to load the symbol offset into a register.
|
||
+;; So that the optimizer does not confuse this with a normal symbol load
|
||
+;; we use an unspec. The offset will be loaded from a constant pool entry,
|
||
+;; since that is the only type of relocation we can use.
|
||
+(define_insn "pic_load_addr"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))]
|
||
+ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))"
|
||
+ "lddpc\t%0, %1"
|
||
+ [(set_attr "type" "load")
|
||
+ (set_attr "length" "4")]
|
||
+)
|
||
+
|
||
+(define_insn "pic_compute_got_from_pc"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (unspec:SI [(minus:SI (pc)
|
||
+ (match_dup 0))] UNSPEC_PIC_BASE))
|
||
+ (use (label_ref (match_operand 1 "" "")))]
|
||
+ "flag_pic"
|
||
+ {
|
||
+ (*targetm.asm_out.internal_label) (asm_out_file, "L",
|
||
+ CODE_LABEL_NUMBER (operands[1]));
|
||
+ return \"rsub\t%0, pc\";
|
||
+ }
|
||
+ [(set_attr "cc" "clobber")
|
||
+ (set_attr "length" "2")]
|
||
+)
|
||
+
|
||
+;;== long long int - 64 bits ==================================================
|
||
+
|
||
+(define_expand "movdi"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:DI 1 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) != REG)
|
||
+ operands[1] = force_reg (DImode, operands[1]);
|
||
+
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn_and_split "*movdi_internal"
|
||
+ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m")
|
||
+ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))]
|
||
+ "register_operand (operands[0], DImode)
|
||
+ || register_operand (operands[1], DImode)"
|
||
+ {
|
||
+ switch (which_alternative ){
|
||
+ case 0:
|
||
+ case 1:
|
||
+ case 2:
|
||
+ case 3:
|
||
+ case 4:
|
||
+ return "#";
|
||
+ case 5:
|
||
+ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
|
||
+ return "ld.d\t%0, pc[%1 - .]";
|
||
+ else
|
||
+ return "ld.d\t%0, %1";
|
||
+ case 6:
|
||
+ return "st.d\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+;; Lets split all reg->reg or imm->reg transfers into two SImode transfers
|
||
+ "reload_completed &&
|
||
+ (REG_P (operands[0]) &&
|
||
+ (REG_P (operands[1])
|
||
+ || GET_CODE (operands[1]) == CONST_INT
|
||
+ || GET_CODE (operands[1]) == CONST_DOUBLE))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 2) (match_dup 3))]
|
||
+ {
|
||
+ operands[2] = gen_highpart (SImode, operands[0]);
|
||
+ operands[0] = gen_lowpart (SImode, operands[0]);
|
||
+ if ( REG_P(operands[1]) ){
|
||
+ operands[3] = gen_highpart(SImode, operands[1]);
|
||
+ operands[1] = gen_lowpart(SImode, operands[1]);
|
||
+ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE
|
||
+ || GET_CODE(operands[1]) == CONST_INT ){
|
||
+ rtx split_const[2];
|
||
+ avr32_split_const_expr (DImode, SImode, operands[1], split_const);
|
||
+ operands[3] = split_const[1];
|
||
+ operands[1] = split_const[0];
|
||
+ } else {
|
||
+ internal_error("Illegal operand[1] for movdi split!");
|
||
+ }
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "*,*,*,*,*,4,4")
|
||
+ (set_attr "type" "*,*,*,*,*,load2,store2")
|
||
+ (set_attr "cc" "*,*,*,*,*,none,none")])
|
||
+
|
||
+
|
||
+;;== 128 bits ==================================================
|
||
+(define_expand "movti"
|
||
+ [(set (match_operand:TI 0 "nonimmediate_operand" "")
|
||
+ (match_operand:TI 1 "nonimmediate_operand" ""))]
|
||
+ "TARGET_ARCH_AP"
|
||
+ {
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) != REG)
|
||
+ operands[1] = force_reg (TImode, operands[1]);
|
||
+
|
||
+ /* We must fix any pre_dec for loads and post_inc stores */
|
||
+ if ( GET_CODE (operands[0]) == MEM
|
||
+ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){
|
||
+ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]);
|
||
+ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode))));
|
||
+ DONE;
|
||
+ }
|
||
+
|
||
+ if ( GET_CODE (operands[1]) == MEM
|
||
+ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){
|
||
+ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode))));
|
||
+ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0)));
|
||
+ DONE;
|
||
+ }
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn_and_split "*movti_internal"
|
||
+ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, <RKu00,r,r")
|
||
+ (match_operand:TI 1 "avr32_movti_src_operand" " r,RKu00>,RKu00,r, n,T"))]
|
||
+ "(register_operand (operands[0], TImode)
|
||
+ || register_operand (operands[1], TImode))"
|
||
+ {
|
||
+ switch (which_alternative ){
|
||
+ case 0:
|
||
+ case 2:
|
||
+ case 4:
|
||
+ return "#";
|
||
+ case 1:
|
||
+ return "ldm\t%p1, %0";
|
||
+ case 3:
|
||
+ return "stm\t%p0, %1";
|
||
+ case 5:
|
||
+ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]";
|
||
+ }
|
||
+ }
|
||
+
|
||
+ "reload_completed &&
|
||
+ (REG_P (operands[0]) &&
|
||
+ (REG_P (operands[1])
|
||
+ /* If this is a load from the constant pool we split it into
|
||
+ two double loads. */
|
||
+ || (GET_CODE (operands[1]) == MEM
|
||
+ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
|
||
+ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0)))
|
||
+ /* If this is a load where the pointer register is a part
|
||
+ of the register list, we must split it into two double
|
||
+ loads in order for it to be exception safe. */
|
||
+ || (GET_CODE (operands[1]) == MEM
|
||
+ && register_operand (XEXP (operands[1], 0), SImode)
|
||
+ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0)))
|
||
+ || GET_CODE (operands[1]) == CONST_INT
|
||
+ || GET_CODE (operands[1]) == CONST_DOUBLE))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 2) (match_dup 3))]
|
||
+ {
|
||
+ operands[2] = simplify_gen_subreg ( DImode, operands[0],
|
||
+ TImode, 0 );
|
||
+ operands[0] = simplify_gen_subreg ( DImode, operands[0],
|
||
+ TImode, 8 );
|
||
+ if ( REG_P(operands[1]) ){
|
||
+ operands[3] = simplify_gen_subreg ( DImode, operands[1],
|
||
+ TImode, 0 );
|
||
+ operands[1] = simplify_gen_subreg ( DImode, operands[1],
|
||
+ TImode, 8 );
|
||
+ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE
|
||
+ || GET_CODE(operands[1]) == CONST_INT ){
|
||
+ rtx split_const[2];
|
||
+ avr32_split_const_expr (TImode, DImode, operands[1], split_const);
|
||
+ operands[3] = split_const[1];
|
||
+ operands[1] = split_const[0];
|
||
+ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){
|
||
+ rtx split_const[2];
|
||
+ rtx cop = avoid_constant_pool_reference (operands[1]);
|
||
+ if (operands[1] == cop)
|
||
+ cop = get_pool_constant (XEXP (operands[1], 0));
|
||
+ avr32_split_const_expr (TImode, DImode, cop, split_const);
|
||
+ operands[3] = force_const_mem (DImode, split_const[1]);
|
||
+ operands[1] = force_const_mem (DImode, split_const[0]);
|
||
+ } else {
|
||
+ rtx ptr_reg = XEXP (operands[1], 0);
|
||
+ operands[1] = gen_rtx_MEM (DImode,
|
||
+ gen_rtx_PLUS ( SImode,
|
||
+ ptr_reg,
|
||
+ GEN_INT (8) ));
|
||
+ operands[3] = gen_rtx_MEM (DImode,
|
||
+ ptr_reg);
|
||
+
|
||
+ /* Check if the first load will clobber the pointer.
|
||
+ If so, we must switch the order of the operations. */
|
||
+ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) )
|
||
+ {
|
||
+ /* We need to switch the order of the operations
|
||
+ so that the pointer register does not get clobbered
|
||
+ after the first double word load. */
|
||
+ rtx tmp;
|
||
+ tmp = operands[0];
|
||
+ operands[0] = operands[2];
|
||
+ operands[2] = tmp;
|
||
+ tmp = operands[1];
|
||
+ operands[1] = operands[3];
|
||
+ operands[3] = tmp;
|
||
+ }
|
||
+
|
||
+
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "*,*,4,4,*,8")
|
||
+ (set_attr "type" "*,*,load4,store4,*,load4")])
|
||
+
|
||
+
|
||
+;;== float - 32 bits ==========================================================
|
||
+(define_expand "movsf"
|
||
+ [(set (match_operand:SF 0 "nonimmediate_operand" "")
|
||
+ (match_operand:SF 1 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+
|
||
+
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) != REG)
|
||
+ operands[1] = force_reg (SFmode, operands[1]);
|
||
+
|
||
+ })
|
||
+
|
||
+(define_insn "*movsf_internal"
|
||
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m")
|
||
+ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))]
|
||
+ "(register_operand (operands[0], SFmode)
|
||
+ || register_operand (operands[1], SFmode))"
|
||
+ {
|
||
+ switch (which_alternative) {
|
||
+ case 0:
|
||
+ case 1: return "mov\t%0, %1";
|
||
+ case 2:
|
||
+ {
|
||
+ HOST_WIDE_INT target_float[2];
|
||
+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode);
|
||
+ if ( TARGET_V2_INSNS
|
||
+ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) )
|
||
+ return "movh\t%0, hi(%1)";
|
||
+ else
|
||
+ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)";
|
||
+ }
|
||
+ case 3:
|
||
+ if ( (REG_P(XEXP(operands[1], 0))
|
||
+ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM)
|
||
+ || (GET_CODE(XEXP(operands[1], 0)) == PLUS
|
||
+ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM
|
||
+ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT
|
||
+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0
|
||
+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) )
|
||
+ return "lddsp\t%0, %1";
|
||
+ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) )
|
||
+ return "lddpc\t%0, %1";
|
||
+ else
|
||
+ return "ld.w\t%0, %1";
|
||
+ case 4:
|
||
+ if ( (REG_P(XEXP(operands[0], 0))
|
||
+ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM)
|
||
+ || (GET_CODE(XEXP(operands[0], 0)) == PLUS
|
||
+ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM
|
||
+ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT
|
||
+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0
|
||
+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) )
|
||
+ return "stdsp\t%0, %1";
|
||
+ else
|
||
+ return "st.w\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "2,4,8,4,4")
|
||
+ (set_attr "type" "alu,alu,alu2,load,store")
|
||
+ (set_attr "cc" "none,none,clobber,none,none")])
|
||
+
|
||
+
|
||
+
|
||
+;;== double - 64 bits =========================================================
|
||
+(define_expand "movdf"
|
||
+ [(set (match_operand:DF 0 "nonimmediate_operand" "")
|
||
+ (match_operand:DF 1 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if (GET_CODE (operands[0]) != REG){
|
||
+ operands[1] = force_reg (DFmode, operands[1]);
|
||
+ }
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn_and_split "*movdf_internal"
|
||
+ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m")
|
||
+ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))]
|
||
+ "TARGET_SOFT_FLOAT
|
||
+ && (register_operand (operands[0], DFmode)
|
||
+ || register_operand (operands[1], DFmode))"
|
||
+ {
|
||
+ switch (which_alternative ){
|
||
+ case 0:
|
||
+ case 1:
|
||
+ case 2:
|
||
+ return "#";
|
||
+ case 3:
|
||
+ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])))
|
||
+ return "ld.d\t%0, pc[%1 - .]";
|
||
+ else
|
||
+ return "ld.d\t%0, %1";
|
||
+ case 4:
|
||
+ return "st.d\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ "TARGET_SOFT_FLOAT
|
||
+ && reload_completed
|
||
+ && (REG_P (operands[0])
|
||
+ && (REG_P (operands[1])
|
||
+ || GET_CODE (operands[1]) == CONST_DOUBLE))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 2) (match_dup 3))]
|
||
+ "
|
||
+ {
|
||
+ operands[2] = gen_highpart (SImode, operands[0]);
|
||
+ operands[0] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart(SImode, operands[1]);
|
||
+ operands[1] = gen_lowpart(SImode, operands[1]);
|
||
+ }
|
||
+ "
|
||
+
|
||
+ [(set_attr "length" "*,*,*,4,4")
|
||
+ (set_attr "type" "*,*,*,load2,store2")
|
||
+ (set_attr "cc" "*,*,*,none,none")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Conditional Moves
|
||
+;;=============================================================================
|
||
+(define_insn "ld<mode>_predicable"
|
||
+ [(set (match_operand:MOVCC 0 "register_operand" "=r")
|
||
+ (match_operand:MOVCC 1 "avr32_non_rmw_memory_operand" "<MOVCC:pred_mem_constraint>"))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "ld<MOVCC:load_postfix>%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+
|
||
+(define_insn "st<mode>_predicable"
|
||
+ [(set (match_operand:MOVCC 0 "avr32_non_rmw_memory_operand" "=<MOVCC:pred_mem_constraint>")
|
||
+ (match_operand:MOVCC 1 "register_operand" "r"))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "st<MOVCC:store_postfix>%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "store")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+(define_insn "mov<mode>_predicable"
|
||
+ [(set (match_operand:MOVCC 0 "register_operand" "=r")
|
||
+ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))]
|
||
+ ""
|
||
+ "mov%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "alu")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Move chunks of memory
|
||
+;;=============================================================================
|
||
+
|
||
+(define_expand "movmemsi"
|
||
+ [(match_operand:BLK 0 "general_operand" "")
|
||
+ (match_operand:BLK 1 "general_operand" "")
|
||
+ (match_operand:SI 2 "const_int_operand" "")
|
||
+ (match_operand:SI 3 "const_int_operand" "")]
|
||
+ ""
|
||
+ "
|
||
+ if (avr32_gen_movmemsi (operands))
|
||
+ DONE;
|
||
+ FAIL;
|
||
+ "
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Bit field instructions
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Instructions to insert or extract bit-fields
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "insv"
|
||
+ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r")
|
||
+ (match_operand:SI 1 "immediate_operand" "Ku05")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku05"))
|
||
+ (match_operand 3 "register_operand" "r"))]
|
||
+ ""
|
||
+ "bfins\t%0, %3, %2, %1"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+
|
||
+
|
||
+(define_expand "extv"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (sign_extract:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")
|
||
+ (match_operand:SI 3 "immediate_operand" "")))]
|
||
+ ""
|
||
+ {
|
||
+ if ( INTVAL(operands[2]) >= 32 )
|
||
+ FAIL;
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_expand "extzv"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")
|
||
+ (match_operand:SI 3 "immediate_operand" "")))]
|
||
+ ""
|
||
+ {
|
||
+ if ( INTVAL(operands[2]) >= 32 )
|
||
+ FAIL;
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_insn "extv_internal"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (sign_extract:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku05")
|
||
+ (match_operand:SI 3 "immediate_operand" "Ku05")))]
|
||
+ "INTVAL(operands[2]) < 32"
|
||
+ "bfexts\t%0, %1, %3, %2"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+
|
||
+(define_insn "extzv_internal"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku05")
|
||
+ (match_operand:SI 3 "immediate_operand" "Ku05")))]
|
||
+ "INTVAL(operands[2]) < 32"
|
||
+ "bfextu\t%0, %1, %3, %2"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Some peepholes for avoiding unnecessary cast instructions
|
||
+;; followed by bfins.
|
||
+;;-----------------------------------------------------------------------------
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
|
||
+ (set (zero_extract:SI (match_operand 2 "register_operand" "")
|
||
+ (match_operand:SI 3 "immediate_operand" "")
|
||
+ (match_operand:SI 4 "immediate_operand" ""))
|
||
+ (match_dup 0))]
|
||
+ "((peep2_reg_dead_p(2, operands[0]) &&
|
||
+ (INTVAL(operands[3]) <= 8)))"
|
||
+ [(set (zero_extract:SI (match_dup 2)
|
||
+ (match_dup 3)
|
||
+ (match_dup 4))
|
||
+ (match_dup 1))]
|
||
+ )
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "")))
|
||
+ (set (zero_extract:SI (match_operand 2 "register_operand" "")
|
||
+ (match_operand:SI 3 "immediate_operand" "")
|
||
+ (match_operand:SI 4 "immediate_operand" ""))
|
||
+ (match_dup 0))]
|
||
+ "((peep2_reg_dead_p(2, operands[0]) &&
|
||
+ (INTVAL(operands[3]) <= 16)))"
|
||
+ [(set (zero_extract:SI (match_dup 2)
|
||
+ (match_dup 3)
|
||
+ (match_dup 4))
|
||
+ (match_dup 1))]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; push bytes
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Implements the push instruction
|
||
+;;=============================================================================
|
||
+(define_insn "pushm"
|
||
+ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM)))
|
||
+ (unspec:BLK [(match_operand 0 "const_int_operand" "")]
|
||
+ UNSPEC_PUSHM))]
|
||
+ ""
|
||
+ {
|
||
+ if (INTVAL(operands[0])) {
|
||
+ return "pushm\t%r0";
|
||
+ } else {
|
||
+ return "";
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "store")
|
||
+ (set_attr "length" "2")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "stm"
|
||
+ [(unspec [(match_operand 0 "register_operand" "r")
|
||
+ (match_operand 1 "const_int_operand" "")
|
||
+ (match_operand 2 "const_int_operand" "")]
|
||
+ UNSPEC_STM)]
|
||
+ ""
|
||
+ {
|
||
+ if (INTVAL(operands[1])) {
|
||
+ if (INTVAL(operands[2]) != 0)
|
||
+ return "stm\t--%0, %s1";
|
||
+ else
|
||
+ return "stm\t%0, %s1";
|
||
+ } else {
|
||
+ return "";
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "store")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+(define_insn "popm"
|
||
+ [(unspec [(match_operand 0 "const_int_operand" "")]
|
||
+ UNSPEC_POPM)]
|
||
+ ""
|
||
+ {
|
||
+ if (INTVAL(operands[0])) {
|
||
+ return "popm %r0";
|
||
+ } else {
|
||
+ return "";
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "load")
|
||
+ (set_attr "length" "2")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; add
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Adds reg1 with reg2 and puts the result in reg0.
|
||
+;;=============================================================================
|
||
+(define_insn "add<mode>3"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r")
|
||
+ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0")
|
||
+ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))]
|
||
+ ""
|
||
+ "@
|
||
+ add %0, %2
|
||
+ add %0, %1, %2
|
||
+ sub %0, %n2
|
||
+ sub %0, %1, %n2
|
||
+ sub %0, %n2"
|
||
+
|
||
+ [(set_attr "length" "2,4,2,4,4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+(define_insn "add<mode>3_lsl"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))
|
||
+ (match_operand:INTM 2 "register_operand" "r")))]
|
||
+ ""
|
||
+ "add %0, %2, %1 << %3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+(define_insn "add<mode>3_lsl2"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (plus:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (ashift:INTM (match_operand:INTM 2 "register_operand" "r")
|
||
+ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))]
|
||
+ ""
|
||
+ "add %0, %1, %2 << %3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+
|
||
+(define_insn "add<mode>3_mul"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (match_operand:INTM 3 "immediate_operand" "Ku04" ))
|
||
+ (match_operand:INTM 2 "register_operand" "r")))]
|
||
+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
|
||
+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
|
||
+ "add %0, %2, %1 << %p3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+(define_insn "add<mode>3_mul2"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (plus:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (mult:INTM (match_operand:INTM 2 "register_operand" "r")
|
||
+ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))]
|
||
+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
|
||
+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
|
||
+ "add %0, %1, %2 << %p3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (ashift:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (plus:SI (match_dup 0)
|
||
+ (match_operand:SI 4 "register_operand" "")))]
|
||
+ "(peep2_reg_dead_p(2, operands[0]) &&
|
||
+ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:SI (ashift:SI (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 4)))]
|
||
+ )
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (ashift:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (plus:SI (match_operand:SI 4 "register_operand" "")
|
||
+ (match_dup 0)))]
|
||
+ "(peep2_reg_dead_p(2, operands[0]) &&
|
||
+ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:SI (ashift:SI (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 4)))]
|
||
+ )
|
||
+
|
||
+(define_insn "adddi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r,r")
|
||
+ (plus:DI (match_operand:DI 1 "register_operand" "%0,r")
|
||
+ (match_operand:DI 2 "register_operand" "r,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ add %0, %2\;adc %m0, %m0, %m2
|
||
+ add %0, %1, %2\;adc %m0, %m1, %m2"
|
||
+ [(set_attr "length" "6,8")
|
||
+ (set_attr "type" "alu2")
|
||
+ (set_attr "cc" "set_vncz")])
|
||
+
|
||
+
|
||
+(define_insn "add<mode>_imm_predicable"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "+r")
|
||
+ (plus:INTM (match_dup 0)
|
||
+ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))]
|
||
+ ""
|
||
+ "sub%?\t%0, -%1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; subtract
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Subtract reg2 or immediate value from reg0 and puts the result in reg0.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "sub<mode>3"
|
||
+ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r")
|
||
+ (minus:INTM (match_operand:INTM 1 "nonmemory_operand" "0,r,0,r,0,r,Ks08")
|
||
+ (match_operand:INTM 2 "nonmemory_operand" "r,r,Ks08,Ks16,Ks21,0,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ sub %0, %2
|
||
+ sub %0, %1, %2
|
||
+ sub %0, %2
|
||
+ sub %0, %1, %2
|
||
+ sub %0, %2
|
||
+ rsub %0, %1
|
||
+ rsub %0, %2, %1"
|
||
+ [(set_attr "length" "2,4,2,4,4,2,4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+(define_insn "*sub<mode>3_mul"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (minus:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (mult:INTM (match_operand:INTM 2 "register_operand" "r")
|
||
+ (match_operand:SI 3 "immediate_operand" "Ku04" ))))]
|
||
+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) ||
|
||
+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)"
|
||
+ "sub %0, %1, %2 << %p3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+(define_insn "*sub<mode>3_lsl"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (minus:INTM (match_operand:INTM 1 "register_operand" "r")
|
||
+ (ashift:INTM (match_operand:INTM 2 "register_operand" "r")
|
||
+ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))]
|
||
+ ""
|
||
+ "sub %0, %1, %2 << %3"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "<INTM:alu_cc_attr>")])
|
||
+
|
||
+
|
||
+(define_insn "subdi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r,r")
|
||
+ (minus:DI (match_operand:DI 1 "register_operand" "%0,r")
|
||
+ (match_operand:DI 2 "register_operand" "r,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ sub %0, %2\;sbc %m0, %m0, %m2
|
||
+ sub %0, %1, %2\;sbc %m0, %m1, %m2"
|
||
+ [(set_attr "length" "6,8")
|
||
+ (set_attr "type" "alu2")
|
||
+ (set_attr "cc" "set_vncz")])
|
||
+
|
||
+
|
||
+(define_insn "sub<mode>_imm_predicable"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "+r")
|
||
+ (minus:INTM (match_dup 0)
|
||
+ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))]
|
||
+ ""
|
||
+ "sub%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+(define_insn "rsub<mode>_imm_predicable"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "+r")
|
||
+ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")
|
||
+ (match_dup 0)))]
|
||
+ ""
|
||
+ "rsub%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; multiply
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Multiply op1 and op2 and put the value in op0.
|
||
+;;=============================================================================
|
||
+
|
||
+
|
||
+(define_insn "mulqi3"
|
||
+ [(set (match_operand:QI 0 "register_operand" "=r,r,r")
|
||
+ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r")
|
||
+ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "mul %0, %2";
|
||
+ case 1:
|
||
+ return "mul %0, %1, %2";
|
||
+ case 2:
|
||
+ return "mul %0, %1, %2";
|
||
+ default:
|
||
+ gcc_unreachable();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "mulww_w,mulww_w,mulwh")
|
||
+ (set_attr "length" "2,4,4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "mulsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
||
+ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r")
|
||
+ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "mul %0, %2";
|
||
+ case 1:
|
||
+ return "mul %0, %1, %2";
|
||
+ case 2:
|
||
+ return "mul %0, %1, %2";
|
||
+ default:
|
||
+ gcc_unreachable();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "mulww_w,mulww_w,mulwh")
|
||
+ (set_attr "length" "2,4,4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+(define_insn "mulhisi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulhh.w %0, %1:b, %2:b"
|
||
+ [(set_attr "type" "mulhh")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(match_scratch:DI 6 "r")
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_operand:HI 1 "register_operand" ""))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" ""))))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (ashiftrt:SI (match_dup 0)
|
||
+ (const_int 16)))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP
|
||
+ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))"
|
||
+ [(set (match_dup 4) (sign_extend:SI (match_dup 1)))
|
||
+ (set (match_dup 6)
|
||
+ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4))
|
||
+ (sign_extend:DI (match_dup 2)))
|
||
+ (const_int 16)))
|
||
+ (set (match_dup 3) (match_dup 5))]
|
||
+
|
||
+ "{
|
||
+ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1]));
|
||
+ operands[5] = gen_highpart (SImode, operands[4]);
|
||
+ }"
|
||
+ )
|
||
+
|
||
+(define_insn "mulnhisi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r")))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulnhh.w %0, %1:b, %2:b"
|
||
+ [(set_attr "type" "mulhh")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "machisi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (plus:SI (mult:SI
|
||
+ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (match_dup 0)))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "machh.w %0, %1:b, %2:b"
|
||
+ [(set_attr "type" "machh_w")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+(define_insn "mulsidi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (mult:DI
|
||
+ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ "muls.d %0, %1, %2"
|
||
+ [(set_attr "type" "mulww_d")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "umulsidi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (mult:DI
|
||
+ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
||
+ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ "mulu.d %0, %1, %2"
|
||
+ [(set_attr "type" "mulww_d")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "*mulaccsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r")
|
||
+ (match_operand:SI 2 "register_operand" "r"))
|
||
+ (match_dup 0)))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ "mac %0, %1, %2"
|
||
+ [(set_attr "type" "macww_w")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "*mulaccsidi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "+r")
|
||
+ (plus:DI (mult:DI
|
||
+ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:SI 2 "register_operand" "r")))
|
||
+ (match_dup 0)))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ "macs.d %0, %1, %2"
|
||
+ [(set_attr "type" "macww_d")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "*umulaccsidi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "+r")
|
||
+ (plus:DI (mult:DI
|
||
+ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
||
+ (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))
|
||
+ (match_dup 0)))]
|
||
+ "!TARGET_NO_MUL_INSNS"
|
||
+ "macu.d %0, %1, %2"
|
||
+ [(set_attr "type" "macww_d")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+;; Try to avoid Write-After-Write hazards for mul operations
|
||
+;; if it can be done
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_operand 1 "general_operand" ""))
|
||
+ (sign_extend:SI (match_operand 2 "general_operand" ""))))
|
||
+ (set (match_dup 0)
|
||
+ (match_operator:SI 3 "alu_operator" [(match_dup 0)
|
||
+ (match_operand 4 "general_operand" "")]))]
|
||
+ "peep2_reg_dead_p(1, operands[2])"
|
||
+ [(set (match_dup 5)
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_dup 1))
|
||
+ (sign_extend:SI (match_dup 2))))
|
||
+ (set (match_dup 0)
|
||
+ (match_op_dup 3 [(match_dup 5)
|
||
+ (match_dup 4)]))]
|
||
+ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}"
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; DSP instructions
|
||
+;;=============================================================================
|
||
+(define_insn "mulsathh_h"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 15))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulsathh.h\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulhh")])
|
||
+
|
||
+(define_insn "mulsatrndhh_h"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (ss_truncate:HI (ashiftrt:SI
|
||
+ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 1073741824))
|
||
+ (const_int 15))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulsatrndhh.h\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulhh")])
|
||
+
|
||
+(define_insn "mulsathh_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 1))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulsathh.w\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulhh")])
|
||
+
|
||
+(define_insn "mulsatwh_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 15))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulsatwh.w\t%0, %1, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+(define_insn "mulsatrndwh_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 1073741824))
|
||
+ (const_int 15))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulsatrndwh.w\t%0, %1, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+(define_insn "macsathh_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (plus:SI (match_dup 0)
|
||
+ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 1)))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "macsathh.w\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulhh")])
|
||
+
|
||
+
|
||
+(define_insn "mulwh_d"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 16)))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulwh.d\t%0, %1, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+
|
||
+(define_insn "mulnwh_d"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 16)))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "mulnwh.d\t%0, %1, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+(define_insn "macwh_d"
|
||
+ [(set (match_operand:DI 0 "register_operand" "+r")
|
||
+ (plus:DI (match_dup 0)
|
||
+ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))
|
||
+ (const_int 16))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "macwh.d\t%0, %1, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+(define_insn "machh_d"
|
||
+ [(set (match_operand:DI 0 "register_operand" "+r")
|
||
+ (plus:DI (match_dup 0)
|
||
+ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r"))
|
||
+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))]
|
||
+ "!TARGET_NO_MUL_INSNS && TARGET_DSP"
|
||
+ "machh.d\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "mulwh")])
|
||
+
|
||
+(define_insn "satadd_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ss_plus:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))]
|
||
+ "TARGET_DSP"
|
||
+ "satadd.w\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "alu_sat")])
|
||
+
|
||
+(define_insn "satsub_w"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ss_minus:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))]
|
||
+ "TARGET_DSP"
|
||
+ "satsub.w\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "alu_sat")])
|
||
+
|
||
+(define_insn "satadd_h"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (ss_plus:HI (match_operand:HI 1 "register_operand" "r")
|
||
+ (match_operand:HI 2 "register_operand" "r")))]
|
||
+ "TARGET_DSP"
|
||
+ "satadd.h\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "alu_sat")])
|
||
+
|
||
+(define_insn "satsub_h"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (ss_minus:HI (match_operand:HI 1 "register_operand" "r")
|
||
+ (match_operand:HI 2 "register_operand" "r")))]
|
||
+ "TARGET_DSP"
|
||
+ "satsub.h\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "alu_sat")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; smin
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed
|
||
+;; values in the registers.
|
||
+;;=============================================================================
|
||
+(define_insn "sminsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (smin:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))]
|
||
+ ""
|
||
+ "min %0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; smax
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Set reg0 to the largest value of reg1 and reg2. It is used for signed
|
||
+;; values in the registers.
|
||
+;;=============================================================================
|
||
+(define_insn "smaxsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (smax:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))]
|
||
+ ""
|
||
+ "max %0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Logical operations
|
||
+;;-----------------------------------------------------------------------------
|
||
+
|
||
+
|
||
+;; Split up simple DImode logical operations. Simply perform the logical
|
||
+;; operation on the upper and lower halves of the registers.
|
||
+(define_split
|
||
+ [(set (match_operand:DI 0 "register_operand" "")
|
||
+ (match_operator:DI 6 "logical_binary_operator"
|
||
+ [(match_operand:DI 1 "register_operand" "")
|
||
+ (match_operand:DI 2 "register_operand" "")]))]
|
||
+ "reload_completed"
|
||
+ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)]))
|
||
+ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))]
|
||
+ "
|
||
+ {
|
||
+ operands[3] = gen_highpart (SImode, operands[0]);
|
||
+ operands[0] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[4] = gen_highpart (SImode, operands[1]);
|
||
+ operands[1] = gen_lowpart (SImode, operands[1]);
|
||
+ operands[5] = gen_highpart (SImode, operands[2]);
|
||
+ operands[2] = gen_lowpart (SImode, operands[2]);
|
||
+ }"
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; Logical operations with shifted operand
|
||
+;;=============================================================================
|
||
+(define_insn "<code>si_lshift"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (logical:SI (match_operator:SI 4 "logical_shift_operator"
|
||
+ [(match_operand:SI 2 "register_operand" "r")
|
||
+ (match_operand:SI 3 "immediate_operand" "Ku05")])
|
||
+ (match_operand:SI 1 "register_operand" "r")))]
|
||
+ ""
|
||
+ {
|
||
+ if ( GET_CODE(operands[4]) == ASHIFT )
|
||
+ return "<logical_insn>\t%0, %1, %2 << %3";
|
||
+ else
|
||
+ return "<logical_insn>\t%0, %1, %2 >> %3";
|
||
+ }
|
||
+
|
||
+ [(set_attr "cc" "set_z")]
|
||
+)
|
||
+
|
||
+
|
||
+;;************************************************
|
||
+;; Peepholes for detecting logical operantions
|
||
+;; with shifted operands
|
||
+;;************************************************
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 3 "register_operand" "")
|
||
+ (match_operator:SI 5 "logical_shift_operator"
|
||
+ [(match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")]))
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (logical:SI (match_operand:SI 4 "register_operand" "")
|
||
+ (match_dup 3)))]
|
||
+ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
|
||
+ {
|
||
+ if ( GET_CODE(operands[5]) == ASHIFT )
|
||
+ return "<logical_insn>\t%0, %4, %1 << %2";
|
||
+ else
|
||
+ return "<logical_insn>\t%0, %4, %1 >> %2";
|
||
+ }
|
||
+ [(set_attr "cc" "set_z")]
|
||
+ )
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 3 "register_operand" "")
|
||
+ (match_operator:SI 5 "logical_shift_operator"
|
||
+ [(match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")]))
|
||
+ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (logical:SI (match_dup 3)
|
||
+ (match_operand:SI 4 "register_operand" "")))]
|
||
+ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))"
|
||
+ {
|
||
+ if ( GET_CODE(operands[5]) == ASHIFT )
|
||
+ return "<logical_insn>\t%0, %4, %1 << %2";
|
||
+ else
|
||
+ return "<logical_insn>\t%0, %4, %1 >> %2";
|
||
+ }
|
||
+ [(set_attr "cc" "set_z")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operator:SI 5 "logical_shift_operator"
|
||
+ [(match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")]))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (logical:SI (match_operand:SI 4 "register_operand" "")
|
||
+ (match_dup 0)))]
|
||
+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
|
||
+
|
||
+ [(set (match_dup 3)
|
||
+ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
|
||
+ (match_dup 4)))]
|
||
+
|
||
+ ""
|
||
+)
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operator:SI 5 "logical_shift_operator"
|
||
+ [(match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")]))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (logical:SI (match_dup 0)
|
||
+ (match_operand:SI 4 "register_operand" "")))]
|
||
+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))"
|
||
+
|
||
+ [(set (match_dup 3)
|
||
+ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)])
|
||
+ (match_dup 4)))]
|
||
+
|
||
+ ""
|
||
+)
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; and
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "andnsi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (and:SI (match_dup 0)
|
||
+ (not:SI (match_operand:SI 1 "register_operand" "r"))))]
|
||
+ ""
|
||
+ "andn %0, %1"
|
||
+ [(set_attr "cc" "set_z")
|
||
+ (set_attr "length" "2")]
|
||
+)
|
||
+
|
||
+
|
||
+(define_insn "andsi3"
|
||
+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r,r, r, r,r,r,r,r")
|
||
+ (and:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,r,0,0, 0, 0,0,0,0,r" )
|
||
+ (match_operand:SI 2 "nonmemory_operand" " N,M,N,Ku16,Ks17,J,L,r,i,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ memc\t%0, %z2
|
||
+ bfextu\t%0, %1, 0, %z2
|
||
+ cbr\t%0, %z2
|
||
+ andl\t%0, %2, COH
|
||
+ andl\t%0, lo(%2)
|
||
+ andh\t%0, hi(%2), COH
|
||
+ andh\t%0, hi(%2)
|
||
+ and\t%0, %2
|
||
+ andh\t%0, hi(%2)\;andl\t%0, lo(%2)
|
||
+ and\t%0, %1, %2"
|
||
+
|
||
+ [(set_attr "length" "4,4,2,4,4,4,4,2,8,4")
|
||
+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z")])
|
||
+
|
||
+(define_insn "anddi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
|
||
+ (and:DI (match_operand:DI 1 "register_operand" "%0,r")
|
||
+ (match_operand:DI 2 "register_operand" "r,r")))]
|
||
+ ""
|
||
+ "#"
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "clobber")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; or
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "iorsi3"
|
||
+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r, r,r,r,r")
|
||
+ (ior:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0,0, 0,0,0,r" )
|
||
+ (match_operand:SI 2 "nonmemory_operand" " O,O,Ku16,J,r,i,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ mems\t%0, %p2
|
||
+ sbr\t%0, %p2
|
||
+ orl\t%0, %2
|
||
+ orh\t%0, hi(%2)
|
||
+ or\t%0, %2
|
||
+ orh\t%0, hi(%2)\;orl\t%0, lo(%2)
|
||
+ or\t%0, %1, %2"
|
||
+
|
||
+ [(set_attr "length" "4,2,4,4,2,8,4")
|
||
+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z")])
|
||
+
|
||
+
|
||
+(define_insn "iordi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
|
||
+ (ior:DI (match_operand:DI 1 "register_operand" "%0,r")
|
||
+ (match_operand:DI 2 "register_operand" "r,r")))]
|
||
+ ""
|
||
+ "#"
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "clobber")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; xor bytes
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "xorsi3"
|
||
+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r, r,r,r,r")
|
||
+ (xor:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0, 0,0,0,r" )
|
||
+ (match_operand:SI 2 "nonmemory_operand" " O,Ku16,J,r,i,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ memt\t%0, %p2
|
||
+ eorl\t%0, %2
|
||
+ eorh\t%0, hi(%2)
|
||
+ eor\t%0, %2
|
||
+ eorh\t%0, hi(%2)\;eorl\t%0, lo(%2)
|
||
+ eor\t%0, %1, %2"
|
||
+
|
||
+ [(set_attr "length" "4,4,4,2,8,4")
|
||
+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z")])
|
||
+
|
||
+
|
||
+(define_insn "xordi3"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=&r,&r")
|
||
+ (xor:DI (match_operand:DI 1 "register_operand" "%0,r")
|
||
+ (match_operand:DI 2 "register_operand" "r,r")))]
|
||
+ ""
|
||
+ "#"
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "clobber")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; Three operand predicable insns
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "<predicable_insn3><mode>_predicable"
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r")
|
||
+ (match_operand:INTM 2 "register_operand" "r")))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "<predicable_insn3>%?\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+(define_insn_and_split "<predicable_insn3><mode>_imm_clobber_predicable"
|
||
+ [(parallel
|
||
+ [(set (match_operand:INTM 0 "register_operand" "=r")
|
||
+ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r")
|
||
+ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21")))
|
||
+ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ {
|
||
+ if ( current_insn_predicate != NULL_RTX )
|
||
+ {
|
||
+ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") )
|
||
+ return "%! mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") )
|
||
+ return "%! mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ else
|
||
+ return "%! movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ if ( !avr32_cond_imm_clobber_splittable (insn, operands) )
|
||
+ {
|
||
+ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") )
|
||
+ return "mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") )
|
||
+ return "mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ else
|
||
+ return "movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3";
|
||
+ }
|
||
+ return "#";
|
||
+ }
|
||
+
|
||
+ }
|
||
+ ;; If we find out that we could not actually do if-conversion on the block
|
||
+ ;; containing this insn we convert it back to normal immediate format
|
||
+ ;; to avoid outputing a redundant move insn
|
||
+ ;; Do not split until after we have checked if we can make the insn
|
||
+ ;; conditional.
|
||
+ "(GET_CODE (PATTERN (insn)) != COND_EXEC
|
||
+ && cfun->machine->ifcvt_after_reload
|
||
+ && avr32_cond_imm_clobber_splittable (insn, operands))"
|
||
+ [(set (match_dup 0)
|
||
+ (predicable_op3:INTM (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ ""
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Zero extend predicable insns
|
||
+;;=============================================================================
|
||
+(define_insn_and_split "zero_extendhisi_clobber_predicable"
|
||
+ [(parallel
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI (match_operand:HI 1 "register_operand" "r")))
|
||
+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ {
|
||
+ if ( current_insn_predicate != NULL_RTX )
|
||
+ {
|
||
+ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2";
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ return "#";
|
||
+ }
|
||
+
|
||
+ }
|
||
+ ;; If we find out that we could not actually do if-conversion on the block
|
||
+ ;; containing this insn we convert it back to normal immediate format
|
||
+ ;; to avoid outputing a redundant move insn
|
||
+ ;; Do not split until after we have checked if we can make the insn
|
||
+ ;; conditional.
|
||
+ "(GET_CODE (PATTERN (insn)) != COND_EXEC
|
||
+ && cfun->machine->ifcvt_after_reload)"
|
||
+ [(set (match_dup 0)
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ ""
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+ )
|
||
+
|
||
+(define_insn_and_split "zero_extendqisi_clobber_predicable"
|
||
+ [(parallel
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI (match_operand:QI 1 "register_operand" "r")))
|
||
+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ {
|
||
+ if ( current_insn_predicate != NULL_RTX )
|
||
+ {
|
||
+ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2";
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ return "#";
|
||
+ }
|
||
+
|
||
+ }
|
||
+ ;; If we find out that we could not actually do if-conversion on the block
|
||
+ ;; containing this insn we convert it back to normal immediate format
|
||
+ ;; to avoid outputing a redundant move insn
|
||
+ ;; Do not split until after we have checked if we can make the insn
|
||
+ ;; conditional.
|
||
+ "(GET_CODE (PATTERN (insn)) != COND_EXEC
|
||
+ && cfun->machine->ifcvt_after_reload)"
|
||
+ [(set (match_dup 0)
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ ""
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+ )
|
||
+
|
||
+(define_insn_and_split "zero_extendqihi_clobber_predicable"
|
||
+ [(parallel
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (zero_extend:HI (match_operand:QI 1 "register_operand" "r")))
|
||
+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])]
|
||
+ "TARGET_V2_INSNS"
|
||
+ {
|
||
+ if ( current_insn_predicate != NULL_RTX )
|
||
+ {
|
||
+ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2";
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ return "#";
|
||
+ }
|
||
+
|
||
+ }
|
||
+ ;; If we find out that we could not actually do if-conversion on the block
|
||
+ ;; containing this insn we convert it back to normal immediate format
|
||
+ ;; to avoid outputing a redundant move insn
|
||
+ ;; Do not split until after we have checked if we can make the insn
|
||
+ ;; conditional.
|
||
+ "(GET_CODE (PATTERN (insn)) != COND_EXEC
|
||
+ && cfun->machine->ifcvt_after_reload)"
|
||
+ [(set (match_dup 0)
|
||
+ (zero_extend:HI (match_dup 1)))]
|
||
+ ""
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")]
|
||
+ )
|
||
+;;=============================================================================
|
||
+;; divmod
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Signed division that produces both a quotient and a remainder.
|
||
+;;=============================================================================
|
||
+(define_expand "divmodsi4"
|
||
+ [(parallel [
|
||
+ (parallel [
|
||
+ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (div:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))
|
||
+ (set (match_operand:SI 3 "register_operand" "=r")
|
||
+ (mod:SI (match_dup 1)
|
||
+ (match_dup 2)))])
|
||
+ (use (match_dup 4))])]
|
||
+ ""
|
||
+ {
|
||
+ if (! no_new_pseudos) {
|
||
+ operands[4] = gen_reg_rtx (DImode);
|
||
+
|
||
+ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2]));
|
||
+ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
|
||
+ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
|
||
+
|
||
+ DONE;
|
||
+ } else {
|
||
+ FAIL;
|
||
+ }
|
||
+
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn "divmodsi4_internal"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (unspec:DI [(match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")]
|
||
+ UNSPEC_DIVMODSI4_INTERNAL))]
|
||
+ ""
|
||
+ "divs %0, %1, %2"
|
||
+ [(set_attr "type" "div")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; udivmod
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Unsigned division that produces both a quotient and a remainder.
