1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-05 12:30:38 +02:00
openwrt-xburst/target/linux/brcm-2.4/files/arch/mips/bcm947xx/bcmsrom.c
2008-01-06 19:28:07 +00:00

2106 lines
59 KiB
C

/*
* Routines to access SPROM and to parse SROM/CIS variables.
*
* Copyright 2007, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
* $Id$
*/
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <stdarg.h>
#include <sbchipc.h>
#include <bcmdevs.h>
#include <bcmendian.h>
#include <sbpcmcia.h>
#include <pcicfg.h>
#include <sbconfig.h>
#include <sbutils.h>
#include <bcmsrom.h>
#include <bcmnvram.h>
#include "utils.h"
/* debug/trace */
#if defined(WLTEST)
#define BS_ERROR(args) printf args
#else
#define BS_ERROR(args)
#endif
#define WRITE_ENABLE_DELAY 500 /* 500 ms after write enable/disable toggle */
#define WRITE_WORD_DELAY 20 /* 20 ms between each word write */
typedef struct varbuf
{
char *buf; /* pointer to current position */
unsigned int size; /* current (residual) size in bytes */
} varbuf_t;
static int initvars_srom_sb (sb_t * sbh, osl_t * osh, void *curmap,
char **vars, uint * count);
static void _initvars_srom_pci (uint8 sromrev, uint16 * srom, uint off,
varbuf_t * b);
static int initvars_srom_pci (sb_t * sbh, void *curmap, char **vars,
uint * count);
static int initvars_cis_pcmcia (sb_t * sbh, osl_t * osh, char **vars,
uint * count);
#if !defined(BCMUSBDEV) && !defined(BCMSDIODEV)
static int initvars_flash_sb (sb_t * sbh, char **vars, uint * count);
#endif /* !BCMUSBDEV && !BCMSDIODEV */
static int sprom_cmd_pcmcia (osl_t * osh, uint8 cmd);
static int sprom_read_pcmcia (osl_t * osh, uint16 addr, uint16 * data);
static int sprom_write_pcmcia (osl_t * osh, uint16 addr, uint16 data);
static int sprom_read_pci (osl_t * osh, uint16 * sprom, uint wordoff,
uint16 * buf, uint nwords, bool check_crc);
static int initvars_table (osl_t * osh, char *start, char *end, char **vars,
uint * count);
static int initvars_flash (sb_t * sbh, osl_t * osh, char **vp, uint len);
#ifdef BCMUSBDEV
static int get_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
uint boff, uint16 * srom, uint bsz);
static int set_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
uint boff, uint16 * srom, uint bsz);
static uint srom_size (sb_t * sbh, osl_t * osh);
#endif /* def BCMUSBDEV */
/* Initialization of varbuf structure */
static void
varbuf_init (varbuf_t * b, char *buf, uint size)
{
b->size = size;
b->buf = buf;
}
/* append a null terminated var=value string */
static int
varbuf_append (varbuf_t * b, const char *fmt, ...)
{
va_list ap;
int r;
if (b->size < 2)
return 0;
va_start (ap, fmt);
r = vsnprintf (b->buf, b->size, fmt, ap);
va_end (ap);
/* C99 snprintf behavior returns r >= size on overflow,
* others return -1 on overflow.
* All return -1 on format error.
* We need to leave room for 2 null terminations, one for the current var
* string, and one for final null of the var table. So check that the
* strlen written, r, leaves room for 2 chars.
*/
if ((r == -1) || (r > (int) (b->size - 2)))
{
b->size = 0;
return 0;
}
/* skip over this string's null termination */
r++;
b->size -= r;
b->buf += r;
return r;
}
/*
* Initialize local vars from the right source for this platform.
* Return 0 on success, nonzero on error.
*/
int
BCMINITFN (srom_var_init) (sb_t * sbh, uint bustype, void *curmap,
osl_t * osh, char **vars, uint * count)
{
ASSERT (bustype == BUSTYPE (bustype));
if (vars == NULL || count == NULL)
return (0);
*vars = NULL;
*count = 0;
switch (BUSTYPE (bustype))
{
case SB_BUS:
case JTAG_BUS:
return initvars_srom_sb (sbh, osh, curmap, vars, count);
case PCI_BUS:
ASSERT (curmap); /* can not be NULL */
return initvars_srom_pci (sbh, curmap, vars, count);
case PCMCIA_BUS:
return initvars_cis_pcmcia (sbh, osh, vars, count);
default:
ASSERT (0);
}
return (-1);
}
/* support only 16-bit word read from srom */
int
srom_read (sb_t * sbh, uint bustype, void *curmap, osl_t * osh,
uint byteoff, uint nbytes, uint16 * buf)
{
void *srom;
uint i, off, nw;
ASSERT (bustype == BUSTYPE (bustype));
/* check input - 16-bit access only */
if (byteoff & 1 || nbytes & 1 || (byteoff + nbytes) > (SPROM_SIZE * 2))
return 1;
off = byteoff / 2;
nw = nbytes / 2;
if (BUSTYPE (bustype) == PCI_BUS)
{
if (!curmap)
return 1;
srom = (uchar *) curmap + PCI_BAR0_SPROM_OFFSET;
if (sprom_read_pci (osh, srom, off, buf, nw, FALSE))
return 1;
}
else if (BUSTYPE (bustype) == PCMCIA_BUS)
{
for (i = 0; i < nw; i++)
{
if (sprom_read_pcmcia
(osh, (uint16) (off + i), (uint16 *) (buf + i)))
return 1;
}
}
else if (BUSTYPE (bustype) == SB_BUS)
{
#ifdef BCMUSBDEV
if (SPROMBUS == PCMCIA_BUS)
{
uint origidx;
void *regs;
int rc;
bool wasup;
origidx = sb_coreidx (sbh);
regs = sb_setcore (sbh, SB_PCMCIA, 0);
ASSERT (regs != NULL);
if (!(wasup = sb_iscoreup (sbh)))
sb_core_reset (sbh, 0, 0);
rc = get_sb_pcmcia_srom (sbh, osh, regs, byteoff, buf, nbytes);
if (!wasup)
sb_core_disable (sbh, 0);
sb_setcoreidx (sbh, origidx);
return rc;
}
#endif /* def BCMUSBDEV */
return 1;
}
else
{
return 1;
}
return 0;
}
/* support only 16-bit word write into srom */
int
srom_write (sb_t * sbh, uint bustype, void *curmap, osl_t * osh,
uint byteoff, uint nbytes, uint16 * buf)
{
uint16 *srom;
uint i, nw, crc_range;
uint16 image[SPROM_SIZE];
uint8 crc;
volatile uint32 val32;
ASSERT (bustype == BUSTYPE (bustype));
/* check input - 16-bit access only */
if ((byteoff & 1) || (nbytes & 1))
return 1;
if (byteoff == 0x55aa)
{
/* Erase request */
crc_range = 0;
memset ((void *) image, 0xff, nbytes);
nw = nbytes / 2;
}
else if ((byteoff == 0) &&
((nbytes == SPROM_SIZE * 2) ||
(nbytes == (SPROM_CRC_RANGE * 2)) ||
(nbytes == (SROM4_WORDS * 2))))
{
/* Are we writing the whole thing at once? */
crc_range = nbytes;
bcopy ((void *) buf, (void *) image, nbytes);
nw = nbytes / 2;
}
else
{
if ((byteoff + nbytes) > (SPROM_SIZE * 2))
return 1;
if (BUSTYPE (bustype) == PCMCIA_BUS)
{
crc_range = SPROM_SIZE * 2;
}
else
{
crc_range = SPROM_CRC_RANGE * 2; /* Tentative */
}
nw = crc_range / 2;
/* read first 64 words from srom */
if (srom_read (sbh, bustype, curmap, osh, 0, crc_range, image))
return 1;
if (image[SROM4_SIGN] == SROM4_SIGNATURE)
{
nw = SROM4_WORDS;
crc_range = nw * 2;
if (srom_read (sbh, bustype, curmap, osh, 0, crc_range, image))
return 1;
}
/* make changes */
bcopy ((void *) buf, (void *) &image[byteoff / 2], nbytes);
}
if (crc_range)
{
/* calculate crc */
htol16_buf (image, crc_range);
crc = ~hndcrc8 ((uint8 *) image, crc_range - 1, 0xff);
ltoh16_buf (image, crc_range);
image[nw - 1] = (crc << 8) | (image[nw - 1] & 0xff);
}
if (BUSTYPE (bustype) == PCI_BUS)
{
srom = (uint16 *) ((uchar *) curmap + PCI_BAR0_SPROM_OFFSET);
/* enable writes to the SPROM */
val32 = OSL_PCI_READ_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32));
val32 |= SPROM_WRITEEN;
OSL_PCI_WRITE_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32), val32);
bcm_mdelay (WRITE_ENABLE_DELAY);
/* write srom */
for (i = 0; i < nw; i++)
{
W_REG (osh, &srom[i], image[i]);
bcm_mdelay (WRITE_WORD_DELAY);
}
/* disable writes to the SPROM */
OSL_PCI_WRITE_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32), val32 &
~SPROM_WRITEEN);
}
else if (BUSTYPE (bustype) == PCMCIA_BUS)
{
/* enable writes to the SPROM */
if (sprom_cmd_pcmcia (osh, SROM_WEN))
return 1;
bcm_mdelay (WRITE_ENABLE_DELAY);
/* write srom */
for (i = 0; i < nw; i++)
{
sprom_write_pcmcia (osh, (uint16) (i), image[i]);
bcm_mdelay (WRITE_WORD_DELAY);
}
/* disable writes to the SPROM */
if (sprom_cmd_pcmcia (osh, SROM_WDS))
return 1;
}
else if (BUSTYPE (bustype) == SB_BUS)
{
#ifdef BCMUSBDEV
if (SPROMBUS == PCMCIA_BUS)
{
uint origidx;
void *regs;
int rc;
bool wasup;
origidx = sb_coreidx (sbh);
regs = sb_setcore (sbh, SB_PCMCIA, 0);
ASSERT (regs != NULL);
if (!(wasup = sb_iscoreup (sbh)))
sb_core_reset (sbh, 0, 0);
rc = set_sb_pcmcia_srom (sbh, osh, regs, byteoff, buf, nbytes);
if (!wasup)
sb_core_disable (sbh, 0);
sb_setcoreidx (sbh, origidx);
return rc;
}
#endif /* def BCMUSBDEV */
return 1;
}
else
{
return 1;
}
bcm_mdelay (WRITE_ENABLE_DELAY);
return 0;
}
#ifdef BCMUSBDEV
#define SB_PCMCIA_READ(osh, regs, fcr) \
R_REG(osh, (volatile uint8 *)(regs) + 0x600 + (fcr) - 0x700 / 2)
#define SB_PCMCIA_WRITE(osh, regs, fcr, v) \
W_REG(osh, (volatile uint8 *)(regs) + 0x600 + (fcr) - 0x700 / 2, v)
/* set PCMCIA srom command register */
static int
srom_cmd_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint8 cmd)
{
uint8 status = 0;
uint wait_cnt = 0;
/* write srom command register */
SB_PCMCIA_WRITE (osh, pcmregs, SROM_CS, cmd);
/* wait status */
while (++wait_cnt < 1000000)
{
status = SB_PCMCIA_READ (osh, pcmregs, SROM_CS);
if (status & SROM_DONE)
return 0;
OSL_DELAY (1);
}
BS_ERROR (("sr_cmd: Give up after %d tries, stat = 0x%x\n", wait_cnt,
status));
return 1;
}
/* read a word from the PCMCIA srom over SB */
static int
srom_read_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint16 addr, uint16 * data)
{
uint8 addr_l, addr_h, data_l, data_h;
addr_l = (uint8) ((addr * 2) & 0xff);
addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
/* set address */
SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRH, addr_h);
SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRL, addr_l);
/* do read */
if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_READ))
return 1;
/* read data */
data_h = SB_PCMCIA_READ (osh, pcmregs, SROM_DATAH);
data_l = SB_PCMCIA_READ (osh, pcmregs, SROM_DATAL);
*data = ((uint16) data_h << 8) | data_l;
return 0;
}
/* write a word to the PCMCIA srom over SB */
static int
srom_write_sb_pcmcia (osl_t * osh, uint8 * pcmregs, uint16 addr, uint16 data)
{
uint8 addr_l, addr_h, data_l, data_h;
int rc;
addr_l = (uint8) ((addr * 2) & 0xff);
addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
/* set address */
SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRH, addr_h);
SB_PCMCIA_WRITE (osh, pcmregs, SROM_ADDRL, addr_l);
data_l = (uint8) (data & 0xff);
data_h = (uint8) ((data >> 8) & 0xff);
/* write data */
SB_PCMCIA_WRITE (osh, pcmregs, SROM_DATAH, data_h);
SB_PCMCIA_WRITE (osh, pcmregs, SROM_DATAL, data_l);
/* do write */
rc = srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WRITE);
OSL_DELAY (20000);
return rc;
}
/*
* Read the srom for the pcmcia-srom over sb case.