|
||
+;;=============================================================================
|
||
+(define_expand "udivmodsi4"
|
||
+ [(parallel [
|
||
+ (parallel [
|
||
+ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (udiv:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")))
|
||
+ (set (match_operand:SI 3 "register_operand" "=r")
|
||
+ (umod:SI (match_dup 1)
|
||
+ (match_dup 2)))])
|
||
+ (use (match_dup 4))])]
|
||
+ ""
|
||
+ {
|
||
+ if (! no_new_pseudos) {
|
||
+ operands[4] = gen_reg_rtx (DImode);
|
||
+
|
||
+ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2]));
|
||
+ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4));
|
||
+ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0));
|
||
+
|
||
+ DONE;
|
||
+ } else {
|
||
+ FAIL;
|
||
+ }
|
||
+ })
|
||
+
|
||
+(define_insn "udivmodsi4_internal"
|
||
+ [(set (match_operand:DI 0 "register_operand" "=r")
|
||
+ (unspec:DI [(match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "register_operand" "r")]
|
||
+ UNSPEC_UDIVMODSI4_INTERNAL))]
|
||
+ ""
|
||
+ "divu %0, %1, %2"
|
||
+ [(set_attr "type" "div")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Arithmetic-shift left
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Arithmetic-shift reg0 left by reg2 or immediate value.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "ashlsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
||
+ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r")
|
||
+ (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
|
||
+ ""
|
||
+ "@
|
||
+ lsl %0, %1, %2
|
||
+ lsl %0, %2
|
||
+ lsl %0, %1, %2"
|
||
+ [(set_attr "length" "4,2,4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; Arithmetic-shift right
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Arithmetic-shift reg0 right by an immediate value.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "ashrsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
||
+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
|
||
+ (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
|
||
+ ""
|
||
+ "@
|
||
+ asr %0, %1, %2
|
||
+ asr %0, %2
|
||
+ asr %0, %1, %2"
|
||
+ [(set_attr "length" "4,2,4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; Logical shift right
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Logical shift reg0 right by an immediate value.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "lshrsi3"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r")
|
||
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r")
|
||
+ (match_operand:SI 2 "nonmemory_operand" "r,Ku05,Ku05")))]
|
||
+ ""
|
||
+ "@
|
||
+ lsr %0, %1, %2
|
||
+ lsr %0, %2
|
||
+ lsr %0, %1, %2"
|
||
+ [(set_attr "length" "4,2,4")
|
||
+ (set_attr "cc" "set_ncz")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; neg
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Negate operand 1 and store the result in operand 0.
|
||
+;;=============================================================================
|
||
+(define_insn "negsi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
|
||
+ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ neg\t%0
|
||
+ rsub\t%0, %1, 0"
|
||
+ [(set_attr "length" "2,4")
|
||
+ (set_attr "cc" "set_vncz")])
|
||
+
|
||
+(define_insn "negsi2_predicable"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (neg:SI (match_dup 0)))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "rsub%?\t%0, 0"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; abs
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Store the absolute value of operand 1 into operand 0.
|
||
+;;=============================================================================
|
||
+(define_insn "abssi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (abs:SI (match_operand:SI 1 "register_operand" "0")))]
|
||
+ ""
|
||
+ "abs\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "set_z")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; one_cmpl
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Store the bitwise-complement of operand 1 into operand 0.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "one_cmplsi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r")
|
||
+ (not:SI (match_operand:SI 1 "register_operand" "0,r")))]
|
||
+ ""
|
||
+ "@
|
||
+ com\t%0
|
||
+ rsub\t%0, %1, -1"
|
||
+ [(set_attr "length" "2,4")
|
||
+ (set_attr "cc" "set_z")])
|
||
+
|
||
+
|
||
+(define_insn "one_cmplsi2_predicable"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (not:SI (match_dup 0)))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "rsub%?\t%0, -1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Bit load
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Load a bit into Z and C flags
|
||
+;;=============================================================================
|
||
+(define_insn "bldsi"
|
||
+ [(set (cc0)
|
||
+ (and:SI (match_operand:SI 0 "register_operand" "r")
|
||
+ (match_operand:SI 1 "one_bit_set_operand" "i")))]
|
||
+ ""
|
||
+ "bld\t%0, %p1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "bld")]
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Compare
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Compare reg0 with reg1 or an immediate value.
|
||
+;;=============================================================================
|
||
+
|
||
+(define_expand "cmp<mode>"
|
||
+ [(set (cc0)
|
||
+ (compare:CMP
|
||
+ (match_operand:CMP 0 "register_operand" "")
|
||
+ (match_operand:CMP 1 "<CMP:cmp_predicate>" "")))]
|
||
+ ""
|
||
+ "{
|
||
+ avr32_compare_op0 = operands[0];
|
||
+ avr32_compare_op1 = operands[1];
|
||
+ }"
|
||
+)
|
||
+
|
||
+(define_insn "cmp<mode>_internal"
|
||
+ [(set (cc0)
|
||
+ (compare:CMP
|
||
+ (match_operand:CMP 0 "register_operand" "r")
|
||
+ (match_operand:CMP 1 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")))]
|
||
+ ""
|
||
+ {
|
||
+ set_next_insn_cond(insn,
|
||
+ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1]));
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "compare")])
|
||
+
|
||
+
|
||
+;;;=============================================================================
|
||
+;; Test if zero
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Compare reg against zero and set the condition codes.
|
||
+;;=============================================================================
|
||
+
|
||
+
|
||
+(define_expand "tstsi"
|
||
+ [(set (cc0)
|
||
+ (match_operand:SI 0 "register_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ avr32_compare_op0 = operands[0];
|
||
+ avr32_compare_op1 = const0_rtx;
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_insn "tstsi_internal"
|
||
+ [(set (cc0)
|
||
+ (match_operand:SI 0 "register_operand" "r"))]
|
||
+ ""
|
||
+ {
|
||
+ set_next_insn_cond(insn,
|
||
+ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx));
|
||
+
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "compare")])
|
||
+
|
||
+
|
||
+(define_expand "tstdi"
|
||
+ [(set (cc0)
|
||
+ (match_operand:DI 0 "register_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ avr32_compare_op0 = operands[0];
|
||
+ avr32_compare_op1 = const0_rtx;
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_insn "tstdi_internal"
|
||
+ [(set (cc0)
|
||
+ (match_operand:DI 0 "register_operand" "r"))]
|
||
+ ""
|
||
+ {
|
||
+ set_next_insn_cond(insn,
|
||
+ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx));
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu2")
|
||
+ (set_attr "cc" "compare")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Convert operands
|
||
+;;-----------------------------------------------------------------------------
|
||
+;;
|
||
+;;=============================================================================
|
||
+(define_insn "truncdisi2"
|
||
+ [(set (match_operand:SI 0 "general_operand" "")
|
||
+ (truncate:SI (match_operand:DI 1 "general_operand" "")))]
|
||
+ ""
|
||
+ "truncdisi2")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Extend
|
||
+;;-----------------------------------------------------------------------------
|
||
+;;
|
||
+;;=============================================================================
|
||
+
|
||
+
|
||
+(define_insn "extendhisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
|
||
+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "casts.h\t%0";
|
||
+ case 1:
|
||
+ return "bfexts\t%0, %1, 0, 16";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.sh\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz,set_ncz,none,none")
|
||
+ (set_attr "type" "alu,alu,load_rm,load_rm")])
|
||
+
|
||
+(define_insn "extendqisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
|
||
+ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "casts.b\t%0";
|
||
+ case 1:
|
||
+ return "bfexts\t%0, %1, 0, 8";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.sb\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz,set_ncz,none,none")
|
||
+ (set_attr "type" "alu,alu,load_rm,load_rm")])
|
||
+
|
||
+(define_insn "extendqihi2"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
||
+ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "casts.b\t%0";
|
||
+ case 1:
|
||
+ return "bfexts\t%0, %1, 0, 8";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.sb\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz,set_ncz,none,none")
|
||
+ (set_attr "type" "alu,alu,load_rm,load_rm")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Zero-extend
|
||
+;;-----------------------------------------------------------------------------
|
||
+;;
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "zero_extendhisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
|
||
+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "castu.h\t%0";
|
||
+ case 1:
|
||
+ return "bfextu\t%0, %1, 0, 16";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.uh\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz,set_ncz,none,none")
|
||
+ (set_attr "type" "alu,alu,load_rm,load_rm")])
|
||
+
|
||
+(define_insn "zero_extendqisi2"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r")
|
||
+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "castu.b\t%0";
|
||
+ case 1:
|
||
+ return "bfextu\t%0, %1, 0, 8";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.ub\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz, set_ncz, none, none")
|
||
+ (set_attr "type" "alu, alu, load_rm, load_rm")])
|
||
+
|
||
+(define_insn "zero_extendqihi2"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
||
+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ return "castu.b\t%0";
|
||
+ case 1:
|
||
+ return "bfextu\t%0, %1, 0, 8";
|
||
+ case 2:
|
||
+ case 3:
|
||
+ return "ld.ub\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,2,4")
|
||
+ (set_attr "cc" "set_ncz, set_ncz, none, none")
|
||
+ (set_attr "type" "alu, alu, load_rm, load_rm")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Conditional load and extend insns
|
||
+;;=============================================================================
|
||
+(define_insn "ldsi<mode>_predicable_se"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (sign_extend:SI
|
||
+ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "ld<INTM:load_postfix_s>%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+(define_insn "ldsi<mode>_predicable_ze"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (zero_extend:SI
|
||
+ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "ld<INTM:load_postfix_u>%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+(define_insn "ldhi_predicable_ze"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (zero_extend:HI
|
||
+ (match_operand:QI 1 "memory_operand" "RKs10")))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "ld.ub%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+(define_insn "ldhi_predicable_se"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (sign_extend:HI
|
||
+ (match_operand:QI 1 "memory_operand" "RKs10")))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ "ld.sb%?\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "cmp_cond_insn")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "predicable" "yes")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; Conditional set register
|
||
+;; sr{cond4} rd
|
||
+;;-----------------------------------------------------------------------------
|
||
+
|
||
+;;Because of the same issue as with conditional moves and adds we must
|
||
+;;not separate the compare instrcution from the scc instruction as
|
||
+;;they might be sheduled "badly".
|
||
+
|
||
+(define_insn "s<code>"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (any_cond:SI (cc0)
|
||
+ (const_int 0)))]
|
||
+ ""
|
||
+ "sr<cond>\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "smi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec:SI [(cc0)
|
||
+ (const_int 0)] UNSPEC_COND_MI))]
|
||
+ ""
|
||
+ "srmi\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "spl"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec:SI [(cc0)
|
||
+ (const_int 0)] UNSPEC_COND_PL))]
|
||
+ ""
|
||
+ "srpl\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Conditional branch
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Branch to label if the specified condition codes are set.
|
||
+;;=============================================================================
|
||
+; branch if negative
|
||
+(define_insn "bmi"
|
||
+ [(set (pc)
|
||
+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "brmi %0"
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "*bmi-reverse"
|
||
+ [(set (pc)
|
||
+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI)
|
||
+ (pc)
|
||
+ (label_ref (match_operand 0 "" ""))))]
|
||
+ ""
|
||
+ "brpl %0"
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+; branch if positive
|
||
+(define_insn "bpl"
|
||
+ [(set (pc)
|
||
+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "brpl %0"
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_insn "*bpl-reverse"
|
||
+ [(set (pc)
|
||
+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL)
|
||
+ (pc)
|
||
+ (label_ref (match_operand 0 "" ""))))]
|
||
+ ""
|
||
+ "brmi %0"
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+; branch if equal
|
||
+(define_insn "b<code>"
|
||
+ [(set (pc)
|
||
+ (if_then_else (any_cond:CC (cc0)
|
||
+ (const_int 0))
|
||
+ (label_ref (match_operand 0 "" ""))
|
||
+ (pc)))]
|
||
+ ""
|
||
+ "br<cond> %0 "
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+(define_insn "*b<code>-reverse"
|
||
+ [(set (pc)
|
||
+ (if_then_else (any_cond:CC (cc0)
|
||
+ (const_int 0))
|
||
+ (pc)
|
||
+ (label_ref (match_operand 0 "" ""))))]
|
||
+ ""
|
||
+ "br<invcond> %0 "
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 256)))
|
||
+ (const_int 2)] ; use compact branch
|
||
+ (const_int 4))) ; use extended branch
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+;=============================================================================
|
||
+; Conditional Add/Subtract
|
||
+;-----------------------------------------------------------------------------
|
||
+; sub{cond4} Rd, imm
|
||
+;=============================================================================
|
||
+
|
||
+
|
||
+(define_expand "add<mode>cc"
|
||
+ [(set (match_operand:ADDCC 0 "register_operand" "")
|
||
+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_dup 4)
|
||
+ (match_dup 5)])
|
||
+ (match_operand:ADDCC 2 "register_operand" "")
|
||
+ (plus:ADDCC
|
||
+ (match_dup 2)
|
||
+ (match_operand:ADDCC 3 "" ""))))]
|
||
+ ""
|
||
+ {
|
||
+ if ( !(GET_CODE (operands[3]) == CONST_INT
|
||
+ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){
|
||
+ FAIL;
|
||
+ }
|
||
+
|
||
+ /* Delete compare instruction as it is merged into this instruction */
|
||
+ remove_insn (get_last_insn_anywhere ());
|
||
+
|
||
+ operands[4] = avr32_compare_op0;
|
||
+ operands[5] = avr32_compare_op1;
|
||
+
|
||
+ if ( TARGET_V2_INSNS
|
||
+ && REG_P(operands[3])
|
||
+ && REGNO(operands[0]) != REGNO(operands[2]) ){
|
||
+ emit_move_insn (operands[0], operands[2]);
|
||
+ operands[2] = operands[0];
|
||
+ }
|
||
+ }
|
||
+ )
|
||
+
|
||
+(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>_reg"
|
||
+ [(set (match_operand:ADDCC 0 "register_operand" "=r")
|
||
+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_operand:CMP 4 "register_operand" "r")
|
||
+ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])
|
||
+ (match_dup 0)
|
||
+ (plus:ADDCC
|
||
+ (match_operand:ADDCC 2 "register_operand" "r")
|
||
+ (match_operand:ADDCC 3 "register_operand" "r"))))]
|
||
+ "TARGET_V2_INSNS"
|
||
+ {
|
||
+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
|
||
+ return "add%i1\t%0, %2, %3";
|
||
+ }
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")])
|
||
+
|
||
+(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>"
|
||
+ [(set (match_operand:ADDCC 0 "register_operand" "=r")
|
||
+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_operand:CMP 4 "register_operand" "r")
|
||
+ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])
|
||
+ (match_operand:ADDCC 2 "register_operand" "0")
|
||
+ (plus:ADDCC
|
||
+ (match_dup 2)
|
||
+ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))]
|
||
+ ""
|
||
+ {
|
||
+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
|
||
+ return "sub%i1\t%0, -%3";
|
||
+ }
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "cmp_cond_insn")])
|
||
+
|
||
+;=============================================================================
|
||
+; Conditional Move
|
||
+;-----------------------------------------------------------------------------
|
||
+; mov{cond4} Rd, (Rs/imm)
|
||
+;=============================================================================
|
||
+(define_expand "mov<mode>cc"
|
||
+ [(set (match_operand:MOVCC 0 "register_operand" "")
|
||
+ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_dup 4)
|
||
+ (match_dup 5)])
|
||
+ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "")
|
||
+ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))]
|
||
+ ""
|
||
+ {
|
||
+ /* Delete compare instruction as it is merged into this instruction */
|
||
+ remove_insn (get_last_insn_anywhere ());
|
||
+
|
||
+ operands[4] = avr32_compare_op0;
|
||
+ operands[5] = avr32_compare_op1;
|
||
+ }
|
||
+ )
|
||
+
|
||
+
|
||
+(define_insn "mov<MOVCC:mode>cc_cmp<CMP:mode>"
|
||
+ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r")
|
||
+ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_operand:CMP 4 "register_operand" "r,r,r")
|
||
+ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>,<CMP:cmp_constraint>,<CMP:cmp_constraint>")])
|
||
+ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08")
|
||
+ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))]
|
||
+ ""
|
||
+ {
|
||
+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
|
||
+
|
||
+ switch( which_alternative ){
|
||
+ case 0:
|
||
+ return "mov%i1 %0, %3";
|
||
+ case 1:
|
||
+ return "mov%1 %0, %2";
|
||
+ case 2:
|
||
+ return "mov%1 %0, %2\;mov%i1 %0, %3";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+
|
||
+ }
|
||
+ [(set_attr "length" "8,8,12")
|
||
+ (set_attr "cc" "cmp_cond_insn")])
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; jump
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Jump inside a function; an unconditional branch to a label.
|
||
+;;=============================================================================
|
||
+(define_insn "jump"
|
||
+ [(set (pc)
|
||
+ (label_ref (match_operand 0 "" "")))]
|
||
+ ""
|
||
+ {
|
||
+ if (get_attr_length(insn) > 4)
|
||
+ return "Can't jump this far";
|
||
+ return (get_attr_length(insn) == 2 ?
|
||
+ "rjmp %0" : "bral %0");
|
||
+ }
|
||
+ [(set_attr "type" "branch")
|
||
+ (set (attr "length")
|
||
+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022))
|
||
+ (le (minus (pc) (match_dup 0)) (const_int 1024)))
|
||
+ (const_int 2) ; use rjmp
|
||
+ (le (match_dup 0) (const_int 1048575))
|
||
+ (const_int 4)] ; use bral
|
||
+ (const_int 8))) ; do something else
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; call
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Subroutine call instruction returning no value.
|
||
+;;=============================================================================
|
||
+(define_insn "call_internal"
|
||
+ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W"))
|
||
+ (match_operand 1 "" ""))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ""
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "icall\t%0";
|
||
+ case 1:
|
||
+ return "rcall\t%0";
|
||
+ case 2:
|
||
+ return "mcall\t%0";
|
||
+ case 3:
|
||
+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
|
||
+ return "call\t%0";
|
||
+ else
|
||
+ return "mcall\tr6[%0@got]";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "2,4,4,10")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+
|
||
+(define_expand "call"
|
||
+ [(parallel [(call (match_operand:SI 0 "" "")
|
||
+ (match_operand 1 "" ""))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ""
|
||
+ {
|
||
+ rtx call_address;
|
||
+ if ( GET_CODE(operands[0]) != MEM )
|
||
+ FAIL;
|
||
+
|
||
+ call_address = XEXP(operands[0], 0);
|
||
+
|
||
+ /* If assembler supports call pseudo insn and the call
|
||
+ address is a symbol then nothing special needs to be done. */
|
||
+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS
|
||
+ && (GET_CODE(call_address) == SYMBOL_REF) ){
|
||
+ /* We must however mark the function as using the GOT if
|
||
+ flag_pic is set, since the call insn might turn into
|
||
+ a mcall using the GOT ptr register. */
|
||
+ if ( flag_pic ){
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ emit_call_insn(gen_call_internal(call_address, operands[1]));
|
||
+ DONE;
|
||
+ }
|
||
+ } else {
|
||
+ if ( flag_pic &&
|
||
+ GET_CODE(call_address) == SYMBOL_REF ){
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ emit_call_insn(gen_call_internal(call_address, operands[1]));
|
||
+ DONE;
|
||
+ }
|
||
+
|
||
+ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ){
|
||
+ if ( optimize_size &&
|
||
+ GET_CODE(call_address) == SYMBOL_REF ){
|
||
+ call_address = force_const_mem(SImode, call_address);
|
||
+ } else {
|
||
+ call_address = force_reg(SImode, call_address);
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ emit_call_insn(gen_call_internal(call_address, operands[1]));
|
||
+ DONE;
|
||
+ }
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; call_value
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Subrutine call instruction returning a value.
|
||
+;;=============================================================================
|
||
+(define_expand "call_value"
|
||
+ [(parallel [(set (match_operand:SI 0 "" "")
|
||
+ (call (match_operand:SI 1 "" "")
|
||
+ (match_operand 2 "" "")))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ""
|
||
+ {
|
||
+ rtx call_address;
|
||
+ if ( GET_CODE(operands[1]) != MEM )
|
||
+ FAIL;
|
||
+
|
||
+ call_address = XEXP(operands[1], 0);
|
||
+
|
||
+ /* If assembler supports call pseudo insn and the call
|
||
+ address is a symbol then nothing special needs to be done. */
|
||
+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS
|
||
+ && (GET_CODE(call_address) == SYMBOL_REF) ){
|
||
+ /* We must however mark the function as using the GOT if
|
||
+ flag_pic is set, since the call insn might turn into
|
||
+ a mcall using the GOT ptr register. */
|
||
+ if ( flag_pic ) {
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
|
||
+ DONE;
|
||
+ }
|
||
+ } else {
|
||
+ if ( flag_pic &&
|
||
+ GET_CODE(call_address) == SYMBOL_REF ){
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2]));
|
||
+ DONE;
|
||
+ }
|
||
+
|
||
+ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){
|
||
+ if ( optimize_size &&
|
||
+ GET_CODE(call_address) == SYMBOL_REF){
|
||
+ call_address = force_const_mem(SImode, call_address);
|
||
+ } else {
|
||
+ call_address = force_reg(SImode, call_address);
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+ emit_call_insn(gen_call_value_internal(operands[0], call_address,
|
||
+ operands[2]));
|
||
+ DONE;
|
||
+
|
||
+ })
|
||
+
|
||
+(define_insn "call_value_internal"
|
||
+ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r")
|
||
+ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W"))
|
||
+ (match_operand 2 "" "")))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ;; Operand 2 not used on the AVR32.
|
||
+ ""
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "icall\t%1";
|
||
+ case 1:
|
||
+ return "rcall\t%1";
|
||
+ case 2:
|
||
+ return "mcall\t%1";
|
||
+ case 3:
|
||
+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS )
|
||
+ return "call\t%1";
|
||
+ else
|
||
+ return "mcall\tr6[%1@got]";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "2,4,4,10")
|
||
+ (set_attr "cc" "call_set")])
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; untyped_call
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Subrutine call instruction returning a value of any type.
|
||
+;; The code is copied from m68k.md (except gen_blockage is removed)
|
||
+;; Fixme!
|
||
+;;=============================================================================
|
||
+(define_expand "untyped_call"
|
||
+ [(parallel [(call (match_operand 0 "avr32_call_operand" "")
|
||
+ (const_int 0))
|
||
+ (match_operand 1 "" "")
|
||
+ (match_operand 2 "" "")])]
|
||
+ ""
|
||
+ {
|
||
+ int i;
|
||
+
|
||
+ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
|
||
+
|
||
+ for (i = 0; i < XVECLEN (operands[2], 0); i++) {
|
||
+ rtx set = XVECEXP (operands[2], 0, i);
|
||
+ emit_move_insn (SET_DEST (set), SET_SRC (set));
|
||
+ }
|
||
+
|
||
+ /* The optimizer does not know that the call sets the function value
|
||
+ registers we stored in the result block. We avoid problems by
|
||
+ claiming that all hard registers are used and clobbered at this
|
||
+ point. */
|
||
+ emit_insn (gen_blockage ());
|
||
+
|
||
+ DONE;
|
||
+ })
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; return
|
||
+;;=============================================================================
|
||
+
|
||
+(define_insn "return"
|
||
+ [(return)]
|
||
+ "USE_RETURN_INSN (FALSE)"
|
||
+ {
|
||
+ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL);
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "call")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_insn "return_cond"
|
||
+ [(set (pc)
|
||
+ (if_then_else (match_operand 0 "avr32_comparison_operand" "")
|
||
+ (return)
|
||
+ (pc)))]
|
||
+ "USE_RETURN_INSN (TRUE)"
|
||
+ "ret%0\tr12";
|
||
+ [(set_attr "type" "call")])
|
||
+
|
||
+(define_insn "return_cond_predicable"
|
||
+ [(return)]
|
||
+ "USE_RETURN_INSN (TRUE)"
|
||
+ "ret%?\tr12";
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+
|
||
+(define_insn "return_imm"
|
||
+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (return)])]
|
||
+ "USE_RETURN_INSN (FALSE) &&
|
||
+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
|
||
+ {
|
||
+ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]);
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "call")]
|
||
+ )
|
||
+
|
||
+(define_insn "return_imm_cond"
|
||
+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operand 1 "avr32_comparison_operand" "")
|
||
+ (return)
|
||
+ (pc)))])]
|
||
+ "USE_RETURN_INSN (TRUE) &&
|
||
+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
|
||
+ "ret%1\t%0";
|
||
+ [(set_attr "type" "call")]
|
||
+ )
|
||
+
|
||
+(define_insn "return_imm_predicable"
|
||
+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (return)])]
|
||
+ "USE_RETURN_INSN (TRUE) &&
|
||
+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
|
||
+ "ret%?\t%0";
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+(define_insn "return_<mode>reg"
|
||
+ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (return)]
|
||
+ "USE_RETURN_INSN (TRUE)"
|
||
+ "ret%?\t%0";
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "predicable" "yes")])
|
||
+
|
||
+(define_insn "return_<mode>reg_cond"
|
||
+ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (set (pc)
|
||
+ (if_then_else (match_operator 1 "avr32_comparison_operator"
|
||
+ [(cc0) (const_int 0)])
|
||
+ (return)
|
||
+ (pc)))]
|
||
+ "USE_RETURN_INSN (TRUE)"
|
||
+ "ret%1\t%0";
|
||
+ [(set_attr "type" "call")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; nop
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; No-op instruction.
|
||
+;;=============================================================================
|
||
+(define_insn "nop"
|
||
+ [(const_int 0)]
|
||
+ ""
|
||
+ "nop"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "type" "alu")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+;;=============================================================================
|
||
+;; nonlocal_goto_receiver
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; For targets with a return stack we must make sure to flush the return stack
|
||
+;; since it will be corrupt after a nonlocal goto.
|
||
+;;=============================================================================
|
||
+(define_expand "nonlocal_goto_receiver"
|
||
+ [(const_int 0)]
|
||
+ "TARGET_RETURN_STACK"
|
||
+ "
|
||
+ {
|
||
+ emit_insn ( gen_frs() );
|
||
+ DONE;
|
||
+ }
|
||
+ "
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; builtin_setjmp_receiver
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; For pic code we need to reload the pic register.
|
||
+;; For targets with a return stack we must make sure to flush the return stack
|
||
+;; since it will probably be corrupted.
|
||
+;;=============================================================================
|
||
+(define_expand "builtin_setjmp_receiver"
|
||
+ [(label_ref (match_operand 0 "" ""))]
|
||
+ "flag_pic"
|
||
+ "
|
||
+ {
|
||
+ if ( TARGET_RETURN_STACK )
|
||
+ emit_insn ( gen_frs() );
|
||
+
|
||
+ avr32_load_pic_register ();
|
||
+ DONE;
|
||
+ }
|
||
+ "
|
||
+)
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; indirect_jump
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Jump to an address in reg or memory.
|
||
+;;=============================================================================
|
||
+(define_expand "indirect_jump"
|
||
+ [(set (pc)
|
||
+ (match_operand:SI 0 "general_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ /* One of the ops has to be in a register. */
|
||
+ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS )
|
||
+ && !avr32_legitimate_pic_operand_p(operands[0]) )
|
||
+ operands[0] = legitimize_pic_address (operands[0], SImode, 0);
|
||
+ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) )
|
||
+ /* If we have an address operand then this function uses the pic register. */
|
||
+ current_function_uses_pic_offset_table = 1;
|
||
+ })
|
||
+
|
||
+
|
||
+(define_insn "indirect_jump_internal"
|
||
+ [(set (pc)
|
||
+ (match_operand:SI 0 "avr32_non_rmw_general_operand" "r,m,W"))]
|
||
+ ""
|
||
+ {
|
||
+ switch( which_alternative ){
|
||
+ case 0:
|
||
+ return "mov\tpc, %0";
|
||
+ case 1:
|
||
+ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) )
|
||
+ return "lddpc\tpc, %0";
|
||
+ else
|
||
+ return "ld.w\tpc, %0";
|
||
+ case 2:
|
||
+ if ( flag_pic )
|
||
+ return "ld.w\tpc, r6[%0@got]";
|
||
+ else
|
||
+ return "lda.w\tpc, %0";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "2,4,8")
|
||
+ (set_attr "type" "call,call,call")
|
||
+ (set_attr "cc" "none,none,clobber")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; casesi and tablejump
|
||
+;;=============================================================================
|
||
+(define_insn "tablejump_add"
|
||
+ [(set (pc)
|
||
+ (plus:SI (match_operand:SI 0 "register_operand" "r")
|
||
+ (mult:SI (match_operand:SI 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku04" ))))
|
||
+ (use (label_ref (match_operand 3 "" "")))]
|
||
+ "flag_pic &&
|
||
+ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) ||
|
||
+ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))"
|
||
+ "add\tpc, %0, %1 << %p2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+(define_insn "tablejump_insn"
|
||
+ [(set (pc) (match_operand:SI 0 "memory_operand" "m"))
|
||
+ (use (label_ref (match_operand 1 "" "")))]
|
||
+ "!flag_pic"
|
||
+ "ld.w\tpc, %0"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "call")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+(define_expand "casesi"
|
||
+ [(match_operand:SI 0 "register_operand" "") ; index to jump on
|
||
+ (match_operand:SI 1 "const_int_operand" "") ; lower bound
|
||
+ (match_operand:SI 2 "const_int_operand" "") ; total range
|
||
+ (match_operand:SI 3 "" "") ; table label
|
||
+ (match_operand:SI 4 "" "")] ; Out of range label
|
||
+ ""
|
||
+ "
|
||
+ {
|
||
+ rtx reg;
|
||
+ rtx index = operands[0];
|
||
+ rtx low_bound = operands[1];
|
||
+ rtx range = operands[2];
|
||
+ rtx table_label = operands[3];
|
||
+ rtx oor_label = operands[4];
|
||
+
|
||
+ index = force_reg ( SImode, index );
|
||
+ if (low_bound != const0_rtx)
|
||
+ {
|
||
+ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){
|
||
+ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound)));
|
||
+ emit_insn (gen_subsi3 (reg, index,
|
||
+ reg));
|
||
+ } else {
|
||
+ reg = gen_reg_rtx (SImode);
|
||
+ emit_insn (gen_addsi3 (reg, index,
|
||
+ GEN_INT (-INTVAL (low_bound))));
|
||
+ }
|
||
+ index = reg;
|
||
+ }
|
||
+
|
||
+ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\"))
|
||
+ range = force_reg (SImode, range);
|
||
+
|
||
+ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label );
|
||
+ reg = gen_reg_rtx (SImode);
|
||
+ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label));
|
||
+
|
||
+ if ( flag_pic )
|
||
+ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label));
|
||
+ else
|
||
+ emit_jump_insn (
|
||
+ gen_tablejump_insn ( gen_rtx_MEM ( SImode,
|
||
+ gen_rtx_PLUS ( SImode,
|
||
+ reg,
|
||
+ gen_rtx_MULT ( SImode,
|
||
+ index,
|
||
+ GEN_INT(4)))),
|
||
+ table_label));
|
||
+ DONE;
|
||
+ }"
|
||
+)
|
||
+
|
||
+
|
||
+
|
||
+(define_insn "prefetch"
|
||
+ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p")
|
||
+ (match_operand 1 "const_int_operand" "")
|
||
+ (match_operand 2 "const_int_operand" ""))]
|
||
+ ""
|
||
+ {
|
||
+ return "pref\t%0";
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "load")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; prologue
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; This pattern, if defined, emits RTL for entry to a function. The function
|
||
+;; entry i responsible for setting up the stack frame, initializing the frame
|
||
+;; pointer register, saving callee saved registers, etc.
|
||
+;;=============================================================================
|
||
+(define_expand "prologue"
|
||
+ [(clobber (const_int 0))]
|
||
+ ""
|
||
+ "
|
||
+ avr32_expand_prologue();
|
||
+ DONE;
|
||
+ "
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; eh_return
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; This pattern, if defined, affects the way __builtin_eh_return, and
|
||
+;; thence the call frame exception handling library routines, are
|
||
+;; built. It is intended to handle non-trivial actions needed along
|
||
+;; the abnormal return path.
|
||
+;;
|
||
+;; The address of the exception handler to which the function should
|
||
+;; return is passed as operand to this pattern. It will normally need
|
||
+;; to copied by the pattern to some special register or memory
|
||
+;; location. If the pattern needs to determine the location of the
|
||
+;; target call frame in order to do so, it may use
|
||
+;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been
|
||
+;; assigned.
|
||
+;;
|
||
+;; If this pattern is not defined, the default action will be to
|
||
+;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either
|
||
+;; that macro or this pattern needs to be defined if call frame
|
||
+;; exception handling is to be used.
|
||
+
|
||
+;; We can't expand this before we know where the link register is stored.
|
||
+(define_insn_and_split "eh_return"
|
||
+ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")]
|
||
+ VUNSPEC_EH_RETURN)
|
||
+ (clobber (match_scratch:SI 1 "=&r"))]
|
||
+ ""
|
||
+ "#"
|
||
+ "reload_completed"
|
||
+ [(const_int 0)]
|
||
+ "
|
||
+ {
|
||
+ avr32_set_return_address (operands[0], operands[1]);
|
||
+ DONE;
|
||
+ }"
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; ffssi2
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "ffssi2"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ]
|
||
+ ""
|
||
+ "mov %0, %1
|
||
+ brev %0
|
||
+ clz %0, %0
|
||
+ sub %0, -1
|
||
+ cp %0, 33
|
||
+ moveq %0, 0"
|
||
+ [(set_attr "length" "18")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; swap_h
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "*swap_h"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (ior:SI (ashift:SI (match_dup 0) (const_int 16))
|
||
+ (lshiftrt:SI (match_dup 0) (const_int 16))))]
|
||
+ ""
|
||
+ "swap.h %0"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+(define_insn_and_split "bswap_16"
|
||
+ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r")
|
||
+ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13")
|
||
+ (const_int 8))
|
||
+ (const_int 255))
|
||
+ (ashift:HI (and:HI (match_dup 1)
|
||
+ (const_int 255))
|
||
+ (const_int 8))))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ if ( REGNO(operands[0]) == REGNO(operands[1]))
|
||
+ return "swap.bh\t%0";
|
||
+ else
|
||
+ return "mov\t%0, %1\;swap.bh\t%0";
|
||
+ case 1:
|
||
+ return "stswp.h\t%0, %1";
|
||
+ case 2:
|
||
+ return "ldswp.sh\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+
|
||
+ "(reload_completed &&
|
||
+ REG_P(operands[0]) && REG_P(operands[1])
|
||
+ && (REGNO(operands[0]) != REGNO(operands[1])))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 0)
|
||
+ (ior:HI (and:HI (lshiftrt:HI (match_dup 0)
|
||
+ (const_int 8))
|
||
+ (const_int 255))
|
||
+ (ashift:HI (and:HI (match_dup 0)
|
||
+ (const_int 255))
|
||
+ (const_int 8))))]
|
||
+ ""
|
||
+
|
||
+ [(set_attr "length" "4,4,4")
|
||
+ (set_attr "type" "alu,store,load_rm")]
|
||
+ )
|
||
+
|
||
+(define_insn_and_split "bswap_32"
|
||
+ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r")
|
||
+ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14")
|
||
+ (const_int -16777216))
|
||
+ (const_int 24))
|
||
+ (lshiftrt:SI (and:SI (match_dup 1)
|
||
+ (const_int 16711680))
|
||
+ (const_int 8)))
|
||
+ (ior:SI (ashift:SI (and:SI (match_dup 1)
|
||
+ (const_int 65280))
|
||
+ (const_int 8))
|
||
+ (ashift:SI (and:SI (match_dup 1)
|
||
+ (const_int 255))
|
||
+ (const_int 24)))))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( which_alternative ){
|
||
+ case 0:
|
||
+ if ( REGNO(operands[0]) == REGNO(operands[1]))
|
||
+ return "swap.b\t%0";
|
||
+ else
|
||
+ return "#";
|
||
+ case 1:
|
||
+ return "stswp.w\t%0, %1";
|
||
+ case 2:
|
||
+ return "ldswp.w\t%0, %1";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ "(reload_completed &&
|
||
+ REG_P(operands[0]) && REG_P(operands[1])
|
||
+ && (REGNO(operands[0]) != REGNO(operands[1])))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 0)
|
||
+ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0)
|
||
+ (const_int -16777216))
|
||
+ (const_int 24))
|
||
+ (lshiftrt:SI (and:SI (match_dup 0)
|
||
+ (const_int 16711680))
|
||
+ (const_int 8)))
|
||
+ (ior:SI (ashift:SI (and:SI (match_dup 0)
|
||
+ (const_int 65280))
|
||
+ (const_int 8))
|
||
+ (ashift:SI (and:SI (match_dup 0)
|
||
+ (const_int 255))
|
||
+ (const_int 24)))))]
|
||
+ ""
|
||
+
|
||
+ [(set_attr "length" "4,4,4")
|
||
+ (set_attr "type" "alu,store,load_rm")]
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; blockage
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and
|
||
+;; all of memory. This blocks insns from being moved across this point.
|
||
+
|
||
+(define_insn "blockage"
|
||
+ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)]
|
||
+ ""
|
||
+ ""
|
||
+ [(set_attr "length" "0")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; clzsi2
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "clzsi2"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ]
|
||
+ ""
|
||
+ "clz %0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "set_z")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; ctzsi2
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "ctzsi2"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r,r")
|
||
+ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ]
|
||
+ ""
|
||
+ "@
|
||
+ brev\t%0\;clz\t%0, %0
|
||
+ mov\t%0, %1\;brev\t%0\;clz\t%0, %0"
|
||
+ [(set_attr "length" "8")
|
||
+ (set_attr "cc" "set_z")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; cache instructions
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "cache"
|
||
+ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p")
|
||
+ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)]
|
||
+ ""
|
||
+ "cache %0, %1"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "sync"
|
||
+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)]
|
||
+ ""
|
||
+ "sync %0"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; TLB instructions
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "tlbr"
|
||
+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)]
|
||
+ ""
|
||
+ "tlbr"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+(define_insn "tlbw"
|
||
+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)]
|
||
+ ""
|
||
+ "tlbw"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+(define_insn "tlbs"
|
||
+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)]
|
||
+ ""
|
||
+ "tlbs"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; Breakpoint instruction
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "breakpoint"
|
||
+ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)]
|
||
+ ""
|
||
+ "breakpoint"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; mtsr/mfsr instruction
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "mtsr"
|
||
+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
|
||
+ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)]
|
||
+ ""
|
||
+ "mtsr\t%0, %1"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mfsr"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ]
|
||
+ ""
|
||
+ "mfsr\t%0, %1"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; mtdr/mfdr instruction
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "mtdr"
|
||
+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i")
|
||
+ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)]
|
||
+ ""
|
||
+ "mtdr\t%0, %1"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mfdr"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ]
|
||
+ ""
|
||
+ "mfdr\t%0, %1"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; musfr
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "musfr"
|
||
+ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)]
|
||
+ ""
|
||
+ "musfr\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+(define_insn "mustr"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ]
|
||
+ ""
|
||
+ "mustr\t%0"
|
||
+ [(set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+(define_insn "ssrf"
|
||
+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)]
|
||
+ ""
|
||
+ "ssrf %0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+(define_insn "csrf"
|
||
+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)]
|
||
+ ""
|
||
+ "csrf %0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; Flush Return Stack instruction
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "frs"
|
||
+ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)]
|
||
+ ""
|
||
+ "frs"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "cc" "none")]
|
||
+ )
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Saturation Round Scale instruction
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "sats"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (unspec:SI [(match_dup 0)
|
||
+ (match_operand 1 "immediate_operand" "Ku05")
|
||
+ (match_operand 2 "immediate_operand" "Ku05")]
|
||
+ UNSPEC_SATS)) ]
|
||
+ "TARGET_DSP"
|
||
+ "sats\t%0 >> %1, %2"
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "satu"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (unspec:SI [(match_dup 0)
|
||
+ (match_operand 1 "immediate_operand" "Ku05")
|
||
+ (match_operand 2 "immediate_operand" "Ku05")]
|
||
+ UNSPEC_SATU)) ]
|
||
+ "TARGET_DSP"
|
||
+ "satu\t%0 >> %1, %2"
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "satrnds"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (unspec:SI [(match_dup 0)
|
||
+ (match_operand 1 "immediate_operand" "Ku05")
|
||
+ (match_operand 2 "immediate_operand" "Ku05")]
|
||
+ UNSPEC_SATRNDS)) ]
|
||
+ "TARGET_DSP"
|
||
+ "satrnds\t%0 >> %1, %2"
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "satrndu"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (unspec:SI [(match_dup 0)
|
||
+ (match_operand 1 "immediate_operand" "Ku05")
|
||
+ (match_operand 2 "immediate_operand" "Ku05")]
|
||
+ UNSPEC_SATRNDU)) ]
|
||
+ "TARGET_DSP"
|
||
+ "sats\t%0 >> %1, %2"
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+;; Special patterns for dealing with the constant pool
|
||
+
|
||
+(define_insn "align_4"
|
||
+ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)]
|
||
+ ""
|
||
+ {
|
||
+ assemble_align (32);
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "2")]
|
||
+)
|
||
+
|
||
+(define_insn "consttable_start"
|
||
+ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)]
|
||
+ ""
|
||
+ {
|
||
+ return ".cpool";
|
||
+ }
|
||
+ [(set_attr "length" "0")]
|
||
+ )
|
||
+
|
||
+(define_insn "consttable_end"
|
||
+ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)]
|
||
+ ""
|
||
+ {
|
||
+ making_const_table = FALSE;
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "0")]
|
||
+)
|
||
+
|
||
+
|
||
+(define_insn "consttable_4"
|
||
+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)]
|
||
+ ""
|
||
+ {
|
||
+ making_const_table = TRUE;
|
||
+ switch (GET_MODE_CLASS (GET_MODE (operands[0])))
|
||
+ {
|
||
+ case MODE_FLOAT:
|
||
+ {
|
||
+ REAL_VALUE_TYPE r;
|
||
+ char real_string[1024];
|
||
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
|
||
+ real_to_decimal(real_string, &r, 1024, 0, 1);
|
||
+ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string);
|
||
+ break;
|
||
+ }
|
||
+ default:
|
||
+ assemble_integer (operands[0], 4, 0, 1);
|
||
+ break;
|
||
+ }
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")]
|
||
+)
|
||
+
|
||
+(define_insn "consttable_8"
|
||
+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)]
|
||
+ ""
|
||
+ {
|
||
+ making_const_table = TRUE;
|
||
+ switch (GET_MODE_CLASS (GET_MODE (operands[0])))
|
||
+ {
|
||
+ case MODE_FLOAT:
|
||
+ {
|
||
+ REAL_VALUE_TYPE r;
|
||
+ char real_string[1024];
|
||
+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]);
|
||
+ real_to_decimal(real_string, &r, 1024, 0, 1);
|
||
+ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string);
|
||
+ break;
|
||
+ }
|
||
+ default:
|
||
+ assemble_integer(operands[0], 8, 0, 1);
|
||
+ break;
|
||
+ }
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "8")]
|
||
+)
|
||
+
|
||
+(define_insn "consttable_16"
|
||
+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)]
|
||
+ ""
|
||
+ {
|
||
+ making_const_table = TRUE;
|
||
+ assemble_integer(operands[0], 16, 0, 1);
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "16")]
|
||
+)
|
||
+
|
||
+;;=============================================================================
|
||
+;; coprocessor instructions
|
||
+;;-----------------------------------------------------------------------------
|
||
+(define_insn "cop"
|
||
+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03")
|
||
+ (match_operand 1 "immediate_operand" "Ku04")
|
||
+ (match_operand 2 "immediate_operand" "Ku04")
|
||
+ (match_operand 3 "immediate_operand" "Ku04")
|
||
+ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)]
|
||
+ ""
|
||
+ "cop\tcp%0, cr%1, cr%2, cr%3, %4"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mvcrsi"
|
||
+ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z")
|
||
+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
|
||
+ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
|
||
+ VUNSPEC_MVCR)) ]
|
||
+ ""
|
||
+ "@
|
||
+ mvcr.w\tcp%1, %0, cr%2
|
||
+ stcm.w\tcp%1, %0, cr%2
|
||
+ stc.w\tcp%1, %0, cr%2"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mvcrdi"
|
||
+ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z")
|
||
+ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03")
|
||
+ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")]
|
||
+ VUNSPEC_MVCR)) ]
|
||
+ ""
|
||
+ "@
|
||
+ mvcr.d\tcp%1, %0, cr%2
|
||
+ stcm.d\tcp%1, %0, cr%2-cr%i2
|
||
+ stc.d\tcp%1, %0, cr%2"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mvrcsi"
|
||
+ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
|
||
+ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
|
||
+ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")]
|
||
+ VUNSPEC_MVRC)]
|
||
+ ""
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "mvrc.w\tcp%0, cr%1, %2";
|
||
+ case 1:
|
||
+ return "ldcm.w\tcp%0, %2, cr%1";
|
||
+ case 2:
|
||
+ return "ldc.w\tcp%0, cr%1, %2";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_insn "mvrcdi"
|
||
+ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03")
|
||
+ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04")
|
||
+ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")]
|
||
+ VUNSPEC_MVRC)]
|
||
+ ""
|
||
+ {
|
||
+ switch (which_alternative){
|
||
+ case 0:
|
||
+ return "mvrc.d\tcp%0, cr%1, %2";
|
||
+ case 1:
|
||
+ return "ldcm.d\tcp%0, %2, cr%1-cr%i1";
|
||
+ case 2:
|
||
+ return "ldc.d\tcp%0, cr%1, %2";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+;;=============================================================================
|
||
+;; epilogue
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; This pattern emits RTL for exit from a function. The function exit is
|
||
+;; responsible for deallocating the stack frame, restoring callee saved
|
||
+;; registers and emitting the return instruction.
|
||
+;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead.
|
||
+;;=============================================================================
|
||
+(define_expand "epilogue"
|
||
+ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
|
||
+ ""
|
||
+ "
|
||
+ if (USE_RETURN_INSN (FALSE)){
|
||
+ emit_jump_insn (gen_return ());
|
||
+ DONE;
|
||
+ }
|
||
+ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode,
|
||
+ gen_rtvec (1,
|
||
+ gen_rtx_RETURN (VOIDmode)),
|
||
+ VUNSPEC_EPILOGUE));
|
||
+ DONE;
|
||
+ "
|
||
+ )
|
||
+
|
||
+(define_insn "*epilogue_insns"
|
||
+ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
|
||
+ ""
|
||
+ {
|
||
+ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
|
||
+ return "";
|
||
+ }
|
||
+ ; Length is absolute worst case
|
||
+ [(set_attr "type" "branch")
|
||
+ (set_attr "length" "12")]
|
||
+ )
|
||
+
|
||
+(define_insn "*epilogue_insns_ret_imm"
|
||
+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])]
|
||
+ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
|
||
+ {
|
||
+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
|
||
+ return "";
|
||
+ }
|
||
+ ; Length is absolute worst case
|
||
+ [(set_attr "type" "branch")
|
||
+ (set_attr "length" "12")]
|
||
+ )
|
||
+
|
||
+(define_insn "sibcall_epilogue"
|
||
+ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)]
|
||
+ ""
|
||
+ {
|
||
+ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL);
|
||
+ return "";
|
||
+ }
|
||
+;; Length is absolute worst case
|
||
+ [(set_attr "type" "branch")
|
||
+ (set_attr "length" "12")]
|
||
+ )
|
||
+
|
||
+(define_insn "*sibcall_epilogue_insns_ret_imm"
|
||
+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i"))
|
||
+ (use (reg RETVAL_REGNUM))
|
||
+ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])]
|
||
+ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))"
|
||
+ {
|
||
+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]);
|
||
+ return "";
|
||
+ }
|
||
+ ; Length is absolute worst case
|
||
+ [(set_attr "type" "branch")
|
||
+ (set_attr "length" "12")]
|
||
+ )
|
||
+
|
||
+(define_insn "ldxi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (mem:SI (plus:SI
|
||
+ (match_operand:SI 1 "register_operand" "r")
|
||
+ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r")
|
||
+ (const_int 8)
|
||
+ (match_operand:SI 3 "immediate_operand" "Ku05"))
|
||
+ (const_int 4)))))]
|
||
+ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8
|
||
+ || INTVAL(operands[3]) == 0)"
|
||
+ {
|
||
+ switch ( INTVAL(operands[3]) ){
|
||
+ case 0:
|
||
+ return "ld.w %0, %1[%2:b << 2]";
|
||
+ case 8:
|
||
+ return "ld.w %0, %1[%2:l << 2]";
|
||
+ case 16:
|
||
+ return "ld.w %0, %1[%2:u << 2]";
|
||
+ case 24:
|
||
+ return "ld.w %0, %1[%2:t << 2]";
|
||
+ default:
|
||
+ internal_error("illegal operand for ldxi");
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "load")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; sub r8, r7, 8
|
||
+;; st.w r8[0x0], r12
|
||
+;; to
|
||
+;; sub r8, r7, 8
|
||
+;; st.w r7[-0x8], r12
|
||
+;;=============================================================================
|
||
+; (set (reg:SI 9 r8)
|
||
+; (plus:SI (reg/f:SI 6 r7)
|
||
+; (const_int ...)))
|
||
+; (set (mem:SI (reg:SI 9 r8))
|
||
+; (reg:SI 12 r12))
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (plus:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")))
|
||
+ (set (mem:SI (match_dup 0))
|
||
+ (match_operand:SI 3 "register_operand" ""))]
|
||
+ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
|
||
+ [(set (match_dup 0)
|
||
+ (plus:SI (match_dup 1)
|
||
+ (match_dup 2)))
|
||
+ (set (mem:SI (plus:SI (match_dup 1)
|
||
+ (match_dup 2)))
|
||
+ (match_dup 3))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; sub r6, r7, 4
|
||
+;; ld.w r6, r6[0x0]
|
||
+;; to
|
||
+;; sub r6, r7, 4
|
||
+;; ld.w r6, r7[-0x4]
|
||
+;;=============================================================================
|
||
+; (set (reg:SI 7 r6)
|
||
+; (plus:SI (reg/f:SI 6 r7)
|
||
+; (const_int -4 [0xfffffffc])))
|
||
+; (set (reg:SI 7 r6)
|
||
+; (mem:SI (reg:SI 7 r6)))
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (plus:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "immediate_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (mem:SI (match_dup 0)))]
|
||
+ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")"
|
||
+ [(set (match_dup 0)
|
||
+ (plus:SI (match_dup 1)
|
||
+ (match_dup 2)))
|
||
+ (set (match_dup 3)
|
||
+ (mem:SI (plus:SI (match_dup 1)
|
||
+ (match_dup 2))))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; ld.sb r0, r7[-0x6]
|
||
+;; cashs.b r0
|
||
+;; to
|
||
+;; ld.sb r0, r7[-0x6]
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [(set (match_operand:QI 0 "register_operand" "")
|
||
+ (match_operand:QI 1 "load_sb_memory_operand" ""))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (sign_extend:SI (match_dup 0)))]
|
||
+ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))"
|
||
+ [(set (match_dup 2)
|
||
+ (sign_extend:SI (match_dup 1)))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; ld.ub r0, r7[-0x6]
|
||
+;; cashu.b r0
|
||
+;; to
|
||
+;; ld.ub r0, r7[-0x6]
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [(set (match_operand:QI 0 "register_operand" "")
|
||
+ (match_operand:QI 1 "memory_operand" ""))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (zero_extend:SI (match_dup 0)))]
|
||
+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; ld.sh r0, r7[-0x6]
|
||
+;; casts.h r0
|
||
+;; to
|
||
+;; ld.sh r0, r7[-0x6]
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "register_operand" "")
|
||
+ (match_operand:HI 1 "memory_operand" ""))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (sign_extend:SI (match_dup 0)))]
|
||
+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 2)
|
||
+ (sign_extend:SI (match_dup 1)))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; ld.uh r0, r7[-0x6]
|
||
+;; castu.h r0
|
||
+;; to
|
||
+;; ld.uh r0, r7[-0x6]
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "register_operand" "")
|
||
+ (match_operand:HI 1 "memory_operand" ""))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (zero_extend:SI (match_dup 0)))]
|
||
+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 2)
|
||
+ (zero_extend:SI (match_dup 1)))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; mul rd, rx, ry
|
||
+;; add rd2, rd
|
||
+;; or
|
||
+;; add rd2, rd, rd2
|
||
+;; to
|
||
+;; mac rd2, rx, ry
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mult:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "register_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (plus:SI (match_dup 3)
|
||
+ (match_dup 0)))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:SI (mult:SI (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 3)))]
|
||
+ "")
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (mult:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "register_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (plus:SI (match_dup 0)
|
||
+ (match_dup 3)))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:SI (mult:SI (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 3)))]
|
||
+ "")
|
||
+
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Changing
|
||
+;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask
|
||
+;; to
|
||
+;; bld rs, k5
|
||
+;;
|
||
+;; If rd is dead after the operation.
|
||
+;;=============================================================================
|
||
+(define_peephole2
|
||
+ [ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (const_int 1)
|
||
+ (match_operand:SI 2 "immediate_operand" "")))
|
||
+ (set (cc0)
|
||
+ (match_dup 0))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (cc0)
|
||
+ (and:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));")
|
||
+
|
||
+(define_peephole2
|
||
+ [ (set (match_operand:SI 0 "register_operand" "")
|
||
+ (and:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (match_operand:SI 2 "one_bit_set_operand" "")))
|
||
+ (set (cc0)
|
||
+ (match_dup 0))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (cc0)
|
||
+ (and:SI (match_dup 1)
|
||
+ (match_dup 2)))]
|
||
+ "")
|
||
+
|
||
+;;=============================================================================
|
||
+;; Peephole optimizing
|
||
+;;-----------------------------------------------------------------------------
|
||
+;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2]
|
||
+;;
|
||
+;;=============================================================================
|
||
+
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (const_int 8)
|
||
+ (match_operand:SI 2 "avr32_extract_shift_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 4 "register_operand" ""))))]
|
||
+
|
||
+ "(dead_or_set_p(insn, operands[0]))"
|
||
+ {
|
||
+ switch ( INTVAL(operands[2]) ){
|
||
+ case 0:
|
||
+ return "ld.w %3, %4[%1:b << 2]";
|
||
+ case 8:
|
||
+ return "ld.w %3, %4[%1:l << 2]";
|
||
+ case 16:
|
||
+ return "ld.w %3, %4[%1:u << 2]";
|
||
+ case 24:
|
||
+ return "ld.w %3, %4[%1:t << 2]";
|
||
+ default:
|
||
+ internal_error("illegal operand for ldxi");
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "load")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255)))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 3 "register_operand" ""))))]
|
||
+
|
||
+ "(dead_or_set_p(insn, operands[0]))"
|
||
+
|
||
+ "ld.w %2, %3[%1:b << 2]"
|
||
+ [(set_attr "type" "load")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extract:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (const_int 8)
|
||
+ (match_operand:SI 2 "avr32_extract_shift_operand" "")))
|
||
+ (set (match_operand:SI 3 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 4 "register_operand" ""))))]
|
||
+
|
||
+ "(peep2_reg_dead_p(2, operands[0]))
|
||
+ || (REGNO(operands[0]) == REGNO(operands[3]))"
|
||
+ [(set (match_dup 3)
|
||
+ (mem:SI (plus:SI
|
||
+ (match_dup 4)
|
||
+ (mult:SI (zero_extract:SI (match_dup 1)
|
||
+ (const_int 8)
|
||
+ (match_dup 2))
|
||
+ (const_int 4)))))]
|
||
+ )
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (zero_extend:SI (match_operand:QI 1 "register_operand" "")))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 3 "register_operand" ""))))]
|
||
+
|
||
+ "(peep2_reg_dead_p(2, operands[0]))
|
||
+ || (REGNO(operands[0]) == REGNO(operands[2]))"
|
||
+ [(set (match_dup 2)
|
||
+ (mem:SI (plus:SI
|
||
+ (match_dup 3)
|
||
+ (mult:SI (zero_extract:SI (match_dup 1)
|
||
+ (const_int 8)
|
||
+ (const_int 0))
|
||
+ (const_int 4)))))]
|
||
+ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));"
|
||
+ )
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (and:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (const_int 255)))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 3 "register_operand" ""))))]
|
||
+
|
||
+ "(peep2_reg_dead_p(2, operands[0]))
|
||
+ || (REGNO(operands[0]) == REGNO(operands[2]))"
|
||
+ [(set (match_dup 2)
|
||
+ (mem:SI (plus:SI
|
||
+ (match_dup 3)
|
||
+ (mult:SI (zero_extract:SI (match_dup 1)
|
||
+ (const_int 8)
|
||
+ (const_int 0))
|
||
+ (const_int 4)))))]
|
||
+ ""
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "")
|
||
+ (const_int 24)))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4))
|
||
+ (match_operand:SI 3 "register_operand" ""))))]
|
||
+
|
||
+ "(peep2_reg_dead_p(2, operands[0]))
|
||
+ || (REGNO(operands[0]) == REGNO(operands[2]))"
|
||
+ [(set (match_dup 2)
|
||
+ (mem:SI (plus:SI
|
||
+ (match_dup 3)
|
||
+ (mult:SI (zero_extract:SI (match_dup 1)
|
||
+ (const_int 8)
|
||
+ (const_int 24))
|
||
+ (const_int 4)))))]
|
||
+ ""
|
||
+ )
|
||
+
|
||
+
|
||
+;;************************************************
|
||
+;; ANDN
|
||
+;;
|
||
+;;************************************************
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (not:SI (match_operand:SI 1 "register_operand" "")))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (and:SI (match_dup 2)
|
||
+ (match_dup 0)))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+
|
||
+ [(set (match_dup 2)
|
||
+ (and:SI (match_dup 2)
|
||
+ (not:SI (match_dup 1))
|
||
+ ))]
|
||
+ ""
|
||
+)
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (not:SI (match_operand:SI 1 "register_operand" "")))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (and:SI (match_dup 0)
|
||
+ (match_dup 2)
|
||
+ ))]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+
|
||
+ [(set (match_dup 2)
|
||
+ (and:SI (match_dup 2)
|
||
+ (not:SI (match_dup 1))
|
||
+ ))]
|
||
+
|
||
+ ""
|
||
+)
|
||
+
|
||
+
|
||
+;;=================================================================
|
||
+;; Addabs peephole
|
||
+;;=================================================================
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 2 "register_operand" "=r")
|
||
+ (abs:SI (match_operand:SI 1 "register_operand" "r")))
|
||
+ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (plus:SI (match_operand:SI 3 "register_operand" "r")
|
||
+ (match_dup 2)))]
|
||
+ "dead_or_set_p(insn, operands[2])"
|
||
+ "addabs %0, %3, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "set_z")])
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 2 "register_operand" "=r")
|
||
+ (abs:SI (match_operand:SI 1 "register_operand" "r")))
|
||
+ (set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (plus:SI (match_dup 2)
|
||
+ (match_operand:SI 3 "register_operand" "r")))]
|
||
+ "dead_or_set_p(insn, operands[2])"
|
||
+ "addabs %0, %3, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "cc" "set_z")])
|
||
+
|
||
+
|
||
+;;=================================================================
|
||
+;; Detect roundings
|
||
+;;=================================================================
|
||
+
|
||
+(define_insn "*round"
|
||
+ [(set (match_operand:SI 0 "register_operand" "+r")
|
||
+ (ashiftrt:SI (plus:SI (match_dup 0)
|
||
+ (match_operand:SI 1 "immediate_operand" "i"))
|
||
+ (match_operand:SI 2 "immediate_operand" "i")))]
|
||
+ "avr32_rnd_operands(operands[1], operands[2])"
|
||
+
|
||
+ "satrnds %0 >> %2, 31"
|
||
+
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")]
|
||
+
|
||
+ )
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (plus:SI (match_dup 0)
|
||
+ (match_operand:SI 1 "immediate_operand" "")))
|
||
+ (set (match_dup 0)
|
||
+ (ashiftrt:SI (match_dup 0)
|
||
+ (match_operand:SI 2 "immediate_operand" "")))]
|
||
+ "avr32_rnd_operands(operands[1], operands[2])"
|
||
+
|
||
+ [(set (match_dup 0)
|
||
+ (ashiftrt:SI (plus:SI (match_dup 0)
|
||
+ (match_dup 1))
|
||
+ (match_dup 2)))]
|
||
+ )
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 0 "register_operand" "r")
|
||
+ (plus:SI (match_dup 0)
|
||
+ (match_operand:SI 1 "immediate_operand" "i")))
|
||
+ (set (match_dup 0)
|
||
+ (ashiftrt:SI (match_dup 0)
|
||
+ (match_operand:SI 2 "immediate_operand" "i")))]
|
||
+ "avr32_rnd_operands(operands[1], operands[2])"
|
||
+
|
||
+ "satrnds %0 >> %2, 31"
|
||
+
|
||
+ [(set_attr "type" "alu_sat")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")]
|
||
+
|
||
+ )
|
||
+
|
||
+
|
||
+;;=================================================================
|
||
+;; mcall
|
||
+;;=================================================================
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand 1 "avr32_const_pool_ref_operand" ""))
|
||
+ (parallel [(call (mem:SI (match_dup 0))
|
||
+ (match_operand 2 "" ""))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ "dead_or_set_p(insn, operands[0])"
|
||
+ "mcall %1"
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")]
|
||
+)
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand:SI 2 "register_operand" "")
|
||
+ (match_operand 1 "avr32_const_pool_ref_operand" ""))
|
||
+ (parallel [(set (match_operand 0 "register_operand" "")
|
||
+ (call (mem:SI (match_dup 2))
|
||
+ (match_operand 3 "" "")))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ "dead_or_set_p(insn, operands[2])"
|
||
+ "mcall %1"
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "call_set")]
|
||
+)
|
||
+
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand 1 "avr32_const_pool_ref_operand" ""))
|
||
+ (parallel [(call (mem:SI (match_dup 0))
|
||
+ (match_operand 2 "" ""))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ "peep2_reg_dead_p(2, operands[0])"
|
||
+ [(parallel [(call (mem:SI (match_dup 1))
|
||
+ (match_dup 2))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ""
|
||
+)
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (match_operand 1 "avr32_const_pool_ref_operand" ""))
|
||
+ (parallel [(set (match_operand 2 "register_operand" "")
|
||
+ (call (mem:SI (match_dup 0))
|
||
+ (match_operand 3 "" "")))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))"
|
||
+ [(parallel [(set (match_dup 2)
|
||
+ (call (mem:SI (match_dup 1))
|
||
+ (match_dup 3)))
|
||
+ (clobber (reg:SI LR_REGNUM))])]
|
||
+ ""
|
||
+)
|
||
+
|
||
+;;=================================================================
|
||
+;; Returning a value
|
||
+;;=================================================================
|
||
+
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand 0 "register_operand" "")
|
||
+ (match_operand 1 "register_operand" ""))
|
||
+ (return)]
|
||
+ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)
|
||
+ && (REGNO(operands[1]) != LR_REGNUM)
|
||
+ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)"
|
||
+ "retal %1"
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "2")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand 0 "register_operand" "r")
|
||
+ (match_operand 1 "immediate_operand" "i"))
|
||
+ (return)]
|
||
+ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) &&
|
||
+ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))"
|
||
+ {
|
||
+ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]);
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "type" "call")
|
||
+ (set_attr "length" "4")]
|
||
+ )
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand 0 "register_operand" "r")
|
||
+ (match_operand 1 "immediate_operand" "i"))
|
||
+ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)]
|
||
+ "(REGNO(operands[0]) == RETVAL_REGNUM) &&
|
||
+ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))"
|
||
+ {
|
||
+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]);
|
||
+ return "";
|
||
+ }
|
||
+ ; Length is absolute worst case
|
||
+ [(set_attr "type" "branch")
|
||
+ (set_attr "length" "12")]
|
||
+ )
|
||
+
|
||
+(define_peephole
|
||
+ [(set (match_operand 0 "register_operand" "=r")
|
||
+ (if_then_else (match_operator 1 "avr32_comparison_operator"
|
||
+ [(match_operand 4 "register_operand" "r")
|
||
+ (match_operand 5 "register_immediate_operand" "rKs21")])
|
||
+ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08")
|
||
+ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08")))
|
||
+ (return)]
|
||
+ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)"
|
||
+ {
|
||
+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]);
|
||
+
|
||
+ if ( GET_CODE(operands[2]) == REG
|
||
+ && GET_CODE(operands[3]) == REG
|
||
+ && REGNO(operands[2]) != LR_REGNUM
|
||
+ && REGNO(operands[3]) != LR_REGNUM ){
|
||
+ return "ret%1 %2\;ret%i1 %3";
|
||
+ } else if ( GET_CODE(operands[2]) == REG
|
||
+ && GET_CODE(operands[3]) == CONST_INT ){
|
||
+ if ( INTVAL(operands[3]) == -1
|
||
+ || INTVAL(operands[3]) == 0
|
||
+ || INTVAL(operands[3]) == 1 ){
|
||
+ return "ret%1 %2\;ret%i1 %d3";
|
||
+ } else {
|
||
+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
|
||
+ }
|
||
+ } else if ( GET_CODE(operands[2]) == CONST_INT
|
||
+ && GET_CODE(operands[3]) == REG ){
|
||
+ if ( INTVAL(operands[2]) == -1
|
||
+ || INTVAL(operands[2]) == 0
|
||
+ || INTVAL(operands[2]) == 1 ){
|
||
+ return "ret%1 %d2\;ret%i1 %3";
|
||
+ } else {
|
||
+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
|
||
+ }
|
||
+ } else {
|
||
+ if ( (INTVAL(operands[2]) == -1
|
||
+ || INTVAL(operands[2]) == 0
|
||
+ || INTVAL(operands[2]) == 1 )
|
||
+ && (INTVAL(operands[3]) == -1
|
||
+ || INTVAL(operands[3]) == 0
|
||
+ || INTVAL(operands[3]) == 1 )){
|
||
+ return "ret%1 %d2\;ret%i1 %d3";
|
||
+ } else {
|
||
+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12";
|
||
+ }
|
||
+ }
|
||
+ }
|
||
+
|
||
+ [(set_attr "length" "10")
|
||
+ (set_attr "cc" "none")
|
||
+ (set_attr "type" "call")])
|
||
+
|
||
+
|
||
+
|
||
+;;=================================================================
|
||
+;; mulnhh.w
|
||
+;;=================================================================
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "register_operand" "")
|
||
+ (neg:HI (match_operand:HI 1 "register_operand" "")))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_dup 0))
|
||
+ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))]
|
||
+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
|
||
+ [ (set (match_dup 2)
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (neg:HI (match_dup 1)))
|
||
+ (sign_extend:SI (match_dup 3))))]
|
||
+ ""
|
||
+ )
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:HI 0 "register_operand" "")
|
||
+ (neg:HI (match_operand:HI 1 "register_operand" "")))
|
||
+ (set (match_operand:SI 2 "register_operand" "")
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))
|
||
+ (sign_extend:SI (match_dup 0))))]
|
||
+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))"
|
||
+ [ (set (match_dup 2)
|
||
+ (mult:SI
|
||
+ (sign_extend:SI (neg:HI (match_dup 1)))
|
||
+ (sign_extend:SI (match_dup 3))))]
|
||
+ ""
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+;;=================================================================
|
||
+;; Vector set and extract operations
|
||
+;;=================================================================
|
||
+(define_insn "vec_setv2hi_hi"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r")
|
||
+ (vec_merge:V2HI
|
||
+ (match_dup 0)
|
||
+ (vec_duplicate:V2HI
|
||
+ (match_operand:HI 1 "register_operand" "r"))
|
||
+ (const_int 1)))]
|
||
+ ""
|
||
+ "bfins\t%0, %1, 16, 16"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+(define_insn "vec_setv2hi_lo"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "+r")
|
||
+ (vec_merge:V2HI
|
||
+ (match_dup 0)
|
||
+ (vec_duplicate:V2HI
|
||
+ (match_operand:HI 1 "register_operand" "r"))
|
||
+ (const_int 2)))]
|
||
+ ""
|
||
+ "bfins\t%0, %1, 0, 16"
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+(define_expand "vec_setv2hi"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "")
|
||
+ (vec_merge:V2HI
|
||
+ (match_dup 0)
|
||
+ (vec_duplicate:V2HI
|
||
+ (match_operand:HI 1 "register_operand" ""))
|
||
+ (match_operand 2 "immediate_operand" "")))]
|
||
+ ""
|
||
+ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); }
|
||
+ )
|
||
+
|
||
+(define_insn "vec_extractv2hi"
|
||
+ [(set (match_operand:HI 0 "register_operand" "=r")
|
||
+ (vec_select:HI
|
||
+ (match_operand:V2HI 1 "register_operand" "r")
|
||
+ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
|
||
+ ""
|
||
+ {
|
||
+ if ( INTVAL(operands[2]) == 0 )
|
||
+ return "bfextu\t%0, %1, 16, 16";
|
||
+ else
|
||
+ return "bfextu\t%0, %1, 0, 16";
|
||
+ }
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+(define_insn "vec_extractv4qi"
|
||
+ [(set (match_operand:QI 0 "register_operand" "=r")
|
||
+ (vec_select:QI
|
||
+ (match_operand:V4QI 1 "register_operand" "r")
|
||
+ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))]
|
||
+ ""
|
||
+ {
|
||
+ switch ( INTVAL(operands[2]) ){
|
||
+ case 0:
|
||
+ return "bfextu\t%0, %1, 24, 8";
|
||
+ case 1:
|
||
+ return "bfextu\t%0, %1, 16, 8";
|
||
+ case 2:
|
||
+ return "bfextu\t%0, %1, 8, 8";
|
||
+ case 3:
|
||
+ return "bfextu\t%0, %1, 0, 8";
|
||
+ default:
|
||
+ abort();
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "alu")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "clobber")])
|
||
+
|
||
+
|
||
+(define_insn "concatv2hi"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r")
|
||
+ (vec_concat:V2HI
|
||
+ (match_operand:HI 1 "register_operand" "r, r, 0")
|
||
+ (match_operand:HI 2 "register_operand" "r, 0, r")))]
|
||
+ ""
|
||
+ "@
|
||
+ mov\t%0, %1\;bfins\t%0, %2, 0, 16
|
||
+ bfins\t%0, %2, 0, 16
|
||
+ bfins\t%0, %1, 16, 16"
|
||
+ [(set_attr "length" "6, 4, 4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+
|
||
+;; Load the atomic operation description
|
||
+(include "sync.md")
|
||
+
|
||
+;; Load the SIMD description
|
||
+(include "simd.md")
|
||
+
|
||
+;; Load the FP coprAocessor patterns
|
||
+(include "fpcp.md")
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32-modes.def
|
||
@@ -0,0 +1 @@
|
||
+VECTOR_MODES (INT, 4); /* V4QI V2HI */
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32.opt
|
||
@@ -0,0 +1,86 @@
|
||
+; Options for the ATMEL AVR32 port of the compiler.
|
||
+
|
||
+; Copyright 2007 Atmel Corporation.
|
||
+;
|
||
+; This file is part of GCC.
|
||
+;
|
||
+; GCC is free software; you can redistribute it and/or modify it under
|
||
+; the terms of the GNU General Public License as published by the Free
|
||
+; Software Foundation; either version 2, or (at your option) any later
|
||
+; version.
|
||
+;
|
||
+; GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
+; WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
+; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
+; for more details.
|
||
+;
|
||
+; You should have received a copy of the GNU General Public License
|
||
+; along with GCC; see the file COPYING. If not, write to the Free
|
||
+; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
+; 02110-1301, USA.
|
||
+
|
||
+muse-rodata-section
|
||
+Target Report Mask(USE_RODATA_SECTION)
|
||
+Use section .rodata for read-only data instead of .text.
|
||
+
|
||
+mhard-float
|
||
+Target Report Undocumented Mask(HARD_FLOAT)
|
||
+Use floating point coprocessor instructions.
|
||
+
|
||
+msoft-float
|
||
+Target Report Undocumented InverseMask(HARD_FLOAT, SOFT_FLOAT)
|
||
+Use software floating-point library for floating-point operations.
|
||
+
|
||
+mforce-double-align
|
||
+Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN)
|
||
+Force double-word alignment for double-word memory accesses.
|
||
+
|
||
+mno-init-got
|
||
+Target Report RejectNegative Mask(NO_INIT_GOT)
|
||
+Do not initialize GOT register before using it when compiling PIC code.
|
||
+
|
||
+mrelax
|
||
+Target Report Mask(RELAX)
|
||
+Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1).
|
||
+
|
||
+mmd-reorg-opt
|
||
+Target Report Undocumented Mask(MD_REORG_OPTIMIZATION)
|
||
+Perform machine dependent optimizations in reorg stage.
|
||
+
|
||
+masm-addr-pseudos
|
||
+Target Report Mask(HAS_ASM_ADDR_PSEUDOS)
|
||
+Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default)
|
||
+
|
||
+mpart=
|
||
+Target Report RejectNegative Joined Var(avr32_part_name)
|
||
+Specify the AVR32 part name
|
||
+
|
||
+mcpu=
|
||
+Target Report RejectNegative Joined Undocumented Var(avr32_part_name)
|
||
+Specify the AVR32 part name (deprecated)
|
||
+
|
||
+march=
|
||
+Target Report RejectNegative Joined Var(avr32_arch_name)
|
||
+Specify the AVR32 architecture name
|
||
+
|
||
+mfast-float
|
||
+Target Report Mask(FAST_FLOAT)
|
||
+Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified.
|
||
+
|
||
+mimm-in-const-pool
|
||
+Target Report Var(avr32_imm_in_const_pool) Init(-1)
|
||
+Put large immediates in constant pool. This is enabled by default for archs with insn-cache.
|
||
+
|
||
+mno-pic
|
||
+Target Report RejectNegative Mask(NO_PIC)
|
||
+Do not generate position-independent code. (deprecated, use -fno-pic instead)
|
||
+
|
||
+mcond-exec-before-reload
|
||
+Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD)
|
||
+Enable experimental conditional execution preparation before the reload stage.
|
||
+
|
||
+mrmw-addressable-data
|
||
+Target Report Mask(RMW_ADDRESSABLE_DATA)
|
||
+Signal that all data is in range for the Atomic Read-Modify-Write memory instructions, and that
|
||
+gcc can safely generate these whenever possible.
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/avr32-protos.h
|
||
@@ -0,0 +1,196 @@
|
||
+/*
|
||
+ Prototypes for exported functions defined in avr32.c
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+ Initial porting by Anders <20>dland.
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+
|
||
+#ifndef AVR32_PROTOS_H
|
||
+#define AVR32_PROTOS_H
|
||
+
|
||
+extern const int swap_reg[];
|
||
+
|
||
+extern int avr32_valid_macmac_bypass (rtx, rtx);
|
||
+extern int avr32_valid_mulmac_bypass (rtx, rtx);
|
||
+
|
||
+extern int avr32_decode_lcomm_symbol_offset (rtx, int *);
|
||
+extern void avr32_encode_lcomm_symbol_offset (tree, char *, int);
|
||
+
|
||
+extern const char *avr32_strip_name_encoding (const char *);
|
||
+
|
||
+extern rtx avr32_get_note_reg_equiv (rtx insn);
|
||
+
|
||
+extern int avr32_use_return_insn (int iscond);
|
||
+
|
||
+extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string);
|
||
+
|
||
+extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string);
|
||
+extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string);
|
||
+extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string);
|
||
+
|
||
+extern void avr32_output_return_instruction (int single_ret_inst,
|
||
+ int iscond, rtx cond,
|
||
+ rtx r12_imm);
|
||
+extern void avr32_expand_prologue (void);
|
||
+extern void avr32_set_return_address (rtx source, rtx scratch);
|
||
+
|
||
+extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode);
|
||
+extern int avr32_extra_constraint_s (rtx value, const int strict);
|
||
+extern int avr32_eh_return_data_regno (const int n);
|
||
+extern int avr32_initial_elimination_offset (const int from, const int to);
|
||
+extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode,
|
||
+ tree type, int named);
|
||
+extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
|
||
+ rtx libname, tree fndecl);
|
||
+extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum,
|
||
+ enum machine_mode mode,
|
||
+ tree type, int named);
|
||
+#ifdef ARGS_SIZE_RTX
|
||
+/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */
|
||
+extern enum direction avr32_function_arg_padding (enum machine_mode mode,
|
||
+ tree type);
|
||
+#endif /* ARGS_SIZE_RTX */
|
||
+extern rtx avr32_function_value (tree valtype, tree func, bool outgoing);
|
||
+extern rtx avr32_libcall_value (enum machine_mode mode);
|
||
+extern int avr32_sched_use_dfa_pipeline_interface (void);
|
||
+extern bool avr32_return_in_memory (tree type, tree fntype);
|
||
+extern void avr32_regs_to_save (char *operand);
|
||
+extern void avr32_target_asm_function_prologue (FILE * file,
|
||
+ HOST_WIDE_INT size);
|
||
+extern void avr32_target_asm_function_epilogue (FILE * file,
|
||
+ HOST_WIDE_INT size);
|
||
+extern void avr32_trampoline_template (FILE * file);
|
||
+extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr,
|
||
+ rtx static_chain);
|
||
+extern int avr32_legitimate_address (enum machine_mode mode, rtx x,
|
||
+ int strict);
|
||
+extern int avr32_legitimate_constant_p (rtx x);
|
||
+
|
||
+extern int avr32_legitimate_pic_operand_p (rtx x);
|
||
+
|
||
+extern rtx avr32_find_symbol (rtx x);
|
||
+extern void avr32_select_section (rtx exp, int reloc, int align);
|
||
+extern void avr32_encode_section_info (tree decl, rtx rtl, int first);
|
||
+extern void avr32_asm_file_end (FILE * stream);
|
||
+extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len);
|
||
+extern void avr32_asm_output_common (FILE * stream, const char *name,
|
||
+ int size, int rounded);
|
||
+extern void avr32_asm_output_label (FILE * stream, const char *name);
|
||
+extern void avr32_asm_declare_object_name (FILE * stream, char *name,
|
||
+ tree decl);
|
||
+extern void avr32_asm_globalize_label (FILE * stream, const char *name);
|
||
+extern void avr32_asm_weaken_label (FILE * stream, const char *name);
|
||
+extern void avr32_asm_output_external (FILE * stream, tree decl,
|
||
+ const char *name);
|
||
+extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref);
|
||
+extern void avr32_asm_output_labelref (FILE * stream, const char *name);
|
||
+extern void avr32_notice_update_cc (rtx exp, rtx insn);
|
||
+extern void avr32_print_operand (FILE * stream, rtx x, int code);
|
||
+extern void avr32_print_operand_address (FILE * stream, rtx x);
|
||
+
|
||
+extern int avr32_symbol (rtx x);
|
||
+
|
||
+extern void avr32_select_rtx_section (enum machine_mode mode, rtx x,
|
||
+ unsigned HOST_WIDE_INT align);
|
||
+
|
||
+extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode);
|
||
+extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode);
|
||
+
|
||
+extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c,
|
||
+ const char *str);
|
||
+
|
||
+extern bool avr32_cannot_force_const_mem (rtx x);
|
||
+
|
||
+extern void avr32_init_builtins (void);
|
||
+
|
||
+extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget,
|
||
+ enum machine_mode mode, int ignore);
|
||
+
|
||
+extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type);
|
||
+
|
||
+extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca);
|
||
+
|
||
+extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum,
|
||
+ enum machine_mode mode,
|
||
+ tree type, bool named);
|
||
+
|
||
+extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from,
|
||
+ int write_back, int in_struct_p,
|
||
+ int scalar_p);
|
||
+extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to,
|
||
+ int in_struct_p, int scalar_p);
|
||
+extern int avr32_gen_movmemsi (rtx * operands);
|
||
+
|
||
+extern int avr32_rnd_operands (rtx add, rtx shift);
|
||
+extern int avr32_adjust_insn_length (rtx insn, int length);
|
||
+
|
||
+extern int symbol_mentioned_p (rtx x);
|
||
+extern int label_mentioned_p (rtx x);
|
||
+extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg);
|
||
+extern int avr32_address_register_rtx_p (rtx x, int strict_p);
|
||
+extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index,
|
||
+ int strict_p);
|
||
+
|
||
+extern int avr32_const_double_immediate (rtx value);
|
||
+extern void avr32_init_expanders (void);
|
||
+extern rtx avr32_return_addr (int count, rtx frame);
|
||
+extern bool avr32_got_mentioned_p (rtx addr);
|
||
+
|
||
+extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands);
|
||
+
|
||
+extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]);
|
||
+extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]);
|
||
+#ifdef RTX_CODE
|
||
+extern int avr32_expand_scc (RTX_CODE cond, rtx * operands);
|
||
+#endif
|
||
+
|
||
+extern int avr32_store_bypass (rtx insn_out, rtx insn_in);
|
||
+extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in);
|
||
+extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in);
|
||
+extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in);
|
||
+extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode,
|
||
+ rtx op0, rtx op1);
|
||
+
|
||
+rtx get_next_insn_cond (rtx cur_insn);
|
||
+int set_next_insn_cond (rtx cur_insn, rtx cond);
|
||
+void avr32_override_options (void);
|
||
+void avr32_load_pic_register (void);
|
||
+#ifdef GCC_BASIC_BLOCK_H
|
||
+rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn,
|
||
+ int *num_true_changes);
|
||
+rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test );
|
||
+void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes);
|
||
+#endif
|
||
+void avr32_optimization_options (int level, int size);
|
||
+int avr32_const_ok_for_move (HOST_WIDE_INT c);
|
||
+
|
||
+void avr32_split_const_expr (enum machine_mode mode,
|
||
+ enum machine_mode new_mode,
|
||
+ rtx expr,
|
||
+ rtx *split_expr);
|
||
+void avr32_get_intval (enum machine_mode mode,
|
||
+ rtx const_expr,
|
||
+ HOST_WIDE_INT *val);
|
||
+
|
||
+int avr32_cond_imm_clobber_splittable (rtx insn,
|
||
+ rtx operands[]);
|
||
+
|
||
+
|
||
+#endif /* AVR32_PROTOS_H */
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/crti.asm
|
||
@@ -0,0 +1,64 @@
|
||
+/*
|
||
+ Init/fini stuff for AVR32.