* Return 0 on success, nonzero on error.
*/
static int
get_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
uint boff, uint16 * srom, uint bsz)
{
uint i, nw, woff, wsz;
int err = 0;
/* read must be at word boundary */
ASSERT ((boff & 1) == 0 && (bsz & 1) == 0);
/* read sprom size and validate the parms */
if ((nw = srom_size (sbh, osh)) == 0)
{
BS_ERROR (("get_sb_pcmcia_srom: sprom size unknown\n"));
err = -1;
goto out;
}
if (boff + bsz > 2 * nw)
{
BS_ERROR (("get_sb_pcmcia_srom: sprom size exceeded\n"));
err = -2;
goto out;
}
/* read in sprom contents */
for (woff = boff / 2, wsz = bsz / 2, i = 0;
woff < nw && i < wsz; woff++, i++)
{
if (srom_read_sb_pcmcia (osh, pcmregs, (uint16) woff, &srom[i]))
{
BS_ERROR (("get_sb_pcmcia_srom: sprom read failed\n"));
err = -3;
goto out;
}
}
out:
return err;
}
/*
* Write the srom for the pcmcia-srom over sb case.
* Return 0 on success, nonzero on error.
*/
static int
set_sb_pcmcia_srom (sb_t * sbh, osl_t * osh, uint8 * pcmregs,
uint boff, uint16 * srom, uint bsz)
{
uint i, nw, woff, wsz;
uint16 word;
uint8 crc;
int err = 0;
/* write must be at word boundary */
ASSERT ((boff & 1) == 0 && (bsz & 1) == 0);
/* read sprom size and validate the parms */
if ((nw = srom_size (sbh, osh)) == 0)
{
BS_ERROR (("set_sb_pcmcia_srom: sprom size unknown\n"));
err = -1;
goto out;
}
if (boff + bsz > 2 * nw)
{
BS_ERROR (("set_sb_pcmcia_srom: sprom size exceeded\n"));
err = -2;
goto out;
}
/* enable write */
if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WEN))
{
BS_ERROR (("set_sb_pcmcia_srom: sprom wen failed\n"));
err = -3;
goto out;
}
/* write buffer to sprom */
for (woff = boff / 2, wsz = bsz / 2, i = 0;
woff < nw && i < wsz; woff++, i++)
{
if (srom_write_sb_pcmcia (osh, pcmregs, (uint16) woff, srom[i]))
{
BS_ERROR (("set_sb_pcmcia_srom: sprom write failed\n"));
err = -4;
goto out;
}
}
/* fix crc */
crc = 0xff;
for (woff = 0; woff < nw; woff++)
{
if (srom_read_sb_pcmcia (osh, pcmregs, (uint16) woff, &word))
{
BS_ERROR (("set_sb_pcmcia_srom: sprom fix crc read failed\n"));
err = -5;
goto out;
}
word = htol16 (word);
crc = hndcrc8 ((uint8 *) & word, woff != nw - 1 ? 2 : 1, crc);
}
word = (~crc << 8) + (ltoh16 (word) & 0xff);
if (srom_write_sb_pcmcia (osh, pcmregs, (uint16) (woff - 1), word))
{
BS_ERROR (("set_sb_pcmcia_srom: sprom fix crc write failed\n"));
err = -6;
goto out;
}
/* disable write */
if (srom_cmd_sb_pcmcia (osh, pcmregs, SROM_WDS))
{
BS_ERROR (("set_sb_pcmcia_srom: sprom wds failed\n"));
err = -7;
goto out;
}
out:
return err;
}
#endif /* def BCMUSBDEV */
int
srom_parsecis (osl_t * osh, uint8 * pcis[], uint ciscnt, char **vars,
uint * count)
{
char eabuf[32];
char *base;
varbuf_t b;
uint8 *cis, tup, tlen, sromrev = 1;
int i, j;
uint varsize;
bool ag_init = FALSE;
uint32 w32;
uint funcid;
uint cisnum;
int32 boardnum = -1;
ASSERT (vars);
ASSERT (count);
base = MALLOC (osh, MAXSZ_NVRAM_VARS);
ASSERT (base);
if (!base)
return -2;
varbuf_init (&b, base, MAXSZ_NVRAM_VARS);
eabuf[0] = '\0';
for (cisnum = 0; cisnum < ciscnt; cisnum++)
{
cis = *pcis++;
i = 0;
funcid = 0;
do
{
tup = cis[i++];
tlen = cis[i++];
if ((i + tlen) >= CIS_SIZE)
break;
switch (tup)
{
case CISTPL_VERS_1:
/* assume the strings are good if the version field checks out */
if (((cis[i + 1] << 8) + cis[i]) >= 0x0008)
{
varbuf_append (&b, "manf=%s", &cis[i + 2]);
varbuf_append (&b, "productname=%s",
&cis[i + 3 + strlen ((char *) &cis[i + 2])]);
break;
}
case CISTPL_MANFID:
varbuf_append (&b, "manfid=0x%x", (cis[i + 1] << 8) + cis[i]);
varbuf_append (&b, "prodid=0x%x",
(cis[i + 3] << 8) + cis[i + 2]);
break;
case CISTPL_FUNCID:
funcid = cis[i];
break;
case CISTPL_FUNCE:
switch (funcid)
{
default:
/* set macaddr if HNBU_MACADDR not seen yet */