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+
|
||
+/* The code in sections .init and .fini is supposed to be a single
|
||
+ regular function. The function in .init is called directly from
|
||
+ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm
|
||
+ too.
|
||
+
|
||
+ crti.asm contributes the prologue of a function to these sections,
|
||
+ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list
|
||
+ crti.o before any other object files that might add code to .init
|
||
+ or .fini sections, and ENDFILE_SPEC should list crtn.o after any
|
||
+ such object files. */
|
||
+
|
||
+ .file "crti.asm"
|
||
+
|
||
+ .section ".init"
|
||
+/* Just load the GOT */
|
||
+ .align 2
|
||
+ .global _init
|
||
+_init:
|
||
+ stm --sp, r6, lr
|
||
+ lddpc r6, 1f
|
||
+0:
|
||
+ rsub r6, pc
|
||
+ rjmp 2f
|
||
+ .align 2
|
||
+1: .long 0b - _GLOBAL_OFFSET_TABLE_
|
||
+2:
|
||
+
|
||
+ .section ".fini"
|
||
+/* Just load the GOT */
|
||
+ .align 2
|
||
+ .global _fini
|
||
+_fini:
|
||
+ stm --sp, r6, lr
|
||
+ lddpc r6, 1f
|
||
+0:
|
||
+ rsub r6, pc
|
||
+ rjmp 2f
|
||
+ .align 2
|
||
+1: .long 0b - _GLOBAL_OFFSET_TABLE_
|
||
+2:
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/crtn.asm
|
||
@@ -0,0 +1,44 @@
|
||
+/* Copyright (C) 2001 Free Software Foundation, Inc.
|
||
+ Written By Nick Clifton
|
||
+
|
||
+ This file is free software; you can redistribute it and/or modify it
|
||
+ under the terms of the GNU General Public License as published by the
|
||
+ Free Software Foundation; either version 2, or (at your option) any
|
||
+ later version.
|
||
+
|
||
+ In addition to the permissions in the GNU General Public License, the
|
||
+ Free Software Foundation gives you unlimited permission to link the
|
||
+ compiled version of this file with other programs, and to distribute
|
||
+ those programs without any restriction coming from the use of this
|
||
+ file. (The General Public License restrictions do apply in other
|
||
+ respects; for example, they cover modification of the file, and
|
||
+ distribution when not linked into another program.)
|
||
+
|
||
+ This file is distributed in the hope that it will be useful, but
|
||
+ WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
+ General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; see the file COPYING. If not, write to
|
||
+ the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
+ Boston, MA 02111-1307, USA.
|
||
+
|
||
+ As a special exception, if you link this library with files
|
||
+ compiled with GCC to produce an executable, this does not cause
|
||
+ the resulting executable to be covered by the GNU General Public License.
|
||
+ This exception does not however invalidate any other reasons why
|
||
+ the executable file might be covered by the GNU General Public License.
|
||
+*/
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+ .file "crtn.asm"
|
||
+
|
||
+ .section ".init"
|
||
+ ldm sp++, r6, pc
|
||
+
|
||
+ .section ".fini"
|
||
+ ldm sp++, r6, pc
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/fpcp.md
|
||
@@ -0,0 +1,551 @@
|
||
+;; AVR32 machine description file for Floating-Point instructions.
|
||
+;; Copyright 2003-2006 Atmel Corporation.
|
||
+;;
|
||
+;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+;;
|
||
+;; This file is part of GCC.
|
||
+;;
|
||
+;; This program is free software; you can redistribute it and/or modify
|
||
+;; it under the terms of the GNU General Public License as published by
|
||
+;; the Free Software Foundation; either version 2 of the License, or
|
||
+;; (at your option) any later version.
|
||
+;;
|
||
+;; This program is distributed in the hope that it will be useful,
|
||
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+;; GNU General Public License for more details.
|
||
+;;
|
||
+;; You should have received a copy of the GNU General Public License
|
||
+;; along with this program; if not, write to the Free Software
|
||
+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
+
|
||
+;; -*- Mode: Scheme -*-
|
||
+
|
||
+;;******************************************************************************
|
||
+;; Automaton pipeline description for floating-point coprocessor insns
|
||
+;;******************************************************************************
|
||
+(define_cpu_unit "fid,fm1,fm2,fm3,fm4,fwb,fcmp,fcast" "avr32_ap")
|
||
+
|
||
+(define_insn_reservation "fmv_op" 1
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fmv"))
|
||
+ "is,da,d,fid,fwb")
|
||
+
|
||
+(define_insn_reservation "fmul_op" 5
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fmul"))
|
||
+ "is,da,d,fid,fm1,fm2,fm3,fm4,fwb")
|
||
+
|
||
+(define_insn_reservation "fcmps_op" 1
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fcmps"))
|
||
+ "is,da,d,fid,fcmp")
|
||
+
|
||
+(define_insn_reservation "fcmpd_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fcmpd"))
|
||
+ "is,da,d,fid*2,fcmp")
|
||
+
|
||
+(define_insn_reservation "fcast_op" 3
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fcast"))
|
||
+ "is,da,d,fid,fcmp,fcast,fwb")
|
||
+
|
||
+(define_insn_reservation "fmvcpu_op" 2
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fmvcpu"))
|
||
+ "is,da,d")
|
||
+
|
||
+(define_insn_reservation "fldd_op" 1
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fldd"))
|
||
+ "is,da,d,fwb")
|
||
+
|
||
+(define_insn_reservation "flds_op" 1
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "flds"))
|
||
+ "is,da,d,fwb")
|
||
+
|
||
+(define_insn_reservation "fsts_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fsts"))
|
||
+ "is,da*2,d")
|
||
+
|
||
+(define_insn_reservation "fstd_op" 0
|
||
+ (and (eq_attr "pipeline" "ap")
|
||
+ (eq_attr "type" "fstd"))
|
||
+ "is,da*2,d")
|
||
+
|
||
+
|
||
+(define_insn "*movsf_fpcp"
|
||
+ [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,r,m")
|
||
+ (match_operand:SF 1 "general_operand" " f,r,f,m,f,r,G,m,r"))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "@
|
||
+ fmov.s\t%0, %1
|
||
+ fmov.s\t%0, %1
|
||
+ fmov.s\t%0, %1
|
||
+ fld.s\t%0, %1
|
||
+ fst.s\t%0, %1
|
||
+ mov\t%0, %1
|
||
+ mov\t%0, %1
|
||
+ ld.w\t%0, %1
|
||
+ st.w\t%0, %1"
|
||
+ [(set_attr "length" "4,4,4,4,4,2,4,4,4")
|
||
+ (set_attr "type" "fmv,flds,fmvcpu,flds,fsts,alu,alu,load,store")])
|
||
+
|
||
+(define_insn_and_split "*movdf_fpcp"
|
||
+ [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,r,f,m,r,r,m")
|
||
+ (match_operand:DF 1 "general_operand" " f,r,f,m,f,r,m,r"))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "@
|
||
+ fmov.d\t%0, %1
|
||
+ fmov.d\t%0, %1
|
||
+ fmov.d\t%0, %1
|
||
+ fld.d\t%0, %1
|
||
+ fst.d\t%0, %1
|
||
+ mov\t%0, %1\;mov\t%m0, %m1
|
||
+ ld.d\t%0, %1
|
||
+ st.d\t%0, %1"
|
||
+
|
||
+ "TARGET_HARD_FLOAT
|
||
+ && reload_completed
|
||
+ && (REG_P(operands[0]) && (REGNO_REG_CLASS(REGNO(operands[0])) == GENERAL_REGS))
|
||
+ && (REG_P(operands[1]) && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS))"
|
||
+ [(set (match_dup 0) (match_dup 1))
|
||
+ (set (match_dup 2) (match_dup 3))]
|
||
+ "
|
||
+ {
|
||
+ operands[2] = gen_highpart (SImode, operands[0]);
|
||
+ operands[0] = gen_lowpart (SImode, operands[0]);
|
||
+ operands[3] = gen_highpart(SImode, operands[1]);
|
||
+ operands[1] = gen_lowpart(SImode, operands[1]);
|
||
+ }
|
||
+ "
|
||
+
|
||
+ [(set_attr "length" "4,4,4,4,4,4,4,4")
|
||
+ (set_attr "type" "fmv,fldd,fmvcpu,fldd,fstd,alu2,load2,store2")])
|
||
+
|
||
+
|
||
+(define_insn "mulsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmul.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "nmulsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f"))))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmul.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
|
||
+ (neg:SF (match_dup 0)))]
|
||
+ "TARGET_HARD_FLOAT &&
|
||
+ (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
|
||
+ [(set (match_dup 3)
|
||
+ (neg:SF (mult:SF (match_dup 1)
|
||
+ (match_dup 2))))]
|
||
+)
|
||
+
|
||
+
|
||
+(define_insn "macsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f"))
|
||
+ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmac.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "nmacsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f")))
|
||
+ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmac.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
|
||
+ (minus:SF
|
||
+ (match_dup 3)
|
||
+ (match_dup 0)))]
|
||
+ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:SF (neg:SF (mult:SF (match_dup 1)
|
||
+ (match_dup 2)))
|
||
+ (match_dup 3)))]
|
||
+)
|
||
+
|
||
+
|
||
+(define_insn "msubacsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f"))
|
||
+ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmsc.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:SF 3 "avr32_fp_register_operand" "")
|
||
+ (minus:SF
|
||
+ (match_dup 0)
|
||
+ (match_dup 3)))]
|
||
+ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (minus:SF (mult:SF (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 3)))]
|
||
+)
|
||
+
|
||
+(define_insn "nmsubacsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f")))
|
||
+ (match_operand:SF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmsc.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+
|
||
+
|
||
+(define_insn "addsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fadd.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "subsf3"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fsub.s\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+
|
||
+(define_insn "negsf2"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (neg:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fneg.s\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmv")])
|
||
+
|
||
+(define_insn "abssf2"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (abs:SF (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fabs.s\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmv")])
|
||
+
|
||
+(define_insn "truncdfsf2"
|
||
+ [(set (match_operand:SF 0 "avr32_fp_register_operand" "=f")
|
||
+ (float_truncate:SF
|
||
+ (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fcastd.s\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fcast")])
|
||
+
|
||
+(define_insn "extendsfdf2"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (float_extend:DF
|
||
+ (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fcasts.d\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fcast")])
|
||
+
|
||
+(define_insn "muldf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmul.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "nmuldf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f"))))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmul.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
|
||
+ (neg:DF (match_dup 0)))]
|
||
+ "TARGET_HARD_FLOAT &&
|
||
+ (peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[3]) == REGNO(operands[0])))"
|
||
+ [(set (match_dup 3)
|
||
+ (neg:DF (mult:DF (match_dup 1)
|
||
+ (match_dup 2))))]
|
||
+)
|
||
+
|
||
+(define_insn "macdf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f"))
|
||
+ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmac.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "msubacdf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f"))
|
||
+ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmsc.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
|
||
+ (minus:DF
|
||
+ (match_dup 0)
|
||
+ (match_dup 3)))]
|
||
+ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (minus:DF (mult:DF (match_dup 1)
|
||
+ (match_dup 2))
|
||
+ (match_dup 3)))]
|
||
+ )
|
||
+
|
||
+(define_insn "nmsubacdf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f")))
|
||
+ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmsc.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "nmacdf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:DF (neg:DF (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f")))
|
||
+ (match_operand:DF 3 "avr32_fp_register_operand" "0")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fnmac.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_peephole2
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "")
|
||
+ (mult:DF (match_operand:DF 1 "avr32_fp_register_operand" "")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "")))
|
||
+ (set (match_operand:DF 3 "avr32_fp_register_operand" "")
|
||
+ (minus:DF
|
||
+ (match_dup 3)
|
||
+ (match_dup 0)))]
|
||
+ "TARGET_HARD_FLOAT && peep2_reg_dead_p(2, operands[0])"
|
||
+ [(set (match_dup 3)
|
||
+ (plus:DF (neg:DF (mult:DF (match_dup 1)
|
||
+ (match_dup 2)))
|
||
+ (match_dup 3)))]
|
||
+)
|
||
+
|
||
+(define_insn "adddf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (plus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fadd.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "subdf3"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (minus:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 2 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fsub.d\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmul")])
|
||
+
|
||
+(define_insn "negdf2"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (neg:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fneg.d\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmv")])
|
||
+
|
||
+(define_insn "absdf2"
|
||
+ [(set (match_operand:DF 0 "avr32_fp_register_operand" "=f")
|
||
+ (abs:DF (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fabs.d\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmv")])
|
||
+
|
||
+
|
||
+(define_expand "cmpdf"
|
||
+ [(set (cc0)
|
||
+ (compare:DF
|
||
+ (match_operand:DF 0 "general_operand" "")
|
||
+ (match_operand:DF 1 "general_operand" "")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "{
|
||
+ rtx tmpreg;
|
||
+ if ( !REG_P(operands[0]) )
|
||
+ operands[0] = force_reg(DFmode, operands[0]);
|
||
+
|
||
+ if ( !REG_P(operands[1]) )
|
||
+ operands[1] = force_reg(DFmode, operands[1]);
|
||
+
|
||
+ avr32_compare_op0 = operands[0];
|
||
+ avr32_compare_op1 = operands[1];
|
||
+
|
||
+ emit_insn(gen_cmpdf_internal(operands[0], operands[1]));
|
||
+
|
||
+ tmpreg = gen_reg_rtx(SImode);
|
||
+ emit_insn(gen_fpcc_to_reg(tmpreg));
|
||
+ emit_insn(gen_reg_to_cc(tmpreg));
|
||
+
|
||
+ DONE;
|
||
+ }"
|
||
+)
|
||
+
|
||
+(define_insn "cmpdf_internal"
|
||
+ [(set (reg:CC FPCC_REGNUM)
|
||
+ (compare:CC
|
||
+ (match_operand:DF 0 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:DF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ {
|
||
+ if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
|
||
+ return "fcmp.d\t%0, %1";
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fcmpd")
|
||
+ (set_attr "cc" "fpcompare")])
|
||
+
|
||
+(define_expand "cmpsf"
|
||
+ [(set (cc0)
|
||
+ (compare:SF
|
||
+ (match_operand:SF 0 "general_operand" "")
|
||
+ (match_operand:SF 1 "general_operand" "")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "{
|
||
+ rtx tmpreg;
|
||
+ if ( !REG_P(operands[0]) )
|
||
+ operands[0] = force_reg(SFmode, operands[0]);
|
||
+
|
||
+ if ( !REG_P(operands[1]) )
|
||
+ operands[1] = force_reg(SFmode, operands[1]);
|
||
+
|
||
+ avr32_compare_op0 = operands[0];
|
||
+ avr32_compare_op1 = operands[1];
|
||
+
|
||
+ emit_insn(gen_cmpsf_internal(operands[0], operands[1]));
|
||
+
|
||
+ tmpreg = gen_reg_rtx(SImode);
|
||
+ emit_insn(gen_fpcc_to_reg(tmpreg));
|
||
+ emit_insn(gen_reg_to_cc(tmpreg));
|
||
+
|
||
+ DONE;
|
||
+ }"
|
||
+)
|
||
+
|
||
+(define_insn "cmpsf_internal"
|
||
+ [(set (reg:CC FPCC_REGNUM)
|
||
+ (compare:CC
|
||
+ (match_operand:SF 0 "avr32_fp_register_operand" "f")
|
||
+ (match_operand:SF 1 "avr32_fp_register_operand" "f")))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ {
|
||
+ if (!rtx_equal_p(cc_prev_status.mdep.fpvalue, SET_SRC(PATTERN (insn))) )
|
||
+ return "fcmp.s\t%0, %1";
|
||
+ return "";
|
||
+ }
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fcmps")
|
||
+ (set_attr "cc" "fpcompare")])
|
||
+
|
||
+(define_insn "fpcc_to_reg"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=r")
|
||
+ (unspec:SI [(reg:CC FPCC_REGNUM)]
|
||
+ UNSPEC_FPCC_TO_REG))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "fmov.s\t%0, fsr"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "fmvcpu")])
|
||
+
|
||
+(define_insn "reg_to_cc"
|
||
+ [(set (cc0)
|
||
+ (unspec:SI [(match_operand:SI 0 "register_operand" "r")]
|
||
+ UNSPEC_REG_TO_CC))]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ "musfr\t%0"
|
||
+ [(set_attr "length" "2")
|
||
+ (set_attr "type" "alu")
|
||
+ (set_attr "cc" "from_fpcc")])
|
||
+
|
||
+(define_insn "stm_fp"
|
||
+ [(unspec [(match_operand 0 "register_operand" "r")
|
||
+ (match_operand 1 "const_int_operand" "")
|
||
+ (match_operand 2 "const_int_operand" "")]
|
||
+ UNSPEC_STMFP)]
|
||
+ "TARGET_HARD_FLOAT"
|
||
+ {
|
||
+ int cop_reglist = INTVAL(operands[1]);
|
||
+
|
||
+ if (INTVAL(operands[2]) != 0)
|
||
+ return "stcm.w\tcp0, --%0, %C1";
|
||
+ else
|
||
+ return "stcm.w\tcp0, %0, %C1";
|
||
+
|
||
+ if ( cop_reglist & ~0xff ){
|
||
+ operands[1] = GEN_INT(cop_reglist & ~0xff);
|
||
+ if (INTVAL(operands[2]) != 0)
|
||
+ return "stcm.d\tcp0, --%0, %D1";
|
||
+ else
|
||
+ return "stcm.d\tcp0, %0, %D1";
|
||
+ }
|
||
+ }
|
||
+ [(set_attr "type" "fstm")
|
||
+ (set_attr "length" "4")
|
||
+ (set_attr "cc" "none")])
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/lib1funcs.S
|
||
@@ -0,0 +1,2874 @@
|
||
+/* Macro for moving immediate value to register. */
|
||
+.macro mov_imm reg, imm
|
||
+.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm))
|
||
+ mov \reg, \imm
|
||
+#if __AVR32_UC__ >= 2
|
||
+.elseif ((\imm & 0xffff) == 0)
|
||
+ movh \reg, hi(\imm)
|
||
+
|
||
+#endif
|
||
+.else
|
||
+ mov \reg, lo(\imm)
|
||
+ orh \reg, hi(\imm)
|
||
+.endif
|
||
+.endm
|
||
+
|
||
+
|
||
+
|
||
+/* Adjust the unpacked double number if it is a subnormal number.
|
||
+ The exponent and mantissa pair are stored
|
||
+ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in
|
||
+ the MSB is passed in [sign]. Needs two scratch
|
||
+ registers [scratch1] and [scratch2]. An adjusted and packed double float
|
||
+ is present in [mant_hi,mant_lo] after macro has executed */
|
||
+.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2
|
||
+ /* We have an exponent which is <=0 indicating a subnormal number
|
||
+ As it should be stored as if the exponent was 1 (although the
|
||
+ exponent field is all zeros to indicate a subnormal number)
|
||
+ we have to shift down the mantissa to its correct position. */
|
||
+ neg \exp
|
||
+ sub \exp,-1 /* amount to shift down */
|
||
+ cp.w \exp,54
|
||
+ brlo 50f /* if more than 53 shift steps, the
|
||
+ entire mantissa will disappear
|
||
+ without any rounding to occur */
|
||
+ mov \mant_hi, 0
|
||
+ mov \mant_lo, 0
|
||
+ rjmp 52f
|
||
+50:
|
||
+ sub \exp,-10 /* do the shift to position the
|
||
+ mantissa at the same time
|
||
+ note! this does not include the
|
||
+ final 1 step shift to add the sign */
|
||
+
|
||
+ /* when shifting, save all shifted out bits in [scratch2]. we may need to
|
||
+ look at them to make correct rounding. */
|
||
+
|
||
+ rsub \scratch1,\exp,32 /* get inverted shift count */
|
||
+ cp.w \exp,32 /* handle shifts >= 32 separately */
|
||
+ brhs 51f
|
||
+
|
||
+ /* small (<32) shift amount, both words are part of the shift */
|
||
+ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/
|
||
+ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/
|
||
+ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */
|
||
+ lsr \mant_hi,\mant_hi,\exp /* shift down msw */
|
||
+ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */
|
||
+ rjmp 50f
|
||
+
|
||
+ /* large (>=32) shift amount, only lsw will have bits left after shift.
|
||
+ note that shift operations will use ((shift count) mod 32) so
|
||
+ we do not need to subtract 32 from shift count. */
|
||
+51:
|
||
+ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */
|
||
+ or \scratch2,\mant_lo /* also save all bits from lsw */
|
||
+ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */
|
||
+ mov \mant_hi,0 /* clear msw */
|
||
+ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */
|
||
+
|
||
+50:
|
||
+ /* result is almost ready to return, except that least significant bit
|
||
+ and the part we already shifted out may cause the result to be
|
||
+ rounded */
|
||
+ bld \mant_lo,0 /* get bit to be shifted out */
|
||
+ brcc 51f /* if bit was 0, no rounding */
|
||
+
|
||
+ /* msb of part to remove is 1, so rounding depends on rest of bits */
|
||
+ tst \scratch2,\scratch2 /* get shifted out tail */
|
||
+ brne 50f /* if rest > 0, do round */
|
||
+ bld \mant_lo,1 /* we have to look at lsb in result */
|
||
+ brcc 51f /* if lsb is 0, don't round */
|
||
+
|
||
+50:
|
||
+ /* subnormal result requires rounding
|
||
+ rounding may cause subnormal to become smallest normal number
|
||
+ luckily, smallest normal number has exactly the representation
|
||
+ we got by rippling a one bit up from mantissa into exponent field. */
|
||
+ sub \mant_lo,-1
|
||
+ subcc \mant_hi,-1
|
||
+
|
||
+51:
|
||
+ /* shift and return packed double with correct sign */
|
||
+ rol \sign
|
||
+ ror \mant_hi
|
||
+ ror \mant_lo
|
||
+52:
|
||
+.endm
|
||
+
|
||
+
|
||
+/* Adjust subnormal single float number with exponent [exp]
|
||
+ and mantissa [mant] and round. */
|
||
+.macro adjust_subnormal_sf sf, exp, mant, sign, scratch
|
||
+ /* subnormal number */
|
||
+ rsub \exp,\exp, 1 /* shift amount */
|
||
+ cp.w \exp, 25
|
||
+ movhs \mant, 0
|
||
+ brhs 90f /* Return zero */
|
||
+ rsub \scratch, \exp, 32
|
||
+ lsl \scratch, \mant,\scratch/* Check if there are any bits set
|
||
+ in the bits discarded in the mantissa */
|
||
+ srne \scratch /* If so set the lsb of the shifted mantissa */
|
||
+ lsr \mant,\mant,\exp /* Shift the mantissa */
|
||
+ or \mant, \scratch /* Round lsb if any bits were shifted out */
|
||
+ /* Rounding : For explaination, see round_sf. */
|
||
+ mov \scratch, 0x7f /* Set rounding constant */
|
||
+ bld \mant, 8
|
||
+ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */
|
||
+ add \mant, \scratch /* Add rounding constant to mantissa */
|
||
+ /* We can't overflow because mantissa is at least shifted one position
|
||
+ to the right so the implicit bit is zero. We can however get the implicit
|
||
+ bit set after rounding which means that we have the lowest normal number
|
||
+ but this is ok since this bit has the same position as the LSB of the
|
||
+ exponent */
|
||
+ lsr \sf, \mant, 7
|
||
+ /* Rotate in sign */
|
||
+ lsl \sign, 1
|
||
+ ror \sf
|
||
+90:
|
||
+.endm
|
||
+
|
||
+
|
||
+/* Round the unpacked df number with exponent [exp] and
|
||
+ mantissa [mant_hi, mant_lo]. Uses scratch register
|
||
+ [scratch] */
|
||
+.macro round_df exp, mant_lo, mant_hi, scratch
|
||
+ mov \scratch, 0x3ff /* Rounding constant */
|
||
+ bld \mant_lo,11 /* Check if lsb in the final result is
|
||
+ set */
|
||
+ subeq \scratch, -1 /* Adjust rounding constant to 0x400
|
||
+ if rounding 0.5 upwards */
|
||
+ add \mant_lo, \scratch /* Round */
|
||
+ acr \mant_hi /* If overflowing we know that
|
||
+ we have all zeros in the bits not
|
||
+ scaled out so we can leave them
|
||
+ but we must increase the exponent with
|
||
+ two since we had an implicit bit
|
||
+ which is lost + the extra overflow bit */
|
||
+ subcs \exp, -2 /* Update exponent */
|
||
+.endm
|
||
+
|
||
+/* Round single float number stored in [mant] and [exp] */
|
||
+.macro round_sf exp, mant, scratch
|
||
+ /* Round:
|
||
+ For 0.5 we round to nearest even integer
|
||
+ for all other cases we round to nearest integer.
|
||
+ This means that if the digit left of the "point" (.)
|
||
+ is 1 we can add 0x80 to the mantissa since the
|
||
+ corner case 0x180 will round up to 0x200. If the
|
||
+ digit left of the "point" is 0 we will have to
|
||
+ add 0x7f since this will give 0xff and hence a
|
||
+ truncation/rounding downwards for the corner
|
||
+ case when the 9 lowest bits are 0x080 */
|
||
+ mov \scratch, 0x7f /* Set rounding constant */
|
||
+ /* Check if the mantissa is even or odd */
|
||
+ bld \mant, 8
|
||
+ subeq \scratch, -1 /* Rounding constant should be 0x80 */
|
||
+ add \mant, \scratch
|
||
+ subcs \exp, -2 /* Adjust exponent if we overflowed */
|
||
+.endm
|
||
+
|
||
+
|
||
+
|
||
+/* Pack a single float number stored in [mant] and [exp]
|
||
+ into a single float number in [sf] */
|
||
+.macro pack_sf sf, exp, mant
|
||
+ bld \mant,31 /* implicit bit to z */
|
||
+ subne \exp,1 /* if subnormal (implicit bit 0)
|
||
+ adjust exponent to storage format */
|
||
+
|
||
+ lsr \sf, \mant, 7
|
||
+ bfins \sf, \exp, 24, 8
|
||
+.endm
|
||
+
|
||
+/* Pack exponent [exp] and mantissa [mant_hi, mant_lo]
|
||
+ into [df_hi, df_lo]. [df_hi] is shifted
|
||
+ one bit up so the sign bit can be shifted into it */
|
||
+
|
||
+.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi
|
||
+ bld \mant_hi,31 /* implicit bit to z */
|
||
+ subne \exp,1 /* if subnormal (implicit bit 0)
|
||
+ adjust exponent to storage format */
|
||
+
|
||
+ lsr \mant_lo,11 /* shift back lsw */
|
||
+ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */
|
||
+ lsl \mant_hi,1 /* get rid of implicit bit */
|
||
+ lsr \mant_hi,11 /* shift back msw except for one step*/
|
||
+ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */
|
||
+.endm
|
||
+
|
||
+/* Normalize single float number stored in [mant] and [exp]
|
||
+ using scratch register [scratch] */
|
||
+.macro normalize_sf exp, mant, scratch
|
||
+ /* Adjust exponent and mantissa */
|
||
+ clz \scratch, \mant
|
||
+ sub \exp, \scratch
|
||
+ lsl \mant, \mant, \scratch
|
||
+.endm
|
||
+
|
||
+/* Normalize the exponent and mantissa pair stored
|
||
+ in [mant_hi,mant_lo] and [exp]. Needs two scratch
|
||
+ registers [scratch1] and [scratch2]. */
|
||
+.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2
|
||
+ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */
|
||
+ breq 80f /* No need for scaling if no zeros in high bits */
|
||
+ brcs 81f /* Check for all zeros */
|
||
+
|
||
+ /* shift amount is smaller than 32, and involves both msw and lsw*/
|
||
+ rsub \scratch2,\scratch1,32 /* shift mantissa */
|
||
+ lsl \mant_hi,\mant_hi,\scratch1
|
||
+ lsr \scratch2,\mant_lo,\scratch2
|
||
+ or \mant_hi,\scratch2
|
||
+ lsl \mant_lo,\mant_lo,\scratch1
|
||
+ sub \exp,\scratch1 /* adjust exponent */
|
||
+ rjmp 80f /* Finished */
|
||
+81:
|
||
+ /* shift amount is greater than 32 */
|
||
+ clz \scratch1,\mant_lo /* shift mantissa */
|
||
+ movcs \scratch1, 0
|
||
+ subcc \scratch1,-32
|
||
+ lsl \mant_hi,\mant_lo,\scratch1
|
||
+ mov \mant_lo,0
|
||
+ sub \exp,\scratch1 /* adjust exponent */
|
||
+80:
|
||
+.endm
|
||
+
|
||
+
|
||
+/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result.
|
||
+ The multiplication of [al]x[bl] is discarded.
|
||
+ Operands in [ah], [al], [bh], [bl].
|
||
+ Scratch registers in [sh], [sl].
|
||
+ Returns results in registers [rh], [rl].*/
|
||
+.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl
|
||
+ mulu.d \sl, \ah, \bl
|
||
+ macu.d \sl, \al, \bh
|
||
+ mulu.d \rl, \ah, \bh
|
||
+ add \rl, \sh
|
||
+ acr \rh
|
||
+.endm
|
||
+
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast)
|
||
+ .align 2
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ .global __avr32_f64_mul
|
||
+ .type __avr32_f64_mul,@function
|
||
+__avr32_f64_mul:
|
||
+#else
|
||
+ .global __avr32_f64_mul_fast
|
||
+ .type __avr32_f64_mul_fast,@function
|
||
+__avr32_f64_mul_fast:
|
||
+#endif
|
||
+ or r12, r10, r11 << 1
|
||
+ breq __avr32_f64_mul_op1_zero
|
||
+
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ pushm r4-r7, lr
|
||
+#else
|
||
+ stm --sp, r5,r6,r7,lr
|
||
+#endif
|
||
+
|
||
+#define AVR32_F64_MUL_OP1_INT_BITS 1
|
||
+#define AVR32_F64_MUL_OP2_INT_BITS 10
|
||
+#define AVR32_F64_MUL_RES_INT_BITS 11
|
||
+
|
||
+ /* op1 in {r11,r10}*/
|
||
+ /* op2 in {r9,r8}*/
|
||
+ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */
|
||
+
|
||
+ /* Unpack op1 to 1.63 format*/
|
||
+ /* exp: r7 */
|
||
+ /* sf: r11, r10 */
|
||
+ bfextu r7, r11, 20, 11 /* Extract exponent */
|
||
+
|
||
+ mov r5, 1
|
||
+
|
||
+ /* Check if normalization is needed */
|
||
+ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */
|
||
+
|
||
+ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */
|
||
+ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1))
|
||
+ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1)
|
||
+ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */
|
||
+
|
||
+
|
||
+22:
|
||
+ /* Unpack op2 to 10.54 format */
|
||
+ /* exp: r6 */
|
||
+ /* sf: r9, r8 */
|
||
+ bfextu r6, r9, 20, 11 /* Extract exponent */
|
||
+
|
||
+ /* Check if normalization is needed */
|
||
+ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */
|
||
+
|
||
+ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */
|
||
+ rol r9
|
||
+ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */
|
||
+
|
||
+23:
|
||
+
|
||
+ /* Check if any operands are NaN or INF */
|
||
+ cp r7, 0x7ff
|
||
+ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */
|
||
+ cp r6, 0x7ff
|
||
+ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */
|
||
+
|
||
+
|
||
+ /* Calculate new exponent in r12*/
|
||
+ add r12, r7, r6
|
||
+ sub r12, (1023-1)
|
||
+
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ /* Do the multiplication.
|
||
+ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */
|
||
+ mulu.d r4, r11, r8
|
||
+ macu.d r4, r10, r9
|
||
+ mulu.d r6, r10, r8
|
||
+ mulu.d r10, r11, r9
|
||
+ add r7, r4
|
||
+ adc r10, r10, r5
|
||
+ acr r11
|
||
+#else
|
||
+ /* Do the multiplication using approximate calculation. discard the al x bl
|
||
+ calculation.
|
||
+ Place result in [r11, r10, r7]. The result is in 11.85 format. */
|
||
+
|
||
+ /* Do the multiplication using approximate calculation.
|
||
+ Place result in r11, r10. Use r7, r6 as scratch registers */
|
||
+ mulu.d r6, r11, r8
|
||
+ macu.d r6, r10, r9
|
||
+ mulu.d r10, r11, r9
|
||
+ add r10, r7
|
||
+ acr r11
|
||
+#endif
|
||
+ /* Adjust exponent and mantissa */
|
||
+ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */
|
||
+ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */
|
||
+ /* In the first case, shift one pos to left.*/
|
||
+ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1
|
||
+ breq 0f
|
||
+ lsl r7, 1
|
||
+ rol r10
|
||
+ rol r11
|
||
+ sub r12, 1
|
||
+0:
|
||
+ cp r12, 0
|
||
+ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/
|
||
+
|
||
+ /* Check for Inf. */
|
||
+ cp.w r12, 0x7ff
|
||
+ brge __avr32_f64_mul_res_inf
|
||
+
|
||
+ /* Insert exponent. */
|
||
+ bfins r11, r12, 20, 11
|
||
+
|
||
+ /* Result was not subnormal. Perform rounding. */
|
||
+ /* For the fast version we discard the sticky bits and always round
|
||
+ the halfwaycase up. */
|
||
+24:
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */
|
||
+ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb
|
||
+ of r7 represent the halfway bit. */
|
||
+ eorh r7, 0x8000 /* Toggle halfway bit. */
|
||
+ /* We should now round up by adding one for the following cases:
|
||
+
|
||
+ halfway sticky|parity round-up
|
||
+ 0 x no
|
||
+ 1 0 no
|
||
+ 1 1 yes
|
||
+
|
||
+ Since we have inverted the halfway bit we can use the satu instruction
|
||
+ by saturating to 1 bit to implement this.
|
||
+ */
|
||
+ satu r7 >> 0, 1
|
||
+#else
|
||
+ lsr r7, 31
|
||
+#endif
|
||
+ add r10, r7
|
||
+ acr r11
|
||
+
|
||
+ /* Insert sign bit*/
|
||
+ bld lr, 31
|
||
+ bst r11, 31
|
||
+
|
||
+ /* Return result in [r11,r10] */
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ popm r4-r7, pc
|
||
+#else
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+#endif
|
||
+
|
||
+
|
||
+__avr32_f64_mul_op1_subnormal:
|
||
+ andh r11, 0x000f /* Remove sign bit and exponent */
|
||
+ clz r12, r10 /* Count leading zeros in lsw */
|
||
+ clz r6, r11 /* Count leading zeros in msw */
|
||
+ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS
|
||
+ movcs r6, r12
|
||
+ subcc r6, AVR32_F64_MUL_OP1_INT_BITS
|
||
+ cp.w r6, 32
|
||
+ brge 0f
|
||
+
|
||
+ /* shifting involves both msw and lsw*/
|
||
+ rsub r12, r6, 32 /* shift mantissa */
|
||
+ lsl r11, r11, r6
|
||
+ lsr r12, r10, r12
|
||
+ or r11, r12
|
||
+ lsl r10, r10, r6
|
||
+ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS
|
||
+ sub r7, r6 /* adjust exponent */
|
||
+ rjmp 22b /* Finished */
|
||
+0:
|
||
+ /* msw is zero so only need to consider lsw */
|
||
+ lsl r11, r10, r6
|
||
+ breq __avr32_f64_mul_res_zero
|
||
+ mov r10, 0
|
||
+ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS
|
||
+ sub r7, r6 /* adjust exponent */
|
||
+ rjmp 22b
|
||
+
|
||
+
|
||
+__avr32_f64_mul_op2_subnormal:
|
||
+ andh r9, 0x000f /* Remove sign bit and exponent */
|
||
+ clz r12, r8 /* Count leading zeros in lsw */
|
||
+ clz r5, r9 /* Count leading zeros in msw */
|
||
+ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS
|
||
+ movcs r5, r12
|
||
+ subcc r5, AVR32_F64_MUL_OP2_INT_BITS
|
||
+ cp.w r5, 32
|
||
+ brge 0f
|
||
+
|
||
+ /* shifting involves both msw and lsw*/
|
||
+ rsub r12, r5, 32 /* shift mantissa */
|
||
+ lsl r9, r9, r5
|
||
+ lsr r12, r8, r12
|
||
+ or r9, r12
|
||
+ lsl r8, r8, r5
|
||
+ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS
|
||
+ sub r6, r5 /* adjust exponent */
|
||
+ rjmp 23b /* Finished */
|
||
+0:
|
||
+ /* msw is zero so only need to consider lsw */
|
||
+ lsl r9, r8, r5
|
||
+ breq __avr32_f64_mul_res_zero
|
||
+ mov r8, 0
|
||
+ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS
|
||
+ sub r6, r5 /* adjust exponent */
|
||
+ rjmp 23b
|
||
+
|
||
+
|
||
+__avr32_f64_mul_op_nan_or_inf:
|
||
+ /* Same code for OP1 and OP2*/
|
||
+ /* Since we are here, at least one of the OPs were NaN or INF*/
|
||
+ andh r9, 0x000f /* Remove sign bit and exponent */
|
||
+ andh r11, 0x000f /* Remove sign bit and exponent */
|
||
+ /* Merge the regs in each operand to check for zero*/
|
||
+ or r11, r10 /* op1 */
|
||
+ or r9, r8 /* op2 */
|
||
+ /* Check if op1 is NaN or INF */
|
||
+ cp r7, 0x7ff
|
||
+ brne __avr32_f64_mul_op1_not_naninf
|
||
+ /* op1 was NaN or INF.*/
|
||
+ cp r11, 0
|
||
+ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/
|
||
+ /*op1 was INF. check if op2 is NaN or INF*/
|
||
+ cp r6, 0x7ff
|
||
+ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/
|
||
+ /* op1 is INF, op2 is either NaN or INF*/
|
||
+ cp r9, 0
|
||
+ breq __avr32_f64_mul_res_inf /*op2 was also INF*/
|
||
+ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/
|
||
+
|
||
+__avr32_f64_mul_op1_not_naninf:
|
||
+ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/
|
||
+ cp r9, 0
|
||
+ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/
|
||
+ rjmp __avr32_f64_mul_res_nan /*else return NaN*/
|
||
+
|
||
+__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ /* Check how much we must scale down the mantissa. */
|
||
+ neg r12
|
||
+ sub r12, -1 /* We do no longer have an implicit bit. */
|
||
+ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */
|
||
+ cp.w r12, 32
|
||
+ brge 0f
|
||
+ /* Shift amount <32 */
|
||
+ rsub r8, r12, 32
|
||
+ or r6, r7
|
||
+ lsr r7, r7, r12
|
||
+ lsl r9, r10, r8
|
||
+ or r7, r9
|
||
+ lsr r10, r10, r12
|
||
+ lsl r9, r11, r8
|
||
+ or r10, r9
|
||
+ lsr r11, r11, r12
|
||
+ rjmp 24b
|
||
+0:
|
||
+ /* Shift amount >=32 */
|
||
+ rsub r8, r12, 32
|
||
+ moveq r9, 0
|
||
+ breq 0f
|
||
+ lsl r9, r11, r8
|
||
+0:
|
||
+ or r6, r7
|
||
+ or r6, r6, r10 << 1
|
||
+ lsr r10, r10, r12
|
||
+ or r7, r9, r10
|
||
+ lsr r10, r11, r12
|
||
+ mov r11, 0
|
||
+ rjmp 24b
|
||
+#else
|
||
+ /* Flush to zero for the fast version. */
|
||
+ mov r11, lr /*Get correct sign*/
|
||
+ andh r11, 0x8000, COH
|
||
+ mov r10, 0
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+#endif
|
||
+
|
||
+__avr32_f64_mul_res_zero:/* Multiply result is zero. */
|
||
+ mov r11, lr /*Get correct sign*/
|
||
+ andh r11, 0x8000, COH
|
||
+ mov r10, 0
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ popm r4-r7, pc
|
||
+#else
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+#endif
|
||
+
|
||
+__avr32_f64_mul_res_nan: /* Return NaN. */
|
||
+ mov r11, -1
|
||
+ mov r10, -1
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ popm r4-r7, pc
|
||
+#else
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+#endif
|
||
+
|
||
+__avr32_f64_mul_res_inf: /* Return INF. */
|
||
+ mov r11, 0xfff00000
|
||
+ bld lr, 31
|
||
+ bst r11, 31
|
||
+ mov r10, 0
|
||
+#if defined(L_avr32_f64_mul)
|
||
+ popm r4-r7, pc
|
||
+#else
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+#endif
|
||
+
|
||
+__avr32_f64_mul_op1_zero:
|
||
+ /* Get sign */
|
||
+ eor r11, r11, r9
|
||
+ andh r11, 0x8000, COH
|
||
+ /* Check if op2 is Inf or NaN. */
|
||
+ bfextu r12, r9, 20, 11
|
||
+ cp.w r12, 0x7ff
|
||
+ retne r12 /* Return 0.0 */
|
||
+ /* Return NaN */
|
||
+ mov r10, -1
|
||
+ mov r11, -1
|
||
+ ret r12
|
||
+
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast)
|
||
+ .align 2
|
||
+
|
||
+__avr32_f64_sub_from_add:
|
||
+ /* Switch sign on op2 */
|
||
+ eorh r9, 0x8000
|
||
+
|
||
+#if defined(L_avr32_f64_addsub_fast)
|
||
+ .global __avr32_f64_sub_fast
|
||
+ .type __avr32_f64_sub_fast,@function
|
||
+__avr32_f64_sub_fast:
|
||
+#else
|
||
+ .global __avr32_f64_sub
|
||
+ .type __avr32_f64_sub,@function
|
||
+__avr32_f64_sub:
|
||
+#endif
|
||
+
|
||
+ /* op1 in {r11,r10}*/
|
||
+ /* op2 in {r9,r8}*/
|
||
+
|
||
+#if defined(L_avr32_f64_addsub_fast)
|
||
+ /* If op2 is zero just return op1 */
|
||
+ or r12, r8, r9 << 1
|
||
+ reteq r12
|
||
+#endif
|
||
+
|
||
+ /* Check signs */
|
||
+ eor r12, r11, r9
|
||
+ /* Different signs, use addition. */
|
||
+ brmi __avr32_f64_add_from_sub
|
||
+
|
||
+ stm --sp, r5, r6, r7, lr
|
||
+
|
||
+ /* Get sign of op1 into r12 */
|
||
+ mov r12, r11
|
||
+ andh r12, 0x8000, COH
|
||
+
|
||
+ /* Remove sign from operands */
|
||
+ cbr r11, 31
|
||
+ cbr r9, 31
|
||
+
|
||
+ /* Put the largest number in [r11, r10]
|
||
+ and the smallest number in [r9, r8] */
|
||
+ cp r10, r8
|
||
+ cpc r11, r9
|
||
+ brhs 1f /* Skip swap if operands already correctly ordered*/
|
||
+ /* Operands were not correctly ordered, swap them*/
|
||
+ mov r7, r11
|
||
+ mov r11, r9
|
||
+ mov r9, r7
|
||
+ mov r7, r10
|
||
+ mov r10, r8
|
||
+ mov r8, r7
|
||
+ eorh r12, 0x8000 /* Invert sign in r12*/
|
||
+1:
|
||
+ /* Unpack largest operand - opH */
|
||
+ /* exp: r7 */
|
||
+ /* sf: r11, r10 */
|
||
+ lsr r7, r11, 20 /* Extract exponent */
|
||
+ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */
|
||
+ or r11, r11, r10>>21
|
||
+ lsl r10, 11
|
||
+ sbr r11, 31 /* Insert implicit bit */
|
||
+
|
||
+
|
||
+ /* Unpack smallest operand - opL */
|
||
+ /* exp: r6 */
|
||
+ /* sf: r9, r8 */
|
||
+ lsr r6, r9, 20 /* Extract exponent */
|
||
+ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */
|
||
+ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */
|
||
+ or r9, r9, r8>>21
|
||
+ lsl r8, 11
|
||
+ sbr r9, 31 /* Insert implicit bit */
|
||
+
|
||
+
|
||
+__avr32_f64_sub_opL_subnormal_done:
|
||
+ /* opH is NaN or Inf. */
|
||
+ cp.w r7, 0x7ff
|
||
+ breq __avr32_f64_sub_opH_nan_or_inf
|
||
+
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ rsub r6, r7
|
||
+ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/
|
||
+
|
||
+ /* Scale mantissa [r9, r8] with amount [r6].
|
||
+ Uses scratch registers [r5] and [lr].
|
||
+ In IEEE mode:Must not forget the sticky bits we intend to shift out. */
|
||
+
|
||
+ rsub r5,r6,32 /* get (32 - shift count)
|
||
+ (if shift count > 32 we get a
|
||
+ negative value, but that will
|
||
+ work as well in the code below.) */
|
||
+
|
||
+ cp.w r6,32 /* handle shifts >= 32 separately */
|
||
+ brhs __avr32_f64_sub_longshift
|
||
+
|
||
+ /* small (<32) shift amount, both words are part of the shift
|
||
+ first remember whether part that is lost contains any 1 bits ... */
|
||
+ lsl lr,r8,r5 /* shift away bits that are part of
|
||
+ final mantissa. only part that goes
|
||
+ to lr are bits that will be lost */
|
||
+
|
||
+ /* ... and now to the actual shift */
|
||
+ lsl r5,r9,r5 /* get bits from msw destined for lsw*/
|
||
+ lsr r8,r8,r6 /* shift down lsw of mantissa */
|
||
+ lsr r9,r9,r6 /* shift down msw of mantissa */
|
||
+ or r8,r5 /* combine these bits with prepared lsw*/
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ cp.w lr,0 /* if any '1' bit in part we lost ...*/
|
||
+ srne lr
|
||
+ or r8, lr /* ... we need to set sticky bit*/
|
||
+#endif
|
||
+
|
||
+__avr32_f64_sub_shift_done:
|
||
+ /* Now subtract the mantissas. */
|
||
+ sub r10, r8
|
||
+ sbc r11, r11, r9
|
||
+
|
||
+ /* Normalize the exponent and mantissa pair stored in
|
||
+ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */
|
||
+ clz r6,r11 /* Check if we have zeros in high bits */
|
||
+ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */
|
||
+ brcs __avr32_f64_sub_longnormalize
|
||
+
|
||
+
|
||
+ /* shift amount is smaller than 32, and involves both msw and lsw*/
|
||
+ rsub lr,r6,32 /* shift mantissa */
|
||
+ lsl r11,r11,r6
|
||
+ lsr lr,r10,lr
|
||
+ or r11,lr
|
||
+ lsl r10,r10,r6
|
||
+
|
||
+ sub r7,r6 /* adjust exponent */
|
||
+ brle __avr32_f64_sub_subnormal_result
|
||
+__avr32_f64_sub_longnormalize_done:
|
||
+
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ /* Insert the bits we will remove from the mantissa r9[31:21] */
|
||
+ lsl r9, r10, (32 - 11)
|
||
+#else
|
||
+ /* Keep the last bit shifted out. */
|
||
+ bfextu r9, r10, 10, 1
|
||
+#endif
|
||
+
|
||
+ /* Pack final result*/
|
||
+ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */
|
||
+ /* Result in [r11,r10] */
|
||
+ /* Insert mantissa */
|
||
+ lsr r10, 11
|
||
+ or r10, r10, r11<<21
|
||
+ lsr r11, 11
|
||
+ /* Insert exponent and sign bit*/
|
||
+ bfins r11, r7, 20, 11
|
||
+ or r11, r12
|
||
+
|
||
+ /* Round */
|
||
+__avr32_f64_sub_round:
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ mov_imm r7, 0x80000000
|
||
+ bld r10, 0
|
||
+ subne r7, -1
|
||
+
|
||
+ cp.w r9, r7
|
||
+ srhs r9
|
||
+#endif
|
||
+ add r10, r9
|
||
+ acr r11
|
||
+
|
||
+ /* Return result in [r11,r10] */
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+
|
||
+
|
||
+
|
||
+__avr32_f64_sub_opL_subnormal:
|
||
+ /* Extract the of mantissa */
|
||
+ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */
|
||
+ or r9, r9, r8>>21
|
||
+ lsl r8, 11
|
||
+
|
||
+ /* Set exponent to 1 if we do not have a zero. */
|
||
+ or lr, r9, r8
|
||
+ movne r6,1
|
||
+
|
||
+ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/
|
||
+ rsub lr, r7, 0
|
||
+ moveq r7,1
|
||
+ bst r11, 31
|
||
+
|
||
+ /* Check if op1 is zero, if so set exponent to 0. */
|
||
+ or lr, r11, r10
|
||
+ moveq r7,0
|
||
+
|
||
+ rjmp __avr32_f64_sub_opL_subnormal_done
|
||
+
|
||
+__avr32_f64_sub_opH_nan_or_inf:
|
||
+ /* Check if opH is NaN, if so return NaN */
|
||
+ cbr r11, 31
|
||
+ or lr, r11, r10
|
||
+ brne __avr32_f64_sub_return_nan
|
||
+
|
||
+ /* opH is Inf. */
|
||
+ /* Check if opL is Inf. or NaN */
|
||
+ cp.w r6, 0x7ff
|
||
+ breq __avr32_f64_sub_return_nan
|
||
+ /* Return infinity with correct sign. */
|
||
+ or r11, r12, r7 << 20
|
||
+ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */
|
||
+__avr32_f64_sub_return_nan:
|
||
+ mov r10, -1 /* Generate NaN in r11, r10 */
|
||
+ mov r11, -1
|
||
+ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */
|
||
+
|
||
+
|
||
+__avr32_f64_sub_subnormal_result:
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ /* Check how much we must scale down the mantissa. */
|
||
+ neg r7
|
||
+ sub r7, -1 /* We do no longer have an implicit bit. */
|
||
+ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */
|
||
+ cp.w r7, 32
|
||
+ brge 0f
|
||
+ /* Shift amount <32 */
|
||
+ rsub r8, r7, 32
|
||
+ lsl r9, r10, r8
|
||
+ srne r6
|
||
+ lsr r10, r10, r7
|
||
+ or r10, r6 /* Sticky bit from the
|
||
+ part that was shifted out. */
|
||
+ lsl r9, r11, r8
|
||
+ or r10, r10, r9
|
||
+ lsr r11, r10, r7
|
||
+ /* Set exponent */
|
||
+ mov r7, 0
|
||
+ rjmp __avr32_f64_sub_longnormalize_done
|
||
+0:
|
||
+ /* Shift amount >=32 */
|
||
+ rsub r8, r7, 64
|
||
+ lsl r9, r11, r8
|
||
+ or r9, r10
|
||
+ srne r6
|
||
+ lsr r10, r11, r7
|
||
+ or r10, r6 /* Sticky bit from the
|
||
+ part that was shifted out. */
|
||
+ mov r11, 0
|
||
+ /* Set exponent */
|
||
+ mov r7, 0
|
||
+ rjmp __avr32_f64_sub_longnormalize_done
|
||
+#else
|
||
+ /* Just flush subnormals to zero. */
|
||
+ mov r10, 0
|
||
+ mov r11, 0
|
||
+#endif
|
||
+ ldm sp++, r5, r6, r7, pc
|
||
+
|
||
+__avr32_f64_sub_longshift:
|
||
+ /* large (>=32) shift amount, only lsw will have bits left after shift.
|
||
+ note that shift operations will use ((shift count=r6) mod 32) so
|
||
+ we do not need to subtract 32 from shift count. */
|
||
+ /* Saturate the shift amount to 63. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r6 >> 0, 6
|
||
+
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ /* first remember whether part that is lost contains any 1 bits ... */
|
||
+ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */
|
||
+ breq 0f
|
||
+ lsl lr,r9,r5 /* save all lost bits from msw */
|
||
+ or lr,r8 /* also save lost bits (all) from lsw
|
||
+ now lr != 0 if we lose any bits */
|
||
+#endif
|
||
+0:
|
||
+ /* ... and now to the actual shift */
|
||
+ lsr r8,r9,r6 /* Move msw to lsw and shift. */
|
||
+ mov r9,0 /* clear msw */
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ cp.w lr,0 /* if any '1' bit in part we lost ...*/
|
||
+ srne lr
|
||
+ or r8, lr /* ... we need to set sticky bit*/
|
||
+#endif
|
||
+ rjmp __avr32_f64_sub_shift_done
|
||
+
|
||
+__avr32_f64_sub_longnormalize:
|
||
+ /* shift amount is greater than 32 */
|
||
+ clz r6,r10 /* shift mantissa */
|
||
+ /* If the resulting mantissa is zero the result is
|
||
+ zero so force exponent to zero. */
|
||
+ movcs r7, 0
|
||
+ movcs r6, 0
|
||
+ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction
|
||
+ always is +0.0 */
|
||
+ subcc r6,-32
|
||
+ lsl r11,r10,r6
|
||
+ mov r10,0
|
||
+ sub r7,r6 /* adjust exponent */
|
||
+ brle __avr32_f64_sub_subnormal_result
|
||
+ rjmp __avr32_f64_sub_longnormalize_done
|
||
+
|
||
+
|
||
+
|
||
+ .align 2
|
||
+__avr32_f64_add_from_sub:
|
||
+ /* Switch sign on op2 */
|
||
+ eorh r9, 0x8000
|
||
+
|
||
+#if defined(L_avr32_f64_addsub_fast)
|
||
+ .global __avr32_f64_add_fast
|
||
+ .type __avr32_f64_add_fast,@function
|
||
+__avr32_f64_add_fast:
|
||
+#else
|
||
+ .global __avr32_f64_add
|
||
+ .type __avr32_f64_add,@function
|
||
+__avr32_f64_add:
|
||
+#endif
|
||
+
|
||
+ /* op1 in {r11,r10}*/
|
||
+ /* op2 in {r9,r8}*/
|
||
+
|
||
+#if defined(L_avr32_f64_addsub_fast)
|
||
+ /* If op2 is zero just return op1 */
|
||
+ or r12, r8, r9 << 1
|
||
+ reteq r12
|
||
+#endif
|
||
+
|
||
+ /* Check signs */
|
||
+ eor r12, r11, r9
|
||
+ /* Different signs, use subtraction. */
|
||
+ brmi __avr32_f64_sub_from_add
|
||
+
|
||
+ stm --sp, r5, r6, r7, lr
|
||
+
|
||
+ /* Get sign of op1 into r12 */
|
||
+ mov r12, r11
|
||
+ andh r12, 0x8000, COH
|
||
+
|
||
+ /* Remove sign from operands */
|
||
+ cbr r11, 31
|
||
+ cbr r9, 31
|
||
+
|
||
+ /* Put the number with the largest exponent in [r11, r10]
|
||
+ and the number with the smallest exponent in [r9, r8] */
|
||
+ cp r11, r9
|
||
+ brhs 1f /* Skip swap if operands already correctly ordered */
|
||
+ /* Operands were not correctly ordered, swap them */
|
||
+ mov r7, r11
|
||
+ mov r11, r9
|
||
+ mov r9, r7
|
||
+ mov r7, r10
|
||
+ mov r10, r8
|
||
+ mov r8, r7
|
||
+1:
|
||
+ mov lr, 0 /* Set sticky bits to zero */
|
||
+ /* Unpack largest operand - opH */
|
||
+ /* exp: r7 */
|
||
+ /* sf: r11, r10 */
|
||
+ bfextu R7, R11, 20, 11 /* Extract exponent */
|
||
+ bfextu r11, r11, 0, 20 /* Extract mantissa */
|
||
+ sbr r11, 20 /* Insert implicit bit */
|
||
+
|
||
+ /* Unpack smallest operand - opL */
|
||
+ /* exp: r6 */
|
||
+ /* sf: r9, r8 */
|
||
+ bfextu R6, R9, 20, 11 /* Extract exponent */
|
||
+ breq __avr32_f64_add_op2_subnormal
|
||
+ bfextu r9, r9, 0, 20 /* Extract mantissa */
|
||
+ sbr r9, 20 /* Insert implicit bit */
|
||
+
|
||
+2:
|
||
+ /* opH is NaN or Inf. */
|
||
+ cp.w r7, 0x7ff
|
||
+ breq __avr32_f64_add_opH_nan_or_inf
|
||
+
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ rsub r6, r7
|
||
+ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/
|
||
+
|
||
+ /* Scale mantissa [r9, r8] with amount [r6].
|
||
+ Uses scratch registers [r5] and [lr].
|
||
+ In IEEE mode:Must not forget the sticky bits we intend to shift out. */
|
||
+ rsub r5,r6,32 /* get (32 - shift count)
|
||
+ (if shift count > 32 we get a
|
||
+ negative value, but that will
|
||
+ work as well in the code below.) */
|
||
+
|
||
+ cp.w r6,32 /* handle shifts >= 32 separately */
|
||
+ brhs __avr32_f64_add_longshift
|
||
+
|
||
+ /* small (<32) shift amount, both words are part of the shift
|
||
+ first remember whether part that is lost contains any 1 bits ... */
|
||
+ lsl lr,r8,r5 /* shift away bits that are part of
|
||
+ final mantissa. only part that goes
|
||
+ to lr are bits that will be lost */
|
||
+
|
||
+ /* ... and now to the actual shift */
|
||
+ lsl r5,r9,r5 /* get bits from msw destined for lsw*/
|
||
+ lsr r8,r8,r6 /* shift down lsw of mantissa */
|
||
+ lsr r9,r9,r6 /* shift down msw of mantissa */
|
||
+ or r8,r5 /* combine these bits with prepared lsw*/
|
||
+
|
||
+__avr32_f64_add_shift_done:
|
||
+ /* Now add the mantissas. */
|
||
+ add r10, r8
|
||
+ adc r11, r11, r9
|
||
+
|
||
+ /* Check if we overflowed. */
|
||
+ bld r11, 21
|
||
+ breq __avr32_f64_add_res_of:
|
||
+
|
||
+__avr32_f64_add_res_of_done:
|
||
+
|
||
+ /* Pack final result*/
|
||
+ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */
|
||
+ /* Result in [r11,r10] */
|
||
+ /* Insert exponent and sign bit*/
|
||
+ bfins r11, r7, 20, 11
|
||
+ or r11, r12
|
||
+
|
||
+ /* Round */
|
||
+__avr32_f64_add_round:
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ bfextu r12, r10, 0, 1 /* Extract parity bit.*/
|
||
+ or lr, r12 /* or it together with the sticky bits. */
|
||
+ eorh lr, 0x8000 /* Toggle round bit. */
|
||
+ /* We should now round up by adding one for the following cases:
|
||
+
|
||
+ halfway sticky|parity round-up
|
||
+ 0 x no
|
||
+ 1 0 no
|
||
+ 1 1 yes
|
||
+
|
||
+ Since we have inverted the halfway bit we can use the satu instruction
|
||
+ by saturating to 1 bit to implement this.
|
||
+ */
|
||
+ satu lr >> 0, 1
|
||
+#else
|
||
+ lsr lr, 31
|
||
+#endif
|
||
+ add r10, lr
|
||
+ acr r11
|
||
+
|
||
+ /* Return result in [r11,r10] */
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+
|
||
+
|
||
+__avr32_f64_add_opH_nan_or_inf:
|
||
+ /* Check if opH is NaN, if so return NaN */
|
||
+ cbr r11, 20
|
||
+ or lr, r11, r10
|
||
+ brne __avr32_f64_add_return_nan
|
||
+
|
||
+ /* opH is Inf. */
|
||
+ /* Check if opL is Inf. or NaN */
|
||
+ cp.w r6, 0x7ff
|
||
+ breq __avr32_f64_add_opL_nan_or_inf
|
||
+ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */
|
||
+__avr32_f64_add_opL_nan_or_inf:
|
||
+ cbr r9, 20
|
||
+ or lr, r9, r8
|
||
+ brne __avr32_f64_add_return_nan
|
||
+ mov r10, 0 /* Generate Inf in r11, r10 */
|
||
+ mov_imm r11, 0x7ff00000
|
||
+ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */
|
||
+__avr32_f64_add_return_nan:
|
||
+ mov r10, -1 /* Generate NaN in r11, r10 */
|
||
+ mov r11, -1
|
||
+ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */
|
||
+
|
||
+
|
||
+__avr32_f64_add_longshift:
|
||
+ /* large (>=32) shift amount, only lsw will have bits left after shift.
|
||
+ note that shift operations will use ((shift count=r6) mod 32) so
|
||
+ we do not need to subtract 32 from shift count. */
|
||
+ /* Saturate the shift amount to 63. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r6 >> 0, 6
|
||
+ /* If shift amount is 32 there are no bits from the msw that are lost. */
|
||
+ moveq lr, r8
|
||
+ breq 0f
|
||
+ /* first remember whether part that is lost contains any 1 bits ... */
|
||
+ lsl lr,r9,r5 /* save all lost bits from msw */
|
||
+#if defined(L_avr32_f64_addsub)
|
||
+ cp.w r8, 0
|
||
+ srne r8
|
||
+ or lr,r8 /* also save lost bits (all) from lsw
|
||
+ now lr != 0 if we lose any bits */
|
||
+#endif
|
||
+0:
|
||
+ /* ... and now to the actual shift */
|
||
+ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/
|
||
+ mov r9,0 /* clear msw */
|
||
+ rjmp __avr32_f64_add_shift_done
|
||
+
|
||
+__avr32_f64_add_res_of:
|
||
+ /* We overflowed. Scale down mantissa by shifting right one position. */
|
||
+ or lr, lr, lr << 1 /* Remember stickybits*/
|
||
+ lsr r11, 1
|
||
+ ror r10
|
||
+ ror lr
|
||
+ sub r7, -1 /* Increment exponent */
|
||
+
|
||
+ /* Clear mantissa to set result to Inf if the exponent is 255. */
|
||
+ cp.w r7, 0x7ff
|
||
+ moveq r10, 0
|
||
+ moveq r11, 0
|
||
+ moveq lr, 0
|
||
+ rjmp __avr32_f64_add_res_of_done
|
||
+
|
||
+__avr32_f64_add_op2_subnormal:
|
||
+ /* Set epxponent to 1 */
|
||
+ mov r6, 1
|
||
+
|
||
+ /* Check if op2 is also subnormal. */
|
||
+ cp.w r7, 0
|
||
+ brne 2b
|
||
+
|
||
+ cbr r11, 20
|
||
+ /* Both operands are subnormal. Just addd the mantissas
|
||
+ and the exponent will automatically be set to 1 if
|
||
+ we overflow into a normal number. */
|
||
+ add r10, r8
|
||
+ adc r11, r11, r9
|
||
+
|
||
+ /* Add sign bit */
|
||
+ or r11, r12
|
||
+
|
||
+ /* Return result in [r11,r10] */
|
||
+ ldm sp++, r5, r6, r7,pc
|
||
+
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_f64_to_u32
|
||
+ /* This goes into L_fixdfsi */
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_f64_to_s32
|
||
+ .global __avr32_f64_to_u32
|
||
+ .type __avr32_f64_to_u32,@function
|
||
+__avr32_f64_to_u32:
|
||
+ cp.w r11, 0
|
||
+ retmi 0 /* Negative returns 0 */
|
||
+
|
||
+ /* Fallthrough to df to signed si conversion */
|
||
+ .global __avr32_f64_to_s32
|
||
+ .type __avr32_f64_to_s32,@function
|
||
+__avr32_f64_to_s32:
|
||
+ lsl r12,r11,1
|
||
+ lsr r12,21 /* extract exponent*/
|
||
+ sub r12,1023 /* convert to unbiased exponent.*/
|
||
+ retlo 0 /* too small exponent implies zero. */
|
||
+
|
||
+1:
|
||
+ rsub r12,r12,31 /* shift count = 31 - exponent */
|
||
+ mov r9,r11 /* save sign for later...*/
|
||
+ lsl r11,11 /* remove exponent and sign*/
|
||
+ sbr r11,31 /* add implicit bit*/
|
||
+ or r11,r11,r10>>21 /* get rest of bits from lsw of double */
|
||
+ lsr r11,r11,r12 /* shift down mantissa to final place */
|
||
+ lsl r9,1 /* sign -> carry */
|
||
+ retcc r11 /* if positive, we are done */
|
||
+ neg r11 /* if negative float, negate result */
|
||
+ ret r11
|
||
+
|
||
+#endif /* L_fixdfsi*/
|
||
+
|
||
+#ifdef L_avr32_f64_to_u64
|
||
+ /* Actual function is in L_fixdfdi */
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_f64_to_s64
|
||
+ .global __avr32_f64_to_u64
|
||
+ .type __avr32_f64_to_u64,@function
|
||
+__avr32_f64_to_u64:
|
||
+ cp.w r11,0
|
||
+ /* Negative numbers return zero */
|
||
+ movmi r10, 0
|
||
+ movmi r11, 0
|
||
+ retmi r11
|
||
+
|
||
+
|
||
+
|
||
+ /* Fallthrough */
|
||
+ .global __avr32_f64_to_s64
|
||
+ .type __avr32_f64_to_s64,@function
|
||
+__avr32_f64_to_s64:
|
||
+ lsl r9,r11,1
|
||
+ lsr r9,21 /* get exponent*/
|
||
+ sub r9,1023 /* convert to correct range*/
|
||
+ /* Return zero if exponent to small */
|
||
+ movlo r10, 0
|
||
+ movlo r11, 0
|
||
+ retlo r11
|
||
+
|
||
+ mov r8,r11 /* save sign for later...*/
|
||
+1:
|
||
+ lsl r11,11 /* remove exponent */
|
||
+ sbr r11,31 /* add implicit bit*/
|
||
+ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/
|
||
+ lsl r10,11 /* align lsw correctly as well */
|
||
+ rsub r9,r9,63 /* shift count = 63 - exponent */
|
||
+ breq 1f
|
||
+
|
||
+ cp.w r9,32 /* is shift count more than one reg? */
|
||
+ brhs 0f
|
||
+
|
||
+ mov r12,r11 /* save msw */
|
||
+ lsr r10,r10,r9 /* small shift count, shift down lsw */
|
||
+ lsr r11,r11,r9 /* small shift count, shift down msw */
|
||
+ rsub r9,r9,32 /* get 32-size of shifted out tail */
|
||
+ lsl r12,r12,r9 /* align part to move from msw to lsw */
|
||
+ or r10,r12 /* combine to get new lsw */
|
||
+ rjmp 1f
|
||
+
|
||
+0:
|
||
+ lsr r10,r11,r9 /* large shift count,only lsw get bits
|
||
+ note that shift count is modulo 32*/
|
||
+ mov r11,0 /* msw will be 0 */
|
||
+
|
||
+1:
|
||
+ lsl r8,1 /* sign -> carry */
|
||
+ retcc r11 /* if positive, we are done */
|
||
+
|
||
+ neg r11 /* if negative float, negate result */
|
||
+ neg r10
|
||
+ scr r11
|
||
+ ret r11
|
||
+
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_u32_to_f64
|
||
+ /* Code located in L_floatsidf */
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_s32_to_f64
|
||
+ .global __avr32_u32_to_f64
|
||
+ .type __avr32_u32_to_f64,@function
|
||
+__avr32_u32_to_f64:
|
||
+ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */
|
||
+ mov r12, 0 /* always positive */
|
||
+ rjmp 0f /* Jump to common code for floatsidf */
|
||
+
|
||
+ .global __avr32_s32_to_f64
|
||
+ .type __avr32_s32_to_f64,@function
|
||
+__avr32_s32_to_f64:
|
||
+ mov r11, r12 /* Keep original value in r12 for sign */
|
||
+ abs r11 /* Absolute value if r12 */
|
||
+0:
|
||
+ mov r10,0 /* let remaining bits be zero */
|
||
+ reteq r11 /* zero long will return zero float */
|
||
+
|
||
+ pushm lr
|
||
+ mov r9,31+1023 /* set exponent */
|
||
+
|
||
+ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */
|
||
+
|
||
+ /* Check if a subnormal result was created */
|
||
+ cp.w r9, 0
|
||
+ brgt 0f
|
||
+
|
||
+ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */
|
||
+ popm pc
|
||
+0:
|
||
+
|
||
+ /* Round result */
|
||
+ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/
|
||
+ cp.w r9,0x7ff
|
||
+ brlt 0f
|
||
+ /*Return infinity */
|
||
+ mov r10, 0
|
||
+ mov_imm r11, 0xffe00000
|
||
+ rjmp __floatsidf_return_op1
|
||
+
|
||
+0:
|
||
+
|
||
+ /* Pack */
|
||
+ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/
|
||
+__floatsidf_return_op1:
|
||
+ lsl r12,1 /* shift in sign bit */
|
||
+ ror r11
|
||
+
|
||
+ popm pc
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_f32_cmp_eq
|
||
+ .global __avr32_f32_cmp_eq
|
||
+ .type __avr32_f32_cmp_eq,@function
|
||
+__avr32_f32_cmp_eq:
|
||
+ cp.w r12, r11
|
||
+ breq 0f
|
||
+ /* If not equal check for +/-0 */
|
||
+ /* Or together the two values and shift out the sign bit.
|
||
+ If the result is zero, then the two values are both zero. */
|
||
+ or r12, r11
|
||
+ lsl r12, 1
|
||
+ reteq 1
|
||
+ ret 0
|
||
+0:
|
||
+ /* Numbers were equal. Check for NaN or Inf */
|
||
+ mov_imm r11, 0xff000000
|
||
+ lsl r12, 1
|
||
+ cp.w r12, r11
|
||
+ retls 1 /* 0 if NaN, 1 otherwise */
|
||
+ ret 0
|
||
+#endif
|
||
+
|
||
+#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt)
|
||
+#ifdef L_avr32_f32_cmp_ge
|
||
+ .global __avr32_f32_cmp_ge
|
||
+ .type __avr32_f32_cmp_ge,@function
|
||
+__avr32_f32_cmp_ge:
|
||
+#endif
|
||
+#ifdef L_avr32_f32_cmp_lt
|
||
+ .global __avr32_f32_cmp_lt
|
||
+ .type __avr32_f32_cmp_lt,@function
|
||
+__avr32_f32_cmp_lt:
|
||
+#endif
|
||
+ lsl r10, r12, 1 /* Remove sign bits */
|
||
+ lsl r9, r11, 1
|
||
+ subfeq r10, 0
|
||
+#ifdef L_avr32_f32_cmp_ge
|
||
+ reteq 1 /* Both number are zero. Return true. */
|
||
+#endif
|
||
+#ifdef L_avr32_f32_cmp_lt
|
||
+ reteq 0 /* Both number are zero. Return false. */
|
||
+#endif
|
||
+ mov_imm r8, 0xff000000
|
||
+ cp.w r10, r8
|
||
+ rethi 0 /* Op0 is NaN */
|
||
+ cp.w r9, r8
|
||
+ rethi 0 /* Op1 is Nan */
|
||
+
|
||
+ eor r8, r11, r12
|
||
+ bld r12, 31
|
||
+#ifdef L_avr32_f32_cmp_ge
|
||
+ srcc r8 /* Set result to true if op0 is positive*/
|
||
+#endif
|
||
+#ifdef L_avr32_f32_cmp_lt
|
||
+ srcs r8 /* Set result to true if op0 is negative*/
|
||
+#endif
|
||
+ retmi r8 /* Return if signs are different */
|
||
+ brcs 0f /* Both signs negative? */
|
||
+
|
||
+ /* Both signs positive */
|
||
+ cp.w r12, r11
|
||
+#ifdef L_avr32_f32_cmp_ge
|
||
+ reths 1
|
||
+ retlo 0
|
||
+#endif
|
||
+#ifdef L_avr32_f32_cmp_lt
|
||
+ reths 0
|
||
+ retlo 1
|
||
+#endif
|
||
+0:
|
||
+ /* Both signs negative */
|
||
+ cp.w r11, r12
|
||
+#ifdef L_avr32_f32_cmp_ge
|
||
+ reths 1
|
||
+ retlo 0
|
||
+#endif
|
||
+#ifdef L_avr32_f32_cmp_lt
|
||
+ reths 0
|
||
+ retlo 1
|
||
+#endif
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_f64_cmp_eq
|
||
+ .global __avr32_f64_cmp_eq
|
||
+ .type __avr32_f64_cmp_eq,@function
|
||
+__avr32_f64_cmp_eq:
|
||
+ cp.w r10,r8
|
||
+ cpc r11,r9
|
||
+ breq 0f
|
||
+
|
||
+ /* Args were not equal*/
|
||
+ /* Both args could be zero with different sign bits */
|
||
+ lsl r11,1 /* get rid of sign bits */
|
||
+ lsl r9,1
|
||
+ or r11,r10 /* Check if all bits are zero */
|
||
+ or r11,r9
|
||
+ or r11,r8
|
||
+ reteq 1 /* If all zeros the arguments are equal
|
||
+ so return 1 else return 0 */
|
||
+ ret 0
|
||
+0:
|
||
+ /* check for NaN */
|
||
+ lsl r11,1
|
||
+ mov_imm r12, 0xffe00000
|
||
+ cp.w r10,0
|
||
+ cpc r11,r12 /* check if nan or inf */
|
||
+ retls 1 /* If Arg is NaN return 0 else 1*/
|
||
+ ret 0 /* Return */
|
||
+
|
||
+#endif
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt)
|
||
+
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ .global __avr32_f64_cmp_ge
|
||
+ .type __avr32_f64_cmp_ge,@function
|
||
+__avr32_f64_cmp_ge:
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ .global __avr32_f64_cmp_lt
|
||
+ .type __avr32_f64_cmp_lt,@function
|
||
+__avr32_f64_cmp_lt:
|
||
+#endif
|
||
+
|
||
+ /* compare magnitude of op1 and op2 */
|
||
+ lsl r11,1 /* Remove sign bit of op1 */
|
||
+ srcs r12 /* Sign op1 to lsb of r12*/
|
||
+ subfeq r10, 0
|
||
+ breq 3f /* op1 zero */
|
||
+ lsl r9,1 /* Remove sign bit of op2 */
|
||
+ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/
|
||
+
|
||
+
|
||
+ /* Check for Nan */
|
||
+ pushm lr
|
||
+ mov_imm lr, 0xffe00000
|
||
+ cp.w r10,0
|
||
+ cpc r11,lr
|
||
+ brhi 0f /* We have NaN */
|
||
+ cp.w r8,0
|
||
+ cpc r9,lr
|
||
+ brhi 0f /* We have NaN */
|
||
+ popm lr
|
||
+
|
||
+ cp.w r12,3 /* both operands negative ?*/
|
||
+ breq 1f
|
||
+
|
||
+ cp.w r12,1 /* both operands positive? */
|
||
+ brlo 2f
|
||
+
|
||
+ /* Different signs. If sign of op1 is negative the difference
|
||
+ between op1 and op2 will always be negative, and if op1 is
|
||
+ positive the difference will always be positive */
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ reteq 1
|
||
+ retne 0
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ reteq 0
|
||
+ retne 1
|
||
+#endif
|
||
+
|
||
+2:
|
||
+ /* Both operands positive. Just compute the difference */
|
||
+ cp.w r10,r8
|
||
+ cpc r11,r9
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ reths 1
|
||
+ retlo 0
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ reths 0
|
||
+ retlo 1
|
||
+#endif
|
||
+
|
||
+1:
|
||
+ /* Both operands negative. Compute the difference with operands switched */
|
||
+ cp r8,r10
|
||
+ cpc r9,r11
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ reths 1
|
||
+ retlo 0
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ reths 0
|
||
+ retlo 1
|
||
+#endif
|
||
+
|
||
+0:
|
||
+ popm pc, r12=0
|
||
+#endif
|
||
+
|
||
+3:
|
||
+ lsl r9,1 /* Remove sign bit of op1 */
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ srcs r12 /* If op2 is negative then op1 >= op2. */
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ srcc r12 /* If op2 is positve then op1 <= op2. */
|
||
+#endif
|
||
+ subfeq r8, 0
|
||
+#ifdef L_avr32_f64_cmp_ge
|
||
+ reteq 1 /* Both operands are zero. Return true. */
|
||
+#endif
|
||
+#ifdef L_avr32_f64_cmp_lt
|
||
+ reteq 0 /* Both operands are zero. Return false. */
|
||
+#endif
|
||
+ ret r12
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast)
|
||
+ .align 2
|
||
+
|
||
+#if defined(L_avr32_f64_div_fast)
|
||
+ .global __avr32_f64_div_fast
|
||
+ .type __avr32_f64_div_fast,@function
|
||
+__avr32_f64_div_fast:
|
||
+#else
|
||
+ .global __avr32_f64_div
|
||
+ .type __avr32_f64_div,@function
|
||
+__avr32_f64_div:
|
||
+#endif
|
||
+ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr
|
||
+ /* op1 in {r11,r10}*/
|
||
+ /* op2 in {r9,r8}*/
|
||
+ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */
|
||
+
|
||
+
|
||
+ /* Unpack op1 to 2.62 format*/
|
||
+ /* exp: r7 */
|
||
+ /* sf: r11, r10 */
|
||
+ lsr r7, r11, 20 /* Extract exponent */
|
||
+
|
||
+ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */
|
||
+ or r11, r11, r10>>23
|
||
+ lsl r10, 9
|
||
+ sbr r11, 29 /* Insert implicit bit */
|
||
+ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/
|
||
+
|
||
+ cbr r7, 11 /* Clear sign bit */
|
||
+ /* Check if normalization is needed */
|
||
+ breq 11f /*If number is subnormal, normalize it */
|
||
+22:
|
||
+ cp r7, 0x7ff
|
||
+ brge 2f /* Check op1 for NaN or Inf */
|
||
+
|
||
+ /* Unpack op2 to 2.62 format*/
|
||
+ /* exp: r6 */
|
||
+ /* sf: r9, r8 */
|
||
+ lsr r6, r9, 20 /* Extract exponent */
|
||
+
|
||
+ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */
|
||
+ or r9, r9, r8>>23
|
||
+ lsl r8, 9
|
||
+ sbr r9, 29 /* Insert implicit bit */
|
||
+ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/
|
||
+
|
||
+ cbr r6, 11 /* Clear sign bit */
|
||
+ /* Check if normalization is needed */
|
||
+ breq 13f /*If number is subnormal, normalize it */
|
||
+23:
|
||
+ cp r6, 0x7ff
|
||
+ brge 3f /* Check op2 for NaN or Inf */
|
||
+
|
||
+ /* Calculate new exponent */
|
||
+ sub r7, r6
|
||
+ sub r7,-1023
|
||
+
|
||
+ /* Divide */
|
||
+ /* Approximating 1/d with the following recurrence: */
|
||
+ /* R[j+1] = R[j]*(2-R[j]*d) */
|
||
+ /* Using 2.62 format */
|
||
+ /* TWO: r12 */
|
||
+ /* d = op2 = divisor (2.62 format): r9,r8 */
|
||
+ /* Multiply result : r5, r4 */
|
||
+ /* Initial guess : r3, r2 */
|
||
+ /* New approximations : r3, r2 */
|
||
+ /* op1 = Dividend (2.62 format) : r11, r10 */
|
||
+
|
||
+ mov_imm r12, 0x80000000
|
||
+
|
||
+ /* Load initial guess, using look-up table */
|
||
+ /* Initial guess is of format 01.XY, where XY is constructed as follows: */
|
||
+ /* Let d be of following format: 00.1xy....., then XY=~xy */
|
||
+ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */
|
||
+ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */
|
||
+ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */
|
||
+ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */
|
||
+ /* r2 is also part of the reg pair forming initial guess, but it*/
|
||
+ /* is kept uninitialized to save one cycle since it has so low significance*/
|
||
+
|
||
+ lsr r3, r12, 1
|
||
+ bfextu r4, r9, 27, 2
|
||
+ com r4
|
||
+ bfins r3, r4, 28, 2
|
||
+
|
||
+ /* First approximation */
|
||
+ /* Approximating to 32 bits */
|
||
+ /* r5 = R[j]*d */
|
||
+ mulu.d r4, r3, r9
|
||
+ /* r5 = 2-R[j]*d */
|
||
+ sub r5, r12, r5<<2
|
||
+ /* r3 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r4, r3, r5
|
||
+ lsl r3, r5, 2
|
||
+
|
||
+ /* Second approximation */
|
||
+ /* Approximating to 32 bits */
|
||
+ /* r5 = R[j]*d */
|
||
+ mulu.d r4, r3, r9
|
||
+ /* r5 = 2-R[j]*d */
|
||
+ sub r5, r12, r5<<2
|
||
+ /* r3 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r4, r3, r5
|
||
+ lsl r3, r5, 2
|
||
+
|
||
+ /* Third approximation */
|
||
+ /* Approximating to 32 bits */
|
||
+ /* r5 = R[j]*d */
|
||
+ mulu.d r4, r3, r9
|
||
+ /* r5 = 2-R[j]*d */
|
||
+ sub r5, r12, r5<<2
|
||
+ /* r3 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r4, r3, r5
|
||
+ lsl r3, r5, 2
|
||
+
|
||
+ /* Fourth approximation */
|
||
+ /* Approximating to 64 bits */
|
||
+ /* r5,r4 = R[j]*d */
|
||
+ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
|
||
+ lsl r5, 2
|
||
+ or r5, r5, r4>>30
|
||
+ lsl r4, 2
|
||
+ /* r5,r4 = 2-R[j]*d */
|
||
+ neg r4
|
||
+ sbc r5, r12, r5
|
||
+ /* r3,r2 = R[j]*(2-R[j]*d) */
|
||
+ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
|
||
+ lsl r3, r5, 2
|
||
+ or r3, r3, r4>>30
|
||
+ lsl r2, r4, 2
|
||
+
|
||
+
|
||
+ /* Fifth approximation */
|
||
+ /* Approximating to 64 bits */
|
||
+ /* r5,r4 = R[j]*d */
|
||
+ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
|
||
+ lsl r5, 2
|
||
+ or r5, r5, r4>>30
|
||
+ lsl r4, 2
|
||
+ /* r5,r4 = 2-R[j]*d */
|
||
+ neg r4
|
||
+ sbc r5, r12, r5
|
||
+ /* r3,r2 = R[j]*(2-R[j]*d) */
|
||
+ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/
|
||
+ lsl r3, r5, 2
|
||
+ or r3, r3, r4>>30
|
||
+ lsl r2, r4, 2
|
||
+
|
||
+
|
||
+ /* Multiply with dividend to get quotient */
|
||
+ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/
|
||
+
|
||
+
|
||
+ /* To increase speed, this result is not corrected before final rounding.*/
|
||
+ /* This may give a difference to IEEE compliant code of 1 ULP.*/
|
||
+
|
||
+
|
||
+ /* Adjust exponent and mantissa */
|
||
+ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/
|
||
+ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */
|
||
+ /* In the first case, shift one pos to left.*/
|
||
+ bld r3, 31-3
|
||
+ breq 0f
|
||
+ lsl r2, 1
|
||
+ rol r3
|
||
+ sub r7, 1
|
||
+#if defined(L_avr32_f64_div)
|
||
+ /* We must scale down the dividend to 5.59 format. */
|
||
+ lsr r10, 3
|
||
+ or r10, r10, r11 << 29
|
||
+ lsr r11, 3
|
||
+ rjmp 1f
|
||
+#endif
|
||
+0:
|
||
+#if defined(L_avr32_f64_div)
|
||
+ /* We must scale down the dividend to 6.58 format. */
|
||
+ lsr r10, 4
|
||
+ or r10, r10, r11 << 28
|
||
+ lsr r11, 4
|
||
+1:
|
||
+#endif
|
||
+ cp r7, 0
|
||
+ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f64_div)
|
||
+ /* In order to round correctly we calculate the remainder:
|
||
+ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2]
|
||
+ for the case when the quotient is halfway between the round-up
|
||
+ value and the round down value. If the remainder then is negative
|
||
+ it means that the quotient was to big and that it should not be
|
||
+ rounded up, if the remainder is positive the quotient was to small
|
||
+ and we need to round up. If the remainder is zero it means that the
|
||
+ quotient is exact but since we need to remove the guard bit we should
|
||
+ round to even. */
|
||
+
|
||
+ /* Truncate and add guard bit. */
|
||
+ andl r2, 0xff00
|
||
+ orl r2, 0x0080
|
||
+
|
||
+
|
||
+ /* Now do the multiplication. The quotient has the format 4.60
|
||
+ while the divisor has the format 2.62 which gives a result
|
||
+ of 6.58 */
|
||
+ mulu.d r0, r3, r8
|
||
+ macu.d r0, r2, r9
|
||
+ mulu.d r4, r2, r8
|
||
+ mulu.d r8, r3, r9
|
||
+ add r5, r0
|
||
+ adc r8, r8, r1
|
||
+ acr r9
|
||
+
|
||
+
|
||
+ /* Check if remainder is positive, negative or equal. */
|
||
+ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */
|
||
+ cp r4, 0
|
||
+ cpc r5
|
||
+__avr32_f64_div_round_subnormal:
|
||
+ cpc r8, r10
|
||
+ cpc r9, r11
|
||
+ srlo r6 /* Remainder positive: we need to round up.*/
|
||
+ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */
|
||
+#else
|
||
+ bfextu r6, r2, 7, 1 /* Get guard bit */
|
||
+#endif
|
||
+ /* Final packing, scale down mantissa. */
|
||
+ lsr r10, r2, 8
|
||
+ or r10, r10, r3<<24
|
||
+ lsr r11, r3, 8
|
||
+ /* Insert exponent and sign bit*/
|
||
+ bfins r11, r7, 20, 11
|
||
+ bld lr, 31
|
||
+ bst r11, 31
|
||
+
|
||
+ /* Final rounding */
|
||
+ add r10, r6
|
||
+ acr r11
|
||
+
|
||
+ /* Return result in [r11,r10] */
|
||
+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
|
||
+
|
||
+
|
||
+2:
|
||
+ /* Op1 is NaN or inf */
|
||
+ andh r11, 0x000f /* Extract mantissa */
|
||
+ or r11, r10
|
||
+ brne 16f /* Return NaN if op1 is NaN */
|
||
+ /* Op1 is inf check op2 */
|
||
+ lsr r6, r9, 20 /* Extract exponent */
|
||
+ cbr r6, 8 /* Clear sign bit */
|
||
+ cp r6, 0x7ff
|
||
+ brne 17f /* Inf/number gives inf, return inf */
|
||
+ rjmp 16f /* The rest gives NaN*/
|
||
+
|
||
+3:
|
||
+ /* Op1 is a valid number. Op 2 is NaN or inf */
|
||
+ andh r9, 0x000f /* Extract mantissa */
|
||
+ or r9, r8
|
||
+ brne 16f /* Return NaN if op2 is NaN */
|
||
+ rjmp 15f /* Op2 was inf, return zero*/
|
||
+
|
||
+11: /* Op1 was denormal. Fix it. */
|
||
+ lsl r11, 3
|
||
+ or r11, r11, r10 >> 29
|
||
+ lsl r10, 3
|
||
+ /* Check if op1 is zero. */
|
||
+ or r4, r10, r11
|
||
+ breq __avr32_f64_div_op1_zero
|
||
+ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/
|
||
+ lsr r10, 2
|
||
+ or r10, r10, r11 << 30
|
||
+ lsr r11, 2
|
||
+ rjmp 22b
|
||
+
|
||
+
|
||
+13: /* Op2 was denormal. Fix it */
|
||
+ lsl r9, 3
|
||
+ or r9, r9, r8 >> 29
|
||
+ lsl r8, 3
|