if (eabuf[0] == '\0' && cis[i] == LAN_NID)
{
ASSERT (cis[i + 1] == ETHER_ADDR_LEN);
bcm_ether_ntoa ((struct ether_addr *) &cis[i + 2],
eabuf);
}
/* set boardnum if HNBU_BOARDNUM not seen yet */
if (boardnum == -1)
boardnum = (cis[i + 6] << 8) + cis[i + 7];
break;
}
break;
case CISTPL_CFTABLE:
varbuf_append (&b, "regwindowsz=%d",
(cis[i + 7] << 8) | cis[i + 6]);
break;
case CISTPL_BRCM_HNBU:
switch (cis[i])
{
case HNBU_SROMREV:
sromrev = cis[i + 1];
varbuf_append (&b, "sromrev=%d", sromrev);
break;
case HNBU_CHIPID:
varbuf_append (&b, "vendid=0x%x", (cis[i + 2] << 8) +
cis[i + 1]);
varbuf_append (&b, "devid=0x%x", (cis[i + 4] << 8) +
cis[i + 3]);
if (tlen >= 7)
{
varbuf_append (&b, "chiprev=%d",
(cis[i + 6] << 8) + cis[i + 5]);
}
if (tlen >= 9)
{
varbuf_append (&b, "subvendid=0x%x",
(cis[i + 8] << 8) + cis[i + 7]);
}
if (tlen >= 11)
{
varbuf_append (&b, "subdevid=0x%x",
(cis[i + 10] << 8) + cis[i + 9]);
/* subdevid doubles for boardtype */
varbuf_append (&b, "boardtype=0x%x",
(cis[i + 10] << 8) + cis[i + 9]);
}
break;
case HNBU_BOARDREV:
varbuf_append (&b, "boardrev=0x%x", cis[i + 1]);
break;
case HNBU_AA:
varbuf_append (&b, "aa2g=%d", cis[i + 1]);
break;
case HNBU_AG:
varbuf_append (&b, "ag0=%d", cis[i + 1]);
ag_init = TRUE;
break;
case HNBU_ANT5G:
varbuf_append (&b, "aa5g=%d", cis[i + 1]);
varbuf_append (&b, "ag1=%d", cis[i + 2]);
break;
case HNBU_CC:
ASSERT (sromrev == 1);
varbuf_append (&b, "cc=%d", cis[i + 1]);
break;
case HNBU_PAPARMS:
if (tlen == 2)
{
ASSERT (sromrev == 1);
varbuf_append (&b, "pa0maxpwr=%d", cis[i + 1]);
}
else if (tlen >= 9)
{
if (tlen == 10)
{
ASSERT (sromrev >= 2);
varbuf_append (&b, "opo=%d", cis[i + 9]);
}
else
ASSERT (tlen == 9);
for (j = 0; j < 3; j++)
{
varbuf_append (&b, "pa0b%d=%d", j,
(cis[i + (j * 2) + 2] << 8) +
cis[i + (j * 2) + 1]);
}
varbuf_append (&b, "pa0itssit=%d", cis[i + 7]);
varbuf_append (&b, "pa0maxpwr=%d", cis[i + 8]);
}
else
ASSERT (tlen >= 9);
break;
case HNBU_PAPARMS5G:
ASSERT ((sromrev == 2) || (sromrev == 3));
for (j = 0; j < 3; j++)
{
varbuf_append (&b, "pa1b%d=%d", j,
(cis[i + (j * 2) + 2] << 8) +
cis[i + (j * 2) + 1]);
}
for (j = 3; j < 6; j++)
{
varbuf_append (&b, "pa1lob%d=%d", j - 3,
(cis[i + (j * 2) + 2] << 8) +
cis[i + (j * 2) + 1]);
}
for (j = 6; j < 9; j++)
{
varbuf_append (&b, "pa1hib%d=%d", j - 6,
(cis[i + (j * 2) + 2] << 8) +
cis[i + (j * 2) + 1]);
}
varbuf_append (&b, "pa1itssit=%d", cis[i + 19]);
varbuf_append (&b, "pa1maxpwr=%d", cis[i + 20]);
varbuf_append (&b, "pa1lomaxpwr=%d", cis[i + 21]);
varbuf_append (&b, "pa1himaxpwr=%d", cis[i + 22]);
break;
case HNBU_OEM:
ASSERT (sromrev == 1);
varbuf_append (&b, "oem=%02x%02x%02x%02x%02x%02x%02x%02x",
cis[i + 1], cis[i + 2],
cis[i + 3], cis[i + 4],
cis[i + 5], cis[i + 6],
cis[i + 7], cis[i + 8]);
break;
case HNBU_BOARDFLAGS:
w32 = (cis[i + 2] << 8) + cis[i + 1];
if (tlen == 5)
w32 |= (cis[i + 4] << 24) + (cis[i + 3] << 16);
varbuf_append (&b, "boardflags=0x%x", w32);
break;
case HNBU_LEDS:
if (cis[i + 1] != 0xff)
{
varbuf_append (&b, "ledbh0=%d", cis[i + 1]);
}
if (cis[i + 2] != 0xff)
{
varbuf_append (&b, "ledbh1=%d", cis[i + 2]);
}
if (cis[i + 3] != 0xff)
{
varbuf_append (&b, "ledbh2=%d", cis[i + 3]);
}
if (cis[i + 4] != 0xff)
{
varbuf_append (&b, "ledbh3=%d", cis[i + 4]);
}
break;
case HNBU_CCODE:
ASSERT (sromrev > 1);
if ((cis[i + 1] == 0) || (cis[i + 2] == 0))
varbuf_append (&b, "ccode=");
else
varbuf_append (&b, "ccode=%c%c", cis[i + 1], cis[i + 2]);
varbuf_append (&b, "cctl=0x%x", cis[i + 3]);
break;
case HNBU_CCKPO:
ASSERT (sromrev > 2);
varbuf_append (&b, "cckpo=0x%x",
(cis[i + 2] << 8) | cis[i + 1]);
break;
case HNBU_OFDMPO:
ASSERT (sromrev > 2);
varbuf_append (&b, "ofdmpo=0x%x",
(cis[i + 4] << 24) |
(cis[i + 3] << 16) |