||
+ /* Check if op2 is zero. */
|
||
+ or r4, r9, r8
|
||
+ breq 17f /* Divisor is zero -> return Inf */
|
||
+ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/
|
||
+ lsr r8, 2
|
||
+ or r8, r8, r9 << 30
|
||
+ lsr r9, 2
|
||
+ rjmp 23b
|
||
+
|
||
+
|
||
+__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */
|
||
+#if defined(L_avr32_f64_div)
|
||
+ /* Check how much we must scale down the mantissa. */
|
||
+ neg r7
|
||
+ sub r7, -1 /* We do no longer have an implicit bit. */
|
||
+ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */
|
||
+ cp.w r7, 32
|
||
+ brge 0f
|
||
+ /* Shift amount <32 */
|
||
+ /* Scale down quotient */
|
||
+ rsub r6, r7, 32
|
||
+ lsr r2, r2, r7
|
||
+ lsl r12, r3, r6
|
||
+ or r2, r12
|
||
+ lsr r3, r3, r7
|
||
+ /* Scale down the dividend to match the scaling of the quotient. */
|
||
+ lsl r1, r10, r6
|
||
+ lsr r10, r10, r7
|
||
+ lsl r12, r11, r6
|
||
+ or r10, r12
|
||
+ lsr r11, r11, r7
|
||
+ mov r0, 0
|
||
+ rjmp 1f
|
||
+0:
|
||
+ /* Shift amount >=32 */
|
||
+ rsub r6, r7, 32
|
||
+ moveq r0, 0
|
||
+ moveq r12, 0
|
||
+ breq 0f
|
||
+ lsl r0, r10, r6
|
||
+ lsl r12, r11, r6
|
||
+0:
|
||
+ lsr r2, r3, r7
|
||
+ mov r3, 0
|
||
+ /* Scale down the dividend to match the scaling of the quotient. */
|
||
+ lsr r1, r10, r7
|
||
+ or r1, r12
|
||
+ lsr r10, r11, r7
|
||
+ mov r11, 0
|
||
+1:
|
||
+ /* Start performing the same rounding as done for normal numbers
|
||
+ but this time we have scaled the quotient and dividend and hence
|
||
+ need a little different comparison. */
|
||
+ /* Truncate and add guard bit. */
|
||
+ andl r2, 0xff00
|
||
+ orl r2, 0x0080
|
||
+
|
||
+ /* Now do the multiplication. */
|
||
+ mulu.d r6, r3, r8
|
||
+ macu.d r6, r2, r9
|
||
+ mulu.d r4, r2, r8
|
||
+ mulu.d r8, r3, r9
|
||
+ add r5, r6
|
||
+ adc r8, r8, r7
|
||
+ acr r9
|
||
+
|
||
+ /* Set exponent to 0 */
|
||
+ mov r7, 0
|
||
+
|
||
+ /* Check if remainder is positive, negative or equal. */
|
||
+ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */
|
||
+ cp r4, r0
|
||
+ cpc r5, r1
|
||
+ /* Now the rest of the rounding is the same as for normals. */
|
||
+ rjmp __avr32_f64_div_round_subnormal
|
||
+
|
||
+#endif
|
||
+15:
|
||
+ /* Flush to zero for the fast version. */
|
||
+ mov r11, lr /*Get correct sign*/
|
||
+ andh r11, 0x8000, COH
|
||
+ mov r10, 0
|
||
+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
|
||
+
|
||
+16: /* Return NaN. */
|
||
+ mov r11, -1
|
||
+ mov r10, -1
|
||
+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
|
||
+
|
||
+17: /* Return INF. */
|
||
+ mov r11, lr /*Get correct sign*/
|
||
+ andh r11, 0x8000, COH
|
||
+ orh r11, 0x7ff0
|
||
+ mov r10, 0
|
||
+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc
|
||
+
|
||
+__avr32_f64_div_op1_zero:
|
||
+ or r5, r8, r9 << 1
|
||
+ breq 16b /* 0.0/0.0 -> NaN */
|
||
+ bfextu r4, r9, 20, 11
|
||
+ cp r4, 0x7ff
|
||
+ brne 15b /* Return zero */
|
||
+ /* Check if divisor is Inf or NaN */
|
||
+ or r5, r8, r9 << 12
|
||
+ breq 15b /* Divisor is inf -> return zero */
|
||
+ rjmp 16b /* Return NaN */
|
||
+
|
||
+
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast)
|
||
+
|
||
+ .align 2
|
||
+__avr32_f32_sub_from_add:
|
||
+ /* Switch sign on op2 */
|
||
+ eorh r11, 0x8000
|
||
+
|
||
+#if defined(L_avr32_f32_addsub_fast)
|
||
+ .global __avr32_f32_sub_fast
|
||
+ .type __avr32_f32_sub_fast,@function
|
||
+__avr32_f32_sub_fast:
|
||
+#else
|
||
+ .global __avr32_f32_sub
|
||
+ .type __avr32_f32_sub,@function
|
||
+__avr32_f32_sub:
|
||
+#endif
|
||
+
|
||
+ /* Check signs */
|
||
+ eor r8, r11, r12
|
||
+ /* Different signs, use subtraction. */
|
||
+ brmi __avr32_f32_add_from_sub
|
||
+
|
||
+ /* Get sign of op1 */
|
||
+ mov r8, r12
|
||
+ andh r12, 0x8000, COH
|
||
+
|
||
+ /* Remove sign from operands */
|
||
+ cbr r11, 31
|
||
+#if defined(L_avr32_f32_addsub_fast)
|
||
+ reteq r8 /* If op2 is zero return op1 */
|
||
+#endif
|
||
+ cbr r8, 31
|
||
+
|
||
+ /* Put the number with the largest exponent in r10
|
||
+ and the number with the smallest exponent in r9 */
|
||
+ max r10, r8, r11
|
||
+ min r9, r8, r11
|
||
+ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/
|
||
+ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/
|
||
+ andh r12, 0x8000, COH /*Mask all but MSB*/
|
||
+
|
||
+ /* Unpack exponent and mantissa of op1 */
|
||
+ lsl r8, r10, 8
|
||
+ sbr r8, 31 /* Set implicit bit. */
|
||
+ lsr r10, 23
|
||
+
|
||
+ /* op1 is NaN or Inf. */
|
||
+ cp.w r10, 0xff
|
||
+ breq __avr32_f32_sub_op1_nan_or_inf
|
||
+
|
||
+ /* Unpack exponent and mantissa of op2 */
|
||
+ lsl r11, r9, 8
|
||
+ sbr r11, 31 /* Set implicit bit. */
|
||
+ lsr r9, 23
|
||
+
|
||
+#if defined(L_avr32_f32_addsub)
|
||
+ /* Keep sticky bit for correct IEEE rounding */
|
||
+ st.w --sp, r12
|
||
+
|
||
+ /* op2 is either zero or subnormal. */
|
||
+ breq __avr32_f32_sub_op2_subnormal
|
||
+0:
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ sub r12, r10, r9
|
||
+
|
||
+ breq __avr32_f32_sub_shift_done
|
||
+
|
||
+ /* Saturate the shift amount to 31. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r12 >> 0, 5
|
||
+
|
||
+ /* Put the remaining bits into r9.*/
|
||
+ rsub r9, r12, 32
|
||
+ lsl r9, r11, r9
|
||
+
|
||
+ /* If the remaining bits are non-zero then we must subtract one
|
||
+ more from opL. */
|
||
+ subne r8, 1
|
||
+ srne r9 /* LSB of r9 represents sticky bits. */
|
||
+
|
||
+ /* Shift mantissa of op2 to same decimal point as the mantissa
|
||
+ of op1. */
|
||
+ lsr r11, r11, r12
|
||
+
|
||
+
|
||
+__avr32_f32_sub_shift_done:
|
||
+ /* Now subtract the mantissas. */
|
||
+ sub r8, r11
|
||
+
|
||
+ ld.w r12, sp++
|
||
+
|
||
+ /* Normalize resulting mantissa. */
|
||
+ clz r11, r8
|
||
+
|
||
+ retcs 0
|
||
+ lsl r8, r8, r11
|
||
+ sub r10, r11
|
||
+ brle __avr32_f32_sub_subnormal_result
|
||
+
|
||
+ /* Insert the bits we will remove from the mantissa into r9[31:24] */
|
||
+ or r9, r9, r8 << 24
|
||
+#else
|
||
+ /* Ignore sticky bit to simplify and speed up rounding */
|
||
+ /* op2 is either zero or subnormal. */
|
||
+ breq __avr32_f32_sub_op2_subnormal
|
||
+0:
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ rsub r9, r10
|
||
+
|
||
+ /* Saturate the shift amount to 31. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r9 >> 0, 5
|
||
+
|
||
+ /* Shift mantissa of op2 to same decimal point as the mantissa
|
||
+ of op1. */
|
||
+ lsr r11, r11, r9
|
||
+
|
||
+ /* Now subtract the mantissas. */
|
||
+ sub r8, r11
|
||
+
|
||
+ /* Normalize resulting mantissa. */
|
||
+ clz r9, r8
|
||
+ retcs 0
|
||
+ lsl r8, r8, r9
|
||
+ sub r10, r9
|
||
+ brle __avr32_f32_sub_subnormal_result
|
||
+#endif
|
||
+
|
||
+ /* Pack result. */
|
||
+ or r12, r12, r8 >> 8
|
||
+ bfins r12, r10, 23, 8
|
||
+
|
||
+ /* Round */
|
||
+__avr32_f32_sub_round:
|
||
+#if defined(L_avr32_f32_addsub)
|
||
+ mov_imm r10, 0x80000000
|
||
+ bld r12, 0
|
||
+ subne r10, -1
|
||
+ cp.w r9, r10
|
||
+ subhs r12, -1
|
||
+#else
|
||
+ bld r8, 7
|
||
+ acr r12
|
||
+#endif
|
||
+
|
||
+ ret r12
|
||
+
|
||
+
|
||
+__avr32_f32_sub_op2_subnormal:
|
||
+ /* Fix implicit bit and adjust exponent of subnormals. */
|
||
+ cbr r11, 31
|
||
+ /* Set exponent to 1 if we do not have a zero. */
|
||
+ movne r9,1
|
||
+
|
||
+ /* Check if op1 is also subnormal. */
|
||
+ cp.w r10, 0
|
||
+ brne 0b
|
||
+
|
||
+ cbr r8, 31
|
||
+ /* If op1 is not zero set exponent to 1. */
|
||
+ movne r10,1
|
||
+
|
||
+ rjmp 0b
|
||
+
|
||
+__avr32_f32_sub_op1_nan_or_inf:
|
||
+ /* Check if op1 is NaN, if so return NaN */
|
||
+ lsl r11, r8, 1
|
||
+ retne -1
|
||
+
|
||
+ /* op1 is Inf. */
|
||
+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
|
||
+
|
||
+ /* Check if op2 is Inf. or NaN */
|
||
+ lsr r11, r9, 23
|
||
+ cp.w r11, 0xff
|
||
+ retne r12 /* op2 not Inf or NaN, return op1 */
|
||
+
|
||
+ ret -1 /* op2 Inf or NaN, return NaN */
|
||
+
|
||
+__avr32_f32_sub_subnormal_result:
|
||
+ /* Check if the number is so small that
|
||
+ it will be represented with zero. */
|
||
+ rsub r10, r10, 9
|
||
+ rsub r11, r10, 32
|
||
+ retcs 0
|
||
+
|
||
+ /* Shift the mantissa into the correct position.*/
|
||
+ lsr r10, r8, r10
|
||
+ /* Add sign bit. */
|
||
+ or r12, r10
|
||
+
|
||
+ /* Put the shifted out bits in the most significant part
|
||
+ of r8. */
|
||
+ lsl r8, r8, r11
|
||
+
|
||
+#if defined(L_avr32_f32_addsub)
|
||
+ /* Add all the remainder bits used for rounding into r9 */
|
||
+ or r9, r8
|
||
+#else
|
||
+ lsr r8, 24
|
||
+#endif
|
||
+ rjmp __avr32_f32_sub_round
|
||
+
|
||
+
|
||
+ .align 2
|
||
+
|
||
+__avr32_f32_add_from_sub:
|
||
+ /* Switch sign on op2 */
|
||
+ eorh r11, 0x8000
|
||
+
|
||
+#if defined(L_avr32_f32_addsub_fast)
|
||
+ .global __avr32_f32_add_fast
|
||
+ .type __avr32_f32_add_fast,@function
|
||
+__avr32_f32_add_fast:
|
||
+#else
|
||
+ .global __avr32_f32_add
|
||
+ .type __avr32_f32_add,@function
|
||
+__avr32_f32_add:
|
||
+#endif
|
||
+
|
||
+ /* Check signs */
|
||
+ eor r8, r11, r12
|
||
+ /* Different signs, use subtraction. */
|
||
+ brmi __avr32_f32_sub_from_add
|
||
+
|
||
+ /* Get sign of op1 */
|
||
+ mov r8, r12
|
||
+ andh r12, 0x8000, COH
|
||
+
|
||
+ /* Remove sign from operands */
|
||
+ cbr r11, 31
|
||
+#if defined(L_avr32_f32_addsub_fast)
|
||
+ reteq r8 /* If op2 is zero return op1 */
|
||
+#endif
|
||
+ cbr r8, 31
|
||
+
|
||
+ /* Put the number with the largest exponent in r10
|
||
+ and the number with the smallest exponent in r9 */
|
||
+ max r10, r8, r11
|
||
+ min r9, r8, r11
|
||
+
|
||
+ /* Unpack exponent and mantissa of op1 */
|
||
+ lsl r8, r10, 8
|
||
+ sbr r8, 31 /* Set implicit bit. */
|
||
+ lsr r10, 23
|
||
+
|
||
+ /* op1 is NaN or Inf. */
|
||
+ cp.w r10, 0xff
|
||
+ breq __avr32_f32_add_op1_nan_or_inf
|
||
+
|
||
+ /* Unpack exponent and mantissa of op2 */
|
||
+ lsl r11, r9, 8
|
||
+ sbr r11, 31 /* Set implicit bit. */
|
||
+ lsr r9, 23
|
||
+
|
||
+#if defined(L_avr32_f32_addsub)
|
||
+ /* op2 is either zero or subnormal. */
|
||
+ breq __avr32_f32_add_op2_subnormal
|
||
+0:
|
||
+ /* Keep sticky bit for correct IEEE rounding */
|
||
+ st.w --sp, r12
|
||
+
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ rsub r9, r10
|
||
+
|
||
+ /* Saturate the shift amount to 31. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r9 >> 0, 5
|
||
+
|
||
+ /* Shift mantissa of op2 to same decimal point as the mantissa
|
||
+ of op1. */
|
||
+ lsr r12, r11, r9
|
||
+
|
||
+ /* Put the remainding bits into r11[23:..].*/
|
||
+ rsub r9, r9, (32-8)
|
||
+ lsl r11, r11, r9
|
||
+ /* Insert the bits we will remove from the mantissa into r11[31:24] */
|
||
+ bfins r11, r12, 24, 8
|
||
+
|
||
+ /* Now add the mantissas. */
|
||
+ add r8, r12
|
||
+
|
||
+ ld.w r12, sp++
|
||
+#else
|
||
+ /* Ignore sticky bit to simplify and speed up rounding */
|
||
+ /* op2 is either zero or subnormal. */
|
||
+ breq __avr32_f32_add_op2_subnormal
|
||
+0:
|
||
+ /* Get shift amount to scale mantissa of op2. */
|
||
+ rsub r9, r10
|
||
+
|
||
+ /* Saturate the shift amount to 31. If the amount
|
||
+ is any larger op2 is insignificant. */
|
||
+ satu r9 >> 0, 5
|
||
+
|
||
+ /* Shift mantissa of op2 to same decimal point as the mantissa
|
||
+ of op1. */
|
||
+ lsr r11, r11, r9
|
||
+
|
||
+ /* Now add the mantissas. */
|
||
+ add r8, r11
|
||
+
|
||
+#endif
|
||
+ /* Check if we overflowed. */
|
||
+ brcs __avr32_f32_add_res_of
|
||
+1:
|
||
+ /* Pack result. */
|
||
+ or r12, r12, r8 >> 8
|
||
+ bfins r12, r10, 23, 8
|
||
+
|
||
+ /* Round */
|
||
+#if defined(L_avr32_f32_addsub)
|
||
+ mov_imm r10, 0x80000000
|
||
+ bld r12, 0
|
||
+ subne r10, -1
|
||
+ cp.w r11, r10
|
||
+ subhs r12, -1
|
||
+#else
|
||
+ bld r8, 7
|
||
+ acr r12
|
||
+#endif
|
||
+
|
||
+ ret r12
|
||
+
|
||
+__avr32_f32_add_op2_subnormal:
|
||
+ /* Fix implicit bit and adjust exponent of subnormals. */
|
||
+ cbr r11, 31
|
||
+ /* Set exponent to 1 if we do not have a zero. */
|
||
+ movne r9,1
|
||
+
|
||
+ /* Check if op1 is also subnormal. */
|
||
+ cp.w r10, 0
|
||
+ brne 0b
|
||
+ /* Both operands subnormal, just add the mantissas and
|
||
+ pack. If the addition of the subnormal numbers results
|
||
+ in a normal number then the exponent will automatically
|
||
+ be set to 1 by the addition. */
|
||
+ cbr r8, 31
|
||
+ add r11, r8
|
||
+ or r12, r12, r11 >> 8
|
||
+ ret r12
|
||
+
|
||
+__avr32_f32_add_op1_nan_or_inf:
|
||
+ /* Check if op1 is NaN, if so return NaN */
|
||
+ lsl r11, r8, 1
|
||
+ retne -1
|
||
+
|
||
+ /* op1 is Inf. */
|
||
+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
|
||
+
|
||
+ /* Check if op2 is Inf. or NaN */
|
||
+ lsr r11, r9, 23
|
||
+ cp.w r11, 0xff
|
||
+ retne r12 /* op2 not Inf or NaN, return op1 */
|
||
+
|
||
+ lsl r9, 9
|
||
+ reteq r12 /* op2 Inf return op1 */
|
||
+ ret -1 /* op2 is NaN, return NaN */
|
||
+
|
||
+__avr32_f32_add_res_of:
|
||
+ /* We overflowed. Increase exponent and shift mantissa.*/
|
||
+ lsr r8, 1
|
||
+ sub r10, -1
|
||
+
|
||
+ /* Clear mantissa to set result to Inf if the exponent is 255. */
|
||
+ cp.w r10, 255
|
||
+ moveq r8, 0
|
||
+ moveq r11, 0
|
||
+ rjmp 1b
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast)
|
||
+ .align 2
|
||
+
|
||
+#if defined(L_avr32_f32_div_fast)
|
||
+ .global __avr32_f32_div_fast
|
||
+ .type __avr32_f32_div_fast,@function
|
||
+__avr32_f32_div_fast:
|
||
+#else
|
||
+ .global __avr32_f32_div
|
||
+ .type __avr32_f32_div,@function
|
||
+__avr32_f32_div:
|
||
+#endif
|
||
+
|
||
+ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
|
||
+
|
||
+ /* Unpack */
|
||
+ lsl r12,1
|
||
+ reteq 0 /* Return zero if op1 is zero */
|
||
+ lsl r11,1
|
||
+ breq 4f /* Check op2 for zero */
|
||
+
|
||
+ /* Unpack op1*/
|
||
+ /* exp: r9 */
|
||
+ /* sf: r12 */
|
||
+ lsr r9, r12, 24
|
||
+ breq 11f /*If number is subnormal*/
|
||
+ cp r9, 0xff
|
||
+ brhs 2f /* Check op1 for NaN or Inf */
|
||
+ lsl r12, 7
|
||
+ sbr r12, 31 /*Implicit bit*/
|
||
+12:
|
||
+
|
||
+ /* Unpack op2*/
|
||
+ /* exp: r10 */
|
||
+ /* sf: r11 */
|
||
+ lsr r10, r11, 24
|
||
+ breq 13f /*If number is subnormal*/
|
||
+ cp r10, 0xff
|
||
+ brhs 3f /* Check op2 for NaN or Inf */
|
||
+
|
||
+ lsl r11,7
|
||
+ sbr r11, 31 /*Implicit bit*/
|
||
+14:
|
||
+
|
||
+ /* For UC3, store with predecrement is faster than stm */
|
||
+ st.w --sp, r5
|
||
+ st.d --sp, r6
|
||
+
|
||
+ /* Calculate new exponent */
|
||
+ sub r9, r10
|
||
+ sub r9,-127
|
||
+
|
||
+ /* Divide */
|
||
+ /* Approximating 1/d with the following recurrence: */
|
||
+ /* R[j+1] = R[j]*(2-R[j]*d) */
|
||
+ /* Using 2.30 format */
|
||
+ /* TWO: r10 */
|
||
+ /* d: r5 */
|
||
+ /* Multiply result : r6, r7 */
|
||
+ /* Initial guess : r11 */
|
||
+ /* New approximations : r11 */
|
||
+ /* Dividend : r12 */
|
||
+
|
||
+ /* Load TWO */
|
||
+ mov_imm r10, 0x80000000
|
||
+
|
||
+ lsr r12, 2 /* Get significand of Op1 in 2.30 format */
|
||
+ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */
|
||
+
|
||
+ /* Load initial guess, using look-up table */
|
||
+ /* Initial guess is of format 01.XY, where XY is constructed as follows: */
|
||
+ /* Let d be of following format: 00.1xy....., then XY=~xy */
|
||
+ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */
|
||
+ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */
|
||
+ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */
|
||
+ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */
|
||
+
|
||
+ lsr r11, r10, 1
|
||
+ bfextu r6, r5, 27, 2
|
||
+ com r6
|
||
+ bfins r11, r6, 28, 2
|
||
+
|
||
+ /* First approximation */
|
||
+ /* r7 = R[j]*d */
|
||
+ mulu.d r6, r11, r5
|
||
+ /* r7 = 2-R[j]*d */
|
||
+ sub r7, r10, r7<<2
|
||
+ /* r11 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r6, r11, r7
|
||
+ lsl r11, r7, 2
|
||
+
|
||
+ /* Second approximation */
|
||
+ /* r7 = R[j]*d */
|
||
+ mulu.d r6, r11, r5
|
||
+ /* r7 = 2-R[j]*d */
|
||
+ sub r7, r10, r7<<2
|
||
+ /* r11 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r6, r11, r7
|
||
+ lsl r11, r7, 2
|
||
+
|
||
+ /* Third approximation */
|
||
+ /* r7 = R[j]*d */
|
||
+ mulu.d r6, r11, r5
|
||
+ /* r7 = 2-R[j]*d */
|
||
+ sub r7, r10, r7<<2
|
||
+ /* r11 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r6, r11, r7
|
||
+ lsl r11, r7, 2
|
||
+
|
||
+ /* Fourth approximation */
|
||
+ /* r7 = R[j]*d */
|
||
+ mulu.d r6, r11, r5
|
||
+ /* r7 = 2-R[j]*d */
|
||
+ sub r7, r10, r7<<2
|
||
+ /* r11 = R[j]*(2-R[j]*d) */
|
||
+ mulu.d r6, r11, r7
|
||
+ lsl r11, r7, 2
|
||
+
|
||
+
|
||
+ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */
|
||
+ mulu.d r6, r11, r12
|
||
+
|
||
+ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */
|
||
+ /* Note that 1.31 format is already used by the exponent in r9, since */
|
||
+ /* a bias of 127 was added to the result exponent, even though the implicit */
|
||
+ /* bit was inserted. This gives the exponent an additional bias of 1, which */
|
||
+ /* supports 1.31 format. */
|
||
+ //lsl r10, r7, 3
|
||
+
|
||
+ /* Adjust exponent and mantissa in case the result is of format
|
||
+ 0000.1xxx to 0001.xxx*/
|
||
+#if defined(L_avr32_f32_div)
|
||
+ lsr r12, 4 /* Scale dividend to 6.26 format to match the
|
||
+ result of the multiplication of the divisor and
|
||
+ quotient to get the remainder. */
|
||
+#endif
|
||
+ bld r7, 31-3
|
||
+ breq 0f
|
||
+ lsl r7, 1
|
||
+ sub r9, 1
|
||
+#if defined(L_avr32_f32_div)
|
||
+ lsl r12, 1 /* Scale dividend to 5.27 format to match the
|
||
+ result of the multiplication of the divisor and
|
||
+ quotient to get the remainder. */
|
||
+#endif
|
||
+0:
|
||
+ cp r9, 0
|
||
+ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */
|
||
+
|
||
+
|
||
+#if defined(L_avr32_f32_div)
|
||
+ /* In order to round correctly we calculate the remainder:
|
||
+ Remainder = dividend[r12] - divisor[r5]*quotient[r7]
|
||
+ for the case when the quotient is halfway between the round-up
|
||
+ value and the round down value. If the remainder then is negative
|
||
+ it means that the quotient was to big and that it should not be
|
||
+ rounded up, if the remainder is positive the quotient was to small
|
||
+ and we need to round up. If the remainder is zero it means that the
|
||
+ quotient is exact but since we need to remove the guard bit we should
|
||
+ round to even. */
|
||
+ andl r7, 0xffe0
|
||
+ orl r7, 0x0010
|
||
+
|
||
+ /* Now do the multiplication. The quotient has the format 4.28
|
||
+ while the divisor has the format 2.30 which gives a result
|
||
+ of 6.26 */
|
||
+ mulu.d r10, r5, r7
|
||
+
|
||
+ /* Check if remainder is positive, negative or equal. */
|
||
+ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */
|
||
+ cp r10, 0
|
||
+__avr32_f32_div_round_subnormal:
|
||
+ cpc r11, r12
|
||
+ srlo r11 /* Remainder positive: we need to round up.*/
|
||
+ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */
|
||
+#else
|
||
+ bfextu r11, r7, 4, 1 /* Get guard bit */
|
||
+#endif
|
||
+
|
||
+ /* Pack final result*/
|
||
+ lsr r12, r7, 5
|
||
+ bfins r12, r9, 23, 8
|
||
+ /* For UC3, load with postincrement is faster than ldm */
|
||
+ ld.d r6, sp++
|
||
+ ld.w r5, sp++
|
||
+ bld r8, 31
|
||
+ bst r12, 31
|
||
+ /* Rounding add. */
|
||
+ add r12, r11
|
||
+ ret r12
|
||
+
|
||
+__divsf_return_op1:
|
||
+ lsl r8, 1
|
||
+ ror r12
|
||
+ ret r12
|
||
+
|
||
+
|
||
+2:
|
||
+ /* Op1 is NaN or inf */
|
||
+ retne -1 /* Return NaN if op1 is NaN */
|
||
+ /* Op1 is inf check op2 */
|
||
+ mov_imm r9, 0xff000000
|
||
+ cp r11, r9
|
||
+ brlo __divsf_return_op1 /* inf/number gives inf */
|
||
+ ret -1 /* The rest gives NaN*/
|
||
+3:
|
||
+ /* Op2 is NaN or inf */
|
||
+ reteq 0 /* Return zero if number/inf*/
|
||
+ ret -1 /* Return NaN*/
|
||
+4:
|
||
+ /* Op2 is zero ? */
|
||
+ tst r12,r12
|
||
+ reteq -1 /* 0.0/0.0 is NaN */
|
||
+ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/
|
||
+ mov_imm r12, 0xff000000
|
||
+ rjmp __divsf_return_op1
|
||
+
|
||
+11: /* Op1 was denormal. Fix it. */
|
||
+ lsl r12,7
|
||
+ clz r9,r12
|
||
+ lsl r12,r12,r9
|
||
+ rsub r9,r9,1
|
||
+ rjmp 12b
|
||
+
|
||
+13: /* Op2 was denormal. Fix it. */
|
||
+ lsl r11,7
|
||
+ clz r10,r11
|
||
+ lsl r11,r11,r10
|
||
+ rsub r10,r10,1
|
||
+ rjmp 14b
|
||
+
|
||
+
|
||
+__avr32_f32_div_res_subnormal: /* Divide result was subnormal */
|
||
+#if defined(L_avr32_f32_div)
|
||
+ /* Check how much we must scale down the mantissa. */
|
||
+ neg r9
|
||
+ sub r9, -1 /* We do no longer have an implicit bit. */
|
||
+ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */
|
||
+ /* Scale down quotient */
|
||
+ rsub r10, r9, 32
|
||
+ lsr r7, r7, r9
|
||
+ /* Scale down the dividend to match the scaling of the quotient. */
|
||
+ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */
|
||
+ lsr r12, r12, r9
|
||
+
|
||
+ /* Start performing the same rounding as done for normal numbers
|
||
+ but this time we have scaled the quotient and dividend and hence
|
||
+ need a little different comparison. */
|
||
+ andl r7, 0xffe0
|
||
+ orl r7, 0x0010
|
||
+
|
||
+ /* Now do the multiplication. The quotient has the format 4.28
|
||
+ while the divisor has the format 2.30 which gives a result
|
||
+ of 6.26 */
|
||
+ mulu.d r10, r5, r7
|
||
+
|
||
+ /* Set exponent to 0 */
|
||
+ mov r9, 0
|
||
+
|
||
+ /* Check if remainder is positive, negative or equal. */
|
||
+ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */
|
||
+ cp r10, r6
|
||
+ rjmp __avr32_f32_div_round_subnormal
|
||
+
|
||
+#else
|
||
+ ld.d r6, sp++
|
||
+ ld.w r5, sp++
|
||
+ /*Flush to zero*/
|
||
+ ret 0
|
||
+#endif
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_f32_mul
|
||
+ .global __avr32_f32_mul
|
||
+ .type __avr32_f32_mul,@function
|
||
+
|
||
+
|
||
+__avr32_f32_mul:
|
||
+ mov r8, r12
|
||
+ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */
|
||
+ andh r12, 0x8000, COH
|
||
+
|
||
+ /* arrange operands so that that op1 >= op2 */
|
||
+ cbr r8, 31
|
||
+ breq __avr32_f32_mul_op1_zero
|
||
+ cbr r11, 31
|
||
+
|
||
+ /* Put the number with the largest exponent in r10
|
||
+ and the number with the smallest exponent in r9 */
|
||
+ max r10, r8, r11
|
||
+ min r9, r8, r11
|
||
+
|
||
+ /* Unpack exponent and mantissa of op1 */
|
||
+ lsl r8, r10, 8
|
||
+ sbr r8, 31 /* Set implicit bit. */
|
||
+ lsr r10, 23
|
||
+
|
||
+ /* op1 is NaN or Inf. */
|
||
+ cp.w r10, 0xff
|
||
+ breq __avr32_f32_mul_op1_nan_or_inf
|
||
+
|
||
+ /* Unpack exponent and mantissa of op2 */
|
||
+ lsl r11, r9, 8
|
||
+ sbr r11, 31 /* Set implicit bit. */
|
||
+ lsr r9, 23
|
||
+
|
||
+ /* op2 is either zero or subnormal. */
|
||
+ breq __avr32_f32_mul_op2_subnormal
|
||
+0:
|
||
+ /* Calculate new exponent */
|
||
+ add r9,r10
|
||
+
|
||
+ /* Do the multiplication */
|
||
+ mulu.d r10,r8,r11
|
||
+
|
||
+ /* We might need to scale up by two if the MSB of the result is
|
||
+ zero. */
|
||
+ lsl r8, r11, 1
|
||
+ movcc r11, r8
|
||
+ subcc r9, 1
|
||
+
|
||
+ /* Put the shifted out bits of the mantissa into r10 */
|
||
+ lsr r10, 8
|
||
+ bfins r10, r11, 24, 8
|
||
+
|
||
+ sub r9,(127-1) /* remove extra exponent bias */
|
||
+ brle __avr32_f32_mul_res_subnormal
|
||
+
|
||
+ /* Check for Inf. */
|
||
+ cp.w r9, 0xff
|
||
+ brge 1f
|
||
+
|
||
+ /* Pack result. */
|
||
+ or r12, r12, r11 >> 8
|
||
+ bfins r12, r9, 23, 8
|
||
+
|
||
+ /* Round */
|
||
+__avr32_f32_mul_round:
|
||
+ mov_imm r8, 0x80000000
|
||
+ bld r12, 0
|
||
+ subne r8, -1
|
||
+
|
||
+ cp.w r10, r8
|
||
+ subhs r12, -1
|
||
+
|
||
+ ret r12
|
||
+
|
||
+1:
|
||
+ /* Return Inf */
|
||
+ orh r12, 0x7f80
|
||
+ ret r12
|
||
+
|
||
+__avr32_f32_mul_op2_subnormal:
|
||
+ cbr r11, 31
|
||
+ clz r9, r11
|
||
+ retcs 0 /* op2 is zero. Return 0 */
|
||
+ lsl r11, r11, r9
|
||
+ rsub r9, r9, 1
|
||
+
|
||
+ /* Check if op2 is subnormal. */
|
||
+ tst r10, r10
|
||
+ brne 0b
|
||
+
|
||
+ /* op2 is subnormal */
|
||
+ cbr r8, 31
|
||
+ clz r10, r11
|
||
+ retcs 0 /* op1 is zero. Return 0 */
|
||
+ lsl r8, r8, r10
|
||
+ rsub r10, r10, 1
|
||
+
|
||
+ rjmp 0b
|
||
+
|
||
+
|
||
+__avr32_f32_mul_op1_nan_or_inf:
|
||
+ /* Check if op1 is NaN, if so return NaN */
|
||
+ lsl r11, r8, 1
|
||
+ retne -1
|
||
+
|
||
+ /* op1 is Inf. */
|
||
+ tst r9, r9
|
||
+ reteq -1 /* Inf * 0 -> NaN */
|
||
+
|
||
+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */
|
||
+
|
||
+ /* Check if op2 is Inf. or NaN */
|
||
+ lsr r11, r9, 23
|
||
+ cp.w r11, 0xff
|
||
+ retne r12 /* op2 not Inf or NaN, return Info */
|
||
+
|
||
+ lsl r9, 9
|
||
+ reteq r12 /* op2 Inf return Inf */
|
||
+ ret -1 /* op2 is NaN, return NaN */
|
||
+
|
||
+__avr32_f32_mul_res_subnormal:
|
||
+ /* Check if the number is so small that
|
||
+ it will be represented with zero. */
|
||
+ rsub r9, r9, 9
|
||
+ rsub r8, r9, 32
|
||
+ retcs 0
|
||
+
|
||
+ /* Shift the mantissa into the correct position.*/
|
||
+ lsr r9, r11, r9
|
||
+ /* Add sign bit. */
|
||
+ or r12, r9
|
||
+ /* Put the shifted out bits in the most significant part
|
||
+ of r8. */
|
||
+ lsl r11, r11, r8
|
||
+
|
||
+ /* Add all the remainder bits used for rounding into r11 */
|
||
+ andh r10, 0x00FF
|
||
+ or r10, r11
|
||
+ rjmp __avr32_f32_mul_round
|
||
+
|
||
+__avr32_f32_mul_op1_zero:
|
||
+ bfextu r10, r11, 23, 8
|
||
+ cp.w r10, 0xff
|
||
+ retne r12
|
||
+ reteq -1
|
||
+
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_s32_to_f32
|
||
+ .global __avr32_s32_to_f32
|
||
+ .type __avr32_s32_to_f32,@function
|
||
+__avr32_s32_to_f32:
|
||
+ cp r12, 0
|
||
+ reteq r12 /* If zero then return zero float */
|
||
+ mov r11, r12 /* Keep the sign */
|
||
+ abs r12 /* Compute the absolute value */
|
||
+ mov r10, 31 + 127 /* Set the correct exponent */
|
||
+
|
||
+ /* Normalize */
|
||
+ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
|
||
+
|
||
+ /* Check for subnormal result */
|
||
+ cp.w r10, 0
|
||
+ brle __avr32_s32_to_f32_subnormal
|
||
+
|
||
+ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
|
||
+ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
|
||
+ lsl r11, 1
|
||
+ ror r12
|
||
+ ret r12
|
||
+
|
||
+__avr32_s32_to_f32_subnormal:
|
||
+ /* Adjust a subnormal result */
|
||
+ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/
|
||
+ ret r12
|
||
+
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_u32_to_f32
|
||
+ .global __avr32_u32_to_f32
|
||
+ .type __avr32_u32_to_f32,@function
|
||
+__avr32_u32_to_f32:
|
||
+ cp r12, 0
|
||
+ reteq r12 /* If zero then return zero float */
|
||
+ mov r10, 31 + 127 /* Set the correct exponent */
|
||
+
|
||
+ /* Normalize */
|
||
+ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
|
||
+
|
||
+ /* Check for subnormal result */
|
||
+ cp.w r10, 0
|
||
+ brle __avr32_u32_to_f32_subnormal
|
||
+
|
||
+ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/
|
||
+ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/
|
||
+ lsr r12,1 /* Sign bit is 0 for unsigned int */
|
||
+ ret r12
|
||
+
|
||
+__avr32_u32_to_f32_subnormal:
|
||
+ /* Adjust a subnormal result */
|
||
+ mov r8, 0
|
||
+ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/
|
||
+ ret r12
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_f32_to_s32
|
||
+ .global __avr32_f32_to_s32
|
||
+ .type __avr32_f32_to_s32,@function
|
||
+__avr32_f32_to_s32:
|
||
+ bfextu r11, r12, 23, 8
|
||
+ sub r11,127 /* Fix bias */
|
||
+ retlo 0 /* Negative exponent yields zero integer */
|
||
+
|
||
+ /* Shift mantissa into correct position */
|
||
+ rsub r11,r11,31 /* Shift amount */
|
||
+ lsl r10,r12,8 /* Get mantissa */
|
||
+ sbr r10,31 /* Add implicit bit */
|
||
+ lsr r10,r10,r11 /* Perform shift */
|
||
+ lsl r12,1 /* Check sign */
|
||
+ retcc r10 /* if positive, we are done */
|
||
+ neg r10 /* if negative float, negate result */
|
||
+ ret r10
|
||
+
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_f32_to_u32
|
||
+ .global __avr32_f32_to_u32
|
||
+ .type __avr32_f32_to_u32,@function
|
||
+__avr32_f32_to_u32:
|
||
+ cp r12,0
|
||
+ retmi 0 /* Negative numbers gives 0 */
|
||
+ bfextu r11, r12, 23, 8 /* Extract exponent */
|
||
+ sub r11,127 /* Fix bias */
|
||
+ retlo 0 /* Negative exponent yields zero integer */
|
||
+
|
||
+ /* Shift mantissa into correct position */
|
||
+ rsub r11,r11,31 /* Shift amount */
|
||
+ lsl r12,8 /* Get mantissa */
|
||
+ sbr r12,31 /* Add implicit bit */
|
||
+ lsr r12,r12,r11 /* Perform shift */
|
||
+ ret r12
|
||
+
|
||
+#endif
|
||
+
|
||
+#ifdef L_avr32_f32_to_f64
|
||
+ .global __avr32_f32_to_f64
|
||
+ .type __avr32_f32_to_f64,@function
|
||
+
|
||
+__avr32_f32_to_f64:
|
||
+ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/
|
||
+ moveq r10, 0
|
||
+ reteq r11 /* Return zero if input is zero */
|
||
+
|
||
+ bfextu r9,r11,24,8 /* Get exponent */
|
||
+ cp.w r9,0xff /* check for NaN or inf */
|
||
+ breq 0f
|
||
+
|
||
+ lsl r11,7 /* Convert sf mantissa to df format */
|
||
+ mov r10,0
|
||
+
|
||
+ /* Check if implicit bit should be set */
|
||
+ cp.w r9, 0
|
||
+ subeq r9,-1 /* Adjust exponent if it was 0 */
|
||
+ srne r8
|
||
+ or r11, r11, r8 << 31 /* Set implicit bit if needed */
|
||
+ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */
|
||
+
|
||
+ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/
|
||
+ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/
|
||
+ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/
|
||
+ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/
|
||
+
|
||
+__extendsfdf_return_op1:
|
||
+ /* Rotate in sign bit */
|
||
+ lsl r12, 1
|
||
+ ror r11
|
||
+ ret r11
|
||
+
|
||
+0:
|
||
+ /* Inf or NaN*/
|
||
+ mov_imm r10, 0xffe00000
|
||
+ lsl r11,8 /* check mantissa */
|
||
+ movne r11, -1 /* Return NaN */
|
||
+ moveq r11, r10 /* Return inf */
|
||
+ rjmp __extendsfdf_return_op1
|
||
+#endif
|
||
+
|
||
+
|
||
+#ifdef L_avr32_f64_to_f32
|
||
+ .global __avr32_f64_to_f32
|
||
+ .type __avr32_f64_to_f32,@function
|
||
+
|
||
+__avr32_f64_to_f32:
|
||
+ /* Unpack */
|
||
+ lsl r9,r11,1 /* Unpack exponent */
|
||
+ lsr r9,21
|
||
+
|
||
+ reteq 0 /* If exponent is 0 the number is so small
|
||
+ that the conversion to single float gives
|
||
+ zero */
|
||
+
|
||
+ lsl r8,r11,10 /* Adjust mantissa */
|
||
+ or r12,r8,r10>>22
|
||
+
|
||
+ lsl r10,10 /* Check if there are any remaining bits
|
||
+ in the low part of the mantissa.*/
|
||
+ neg r10
|
||
+ rol r12 /* If there were remaining bits then set lsb
|
||
+ of mantissa to 1 */
|
||
+
|
||
+ cp r9,0x7ff
|
||
+ breq 2f /* Check for NaN or inf */
|
||
+
|
||
+ sub r9,(0x3ff-127) /* Adjust bias of exponent */
|
||
+ sbr r12,31 /* set the implicit bit.*/
|
||
+
|
||
+ cp.w r9, 0 /* Check for subnormal number */
|
||
+ brle 3f
|
||
+
|
||
+ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/
|
||
+ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/
|
||
+__truncdfsf_return_op1:
|
||
+ /* Rotate in sign bit */
|
||
+ lsl r11, 1
|
||
+ ror r12
|
||
+ ret r12
|
||
+
|
||
+2:
|
||
+ /* NaN or inf */
|
||
+ cbr r12,31 /* clear implicit bit */
|
||
+ retne -1 /* Return NaN if mantissa not zero */
|
||
+ mov_imm r12, 0xff000000
|
||
+ ret r12 /* Return inf */
|
||
+
|
||
+3: /* Result is subnormal. Adjust it.*/
|
||
+ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/
|
||
+ ret r12
|
||
+
|
||
+
|
||
+#endif
|
||
+
|
||
+#if defined(L_mulsi3) && (__AVR32_UC__ == 3)
|
||
+ .global __mulsi3
|
||
+ .type __mulsi3,@function
|
||
+
|
||
+__mulsi3:
|
||
+ mov r9, 0
|
||
+0:
|
||
+ lsr r11, 1
|
||
+ addcs r9, r9, r12
|
||
+ breq 1f
|
||
+ lsl r12, 1
|
||
+ rjmp 0b
|
||
+1:
|
||
+ ret r9
|
||
+#endif
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/lib2funcs.S
|
||
@@ -0,0 +1,21 @@
|
||
+ .align 4
|
||
+ .global __nonlocal_goto
|
||
+ .type __nonlocal_goto,@function
|
||
+
|
||
+/* __nonlocal_goto: This function handles nonlocal_goto's in gcc.
|
||
+
|
||
+ parameter 0 (r12) = New Frame Pointer
|
||
+ parameter 1 (r11) = Address to goto
|
||
+ parameter 2 (r10) = New Stack Pointer
|
||
+
|
||
+ This function invalidates the return stack, since it returns from a
|
||
+ function without using a return instruction.
|
||
+*/
|
||
+__nonlocal_goto:
|
||
+ mov r7, r12
|
||
+ mov sp, r10
|
||
+ frs # Flush return stack
|
||
+ mov pc, r11
|
||
+
|
||
+
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/linux-elf.h
|
||
@@ -0,0 +1,151 @@
|
||
+/*
|
||
+ Linux/Elf specific definitions.
|
||
+ Copyright 2003-2006 Atmel Corporation.
|
||
+
|
||
+ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+ and H<>vard Skinnemoen, Atmel Norway, <hskinnemoen@atmel.com>
|
||
+
|
||
+ This file is part of GCC.
|
||
+
|
||
+ This program is free software; you can redistribute it and/or modify
|
||
+ it under the terms of the GNU General Public License as published by
|
||
+ the Free Software Foundation; either version 2 of the License, or
|
||
+ (at your option) any later version.
|
||
+
|
||
+ This program is distributed in the hope that it will be useful,
|
||
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+ GNU General Public License for more details.