(cis[i + 2] << 8) | cis[i + 1]);
break;
case HNBU_RDLID:
varbuf_append (&b, "rdlid=0x%x",
(cis[i + 2] << 8) | cis[i + 1]);
break;
case HNBU_RDLRNDIS:
varbuf_append (&b, "rdlrndis=%d", cis[i + 1]);
break;
case HNBU_RDLRWU:
varbuf_append (&b, "rdlrwu=%d", cis[i + 1]);
break;
case HNBU_RDLSN:
varbuf_append (&b, "rdlsn=%d",
(cis[i + 2] << 8) | cis[i + 1]);
break;
case HNBU_XTALFREQ:
varbuf_append (&b, "xtalfreq=%d",
(cis[i + 4] << 24) |
(cis[i + 3] << 16) |
(cis[i + 2] << 8) | cis[i + 1]);
break;
case HNBU_RSSISMBXA2G:
ASSERT (sromrev == 3);
varbuf_append (&b, "rssismf2g=%d", cis[i + 1] & 0xf);
varbuf_append (&b, "rssismc2g=%d", (cis[i + 1] >> 4) & 0xf);
varbuf_append (&b, "rssisav2g=%d", cis[i + 2] & 0x7);
varbuf_append (&b, "bxa2g=%d", (cis[i + 2] >> 3) & 0x3);
break;
case HNBU_RSSISMBXA5G:
ASSERT (sromrev == 3);
varbuf_append (&b, "rssismf5g=%d", cis[i + 1] & 0xf);
varbuf_append (&b, "rssismc5g=%d", (cis[i + 1] >> 4) & 0xf);
varbuf_append (&b, "rssisav5g=%d", cis[i + 2] & 0x7);
varbuf_append (&b, "bxa5g=%d", (cis[i + 2] >> 3) & 0x3);
break;
case HNBU_TRI2G:
ASSERT (sromrev == 3);
varbuf_append (&b, "tri2g=%d", cis[i + 1]);
break;
case HNBU_TRI5G:
ASSERT (sromrev == 3);
varbuf_append (&b, "tri5gl=%d", cis[i + 1]);
varbuf_append (&b, "tri5g=%d", cis[i + 2]);
varbuf_append (&b, "tri5gh=%d", cis[i + 3]);
break;
case HNBU_RXPO2G:
ASSERT (sromrev == 3);
varbuf_append (&b, "rxpo2g=%d", cis[i + 1]);
break;
case HNBU_RXPO5G:
ASSERT (sromrev == 3);
varbuf_append (&b, "rxpo5g=%d", cis[i + 1]);
break;
case HNBU_BOARDNUM:
boardnum = (cis[i + 2] << 8) + cis[i + 1];
break;
case HNBU_MACADDR:
bcm_ether_ntoa ((struct ether_addr *) &cis[i + 1], eabuf);
break;
case HNBU_BOARDTYPE:
varbuf_append (&b, "boardtype=0x%x",
(cis[i + 2] << 8) + cis[i + 1]);
break;
#if defined(BCMCCISSR3)
case HNBU_SROM3SWRGN:
{
uint16 srom[35];
uint8 srev = cis[i + 1 + 70];
ASSERT (srev == 3);
/* make tuple value 16-bit aligned and parse it */
bcopy (&cis[i + 1], srom, sizeof (srom));
_initvars_srom_pci (srev, srom, SROM3_SWRGN_OFF, &b);
/* create extra variables */
varbuf_append (&b, "vendid=0x%x",
(cis[i + 1 + 73] << 8) + cis[i + 1 + 72]);
varbuf_append (&b, "devid=0x%x",
(cis[i + 1 + 75] << 8) + cis[i + 1 + 74]);
varbuf_append (&b, "xtalfreq=%d",
(cis[i + 1 + 77] << 8) + cis[i + 1 + 76]);
/* 2.4G antenna gain is included in SROM */
ag_init = TRUE;
/* Ethernet MAC address is included in SROM */
eabuf[0] = 0;
boardnum = -1;
break;
}
#endif
}
break;
}
i += tlen;
}
while (tup != CISTPL_END);
}
if (boardnum != -1)
{
varbuf_append (&b, "boardnum=%d", boardnum);
}
if (eabuf[0])
{
varbuf_append (&b, "macaddr=%s", eabuf);
}
/* if there is no antenna gain field, set default */
if (ag_init == FALSE)
{
varbuf_append (&b, "ag0=%d", 0xff);
}
/* final nullbyte terminator */
ASSERT (b.size >= 1);
*b.buf++ = '\0';
varsize = (uint) (b.buf - base);
ASSERT (varsize < MAXSZ_NVRAM_VARS);
if (varsize < MAXSZ_NVRAM_VARS)
{
char *new_buf;
new_buf = (char *) MALLOC (osh, varsize);
ASSERT (new_buf);
if (new_buf)
{
bcopy (base, new_buf, varsize);
MFREE (osh, base, MAXSZ_NVRAM_VARS);
base = new_buf;
}
}
*vars = base;
*count = varsize;
return (0);
}
/* set PCMCIA sprom command register */
static int
sprom_cmd_pcmcia (osl_t * osh, uint8 cmd)
{
uint8 status = 0;
uint wait_cnt = 1000;
/* write sprom command register */
OSL_PCMCIA_WRITE_ATTR (osh, SROM_CS, &cmd, 1);
/* wait status */
while (wait_cnt--)
{
OSL_PCMCIA_READ_ATTR (osh, SROM_CS, &status, 1);
if (status & SROM_DONE)
return 0;
}
return 1;
}
/* read a word from the PCMCIA srom */
static int
sprom_read_pcmcia (osl_t * osh, uint16 addr, uint16 * data)
{
uint8 addr_l, addr_h, data_l, data_h;
addr_l = (uint8) ((addr * 2) & 0xff);
addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
/* set address */
OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRH, &addr_h, 1);
OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRL, &addr_l, 1);
/* do read */
if (sprom_cmd_pcmcia (osh, SROM_READ))
return 1;
/* read data */
data_h = data_l = 0;
OSL_PCMCIA_READ_ATTR (osh, SROM_DATAH, &data_h, 1);
OSL_PCMCIA_READ_ATTR (osh, SROM_DATAL, &data_l, 1);
*data = (data_h << 8) | data_l;
return 0;
}
/* write a word to the PCMCIA srom */
static int
sprom_write_pcmcia (osl_t * osh, uint16 addr, uint16 data)
{
uint8 addr_l, addr_h, data_l, data_h;
addr_l = (uint8) ((addr * 2) & 0xff);
addr_h = (uint8) (((addr * 2) >> 8) & 0xff);
data_l = (uint8) (data & 0xff);
data_h = (uint8) ((data >> 8) & 0xff);
/* set address */
OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRH, &addr_h, 1);
OSL_PCMCIA_WRITE_ATTR (osh, SROM_ADDRL, &addr_l, 1);
/* write data */
OSL_PCMCIA_WRITE_ATTR (osh, SROM_DATAH, &data_h, 1);
OSL_PCMCIA_WRITE_ATTR (osh, SROM_DATAL, &data_l, 1);
/* do write */
return sprom_cmd_pcmcia (osh, SROM_WRITE);
}
/*
* Read in and validate sprom.
* Return 0 on success, nonzero on error.
*/
static int
sprom_read_pci (osl_t * osh, uint16 * sprom, uint wordoff, uint16 * buf,
uint nwords, bool check_crc)
{
int err = 0;
uint i;
/* read the sprom */
for (i = 0; i < nwords; i++)
{
#ifdef BCMQT
buf[i] = R_REG (osh, &sprom[wordoff + i]);
#endif
buf[i] = R_REG (osh, &sprom[wordoff + i]);
}
if (check_crc)
{
if (buf[0] == 0xffff)
{
/* The hardware thinks that an srom that starts with 0xffff
* is blank, regardless of the rest of the content, so declare
* it bad.
*/
BS_ERROR (("%s: buf[0] = 0x%x, returning bad-crc\n", __FUNCTION__,
buf[0]));
return 1;
}
/* fixup the endianness so crc8 will pass */
htol16_buf (buf, nwords * 2);
if (hndcrc8 ((uint8 *) buf, nwords * 2, 0xff) != 0x9f)
err = 1;
/* now correct the endianness of the byte array */
ltoh16_buf (buf, nwords * 2);
}
return err;
}
/*
* Create variable table from memory.
* Return 0 on success, nonzero on error.
*/
static int
BCMINITFN (initvars_table) (osl_t * osh, char *start, char *end, char **vars,
uint * count)
{
int c = (int) (end - start);
/* do it only when there is more than just the null string */
if (c > 1)
{
char *vp = MALLOC (osh, c);
ASSERT (vp);
if (!vp)
return BCME_NOMEM;
bcopy (start, vp, c);
*vars = vp;
*count = c;
}
else
{
*vars = NULL;
*count = 0;
}
return 0;
}
/*
* Find variables with <devpath> from flash. 'base' points to the beginning
* of the table upon enter and to the end of the table upon exit when success.
* Return 0 on success, nonzero on error.
*/
static int
initvars_flash (sb_t * sbh, osl_t * osh, char **base, uint len)
{
char *vp = *base;
char *flash;
int err;
char *s;
uint l, dl, copy_len;
char devpath[SB_DEVPATH_BUFSZ];
/* allocate memory and read in flash */
if (!(flash = MALLOC (osh, NVRAM_SPACE)))
return BCME_NOMEM;
if ((err = nvram_getall (flash, NVRAM_SPACE)))
goto exit;
sb_devpath (sbh, devpath, sizeof (devpath));
/* grab vars with the <devpath> prefix in name */
dl = strlen (devpath);
for (s = flash; s && *s; s += l + 1)
{
l = strlen (s);
/* skip non-matching variable */
if (strncmp (s, devpath, dl))
continue;
/* is there enough room to copy? */
copy_len = l - dl + 1;
if (len < copy_len)
{
err = BCME_BUFTOOSHORT;
goto exit;
}
/* no prefix, just the name=value */
strncpy (vp, &s[dl], copy_len);
vp += copy_len;
len -= copy_len;
}
/* add null string as terminator */
if (len < 1)
{
err = BCME_BUFTOOSHORT;
goto exit;
}
*vp++ = '\0';
*base = vp;
exit:MFREE (osh, flash, NVRAM_SPACE);
return err;
}
#if !defined(BCMUSBDEV) && !defined(BCMSDIODEV)
/*
* Initialize nonvolatile variable table from flash.
* Return 0 on success, nonzero on error.