|
||
+
|
||
+ You should have received a copy of the GNU General Public License
|
||
+ along with this program; if not, write to the Free Software
|
||
+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
+
|
||
+
|
||
+
|
||
+/* elfos.h should have already been included. Now just override
|
||
+ any conflicting definitions and add any extras. */
|
||
+
|
||
+/* Run-time Target Specification. */
|
||
+#undef TARGET_VERSION
|
||
+#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr);
|
||
+
|
||
+/* Do not assume anything about header files. */
|
||
+#define NO_IMPLICIT_EXTERN_C
|
||
+
|
||
+/* The GNU C++ standard library requires that these macros be defined. */
|
||
+#undef CPLUSPLUS_CPP_SPEC
|
||
+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)"
|
||
+
|
||
+/* Now we define the strings used to build the spec file. */
|
||
+#undef LIB_SPEC
|
||
+#define LIB_SPEC \
|
||
+ "%{pthread:-lpthread} \
|
||
+ %{shared:-lc} \
|
||
+ %{!shared:%{profile:-lc_p}%{!profile:-lc}}"
|
||
+
|
||
+/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add
|
||
+ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which
|
||
+ provides part of the support for getting C++ file-scope static
|
||
+ object constructed before entering `main'. */
|
||
+
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC \
|
||
+ "%{!shared: \
|
||
+ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \
|
||
+ %{!p:%{profile:gcrt1.o%s} \
|
||
+ %{!profile:crt1.o%s}}}} \
|
||
+ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}"
|
||
+
|
||
+/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on
|
||
+ the GNU/Linux magical crtend.o file (see crtstuff.c) which
|
||
+ provides part of the support for getting C++ file-scope static
|
||
+ object constructed before entering `main', followed by a normal
|
||
+ GNU/Linux "finalizer" file, `crtn.o'. */
|
||
+
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC \
|
||
+ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s"
|
||
+
|
||
+#undef ASM_SPEC
|
||
+#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}"
|
||
+
|
||
+#undef LINK_SPEC
|
||
+#define LINK_SPEC "%{version:-v} \
|
||
+ %{static:-Bstatic} \
|
||
+ %{shared:-shared} \
|
||
+ %{symbolic:-Bsymbolic} \
|
||
+ %{rdynamic:-export-dynamic} \
|
||
+ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \
|
||
+ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}"
|
||
+
|
||
+#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS()
|
||
+
|
||
+/* This is how we tell the assembler that two symbols have the same value. */
|
||
+#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \
|
||
+ do \
|
||
+ { \
|
||
+ assemble_name (FILE, NAME1); \
|
||
+ fputs (" = ", FILE); \
|
||
+ assemble_name (FILE, NAME2); \
|
||
+ fputc ('\n', FILE); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+
|
||
+
|
||
+#undef CC1_SPEC
|
||
+#define CC1_SPEC "%{profile:-p}"
|
||
+
|
||
+/* Target CPU builtins. */
|
||
+#define TARGET_CPU_CPP_BUILTINS() \
|
||
+ do \
|
||
+ { \
|
||
+ builtin_define ("__avr32__"); \
|
||
+ builtin_define ("__AVR32__"); \
|
||
+ builtin_define ("__AVR32_LINUX__"); \
|
||
+ builtin_define (avr32_part->macro); \
|
||
+ builtin_define (avr32_arch->macro); \
|
||
+ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \
|
||
+ builtin_define ("__AVR32_AVR32A__"); \
|
||
+ else \
|
||
+ builtin_define ("__AVR32_AVR32B__"); \
|
||
+ if (TARGET_UNALIGNED_WORD) \
|
||
+ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \
|
||
+ if (TARGET_SIMD) \
|
||
+ builtin_define ("__AVR32_HAS_SIMD__"); \
|
||
+ if (TARGET_DSP) \
|
||
+ builtin_define ("__AVR32_HAS_DSP__"); \
|
||
+ if (TARGET_RMW) \
|
||
+ builtin_define ("__AVR32_HAS_RMW__"); \
|
||
+ if (TARGET_BRANCH_PRED) \
|
||
+ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \
|
||
+ if (TARGET_FAST_FLOAT) \
|
||
+ builtin_define ("__AVR32_FAST_FLOAT__"); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+
|
||
+
|
||
+/* Call the function profiler with a given profile label. */
|
||
+#undef FUNCTION_PROFILER
|
||
+#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
+ do \
|
||
+ { \
|
||
+ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \
|
||
+ fprintf (STREAM, "\ticall lr\n"); \
|
||
+ } \
|
||
+ while (0)
|
||
+
|
||
+#define NO_PROFILE_COUNTERS 1
|
||
+
|
||
+/* For dynamic libraries to work */
|
||
+/* #define PLT_REG_CALL_CLOBBERED 1 */
|
||
+#define AVR32_ALWAYS_PIC 1
|
||
+
|
||
+/* uclibc does not implement sinf, cosf etc. */
|
||
+#undef TARGET_C99_FUNCTIONS
|
||
+#define TARGET_C99_FUNCTIONS 0
|
||
+
|
||
+#define LINK_GCC_C_SEQUENCE_SPEC \
|
||
+ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}"
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/predicates.md
|
||
@@ -0,0 +1,419 @@
|
||
+;; AVR32 predicates file.
|
||
+;; Copyright 2003-2006 Atmel Corporation.
|
||
+;;
|
||
+;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+;;
|
||
+;; This file is part of GCC.
|
||
+;;
|
||
+;; This program is free software; you can redistribute it and/or modify
|
||
+;; it under the terms of the GNU General Public License as published by
|
||
+;; the Free Software Foundation; either version 2 of the License, or
|
||
+;; (at your option) any later version.
|
||
+;;
|
||
+;; This program is distributed in the hope that it will be useful,
|
||
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+;; GNU General Public License for more details.
|
||
+;;
|
||
+;; You should have received a copy of the GNU General Public License
|
||
+;; along with this program; if not, write to the Free Software
|
||
+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
+
|
||
+
|
||
+;; True if the operand is a memory reference which contains an
|
||
+;; Address consisting of a single pointer register
|
||
+(define_predicate "avr32_indirect_register_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "register_operand(XEXP(op, 0), SImode)")))
|
||
+
|
||
+
|
||
+
|
||
+;; Address expression with a base pointer offset with
|
||
+;; a register displacement
|
||
+(define_predicate "avr32_indexed_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS"))
|
||
+ {
|
||
+
|
||
+ rtx op0 = XEXP(XEXP(op, 0), 0);
|
||
+ rtx op1 = XEXP(XEXP(op, 0), 1);
|
||
+
|
||
+ return ((avr32_address_register_rtx_p (op0, 0)
|
||
+ && avr32_legitimate_index_p (GET_MODE(op), op1, 0))
|
||
+ || (avr32_address_register_rtx_p (op1, 0)
|
||
+ && avr32_legitimate_index_p (GET_MODE(op), op0, 0)));
|
||
+
|
||
+ })
|
||
+
|
||
+;; Operand suitable for the ld.sb instruction
|
||
+(define_predicate "load_sb_memory_operand"
|
||
+ (ior (match_operand 0 "avr32_indirect_register_operand")
|
||
+ (match_operand 0 "avr32_indexed_memory_operand")))
|
||
+
|
||
+
|
||
+;; Operand suitable as operand to insns sign extending QI values
|
||
+(define_predicate "extendqi_operand"
|
||
+ (ior (match_operand 0 "load_sb_memory_operand")
|
||
+ (match_operand 0 "register_operand")))
|
||
+
|
||
+(define_predicate "post_inc_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC)
|
||
+ && REG_P(XEXP(XEXP(op, 0), 0))")))
|
||
+
|
||
+(define_predicate "pre_dec_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC)
|
||
+ && REG_P(XEXP(XEXP(op, 0), 0))")))
|
||
+
|
||
+;; Operand suitable for add instructions
|
||
+(define_predicate "avr32_add_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")"))))
|
||
+
|
||
+;; Operand is a power of two immediate
|
||
+(define_predicate "power_of_two_operand"
|
||
+ (match_code "const_int")
|
||
+{
|
||
+ HOST_WIDE_INT value = INTVAL (op);
|
||
+
|
||
+ return value != 0 && (value & (value - 1)) == 0;
|
||
+})
|
||
+
|
||
+;; Operand is a multiple of 8 immediate
|
||
+(define_predicate "multiple_of_8_operand"
|
||
+ (match_code "const_int")
|
||
+{
|
||
+ HOST_WIDE_INT value = INTVAL (op);
|
||
+
|
||
+ return (value & 0x7) == 0 ;
|
||
+})
|
||
+
|
||
+;; Operand is a multiple of 16 immediate
|
||
+(define_predicate "multiple_of_16_operand"
|
||
+ (match_code "const_int")
|
||
+{
|
||
+ HOST_WIDE_INT value = INTVAL (op);
|
||
+
|
||
+ return (value & 0xf) == 0 ;
|
||
+})
|
||
+
|
||
+;; Operand is a mask used for masking away upper bits of a reg
|
||
+(define_predicate "avr32_mask_upper_bits_operand"
|
||
+ (match_code "const_int")
|
||
+{
|
||
+ HOST_WIDE_INT value = INTVAL (op) + 1;
|
||
+
|
||
+ return value != 1 && value != 0 && (value & (value - 1)) == 0;
|
||
+})
|
||
+
|
||
+
|
||
+;; Operand suitable for mul instructions
|
||
+(define_predicate "avr32_mul_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))))
|
||
+
|
||
+;; True for logical binary operators.
|
||
+(define_predicate "logical_binary_operator"
|
||
+ (match_code "ior,xor,and"))
|
||
+
|
||
+;; True for logical shift operators
|
||
+(define_predicate "logical_shift_operator"
|
||
+ (match_code "ashift,lshiftrt"))
|
||
+
|
||
+;; True for shift operand for logical and, or and eor insns
|
||
+(define_predicate "avr32_logical_shift_operand"
|
||
+ (and (match_code "ashift,lshiftrt")
|
||
+ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT")
|
||
+ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))
|
||
+ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT")
|
||
+ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))"))))
|
||
+ )
|
||
+
|
||
+
|
||
+;; Predicate for second operand to and, ior and xor insn patterns
|
||
+(define_predicate "avr32_logical_insn_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (match_operand 0 "avr32_logical_shift_operand"))
|
||
+)
|
||
+
|
||
+
|
||
+;; True for avr32 comparison operators
|
||
+(define_predicate "avr32_comparison_operator"
|
||
+ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu")
|
||
+ (and (match_code "unspec")
|
||
+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
|
||
+ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
|
||
+
|
||
+(define_predicate "avr32_cond3_comparison_operator"
|
||
+ (ior (match_code "eq, ne, ge, lt, geu, ltu")
|
||
+ (and (match_code "unspec")
|
||
+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
|
||
+ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
|
||
+
|
||
+;; True for avr32 comparison operand
|
||
+(define_predicate "avr32_comparison_operand"
|
||
+ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu")
|
||
+ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))"))
|
||
+ (and (match_code "unspec")
|
||
+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI)
|
||
+ || (XINT(op, 1) == UNSPEC_COND_PL)"))))
|
||
+
|
||
+;; True if this is a const_int with one bit set
|
||
+(define_predicate "one_bit_set_operand"
|
||
+ (match_code "const_int")
|
||
+ {
|
||
+ int i;
|
||
+ int value;
|
||
+ int ones = 0;
|
||
+
|
||
+ value = INTVAL(op);
|
||
+ for ( i = 0 ; i < 32; i++ ){
|
||
+ if ( value & ( 1 << i ) ){
|
||
+ ones++;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return ( ones == 1 );
|
||
+ })
|
||
+
|
||
+
|
||
+;; True if this is a const_int with one bit cleared
|
||
+(define_predicate "one_bit_cleared_operand"
|
||
+ (match_code "const_int")
|
||
+ {
|
||
+ int i;
|
||
+ int value;
|
||
+ int zeroes = 0;
|
||
+
|
||
+ value = INTVAL(op);
|
||
+ for ( i = 0 ; i < 32; i++ ){
|
||
+ if ( !(value & ( 1 << i )) ){
|
||
+ zeroes++;
|
||
+ }
|
||
+ }
|
||
+
|
||
+ return ( zeroes == 1 );
|
||
+ })
|
||
+
|
||
+
|
||
+;; Immediate all the low 16-bits cleared
|
||
+(define_predicate "avr32_hi16_immediate_operand"
|
||
+ (match_code "const_int")
|
||
+ {
|
||
+ /* If the low 16-bits are zero then this
|
||
+ is a hi16 immediate. */
|
||
+ return ((INTVAL(op) & 0xffff) == 0);
|
||
+ }
|
||
+)
|
||
+
|
||
+;; True if this is a register or immediate operand
|
||
+(define_predicate "register_immediate_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (match_operand 0 "immediate_operand")))
|
||
+
|
||
+;; True if this is a register or const_int operand
|
||
+(define_predicate "register_const_int_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (and (match_operand 0 "const_int_operand")
|
||
+ (match_operand 0 "immediate_operand"))))
|
||
+
|
||
+;; True if this is a register or const_double operand
|
||
+(define_predicate "register_const_double_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (match_operand 0 "const_double_operand")))
|
||
+
|
||
+;; True is this is an operand containing a label_ref
|
||
+(define_predicate "avr32_label_ref_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "avr32_find_symbol(op)
|
||
+ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)")))
|
||
+
|
||
+;; True is this is a valid symbol pointing to the constant pool
|
||
+(define_predicate "avr32_const_pool_operand"
|
||
+ (and (match_code "symbol_ref")
|
||
+ (match_test "CONSTANT_POOL_ADDRESS_P(op)"))
|
||
+ {
|
||
+ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op))
|
||
+ || label_mentioned_p (get_pool_constant (op)))
|
||
+ || avr32_got_mentioned_p(get_pool_constant (op)))
|
||
+ : true);
|
||
+ }
|
||
+)
|
||
+
|
||
+;; True is this is a memory reference to the constant or mini pool
|
||
+(define_predicate "avr32_const_pool_ref_operand"
|
||
+ (ior (match_operand 0 "avr32_label_ref_operand")
|
||
+ (and (match_code "mem")
|
||
+ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))"))))
|
||
+
|
||
+
|
||
+;; Legal source operand for movti insns
|
||
+(define_predicate "avr32_movti_src_operand"
|
||
+ (ior (match_operand 0 "avr32_const_pool_ref_operand")
|
||
+ (ior (ior (match_operand 0 "register_immediate_operand")
|
||
+ (match_operand 0 "avr32_indirect_register_operand"))
|
||
+ (match_operand 0 "post_inc_memory_operand"))))
|
||
+
|
||
+;; Legal destination operand for movti insns
|
||
+(define_predicate "avr32_movti_dst_operand"
|
||
+ (ior (ior (match_operand 0 "register_operand")
|
||
+ (match_operand 0 "avr32_indirect_register_operand"))
|
||
+ (match_operand 0 "pre_dec_memory_operand")))
|
||
+
|
||
+
|
||
+;; True is this is a k12 offseted memory operand
|
||
+(define_predicate "avr32_k12_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (ior (match_test "REG_P(XEXP(op, 0))")
|
||
+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS
|
||
+ && REG_P(XEXP(XEXP(op, 0), 0))
|
||
+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
|
||
+ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)),
|
||
+ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))"))))
|
||
+
|
||
+;; True is this is a memory operand with an immediate displacement
|
||
+(define_predicate "avr32_imm_disp_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS
|
||
+ && REG_P(XEXP(XEXP(op, 0), 0))
|
||
+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)")))
|
||
+
|
||
+;; True is this is a bswap operand
|
||
+(define_predicate "avr32_bswap_operand"
|
||
+ (ior (match_operand 0 "avr32_k12_memory_operand")
|
||
+ (match_operand 0 "register_operand")))
|
||
+
|
||
+;; True is this is a valid coprocessor insn memory operand
|
||
+(define_predicate "avr32_cop_memory_operand"
|
||
+ (and (match_operand 0 "memory_operand")
|
||
+ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS
|
||
+ && REG_P(XEXP(XEXP(op, 0), 0))
|
||
+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)
|
||
+ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))"))))
|
||
+
|
||
+;; True is this is a valid source/destination operand
|
||
+;; for moving values to/from a coprocessor
|
||
+(define_predicate "avr32_cop_move_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (match_operand 0 "avr32_cop_memory_operand")))
|
||
+
|
||
+
|
||
+;; True is this is a valid extract byte offset for use in
|
||
+;; load extracted index insns
|
||
+(define_predicate "avr32_extract_shift_operand"
|
||
+ (and (match_operand 0 "const_int_operand")
|
||
+ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8)
|
||
+ || (INTVAL(op) == 16) || (INTVAL(op) == 24)")))
|
||
+
|
||
+;; True is this is a floating-point register
|
||
+(define_predicate "avr32_fp_register_operand"
|
||
+ (and (match_operand 0 "register_operand")
|
||
+ (match_test "REGNO_REG_CLASS(REGNO(op)) == FP_REGS")))
|
||
+
|
||
+;; True is this is valid avr32 symbol operand
|
||
+(define_predicate "avr32_symbol_operand"
|
||
+ (and (match_code "label_ref, symbol_ref, const")
|
||
+ (match_test "avr32_find_symbol(op)")))
|
||
+
|
||
+;; True is this is valid operand for the lda.w and call pseudo insns
|
||
+(define_predicate "avr32_address_operand"
|
||
+ (and (and (match_code "label_ref, symbol_ref")
|
||
+ (match_test "avr32_find_symbol(op)"))
|
||
+ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS")
|
||
+ (match_test "flag_pic")) ))
|
||
+
|
||
+;; An immediate k16 address operand
|
||
+(define_predicate "avr32_ks16_address_operand"
|
||
+ (and (match_operand 0 "address_operand")
|
||
+ (ior (match_test "REG_P(op)")
|
||
+ (match_test "GET_CODE(op) == PLUS
|
||
+ && ((GET_CODE(XEXP(op,0)) == CONST_INT)
|
||
+ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) ))
|
||
+
|
||
+;; An offset k16 memory operand
|
||
+(define_predicate "avr32_ks16_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))")))
|
||
+
|
||
+;; An immediate k11 address operand
|
||
+(define_predicate "avr32_ks11_address_operand"
|
||
+ (and (match_operand 0 "address_operand")
|
||
+ (ior (match_test "REG_P(op)")
|
||
+ (match_test "GET_CODE(op) == PLUS
|
||
+ && (((GET_CODE(XEXP(op,0)) == CONST_INT)
|
||
+ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\"))
|
||
+ || ((GET_CODE(XEXP(op,1)) == CONST_INT)
|
||
+ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) ))
|
||
+
|
||
+;; True if this is a avr32 call operand
|
||
+(define_predicate "avr32_call_operand"
|
||
+ (ior (ior (match_operand 0 "register_operand")
|
||
+ (ior (match_operand 0 "avr32_const_pool_ref_operand")
|
||
+ (match_operand 0 "avr32_address_operand")))
|
||
+ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)")))
|
||
+
|
||
+;; Return true for operators performing ALU operations
|
||
+
|
||
+(define_predicate "alu_operator"
|
||
+ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt"))
|
||
+
|
||
+(define_predicate "avr32_add_shift_immediate_operand"
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")")))
|
||
+
|
||
+(define_predicate "avr32_cond_register_immediate_operand"
|
||
+ (ior (match_operand 0 "register_operand")
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))))
|
||
+
|
||
+(define_predicate "avr32_cond_immediate_operand"
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")")))
|
||
+
|
||
+
|
||
+(define_predicate "avr32_cond_move_operand"
|
||
+ (ior (ior (match_operand 0 "register_operand")
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))
|
||
+ (and (match_test "TARGET_V2_INSNS")
|
||
+ (match_operand 0 "memory_operand"))))
|
||
+
|
||
+(define_predicate "avr32_mov_immediate_operand"
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "avr32_const_ok_for_move(INTVAL(op))")))
|
||
+
|
||
+
|
||
+(define_predicate "avr32_rmw_address_operand"
|
||
+ (ior (and (match_code "symbol_ref")
|
||
+ (match_test "({rtx symbol = avr32_find_symbol(op); \
|
||
+ symbol && (GET_CODE (symbol) == SYMBOL_REF) && SYMBOL_REF_RMW_ADDR(symbol);})"))
|
||
+ (and (match_operand 0 "immediate_operand")
|
||
+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks17\")")))
|
||
+ {
|
||
+ return TARGET_RMW && !flag_pic;
|
||
+ }
|
||
+)
|
||
+
|
||
+(define_predicate "avr32_rmw_memory_operand"
|
||
+ (and (match_code "mem")
|
||
+ (match_test "(GET_MODE(op) == SImode) &&
|
||
+ avr32_rmw_address_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))")))
|
||
+
|
||
+(define_predicate "avr32_rmw_memory_or_register_operand"
|
||
+ (ior (match_operand 0 "avr32_rmw_memory_operand")
|
||
+ (match_operand 0 "register_operand")))
|
||
+
|
||
+(define_predicate "avr32_non_rmw_memory_operand"
|
||
+ (and (not (match_operand 0 "avr32_rmw_memory_operand"))
|
||
+ (match_operand 0 "memory_operand")))
|
||
+
|
||
+(define_predicate "avr32_non_rmw_general_operand"
|
||
+ (and (not (match_operand 0 "avr32_rmw_memory_operand"))
|
||
+ (match_operand 0 "general_operand")))
|
||
+
|
||
+(define_predicate "avr32_non_rmw_nonimmediate_operand"
|
||
+ (and (not (match_operand 0 "avr32_rmw_memory_operand"))
|
||
+ (match_operand 0 "nonimmediate_operand")))
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/simd.md
|
||
@@ -0,0 +1,145 @@
|
||
+;; AVR32 machine description file for SIMD instructions.
|
||
+;; Copyright 2003-2006 Atmel Corporation.
|
||
+;;
|
||
+;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com>
|
||
+;;
|
||
+;; This file is part of GCC.
|
||
+;;
|
||
+;; This program is free software; you can redistribute it and/or modify
|
||
+;; it under the terms of the GNU General Public License as published by
|
||
+;; the Free Software Foundation; either version 2 of the License, or
|
||
+;; (at your option) any later version.
|
||
+;;
|
||
+;; This program is distributed in the hope that it will be useful,
|
||
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
+;; GNU General Public License for more details.
|
||
+;;
|
||
+;; You should have received a copy of the GNU General Public License
|
||
+;; along with this program; if not, write to the Free Software
|
||
+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
+
|
||
+;; -*- Mode: Scheme -*-
|
||
+
|
||
+
|
||
+;; Vector modes
|
||
+(define_mode_macro VECM [V2HI V4QI])
|
||
+(define_mode_attr size [(V2HI "h") (V4QI "b")])
|
||
+
|
||
+(define_insn "add<mode>3"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (plus:VECM (match_operand:VECM 1 "register_operand" "r")
|
||
+ (match_operand:VECM 2 "register_operand" "r")))]
|
||
+ "TARGET_SIMD"
|
||
+ "padd.<size>\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+
|
||
+(define_insn "sub<mode>3"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (minus:VECM (match_operand:VECM 1 "register_operand" "r")
|
||
+ (match_operand:VECM 2 "register_operand" "r")))]
|
||
+ "TARGET_SIMD"
|
||
+ "psub.<size>\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+
|
||
+(define_insn "abs<mode>2"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))]
|
||
+ "TARGET_SIMD"
|
||
+ "pabs.s<size>\t%0, %1"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "ashl<mode>3"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (ashift:VECM (match_operand:VECM 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku04")))]
|
||
+ "TARGET_SIMD"
|
||
+ "plsl.<size>\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "ashr<mode>3"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku04")))]
|
||
+ "TARGET_SIMD"
|
||
+ "pasr.<size>\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "lshr<mode>3"
|
||
+ [(set (match_operand:VECM 0 "register_operand" "=r")
|
||
+ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r")
|
||
+ (match_operand:SI 2 "immediate_operand" "Ku04")))]
|
||
+ "TARGET_SIMD"
|
||
+ "plsr.<size>\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "smaxv2hi3"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r")
|
||
+ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r")
|
||
+ (match_operand:V2HI 2 "register_operand" "r")))]
|
||
+
|
||
+ "TARGET_SIMD"
|
||
+ "pmax.sh\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "sminv2hi3"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r")
|
||
+ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r")
|
||
+ (match_operand:V2HI 2 "register_operand" "r")))]
|
||
+
|
||
+ "TARGET_SIMD"
|
||
+ "pmin.sh\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "umaxv4qi3"
|
||
+ [(set (match_operand:V4QI 0 "register_operand" "=r")
|
||
+ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r")
|
||
+ (match_operand:V4QI 2 "register_operand" "r")))]
|
||
+
|
||
+ "TARGET_SIMD"
|
||
+ "pmax.ub\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "uminv4qi3"
|
||
+ [(set (match_operand:V4QI 0 "register_operand" "=r")
|
||
+ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r")
|
||
+ (match_operand:V4QI 2 "register_operand" "r")))]
|
||
+
|
||
+ "TARGET_SIMD"
|
||
+ "pmin.ub\t%0, %1, %2"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+
|
||
+(define_insn "addsubv2hi"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r")
|
||
+ (vec_concat:V2HI
|
||
+ (plus:HI (match_operand:HI 1 "register_operand" "r")
|
||
+ (match_operand:HI 2 "register_operand" "r"))
|
||
+ (minus:HI (match_dup 1) (match_dup 2))))]
|
||
+ "TARGET_SIMD"
|
||
+ "paddsub.h\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
+
|
||
+(define_insn "subaddv2hi"
|
||
+ [(set (match_operand:V2HI 0 "register_operand" "=r")
|
||
+ (vec_concat:V2HI
|
||
+ (minus:HI (match_operand:HI 1 "register_operand" "r")
|
||
+ (match_operand:HI 2 "register_operand" "r"))
|
||
+ (plus:HI (match_dup 1) (match_dup 2))))]
|
||
+ "TARGET_SIMD"
|
||
+ "psubadd.h\t%0, %1:b, %2:b"
|
||
+ [(set_attr "length" "4")
|
||
+ (set_attr "type" "alu")])
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/sync.md
|
||
@@ -0,0 +1,244 @@
|
||
+;;=================================================================
|
||
+;; Atomic operations
|
||
+;;=================================================================
|
||
+
|
||
+
|
||
+(define_insn "sync_compare_and_swapsi"
|
||
+ [(set (match_operand:SI 0 "register_operand" "=&r,&r")
|
||
+ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16"))
|
||
+ (set (match_dup 1)
|
||
+ (unspec_volatile:SI
|
||
+ [(match_dup 1)
|
||
+ (match_operand:SI 2 "register_immediate_operand" "r,Ks21")
|
||
+ (match_operand:SI 3 "register_operand" "r,r")]
|
||
+ VUNSPEC_SYNC_CMPXCHG)) ]
|
||
+ ""
|
||
+ "0:
|
||
+ ssrf\t5
|
||
+ ld.w\t%0,%1
|
||
+ cp.w\t%0,%2
|
||
+ brne\t0f
|
||
+ stcond\t%1, %3
|
||
+ brne\t0b
|
||
+ 0:
|
||
+ "
|
||
+ [(set_attr "length" "16,18")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_code_macro atomic_op [plus minus and ior xor])
|
||
+(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")])
|
||
+(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")])
|
||
+
|
||
+(define_insn "sync_loadsi"
|
||
+ ; NB! Put an early clobber on the destination operand to
|
||
+ ; avoid gcc using the same register in the source and
|
||
+ ; destination. This is done in order to avoid gcc to
|
||
+ ; clobber the source operand since these instructions
|
||
+ ; are actually inside a "loop".
|
||
+ [(set (match_operand:SI 0 "register_operand" "=&r")
|
||
+ (unspec_volatile:SI
|
||
+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16")
|
||
+ (label_ref (match_operand 2 "" ""))]
|
||
+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )]
|
||
+ ""
|
||
+ "%2:
|
||
+ ssrf\t5
|
||
+ ld.w\t%0,%1"
|
||
+ [(set_attr "length" "6")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+(define_insn "sync_store_if_lock"
|
||
+ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16")
|
||
+ (unspec_volatile:SI
|
||
+ [(match_operand:SI 1 "register_operand" "r")
|
||
+ (label_ref (match_operand 2 "" ""))]
|
||
+ VUNSPEC_SYNC_STORE_IF_LOCK) )]
|
||
+ ""
|
||
+ "stcond\t%0, %1
|
||
+ brne\t%2"
|
||
+ [(set_attr "length" "6")
|
||
+ (set_attr "cc" "clobber")]
|
||
+ )
|
||
+
|
||
+
|
||
+(define_expand "sync_<atomic_insn>si"
|
||
+ [(set (match_dup 2)
|
||
+ (unspec_volatile:SI
|
||
+ [(match_operand:SI 0 "avr32_ks16_memory_operand" "")
|
||
+ (match_dup 3)]
|
||
+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
|
||
+ (set (match_dup 2)
|
||
+ (atomic_op:SI (match_dup 2)
|
||
+ (match_operand:SI 1 "register_immediate_operand" "")))
|
||
+ (set (match_dup 0)
|
||
+ (unspec_volatile:SI
|
||
+ [(match_dup 2)
|
||
+ (match_dup 3)]
|
||
+ VUNSPEC_SYNC_STORE_IF_LOCK) )
|
||
+ (use (match_dup 1))
|
||
+ (use (match_dup 4))]
|
||
+ ""
|
||
+ {
|
||
+ rtx *mem_expr = &operands[0];
|
||
+ rtx ptr_reg;
|
||
+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
|
||
+ {
|
||
+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
|
||
+ XEXP (*mem_expr, 0) = ptr_reg;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx address = XEXP (*mem_expr, 0);
|
||
+ if ( REG_P (address) )
|
||
+ ptr_reg = address;
|
||
+ else if ( REG_P (XEXP (address, 0)) )
|
||
+ ptr_reg = XEXP (address, 0);
|
||
+ else
|
||
+ ptr_reg = XEXP (address, 1);
|
||
+ }
|
||
+
|
||
+ operands[2] = gen_reg_rtx (SImode);
|
||
+ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
|
||
+ operands[4] = ptr_reg;
|
||
+
|
||
+ }
|
||
+ )
|
||
+
|
||
+
|
||
+
|
||
+(define_expand "sync_old_<atomic_insn>si"
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (unspec_volatile:SI
|
||
+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "")
|
||
+ (match_dup 4)]
|
||
+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
|
||
+ (set (match_dup 3)
|
||
+ (atomic_op:SI (match_dup 0)
|
||
+ (match_operand:SI 2 "register_immediate_operand" "")))
|
||
+ (set (match_dup 1)
|
||
+ (unspec_volatile:SI
|
||
+ [(match_dup 3)
|
||
+ (match_dup 4)]
|
||
+ VUNSPEC_SYNC_STORE_IF_LOCK) )
|
||
+ (use (match_dup 2))
|
||
+ (use (match_dup 5))]
|
||
+ ""
|
||
+ {
|
||
+ rtx *mem_expr = &operands[1];
|
||
+ rtx ptr_reg;
|
||
+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
|
||
+ {
|
||
+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
|
||
+ XEXP (*mem_expr, 0) = ptr_reg;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx address = XEXP (*mem_expr, 0);
|
||
+ if ( REG_P (address) )
|
||
+ ptr_reg = address;
|
||
+ else if ( REG_P (XEXP (address, 0)) )
|
||
+ ptr_reg = XEXP (address, 0);
|
||
+ else
|
||
+ ptr_reg = XEXP (address, 1);
|
||
+ }
|
||
+
|
||
+ operands[3] = gen_reg_rtx (SImode);
|
||
+ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
|
||
+ operands[5] = ptr_reg;
|
||
+ }
|
||
+ )
|
||
+
|
||
+(define_expand "sync_new_<atomic_insn>si"
|
||
+ [(set (match_operand:SI 0 "register_operand" "")
|
||
+ (unspec_volatile:SI
|
||
+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "")
|
||
+ (match_dup 3)]
|
||
+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD))
|
||
+ (set (match_dup 0)
|
||
+ (atomic_op:SI (match_dup 0)
|
||
+ (match_operand:SI 2 "register_immediate_operand" "")))
|
||
+ (set (match_dup 1)
|
||
+ (unspec_volatile:SI
|
||
+ [(match_dup 0)
|
||
+ (match_dup 3)]
|
||
+ VUNSPEC_SYNC_STORE_IF_LOCK) )
|
||
+ (use (match_dup 2))
|
||
+ (use (match_dup 4))]
|
||
+ ""
|
||
+ {
|
||
+ rtx *mem_expr = &operands[1];
|
||
+ rtx ptr_reg;
|
||
+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) )
|
||
+ {
|
||
+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0));
|
||
+ XEXP (*mem_expr, 0) = ptr_reg;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ rtx address = XEXP (*mem_expr, 0);
|
||
+ if ( REG_P (address) )
|
||
+ ptr_reg = address;
|
||
+ else if ( REG_P (XEXP (address, 0)) )
|
||
+ ptr_reg = XEXP (address, 0);
|
||
+ else
|
||
+ ptr_reg = XEXP (address, 1);
|
||
+ }
|
||
+
|
||
+ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ());
|
||
+ operands[4] = ptr_reg;
|
||
+ }
|
||
+ )
|
||
+
|
||
+
|
||
+;(define_insn "sync_<atomic_insn>si"
|
||
+; [(set (match_operand:SI 0 "memory_operand" "+RKs16")
|
||
+; (unspec_volatile:SI
|
||
+; [(atomic_op:SI (match_dup 0)
|
||
+; (match_operand:SI 1 "register_operand" "r"))]
|
||
+; VUNSPEC_SYNC_CMPXCHG))
|
||
+; (clobber (match_scratch:SI 2 "=&r"))]
|
||
+; ""
|
||
+; "0:
|
||
+; ssrf\t5
|
||
+; ld.w\t%2,%0
|
||
+; <atomic_asm_insn>\t%2,%1
|
||
+; stcond\t%0, %2
|
||
+; brne\t0b
|
||
+; "
|
||
+; [(set_attr "length" "14")
|
||
+; (set_attr "cc" "clobber")]
|
||
+; )
|
||
+;
|
||
+;(define_insn "sync_new_<atomic_insn>si"
|
||
+; [(set (match_operand:SI 1 "memory_operand" "+RKs16")
|
||
+; (unspec_volatile:SI
|
||
+; [(atomic_op:SI (match_dup 1)
|
||
+; (match_operand:SI 2 "register_operand" "r"))]
|
||
+; VUNSPEC_SYNC_CMPXCHG))
|
||
+; (set (match_operand:SI 0 "register_operand" "=&r")
|
||
+; (atomic_op:SI (match_dup 1)
|
||
+; (match_dup 2)))]
|
||
+; ""
|
||
+; "0:
|
||
+; ssrf\t5
|
||
+; ld.w\t%0,%1
|
||
+; <atomic_asm_insn>\t%0,%2
|
||
+; stcond\t%1, %0
|
||
+; brne\t0b
|
||
+; "
|
||
+; [(set_attr "length" "14")
|
||
+; (set_attr "cc" "clobber")]
|
||
+; )
|
||
+
|
||
+(define_insn "sync_lock_test_and_setsi"
|
||
+ [ (set (match_operand:SI 0 "register_operand" "=&r")
|
||
+ (match_operand:SI 1 "memory_operand" "+RKu00"))
|
||
+ (set (match_dup 1)
|
||
+ (match_operand:SI 2 "register_operand" "r")) ]
|
||
+ ""
|
||
+ "xchg\t%0, %p1, %2"
|
||
+ [(set_attr "length" "4")]
|
||
+ )
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/t-avr32
|
||
@@ -0,0 +1,77 @@
|
||
+
|
||
+MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \
|
||
+ $(srcdir)/config/avr32/sync.md \
|
||
+ $(srcdir)/config/avr32/fpcp.md \
|
||
+ $(srcdir)/config/avr32/simd.md \
|
||
+ $(srcdir)/config/avr32/predicates.md
|
||
+
|
||
+s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \
|
||
+ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES)
|
||
+
|
||
+# We want fine grained libraries, so use the new code
|
||
+# to build the floating point emulation libraries.
|
||
+FPBIT = fp-bit.c
|
||
+DPBIT = dp-bit.c
|
||
+
|
||
+LIB1ASMSRC = avr32/lib1funcs.S
|
||
+LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \
|
||
+ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \
|
||
+ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \
|
||
+ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \
|
||
+ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \
|
||
+ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \
|
||
+ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3
|
||
+
|
||
+#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S
|
||
+
|
||
+MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul
|
||
+MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul
|
||
+MULTILIB_EXCEPTIONS =
|
||
+MULTILIB_MATCHES += march?ap=mpart?ap7000
|
||
+MULTILIB_MATCHES += march?ap=mpart?ap7001
|
||
+MULTILIB_MATCHES += march?ap=mpart?ap7002
|
||
+MULTILIB_MATCHES += march?ap=mpart?ap7200
|
||
+MULTILIB_MATCHES += march?ucr1=march?uc
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512
|
||
+MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256
|
||
+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b064
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b164
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es
|
||
+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256
|
||
+
|
||
+
|
||
+EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
|
||
+
|
||
+CRTSTUFF_T_CFLAGS = -mrelax
|
||
+CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC
|
||
+TARGET_LIBGCC2_CFLAGS += -mrelax
|
||
+
|
||
+LIBGCC = stmp-multilib
|
||
+INSTALL_LIBGCC = install-multilib
|
||
+
|
||
+fp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ echo '#define FLOAT' > fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c
|
||
+
|
||
+dp-bit.c: $(srcdir)/config/fp-bit.c
|
||
+ cat $(srcdir)/config/fp-bit.c > dp-bit.c
|
||
+
|
||
+
|
||
+
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/t-elf
|
||
@@ -0,0 +1,16 @@
|
||
+
|
||
+# Assemble startup files.
|
||
+$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES)
|
||
+ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
|
||
+ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm
|
||
+
|
||
+$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES)
|
||
+ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \
|
||
+ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm
|
||
+
|
||
+
|
||
+# Build the libraries for both hard and soft floating point
|
||
+EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o
|
||
+
|
||
+LIBGCC = stmp-multilib
|
||
+INSTALL_LIBGCC = install-multilib
|
||
--- /dev/null
|
||
+++ b/gcc/config/avr32/uclinux-elf.h
|
||
@@ -0,0 +1,20 @@
|
||
+
|
||
+/* Run-time Target Specification. */
|
||
+#undef TARGET_VERSION
|
||
+#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr)
|
||
+
|
||
+/* We don't want a .jcr section on uClinux. As if this makes a difference... */
|
||
+#define TARGET_USE_JCR_SECTION 0
|
||
+
|
||
+/* Here we go. Drop the crtbegin/crtend stuff completely. */
|
||
+#undef STARTFILE_SPEC
|
||
+#define STARTFILE_SPEC \
|
||
+ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \
|
||
+ " %{!p:%{profile:gcrt1.o%s}" \
|
||
+ " %{!profile:crt1.o%s}}}} crti.o%s"
|
||
+
|
||
+#undef ENDFILE_SPEC
|
||
+#define ENDFILE_SPEC "crtn.o%s"
|
||
+
|
||
+#undef TARGET_DEFAULT
|
||
+#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT)
|
||
--- a/gcc/config/host-linux.c
|
||
+++ b/gcc/config/host-linux.c
|
||
@@ -25,6 +25,9 @@
|
||
#include "hosthooks.h"
|
||
#include "hosthooks-def.h"
|
||
|
||
+#ifndef SSIZE_MAX
|
||
+#define SSIZE_MAX LONG_MAX
|
||
+#endif
|
||
|
||
/* Linux has a feature called exec-shield-randomize that perturbs the
|
||
address of non-fixed mapped segments by a (relatively) small amount.
|
||
--- a/gcc/config.gcc
|
||
+++ b/gcc/config.gcc
|
||
@@ -781,6 +781,24 @@ avr-*-*)
|
||
tm_file="avr/avr.h dbxelf.h"
|
||
use_fixproto=yes
|
||
;;
|
||
+avr32*-*-linux*)
|
||
+ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h "
|
||
+ tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
|
||
+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o"
|
||
+ extra_modes=avr32/avr32-modes.def
|
||
+ gnu_ld=yes
|
||
+ ;;
|
||
+avr32*-*-uclinux*)
|
||
+ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h"
|
||
+ tmake_file="t-linux avr32/t-avr32 avr32/t-elf"
|
||
+ extra_modes=avr32/avr32-modes.def
|
||
+ gnu_ld=yes
|
||
+ ;;
|
||
+avr32-*-*)
|
||
+ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h"
|
||
+ tmake_file="avr32/t-avr32 avr32/t-elf"
|
||
+ extra_modes=avr32/avr32-modes.def
|
||
+ ;;
|
||
bfin*-elf*)
|
||
tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h"
|
||
tmake_file=bfin/t-bfin-elf
|
||
@@ -1681,6 +1699,9 @@ pdp11-*-bsd)
|
||
pdp11-*-*)
|
||
use_fixproto=yes
|
||
;;
|
||
+avr-*-*)
|
||
+ use_fixproto=yes
|
||
+ ;;
|
||
# port not yet contributed
|
||
#powerpc-*-openbsd*)
|
||
# tmake_file="${tmake_file} rs6000/t-fprules rs6000/t-fprules-fpbit "
|
||
@@ -2717,6 +2738,32 @@ case "${target}" in
|
||
fi
|
||
;;
|
||
|
||
+ avr32*-*-*)
|
||
+ supported_defaults="part arch"
|
||
+
|
||
+ case "$with_part" in
|
||
+ "" \
|
||
+ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" )
|
||
+ # OK
|
||
+ ;;
|
||
+ *)
|
||
+ echo "Unknown part used in --with-part=$with_part" 1>&2
|
||
+ exit 1
|
||
+ ;;
|
||
+ esac
|
||
+
|
||
+ case "$with_arch" in
|
||
+ "" \
|
||
+ | "ap" | "uc")
|
||
+ # OK
|
||
+ ;;
|
||
+ *)
|
||
+ echo "Unknown arch used in --with-arch=$with_arch" 1>&2
|
||
+ exit 1
|
||
+ ;;
|
||
+ esac
|
||
+ ;;
|
||
+
|
||
fr*-*-*linux*)
|
||
supported_defaults=cpu
|
||
case "$with_cpu" in
|
||
--- a/gcc/doc/extend.texi
|
||
+++ b/gcc/doc/extend.texi
|
||
@@ -1981,7 +1981,7 @@ this attribute to work correctly.
|
||
|
||
@item interrupt
|
||
@cindex interrupt handler functions
|
||
-Use this attribute on the ARM, AVR, C4x, CRX, M32C, M32R/D, MS1, and Xstormy16
|
||
+Use this attribute on the ARM, AVR, AVR32, C4x, CRX, M32C, M32R/D, MS1, and Xstormy16
|
||
ports to indicate that the specified function is an interrupt handler.
|
||
The compiler will generate function entry and exit sequences suitable
|
||
for use in an interrupt handler when this attribute is present.
|
||
@@ -2000,6 +2000,15 @@ void f () __attribute__ ((interrupt ("IR
|
||
|
||
Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
|
||
|
||
+Note, for the AVR32, you can specify which banking scheme is used for
|
||
+the interrupt mode this interrupt handler is used in like this:
|
||
+
|
||
+@smallexample
|
||
+void f () __attribute__ ((interrupt ("FULL")));
|
||
+@end smallexample
|
||
+
|
||
+Permissible values for this parameter are: FULL, HALF, NONE and UNDEF.