*/
static int
initvars_flash_sb (sb_t * sbh, char **vars, uint * count)
{
osl_t *osh = sb_osh (sbh);
char *vp, *base;
int err;
ASSERT (vars);
ASSERT (count);
base = vp = MALLOC (osh, MAXSZ_NVRAM_VARS);
ASSERT (vp);
if (!vp)
return BCME_NOMEM;
if ((err = initvars_flash (sbh, osh, &vp, MAXSZ_NVRAM_VARS)) == 0)
err = initvars_table (osh, base, vp, vars, count);
MFREE (osh, base, MAXSZ_NVRAM_VARS);
return err;
}
#endif /* !BCMUSBDEV && !BCMSDIODEV */
#ifdef WLTEST
char mfgsromvars[256];
char *defaultsromvars = "il0macaddr=00:11:22:33:44:51\0"
"et0macaddr=00:11:22:33:44:52\0"
"et1macaddr=00:11:22:33:44:53\0"
"boardtype=0xffff\0"
"boardrev=0x10\0" "boardflags=8\0" "sromrev=2\0" "aa2g=3\0" "\0";
#define MFGSROM_DEFVARSLEN 149 /* default srom len */
#endif /* WL_TEST */
/*
* Initialize nonvolatile variable table from sprom.
* Return 0 on success, nonzero on error.
*/
typedef struct
{
const char *name;
uint32 revmask;
uint32 flags;
uint16 off;
uint16 mask;
} sromvar_t;
#define SRFL_MORE 1 /* value continues as described by the next entry */
#define SRFL_NOFFS 2 /* value bits can't be all one's */
#define SRFL_PRHEX 4 /* value is in hexdecimal format */
#define SRFL_PRSIGN 8 /* value is in signed decimal format */
#define SRFL_CCODE 0x10 /* value is in country code format */
#define SRFL_ETHADDR 0x20 /* value is an Ethernet address */
#define SRFL_LEDDC 0x40 /* value is an LED duty cycle */
/* Assumptions:
* - Ethernet address spins across 3 consective words
*
* Table rules:
* - Add multiple entries next to each other if a value spins across multiple words
* (even multiple fields in the same word) with each entry except the last having
* it's SRFL_MORE bit set.
* - Ethernet address entry does not follow above rule and must not have SRFL_MORE
* bit set. Its SRFL_ETHADDR bit implies it takes multiple words.
* - The last entry's name field must be NULL to indicate the end of the table. Other
* entries must have non-NULL name.
*/
static const sromvar_t pci_sromvars[] = {
{"boardrev", 0x0000000e, SRFL_PRHEX, SROM_AABREV, SROM_BR_MASK},
{"boardrev", 0x000000f0, SRFL_PRHEX, SROM4_BREV, 0xffff},
{"boardrev", 0xffffff00, SRFL_PRHEX, SROM8_BREV, 0xffff},
{"boardflags", 0x00000002, SRFL_PRHEX, SROM_BFL, 0xffff},
{"boardflags", 0x00000004, SRFL_PRHEX | SRFL_MORE, SROM_BFL, 0xffff},
{"", 0, 0, SROM_BFL2, 0xffff},
{"boardflags", 0x00000008, SRFL_PRHEX | SRFL_MORE, SROM_BFL, 0xffff},
{"", 0, 0, SROM3_BFL2, 0xffff},
{"boardflags", 0x00000010, SRFL_PRHEX | SRFL_MORE, SROM4_BFL0, 0xffff},
{"", 0, 0, SROM4_BFL1, 0xffff},
{"boardflags", 0x000000e0, SRFL_PRHEX | SRFL_MORE, SROM5_BFL0, 0xffff},
{"", 0, 0, SROM5_BFL1, 0xffff},
{"boardflags", 0xffffff00, SRFL_PRHEX | SRFL_MORE, SROM8_BFL0, 0xffff},
{"", 0, 0, SROM8_BFL1, 0xffff},
{"boardflags2", 0x00000010, SRFL_PRHEX | SRFL_MORE, SROM4_BFL2, 0xffff},
{"", 0, 0, SROM4_BFL3, 0xffff},
{"boardflags2", 0x000000e0, SRFL_PRHEX | SRFL_MORE, SROM5_BFL2, 0xffff},
{"", 0, 0, SROM5_BFL3, 0xffff},
{"boardflags2", 0xffffff00, SRFL_PRHEX | SRFL_MORE, SROM8_BFL2, 0xffff},
{"", 0, 0, SROM8_BFL3, 0xffff},
{"boardtype", 0xfffffffc, SRFL_PRHEX, SROM_SSID, 0xffff},
{"boardnum", 0x00000006, 0, SROM_MACLO_IL0, 0xffff},
{"boardnum", 0x00000008, 0, SROM3_MACLO, 0xffff},
{"boardnum", 0x00000010, 0, SROM4_MACLO, 0xffff},
{"boardnum", 0x000000e0, 0, SROM5_MACLO, 0xffff},
{"boardnum", 0xffffff00, 0, SROM8_MACLO, 0xffff},
{"cc", 0x00000002, 0, SROM_AABREV, SROM_CC_MASK},
{"regrev", 0x00000008, 0, SROM_OPO, 0xff00},
{"regrev", 0x00000010, 0, SROM4_REGREV, 0xff},
{"regrev", 0x000000e0, 0, SROM5_REGREV, 0xff},
{"regrev", 0xffffff00, 0, SROM8_REGREV, 0xff},
{"ledbh0", 0x0000000e, SRFL_NOFFS, SROM_LEDBH10, 0xff},
{"ledbh1", 0x0000000e, SRFL_NOFFS, SROM_LEDBH10, 0xff00},
{"ledbh2", 0x0000000e, SRFL_NOFFS, SROM_LEDBH32, 0xff},
{"ledbh3", 0x0000000e, SRFL_NOFFS, SROM_LEDBH32, 0xff00},
{"ledbh0", 0x00000010, SRFL_NOFFS, SROM4_LEDBH10, 0xff},
{"ledbh1", 0x00000010, SRFL_NOFFS, SROM4_LEDBH10, 0xff00},
{"ledbh2", 0x00000010, SRFL_NOFFS, SROM4_LEDBH32, 0xff},
{"ledbh3", 0x00000010, SRFL_NOFFS, SROM4_LEDBH32, 0xff00},
{"ledbh0", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH10, 0xff},
{"ledbh1", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH10, 0xff00},