|
||
+
|
||
@item interrupt_handler
|
||
@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
|
||
Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
|
||
@@ -3460,6 +3469,23 @@ placed in either the @code{.bss_below100
|
||
|
||
@end table
|
||
|
||
+@subsection AVR32 Variable Attributes
|
||
+
|
||
+One attribute is currently defined for AVR32 configurations:
|
||
+@code{rmw_addressable}
|
||
+
|
||
+@table @code
|
||
+@item rmw_addressable
|
||
+@cindex @code{rmw_addressable} attribute
|
||
+
|
||
+This attribute can be used to signal that a variable can be accessed
|
||
+with the addressing mode of the AVR32 Atomic Read-Modify-Write memory
|
||
+instructions and hence make it possible for gcc to generate these
|
||
+instructions without using built-in functions or inline assembly statements.
|
||
+Variables used within the AVR32 Atomic Read-Modify-Write built-in
|
||
+functions will automatically get the @code{rmw_addressable} attribute.
|
||
+@end table
|
||
+
|
||
@node Type Attributes
|
||
@section Specifying Attributes of Types
|
||
@cindex attribute of types
|
||
@@ -6167,6 +6193,7 @@ instructions, but allow the compiler to
|
||
@menu
|
||
* Alpha Built-in Functions::
|
||
* ARM Built-in Functions::
|
||
+* AVR32 Built-in Functions::
|
||
* Blackfin Built-in Functions::
|
||
* FR-V Built-in Functions::
|
||
* X86 Built-in Functions::
|
||
@@ -6405,6 +6432,76 @@ long long __builtin_arm_wxor (long long,
|
||
long long __builtin_arm_wzero ()
|
||
@end smallexample
|
||
|
||
+@node AVR32 Built-in Functions
|
||
+@subsection AVR32 Built-in Functions
|
||
+
|
||
+
|
||
+
|
||
+Built-in functions for atomic memory (RMW) instructions. Note that these
|
||
+built-ins will fail for targets where the RMW instructions are not
|
||
+implemented. Also note that these instructions only that a Ks15 << 2
|
||
+memory address and will therefor not work with any runtime computed
|
||
+memory addresses. The user is responsible for making sure that any
|
||
+pointers used within these functions points to a valid memory address.
|
||
+
|
||
+@smallexample
|
||
+void __builtin_mems(int */*ptr*/, int /*bit*/)
|
||
+void __builtin_memc(int */*ptr*/, int /*bit*/)
|
||
+void __builtin_memt(int */*ptr*/, int /*bit*/)
|
||
+@end smallexample
|
||
+
|
||
+Built-in functions for DSP instructions. Note that these built-ins will
|
||
+fail for targets where the DSP instructions are not implemented.
|
||
+
|
||
+@smallexample
|
||
+int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/)
|
||
+int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/)
|
||
+int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/)
|
||
+int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/)
|
||
+short __builtin_mulsathh_h (short, short)
|
||
+int __builtin_mulsathh_w (short, short)
|
||
+short __builtin_mulsatrndhh_h (short, short)
|
||
+int __builtin_mulsatrndwh_w (int, short)
|
||
+int __builtin_mulsatwh_w (int, short)
|
||
+int __builtin_macsathh_w (int, short, short)
|
||
+short __builtin_satadd_h (short, short)
|
||
+short __builtin_satsub_h (short, short)
|
||
+int __builtin_satadd_w (int, int)
|
||
+int __builtin_satsub_w (int, int)
|
||
+long long __builtin_mulwh_d(int, short)
|
||
+long long __builtin_mulnwh_d(int, short)
|
||
+long long __builtin_macwh_d(long long, int, short)
|
||
+long long __builtin_machh_d(long long, short, short)
|
||
+@end smallexample
|
||
+
|
||
+Other built-in functions for instructions that cannot easily be
|
||
+generated by the compiler.
|
||
+
|
||
+@smallexample
|
||
+void __builtin_ssrf(int);
|
||
+void __builtin_csrf(int);
|
||
+void __builtin_musfr(int);
|
||
+int __builtin_mustr(void);
|
||
+int __builtin_mfsr(int /*Status Register Address*/)
|
||
+void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/)
|
||
+int __builtin_mfdr(int /*Debug Register Address*/)
|
||
+void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/)
|
||
+void __builtin_cache(void * /*Address*/, int /*Cache Operation*/)
|
||
+void __builtin_sync(int /*Sync Operation*/)
|
||
+void __builtin_tlbr(void)
|
||
+void __builtin_tlbs(void)
|
||
+void __builtin_tlbw(void)
|
||
+void __builtin_breakpoint(void)
|
||
+int __builtin_xchg(void * /*Address*/, int /*Value*/ )
|
||
+short __builtin_bswap_16(short)
|
||
+int __builtin_bswap_32(int)
|
||
+void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/)
|
||
+int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/)
|
||
+void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/)
|
||
+long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/)
|
||
+void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/)
|
||
+@end smallexample
|
||
+
|
||
@node Blackfin Built-in Functions
|
||
@subsection Blackfin Built-in Functions
|
||
|
||
--- a/gcc/doc/invoke.texi
|
||
+++ b/gcc/doc/invoke.texi
|
||
@@ -190,7 +190,7 @@ in the following sections.
|
||
-fno-default-inline -fvisibility-inlines-hidden @gol
|
||
-Wabi -Wctor-dtor-privacy @gol
|
||
-Wnon-virtual-dtor -Wreorder @gol
|
||
--Weffc++ -Wno-deprecated -Wstrict-null-sentinel @gol
|
||
+-Weffc++ -Wno-deprecated @gol
|
||
-Wno-non-template-friend -Wold-style-cast @gol
|
||
-Woverloaded-virtual -Wno-pmf-conversions @gol
|
||
-Wsign-promo}
|
||
@@ -588,6 +588,12 @@ Objective-C and Objective-C++ Dialects}.
|
||
-mauto-incdec -minmax -mlong-calls -mshort @gol
|
||
-msoft-reg-count=@var{count}}
|
||
|
||
+@emph{AVR32 Options}
|
||
+@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol
|
||
+-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol
|
||
+-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol
|
||
+-mfast-float -mimm-in-const-pool}
|
||
+
|
||
@emph{MCore Options}
|
||
@gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
|
||
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
|
||
@@ -1868,14 +1874,6 @@ to filter out those warnings.
|
||
@opindex Wno-deprecated
|
||
Do not warn about usage of deprecated features. @xref{Deprecated Features}.
|
||
|
||
-@item -Wstrict-null-sentinel @r{(C++ only)}
|
||
-@opindex Wstrict-null-sentinel
|
||
-Warn also about the use of an uncasted @code{NULL} as sentinel. When
|
||
-compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
|
||
-to @code{__null}. Although it is a null pointer constant not a null pointer,
|
||
-it is guaranteed to of the same size as a pointer. But this use is
|
||
-not portable across different compilers.
|
||
-
|
||
@item -Wno-non-template-friend @r{(C++ only)}
|
||
@opindex Wno-non-template-friend
|
||
Disable warnings when non-templatized friend functions are declared
|
||
@@ -2732,13 +2730,11 @@ requiring @option{-O}.
|
||
If you want to warn about code which uses the uninitialized value of the
|
||
variable in its own initializer, use the @option{-Winit-self} option.
|
||
|
||
-These warnings occur for individual uninitialized or clobbered
|
||
-elements of structure, union or array variables as well as for
|
||
-variables which are uninitialized or clobbered as a whole. They do
|
||
-not occur for variables or elements declared @code{volatile}. Because
|
||
-these warnings depend on optimization, the exact variables or elements
|
||
-for which there are warnings will depend on the precise optimization
|
||
-options and version of GCC used.
|
||
+These warnings occur only for variables that are candidates for
|
||
+register allocation. Therefore, they do not occur for a variable that
|
||
+is declared @code{volatile}, or whose address is taken, or whose size
|
||
+is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
|
||
+structures, unions or arrays, even when they are in registers.
|
||
|
||
Note that there may be no warning about a variable that is used only
|
||
to compute a value that itself is never used, because such
|
||
@@ -6201,10 +6197,6 @@ If number of candidates in the set is sm
|
||
we always try to remove unnecessary ivs from the set during its
|
||
optimization when a new iv is added to the set.
|
||
|
||
-@item scev-max-expr-size
|
||
-Bound on size of expressions used in the scalar evolutions analyzer.
|
||
-Large expressions slow the analyzer.
|
||
-
|
||
@item vect-max-version-checks
|
||
The maximum number of runtime checks that can be performed when doing
|
||
loop versioning in the vectorizer. See option ftree-vect-loop-version
|
||
@@ -7402,7 +7394,7 @@ platform.
|
||
* ARC Options::
|
||
* ARM Options::
|
||
* AVR Options::
|
||
-* Blackfin Options::
|
||
+* AVR32 Options::
|
||
* CRIS Options::
|
||
* CRX Options::
|
||
* Darwin Options::
|
||
@@ -7867,81 +7859,80 @@ comply to the C standards, but it will p
|
||
size.
|
||
@end table
|
||
|
||
-@node Blackfin Options
|
||
-@subsection Blackfin Options
|
||
-@cindex Blackfin Options
|
||
+@node AVR32 Options
|
||
+@subsection AVR32 Options
|
||
+@cindex AVR32 Options
|
||
+
|
||
+These options are defined for AVR32 implementations:
|
||
|
||
@table @gcctabopt
|
||
-@item -momit-leaf-frame-pointer
|
||
-@opindex momit-leaf-frame-pointer
|
||
-Don't keep the frame pointer in a register for leaf functions. This
|
||
-avoids the instructions to save, set up and restore frame pointers and
|
||
-makes an extra register available in leaf functions. The option
|
||
-@option{-fomit-frame-pointer} removes the frame pointer for all functions
|
||
-which might make debugging harder.
|
||
+@item -muse-rodata-section
|
||
+@opindex muse-rodata-section
|
||
+Use section @samp{.rodata} for read-only data instead of @samp{.text}.
|
||
|
||
-@item -mspecld-anomaly
|
||
-@opindex mspecld-anomaly
|
||
-When enabled, the compiler will ensure that the generated code does not
|
||
-contain speculative loads after jump instructions. This option is enabled
|
||
-by default.
|
||
-
|
||
-@item -mno-specld-anomaly
|
||
-@opindex mno-specld-anomaly
|
||
-Don't generate extra code to prevent speculative loads from occurring.
|
||
-
|
||
-@item -mcsync-anomaly
|
||
-@opindex mcsync-anomaly
|
||
-When enabled, the compiler will ensure that the generated code does not
|
||
-contain CSYNC or SSYNC instructions too soon after conditional branches.
|
||
-This option is enabled by default.
|
||
-
|
||
-@item -mno-csync-anomaly
|
||
-@opindex mno-csync-anomaly
|
||
-Don't generate extra code to prevent CSYNC or SSYNC instructions from
|
||
-occurring too soon after a conditional branch.
|
||
-
|
||
-@item -mlow-64k
|
||
-@opindex mlow-64k
|
||
-When enabled, the compiler is free to take advantage of the knowledge that
|
||
-the entire program fits into the low 64k of memory.
|
||
-
|
||
-@item -mno-low-64k
|
||
-@opindex mno-low-64k
|
||
-Assume that the program is arbitrarily large. This is the default.
|
||
+@item -mhard-float
|
||
+@opindex mhard-float
|
||
+Use floating point coprocessor instructions.
|
||
|
||
-@item -mid-shared-library
|
||
-@opindex mid-shared-library
|
||
-Generate code that supports shared libraries via the library ID method.
|
||
-This allows for execute in place and shared libraries in an environment
|
||
-without virtual memory management. This option implies @option{-fPIC}.
|
||
+@item -msoft-float
|
||
+@opindex msoft-float
|
||
+Use software floating-point library for floating-point operations.
|
||
|
||
-@item -mno-id-shared-library
|
||
-@opindex mno-id-shared-library
|
||
-Generate code that doesn't assume ID based shared libraries are being used.
|
||
-This is the default.
|
||
+@item -mforce-double-align
|
||
+@opindex mforce-double-align
|
||
+Force double-word alignment for double-word memory accesses.
|
||
+
|
||
+@item -mno-init-got
|
||
+@opindex mno-init-got
|
||
+Do not initialize the GOT register before using it when compiling PIC
|
||
+code.
|
||
|
||
-@item -mshared-library-id=n
|
||
-@opindex mshared-library-id
|
||
-Specified the identification number of the ID based shared library being
|
||
-compiled. Specifying a value of 0 will generate more compact code, specifying
|
||
-other values will force the allocation of that number to the current
|
||
-library but is no more space or time efficient than omitting this option.
|
||
+@item -mrelax
|
||
+@opindex mrelax
|
||
+Let invoked assembler and linker do relaxing
|
||
+(Enabled by default when optimization level is >1).
|
||
+This means that when the address of symbols are known at link time,
|
||
+the linker can optimize @samp{icall} and @samp{mcall}
|
||
+instructions into a @samp{rcall} instruction if possible.
|
||
+Loading the address of a symbol can also be optimized.
|
||
+
|
||
+@item -mmd-reorg-opt
|
||
+@opindex mmd-reorg-opt
|
||
+Perform machine dependent optimizations in reorg stage.
|
||
+
|
||
+@item -masm-addr-pseudos
|
||
+@opindex masm-addr-pseudos
|
||
+Use assembler pseudo-instructions lda.w and call for handling direct
|
||
+addresses. (Enabled by default)
|
||
+
|
||
+@item -mpart=@var{part}
|
||
+@opindex mpart
|
||
+Generate code for the specified part. Permissible parts are:
|
||
+@samp{ap7000}, @samp{ap7010},@samp{ap7020},
|
||
+@samp{uc3a0128}, @samp{uc3a0256}, @samp{uc3a0512},
|
||
+@samp{uc3a1128}, @samp{uc3a1256}, @samp{uc3a1512},
|
||
+@samp{uc3b064}, @samp{uc3b0128}, @samp{uc3b0256},
|
||
+@samp{uc3b164}, @samp{uc3b1128}, @samp{uc3b1256}.
|
||
|
||
-@item -mlong-calls
|
||
-@itemx -mno-long-calls
|
||
-@opindex mlong-calls
|
||
-@opindex mno-long-calls
|
||
-Tells the compiler to perform function calls by first loading the
|
||
-address of the function into a register and then performing a subroutine
|
||
-call on this register. This switch is needed if the target function
|
||
-will lie outside of the 24 bit addressing range of the offset based
|
||
-version of subroutine call instruction.
|
||
+@item -mcpu=@var{cpu-type}
|
||
+@opindex mcpu
|
||
+Same as -mpart. Obsolete.
|
||
+
|
||
+@item -march=@var{arch}
|
||
+@opindex march
|
||
+Generate code for the specified architecture. Permissible architectures are:
|
||
+@samp{ap} and @samp{uc}.
|
||
+
|
||
+@item -mfast-float
|
||
+@opindex mfast-float
|
||
+Enable fast floating-point library that does not conform to ieee but is still good enough
|
||
+for most applications. The fast floating-point library does not round to the nearest even
|
||
+but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified.
|
||
+
|
||
+@item -mimm-in-const-pool
|
||
+@opindex mimm-in-const-pool
|
||
+Put large immediates in constant pool. This is enabled by default for archs with insn-cache.
|
||
|
||
-This feature is not enabled by default. Specifying
|
||
-@option{-mno-long-calls} will restore the default behavior. Note these
|
||
-switches have no effect on how the compiler generates code to handle
|
||
-function calls via function pointers.
|
||
@end table
|
||
|
||
@node CRIS Options
|
||
--- a/gcc/doc/md.texi
|
||
+++ b/gcc/doc/md.texi
|
||
@@ -1681,6 +1681,80 @@ A memory reference suitable for iWMMXt l
|
||
A memory reference suitable for the ARMv4 ldrsb instruction.
|
||
@end table
|
||
|
||
+@item AVR32 family---@file{avr32.h}
|
||
+@table @code
|
||
+@item f
|
||
+Floating-point registers (f0 to f15) (Reserved for future use)
|
||
+
|
||
+@item Ku@var{bits}
|
||
+Unsigned constant representable with @var{bits} number of bits (Must be
|
||
+two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08}
|
||
+
|
||
+@item Ks@var{bits}
|
||
+Signed constant representable with @var{bits} number of bits (Must be
|
||
+two digits). I.e: A signed 12-bit constant is written as @samp{Ks12}
|
||
+
|
||
+@item Is@var{bits}
|
||
+The negated range of a signed constant representable with @var{bits}
|
||
+number of bits. The same as @samp{Ks@var{bits}} with a negated range.
|
||
+This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}}
|
||
+
|
||
+@item G
|
||
+A single/double precision floating-point immediate or 64-bit integer
|
||
+immediate where the least and most significant words both can be
|
||
+loaded with a move instruction. That is the the integer form of the
|
||
+values in the least and most significant words both are in the range
|
||
+@math{-2^{20}} to @math{2^{20}-1}.
|
||
+
|
||
+@item M
|
||
+Any 32-bit immediate with the most significant bits set to zero and the
|
||
+remaining least significant bits set to one.
|
||
+
|
||
+@item J
|
||
+A 32-bit immediate where all the lower 16-bits are zero.
|
||
+
|
||
+@item O
|
||
+A 32-bit immediate with one bit set and the rest of the bits cleared.
|
||
+
|
||
+@item N
|
||
+A 32-bit immediate with one bit cleared and the rest of the bits set.
|
||
+
|
||
+@item L
|
||
+A 32-bit immediate where all the lower 16-bits are set.
|
||
+
|
||
+@item Q
|
||
+Any AVR32 memory reference except for reference used for the atomic memory (RMW) instructions.
|
||
+
|
||
+@item RKs@var{bits}
|
||
+A memory reference where the address consists of a base register
|
||
+plus a signed immediate displacement with range given by @samp{Ks@var{bits}}
|
||
+which has the same format as for the signed immediate integer constraint
|
||
+given above.
|
||
+
|
||
+@item RKu@var{bits}
|
||
+A memory reference where the address consists of a base register
|
||
+plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}}
|
||
+which has the same format as for the unsigned immediate integer constraint
|
||
+given above.
|
||
+
|
||
+@item S
|
||
+A memory reference with an immediate or register offset
|
||
+
|
||
+@item T
|
||
+A memory reference to a constant pool entry
|
||
+
|
||
+@item W
|
||
+A valid operand for use in the @samp{lda.w} instruction macro when
|
||
+relaxing is enabled
|
||
+
|
||
+@item Y
|
||
+A memory reference suitable for the atomic memory (RMW) instructions.
|
||
+
|
||
+@item Z
|
||
+A memory reference valid for coprocessor memory instructions
|
||
+
|
||
+@end table
|
||
+
|
||
@item AVR family---@file{config/avr/constraints.md}
|
||
@table @code
|
||
@item l
|
||
--- a/gcc/expmed.c
|
||
+++ b/gcc/expmed.c
|
||
@@ -36,6 +36,7 @@ along with GCC; see the file COPYING3.
|
||
#include "real.h"
|
||
#include "recog.h"
|
||
#include "langhooks.h"
|
||
+#include "target.h"
|
||
|
||
static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT,
|
||
@@ -454,9 +455,19 @@ store_bit_field (rtx str_rtx, unsigned H
|
||
? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
|
||
&& byte_offset % GET_MODE_SIZE (fieldmode) == 0)
|
||
- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
|
||
- || (offset * BITS_PER_UNIT % bitsize == 0
|
||
- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
|
||
+ : (
|
||
+
|
||
+ /* NB! Added for AVR32, and I think this should be true for
|
||
+ all targets not using narrow volatile bitfields. If the
|
||
+ bitfield is volatile then we need to perform an access
|
||
+ consistent with the container type. */
|
||
+ !(MEM_VOLATILE_P (op0)
|
||
+ && GET_MODE_BITSIZE (GET_MODE (op0)) != bitsize
|
||
+ && bitsize < BITS_PER_WORD
|
||
+ && !targetm.narrow_volatile_bitfield ())
|
||
+ && (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
|
||
+ || (offset * BITS_PER_UNIT % bitsize == 0
|
||
+ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))))
|
||
{
|
||
if (MEM_P (op0))
|
||
op0 = adjust_address (op0, fieldmode, offset);
|
||
@@ -1256,6 +1267,13 @@ extract_bit_field (rtx str_rtx, unsigned
|
||
&& GET_MODE_SIZE (mode1) != 0
|
||
&& byte_offset % GET_MODE_SIZE (mode1) == 0)
|
||
|| (MEM_P (op0)
|
||
+ /* NB! Added for AVR32, and I think this should be true for
|
||
+ all targets not using narrow volatile bitfields. If the
|
||
+ bitfield is volatile then we need to perform an access
|
||
+ consistent with the container type. */
|
||
+ && !(MEM_VOLATILE_P (op0)
|
||
+ && GET_MODE_BITSIZE (GET_MODE (op0)) != bitsize
|
||
+ && !targetm.narrow_volatile_bitfield ())
|
||
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
|
||
|| (offset * BITS_PER_UNIT % bitsize == 0
|
||
&& MEM_ALIGN (op0) % bitsize == 0)))))
|
||
--- a/gcc/expr.c
|
||
+++ b/gcc/expr.c
|
||
@@ -3519,18 +3519,19 @@ emit_single_push_insn (enum machine_mode
|
||
}
|
||
else
|
||
{
|
||
+ emit_move_insn (stack_pointer_rtx,
|
||
+ expand_binop (Pmode,
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
|
||
- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
- GEN_INT (-(HOST_WIDE_INT) rounded_size));
|
||
+ sub_optab,
|
||
#else
|
||
- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
|
||
- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
||
- GEN_INT (rounded_size));
|
||
+ add_optab,
|
||
#endif
|
||
- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
|
||
+ stack_pointer_rtx,
|
||
+ GEN_INT (rounded_size),
|
||
+ NULL_RTX, 0, OPTAB_LIB_WIDEN));
|
||
+ dest_addr = stack_pointer_rtx;
|
||
}
|
||
-
|
||
+
|
||
dest = gen_rtx_MEM (mode, dest_addr);
|
||
|
||
if (type != 0)
|
||
@@ -5509,7 +5510,21 @@ store_field (rtx target, HOST_WIDE_INT b
|
||
is a bit field, we cannot use addressing to access it.
|
||
Use bit-field techniques or SUBREG to store in it. */
|
||
|
||
- if (mode == VOIDmode
|
||
+ if (
|
||
+ /* NB! Added for AVR32, and I think this should be true for
|
||
+ all targets not using narrow volatile bitfields. If the
|
||
+ bitfield is volatile then we need to perform an access
|
||
+ consistent with the container type. */
|
||
+ (MEM_P (target)
|
||
+ && MEM_VOLATILE_P (target)
|
||
+ && ((GET_MODE (target) != BLKmode
|
||
+ && GET_MODE_BITSIZE (GET_MODE (target)) > bitsize )
|
||
+ /* If BLKmode, check if this is a record. Do not know
|
||
+ if this is really necesarry though...*/
|
||
+ || (GET_MODE (target) == BLKmode
|
||
+ && TREE_CODE (type) == RECORD_TYPE))
|
||
+ && !targetm.narrow_volatile_bitfield ())
|
||
+ || mode == VOIDmode
|
||
|| (mode != BLKmode && ! direct_store[(int) mode]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
|
||
@@ -7560,7 +7575,21 @@ expand_expr_real_1 (tree exp, rtx target
|
||
by doing the extract into an object as wide as the field
|
||
(which we know to be the width of a basic mode), then
|
||
storing into memory, and changing the mode to BLKmode. */
|
||
- if (mode1 == VOIDmode
|
||
+ if (
|
||
+ /* NB! Added for AVR32, and I think this should be true for
|
||
+ all targets not using narrow volatile bitfields. If the
|
||
+ bitfield is volatile then we need to perform an access
|
||
+ consistent with the container type. */
|
||
+ (MEM_P (op0)
|
||
+ && MEM_VOLATILE_P (op0)
|
||
+ && ((GET_MODE (op0) != BLKmode
|
||
+ && GET_MODE_BITSIZE (GET_MODE (op0)) > bitsize )
|
||
+ /* If BLKmode, check if this is a record. Do not know
|
||
+ if this is really necesarry though...*/
|
||
+ || (GET_MODE (op0) == BLKmode
|
||
+ && TREE_CODE (type) == RECORD_TYPE))
|
||
+ && !targetm.narrow_volatile_bitfield ())
|
||
+ || mode1 == VOIDmode
|
||
|| REG_P (op0) || GET_CODE (op0) == SUBREG
|
||
|| (mode1 != BLKmode && ! direct_load[(int) mode1]
|
||
&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
|
||
--- a/gcc/flow.c
|
||
+++ b/gcc/flow.c
|
||
@@ -3327,12 +3327,12 @@ not_reg_cond (rtx x)
|
||
if (GET_CODE (x) == NOT)
|
||
return XEXP (x, 0);
|
||
if (COMPARISON_P (x)
|
||
- && REG_P (XEXP (x, 0)))
|
||
+ /* && REG_P (XEXP (x, 0))*/)
|
||
{
|
||
- gcc_assert (XEXP (x, 1) == const0_rtx);
|
||
+ /*gcc_assert (XEXP (x, 1) == const0_rtx);*/
|
||
|
||
return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
|
||
- VOIDmode, XEXP (x, 0), const0_rtx);
|
||
+ VOIDmode, XEXP (x, 0), XEXP (x, 0) /*const0_rtx*/);
|
||
}
|
||
return gen_rtx_NOT (0, x);
|
||
}
|
||
--- a/gcc/function.c
|
||
+++ b/gcc/function.c
|
||
@@ -2676,8 +2676,12 @@ assign_parm_setup_reg (struct assign_par
|
||
SET_DECL_RTL (parm, parmreg);
|
||
|
||
/* Copy the value into the register. */
|
||
- if (data->nominal_mode != data->passed_mode
|
||
- || promoted_nominal_mode != data->promoted_mode)
|
||
+ if ( (data->nominal_mode != data->passed_mode
|
||
+ /* Added for AVR32: If passed_mode is equal
|
||
+ to promoted nominal mode why should be convert?
|
||
+ The conversion should make no difference. */
|
||
+ && data->passed_mode != promoted_nominal_mode)
|
||
+ || promoted_nominal_mode != data->promoted_mode)
|
||
{
|
||
int save_tree_used;
|
||
|
||
--- a/gcc/ifcvt.c
|
||
+++ b/gcc/ifcvt.c
|
||
@@ -77,7 +77,7 @@ static int num_possible_if_blocks;
|
||
static int num_updated_if_blocks;
|
||
|
||
/* # of changes made which require life information to be updated. */
|
||
-static int num_true_changes;
|
||
+int num_true_changes;
|
||
|
||
/* Whether conditional execution changes were made. */
|
||
static int cond_exec_changed_p;
|
||
@@ -287,12 +287,15 @@ cond_exec_process_insns (ce_if_block_t *
|
||
if (must_be_last)
|
||
return FALSE;
|
||
|
||
- if (modified_in_p (test, insn))
|
||
- {
|
||
- if (!mod_ok)
|
||
- return FALSE;
|
||
- must_be_last = TRUE;
|
||
- }
|
||
+#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN
|
||
+ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN )
|
||
+#endif
|
||
+ if (modified_in_p (test, insn))
|
||
+ {
|
||
+ if (!mod_ok)
|
||
+ return FALSE;
|
||
+ must_be_last = TRUE;
|
||
+ }
|
||
|
||
/* Now build the conditional form of the instruction. */
|
||
pattern = PATTERN (insn);
|
||
@@ -566,16 +569,19 @@ cond_exec_process_if_block (ce_if_block_
|
||
/* Do any machine dependent final modifications. */
|
||
IFCVT_MODIFY_FINAL (ce_info);
|
||
#endif
|
||
-
|
||
- /* Conversion succeeded. */
|
||
- if (dump_file)
|
||
- fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
|
||
- n_insns, (n_insns == 1) ? " was" : "s were");
|
||
-
|
||
+
|
||
/* Merge the blocks! */
|
||
- merge_if_block (ce_info);
|
||
- cond_exec_changed_p = TRUE;
|
||
- return TRUE;
|
||
+ if ( reload_completed ){
|
||
+ /* Conversion succeeded. */
|
||
+ if (dump_file)
|
||
+ fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
|
||
+ n_insns, (n_insns == 1) ? " was" : "s were");
|
||
+
|
||
+ merge_if_block (ce_info);
|
||
+ cond_exec_changed_p = TRUE;
|
||
+ return TRUE;
|
||
+ }
|
||
+ return FALSE;
|
||
|
||
fail:
|
||
#ifdef IFCVT_MODIFY_CANCEL
|
||
@@ -1050,7 +1056,11 @@ noce_try_addcc (struct noce_if_info *if_
|
||
!= UNKNOWN))
|
||
{
|
||
rtx cond = if_info->cond;
|
||
- enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
|
||
+ /* This generates wrong code for AVR32. The cond code need not be reversed
|
||
+ since the addmodecc patterns add if the condition is NOT met. */
|
||
+ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/
|
||
+ enum rtx_code code = GET_CODE(cond);
|
||
+
|
||
|
||
/* First try to use addcc pattern. */
|
||
if (general_operand (XEXP (cond, 0), VOIDmode)
|
||
@@ -2651,7 +2661,12 @@ process_if_block (struct ce_if_block * c
|
||
&& cond_move_process_if_block (ce_info))
|
||
return TRUE;
|
||
|
||
- if (HAVE_conditional_execution && reload_completed)
|
||
+ if (HAVE_conditional_execution &&
|
||
+#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD
|
||
+ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD))
|
||
+#else
|
||
+ reload_completed)
|
||
+#endif
|
||
{
|
||
/* If we have && and || tests, try to first handle combining the && and
|
||
|| tests into the conditional code, and if that fails, go back and
|
||
@@ -4036,6 +4051,15 @@ rest_of_handle_if_after_reload (void)
|
||
cleanup_cfg (CLEANUP_EXPENSIVE
|
||
| CLEANUP_UPDATE_LIFE
|
||
| (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
|
||
+
|
||
+ /* Hack for the AVR32 experimental ifcvt processing before reload.
|
||
+ The AVR32 specific ifcvt code needs to know when ifcvt after reload
|
||
+ has begun. */
|
||
+#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD
|
||
+ if ( IFCVT_COND_EXEC_BEFORE_RELOAD )
|
||
+ cfun->machine->ifcvt_after_reload = 1;
|
||
+#endif
|
||
+
|
||
if (flag_if_conversion2)
|
||
if_convert (1);
|
||
return 0;
|
||
--- a/gcc/longlong.h
|
||
+++ b/gcc/longlong.h
|
||
@@ -226,6 +226,41 @@ UDItype __umulsidi3 (USItype, USItype);
|
||
#define UDIV_TIME 100
|
||
#endif /* __arm__ */
|
||
|
||
+#if defined (__avr32__) && W_TYPE_SIZE == 32
|
||
+#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
|
||
+ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \
|
||
+ : "=r" ((USItype) (sh)), \
|
||
+ "=&r" ((USItype) (sl)) \
|
||
+ : "r" ((USItype) (ah)), \
|
||
+ "r" ((USItype) (bh)), \
|
||
+ "r" ((USItype) (al)), \
|
||
+ "r" ((USItype) (bl)) __CLOBBER_CC)
|
||
+#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
|
||
+ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \
|
||
+ : "=r" ((USItype) (sh)), \
|
||
+ "=&r" ((USItype) (sl)) \
|
||
+ : "r" ((USItype) (ah)), \
|
||
+ "r" ((USItype) (bh)), \
|
||
+ "r" ((USItype) (al)), \
|
||
+ "r" ((USItype) (bl)) __CLOBBER_CC)
|
||
+
|
||
+#if !defined (__AVR32_UC__) || __AVR32_UC__ != 3
|
||
+#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b))
|
||
+
|
||
+#define umul_ppmm(w1, w0, u, v) \
|
||
+{ \
|
||
+ DWunion __w; \
|
||
+ __w.ll = __umulsidi3 (u, v); \
|
||
+ w1 = __w.s.high; \
|
||
+ w0 = __w.s.low; \
|
||
+}
|
||
+#endif
|
||
+
|
||
+#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X))
|
||
+#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X))
|
||
+#define COUNT_LEADING_ZEROS_0 32
|
||
+#endif
|
||
+
|
||
#if defined (__hppa) && W_TYPE_SIZE == 32
|
||
#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
|
||
__asm__ ("add %4,%5,%1\n\taddc %2,%3,%0" \
|
||
--- a/gcc/regrename.c
|
||
+++ b/gcc/regrename.c
|
||
@@ -1592,6 +1592,9 @@ copyprop_hardreg_forward_1 (basic_block
|
||
bool changed = false;
|
||
rtx insn;
|
||
|
||
+ rtx prev_pred_test;
|
||
+ int prev_pred_insn_skipped = 0;
|
||
+
|
||
for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
|
||
{
|
||
int n_ops, i, alt, predicated;
|
||
@@ -1630,7 +1633,62 @@ copyprop_hardreg_forward_1 (basic_block
|
||
|| (predicated && recog_data.operand_type[i] == OP_OUT))
|
||
recog_data.operand_type[i] = OP_INOUT;
|
||
}
|
||
+
|
||
|
||
+ /* Added for targets (AVR32) which supports test operands to be modified
|
||
+ in cond_exec instruction. For these targets we cannot make a change to
|
||
+ the test operands if one of the test operands is an output operand This beacuse
|
||
+ changing the test operands might cause the need for inserting a new test
|
||
+ insns in the middle of a sequence of cond_exec insns and if the test operands
|
||
+ are modified these tests will fail.
|
||
+ */
|
||
+
|
||
+#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN
|
||
+ if ( IFCVT_ALLOW_MODIFY_TEST_IN_INSN
|
||
+ && predicated )
|
||
+ {
|
||
+ int insn_skipped = 0;
|
||
+ rtx test = COND_EXEC_TEST (PATTERN (insn));
|
||
+
|
||
+ /* Check if the previous insn was a skipped predicated insn with the same
|
||
+ test as this predicated insns. If so we cannot do any modification to
|
||
+ this insn either since we cannot emit the test insn because the operands
|
||
+ are clobbered. */
|
||
+ if ( prev_pred_insn_skipped
|
||
+ && (rtx_equal_p (test, prev_pred_test)
|
||
+ || rtx_equal_p (test, reversed_condition (prev_pred_test))) )
|
||
+ {
|
||
+ insn_skipped = 1;
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ /* Check if the output operand is used in the test expression. */
|
||
+ for (i = 0; i < n_ops; ++i)
|
||
+ if ( recog_data.operand_type[i] == OP_INOUT
|
||
+ && reg_mentioned_p (recog_data.operand[i], test) )
|
||
+ {
|
||
+ insn_skipped = 1;
|
||
+ break;
|
||
+ }
|
||
+
|
||
+ }
|
||
+
|
||
+ prev_pred_test = test;
|
||
+ prev_pred_insn_skipped = insn_skipped;
|
||
+ if ( insn_skipped )
|
||
+ {
|
||
+ if (insn == BB_END (bb))
|
||
+ break;
|
||
+ else
|
||
+ continue;
|
||
+ }
|
||
+ }
|
||
+ else
|
||
+ {
|
||
+ prev_pred_insn_skipped = 0;
|
||
+ }
|
||
+#endif /* IFCVT_ALLOW_MODIFY_TEST_IN_INSN */
|
||
+
|
||
/* For each earlyclobber operand, zap the value data. */
|
||
for (i = 0; i < n_ops; i++)
|
||
if (recog_op_alt[i][alt].earlyclobber)
|
||
--- a/gcc/sched-deps.c
|
||
+++ b/gcc/sched-deps.c
|
||
@@ -649,7 +649,14 @@ fixup_sched_groups (rtx insn)
|
||
|
||
prev_nonnote = prev_nonnote_insn (insn);
|
||
if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
|
||
- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
|
||
+ /* Modification for AVR32 by RP: Why is this here, this will
|
||
+ cause instruction to be without any dependencies which might
|
||
+ cause it to be moved anywhere. For the AVR32 we try to keep
|
||
+ a group of conditionals together even if they are mutual exclusive.
|
||
+ */
|
||
+ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote)
|
||
+ || GET_CODE (PATTERN (insn)) == COND_EXEC )
|
||
+ )
|
||
add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
|
||
}
|
||
|
||
@@ -1123,8 +1130,29 @@ sched_analyze_insn (struct deps *deps, r
|
||
|
||
if (code == COND_EXEC)
|
||
{
|
||
+#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN
|
||
+ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN)
|
||
+ {
|
||
+ /* Check if we have a group og conditional instructions with the same test.
|
||
+ If so we must make sure that they are not scheduled apart in order to
|
||
+ avoid unnecesarry tests and if one of the registers in the test is modified
|
||
+ in the instruction this is needed to ensure correct code. */
|
||
+ if ( prev_nonnote_insn (insn)
|
||
+ && INSN_P (prev_nonnote_insn (insn))
|
||
+ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC
|
||
+ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0))
|
||
+ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1))
|
||
+ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x))
|
||
+ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn)))
|
||
+ {
|
||
+ SCHED_GROUP_P (insn) = 1;
|
||
+ //CANT_MOVE (prev_nonnote_insn (insn)) = 1;
|
||
+ }
|
||
+ }
|
||
+#endif
|
||
sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
|
||
|
||
+
|
||
/* ??? Should be recording conditions so we reduce the number of
|
||
false dependencies. */
|
||
x = COND_EXEC_CODE (x);
|
||
--- a/gcc/testsuite/gcc.dg/sibcall-3.c
|
||
+++ b/gcc/testsuite/gcc.dg/sibcall-3.c
|
||
@@ -5,7 +5,7 @@
|
||
Copyright (C) 2002 Free Software Foundation Inc.
|
||
Contributed by Hans-Peter Nilsson <hp@bitrange.com> */
|
||
|
||
-/* { dg-do run { xfail arc-*-* avr-*-* c4x-*-* cris-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* m681?-*-* m680*-*-* m68k-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
|
||
+/* { dg-do run { xfail arc-*-* avr-*-* avr32-*-* c4x-*-* cris-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* m681?-*-* m680*-*-* m68k-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
|
||
/* { dg-options "-O2 -foptimize-sibling-calls" } */
|
||
|
||
/* The option -foptimize-sibling-calls is the default, but serves as
|
||
--- a/gcc/testsuite/gcc.dg/sibcall-4.c
|
||
+++ b/gcc/testsuite/gcc.dg/sibcall-4.c
|
||
@@ -5,7 +5,7 @@
|
||
Copyright (C) 2002 Free Software Foundation Inc.
|
||
Contributed by Hans-Peter Nilsson <hp@bitrange.com> */
|
||
|
||
-/* { dg-do run { xfail arc-*-* avr-*-* c4x-*-* cris-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* m681?-*-* m680*-*-* m68k-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
|
||
+/* { dg-do run { xfail arc-*-* avr-*-* avr32-*-* c4x-*-* cris-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* m681?-*-* m680*-*-* m68k-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa-*-* } } */
|
||
/* { dg-options "-O2 -foptimize-sibling-calls" } */
|
||
|
||
/* The option -foptimize-sibling-calls is the default, but serves as
|
||
--- a/gcc/testsuite/gcc.dg/trampoline-1.c
|
||
+++ b/gcc/testsuite/gcc.dg/trampoline-1.c
|
||
@@ -46,6 +46,8 @@ void foo (void)
|
||
|
||
int main (void)
|
||
{
|
||
+#ifndef NO_TRAMPOLINES
|
||
foo ();
|
||
+#endif
|
||
return 0;
|
||
}
|
||
--- a/gcc/testsuite/g++.old-deja/g++.pt/static11.C
|
||
+++ b/gcc/testsuite/g++.old-deja/g++.pt/static11.C
|
||
@@ -2,7 +2,7 @@
|
||
// in their dejagnu baseboard description) require that the status is
|
||
// final when exit is entered (or main returns), and not "overruled" by a
|
||
// destructor calling _exit. It's not really worth it to handle that.
|
||
-// { dg-do run { xfail mmix-knuth-mmixware xtensa-*-elf* arm*-*-elf arm*-*-eabi m68k-*-elf } }
|
||
+// { dg-do run { xfail mmix-knuth-mmixware xtensa-*-elf* avr32-*-elf arm*-*-elf arm*-*-eabi m68k-*-elf } }
|
||
|
||
// Bug: g++ was failing to destroy C<int>::a because it was using two
|
||
// different sentry variables for construction and destruction.
|
||
--- a/libstdc++-v3/include/Makefile.in
|
||
+++ b/libstdc++-v3/include/Makefile.in
|
||
@@ -36,6 +36,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
|
||
$(top_srcdir)/fragment.am
|
||
subdir = include
|
||
--- a/libstdc++-v3/libmath/Makefile.in
|
||
+++ b/libstdc++-v3/libmath/Makefile.in
|
||
@@ -37,6 +37,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
subdir = libmath
|
||
DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in
|
||
ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
|
||
--- a/libstdc++-v3/libsupc++/Makefile.in
|
||
+++ b/libstdc++-v3/libsupc++/Makefile.in
|
||
@@ -38,6 +38,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \
|
||
$(srcdir)/Makefile.in $(top_srcdir)/fragment.am
|
||
subdir = libsupc++
|
||
--- a/libstdc++-v3/Makefile.in
|
||
+++ b/libstdc++-v3/Makefile.in
|
||
@@ -36,6 +36,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
DIST_COMMON = README $(am__configure_deps) $(srcdir)/../config.guess \
|
||
$(srcdir)/../config.sub $(srcdir)/../install-sh \
|
||
$(srcdir)/../ltmain.sh $(srcdir)/../missing \
|
||
--- a/libstdc++-v3/po/Makefile.in
|
||
+++ b/libstdc++-v3/po/Makefile.in
|
||
@@ -36,6 +36,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
|
||
$(top_srcdir)/fragment.am
|
||
subdir = po
|
||
--- a/libstdc++-v3/src/Makefile.in
|
||
+++ b/libstdc++-v3/src/Makefile.in
|
||
@@ -36,6 +36,7 @@ POST_UNINSTALL = :
|
||
build_triplet = @build@
|
||
host_triplet = @host@
|
||
target_triplet = @target@
|
||
+LIBOBJDIR =
|
||
DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \
|
||
$(top_srcdir)/fragment.am
|
||
subdir = src
|
||
--- a/gcc/configure.ac
|
||
+++ b/gcc/configure.ac
|
||
@@ -2971,7 +2971,7 @@ esac
|
||
case "$target" in
|
||
i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \
|
||
| x86_64*-*-* | hppa*-*-* | arm*-*-* | strongarm*-*-* | xscale*-*-* \
|
||
- | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-*)
|
||
+ | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-* | avr32-*-*)
|
||
insn="nop"
|
||
;;
|
||
ia64*-*-* | s390*-*-*)
|
||
--- a/gcc/configure
|
||
+++ b/gcc/configure
|
||
@@ -15610,7 +15610,7 @@ esac
|
||
case "$target" in
|
||
i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \
|
||
| x86_64*-*-* | hppa*-*-* | arm*-*-* | strongarm*-*-* | xscale*-*-* \
|
||
- | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-*)
|
||
+ | xstormy16*-*-* | cris-*-* | xtensa-*-* | bfin-*-* | score*-*-* | avr32-*-*)
|
||
insn="nop"
|
||
;;
|
||
ia64*-*-* | s390*-*-*)
|