{"ledbh2", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH32, 0xff},
{"ledbh3", 0x000000e0, SRFL_NOFFS, SROM5_LEDBH32, 0xff00},
{"ledbh0", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH10, 0xff},
{"ledbh1", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH10, 0xff00},
{"ledbh2", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH32, 0xff},
{"ledbh3", 0xffffff00, SRFL_NOFFS, SROM8_LEDBH32, 0xff00},
{"pa0b0", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB0, 0xffff},
{"pa0b1", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB1, 0xffff},
{"pa0b2", 0x0000000e, SRFL_PRHEX, SROM_WL0PAB2, 0xffff},
{"pa0itssit", 0x0000000e, 0, SROM_ITT, 0xff},
{"pa0maxpwr", 0x0000000e, 0, SROM_WL10MAXP, 0xff},
{"pa0b0", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB0, 0xffff},
{"pa0b1", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB1, 0xffff},
{"pa0b2", 0xffffff00, SRFL_PRHEX, SROM8_W0_PAB2, 0xffff},
{"pa0itssit", 0xffffff00, 0, SROM8_W0_ITTMAXP, 0xff00},
{"pa0maxpwr", 0xffffff00, 0, SROM8_W0_ITTMAXP, 0xff},
{"opo", 0x0000000c, 0, SROM_OPO, 0xff},
{"opo", 0xffffff00, 0, SROM8_2G_OFDMPO, 0xff},
{"aa2g", 0x0000000e, 0, SROM_AABREV, SROM_AA0_MASK},
{"aa2g", 0x000000f0, 0, SROM4_AA, 0xff},
{"aa2g", 0xffffff00, 0, SROM8_AA, 0xff},
{"aa5g", 0x0000000e, 0, SROM_AABREV, SROM_AA1_MASK},
{"aa5g", 0x000000f0, 0, SROM4_AA, 0xff00},
{"aa5g", 0xffffff00, 0, SROM8_AA, 0xff00},
{"ag0", 0x0000000e, 0, SROM_AG10, 0xff},
{"ag1", 0x0000000e, 0, SROM_AG10, 0xff00},
{"ag0", 0x000000f0, 0, SROM4_AG10, 0xff},
{"ag1", 0x000000f0, 0, SROM4_AG10, 0xff00},
{"ag2", 0x000000f0, 0, SROM4_AG32, 0xff},
{"ag3", 0x000000f0, 0, SROM4_AG32, 0xff00},
{"ag0", 0xffffff00, 0, SROM8_AG10, 0xff},
{"ag1", 0xffffff00, 0, SROM8_AG10, 0xff00},
{"ag2", 0xffffff00, 0, SROM8_AG32, 0xff},
{"ag3", 0xffffff00, 0, SROM8_AG32, 0xff00},
{"pa1b0", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB0, 0xffff},
{"pa1b1", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB1, 0xffff},
{"pa1b2", 0x0000000e, SRFL_PRHEX, SROM_WL1PAB2, 0xffff},
{"pa1lob0", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB0, 0xffff},
{"pa1lob1", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB1, 0xffff},
{"pa1lob2", 0x0000000c, SRFL_PRHEX, SROM_WL1LPAB2, 0xffff},
{"pa1hib0", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB0, 0xffff},
{"pa1hib1", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB1, 0xffff},
{"pa1hib2", 0x0000000c, SRFL_PRHEX, SROM_WL1HPAB2, 0xffff},
{"pa1itssit", 0x0000000e, 0, SROM_ITT, 0xff00},
{"pa1maxpwr", 0x0000000e, 0, SROM_WL10MAXP, 0xff00},
{"pa1lomaxpwr", 0x0000000c, 0, SROM_WL1LHMAXP, 0xff00},
{"pa1himaxpwr", 0x0000000c, 0, SROM_WL1LHMAXP, 0xff},
{"pa1b0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0, 0xffff},
{"pa1b1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1, 0xffff},
{"pa1b2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2, 0xffff},
{"pa1lob0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0_LC, 0xffff},
{"pa1lob1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1_LC, 0xffff},
{"pa1lob2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2_LC, 0xffff},
{"pa1hib0", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB0_HC, 0xffff},
{"pa1hib1", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB1_HC, 0xffff},
{"pa1hib2", 0xffffff00, SRFL_PRHEX, SROM8_W1_PAB2_HC, 0xffff},
{"pa1itssit", 0xffffff00, 0, SROM8_W1_ITTMAXP, 0xff00},
{"pa1maxpwr", 0xffffff00, 0, SROM8_W1_ITTMAXP, 0xff},
{"pa1lomaxpwr", 0xffffff00, 0, SROM8_W1_MAXP_LCHC, 0xff00},
{"pa1himaxpwr", 0xffffff00, 0, SROM8_W1_MAXP_LCHC, 0xff},
{"bxa2g", 0x00000008, 0, SROM_BXARSSI2G, 0x1800},
{"rssisav2g", 0x00000008, 0, SROM_BXARSSI2G, 0x0700},
{"rssismc2g", 0x00000008, 0, SROM_BXARSSI2G, 0x00f0},
{"rssismf2g", 0x00000008, 0, SROM_BXARSSI2G, 0x000f},
{"bxa2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x1800},
{"rssisav2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x0700},
{"rssismc2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x00f0},
{"rssismf2g", 0xffffff00, 0, SROM8_BXARSSI2G, 0x000f},
{"bxa5g", 0x00000008, 0, SROM_BXARSSI5G, 0x1800},
{"rssisav5g", 0x00000008, 0, SROM_BXARSSI5G, 0x0700},
{"rssismc5g", 0x00000008, 0, SROM_BXARSSI5G, 0x00f0},
{"rssismf5g", 0x00000008, 0, SROM_BXARSSI5G, 0x000f},
{"bxa5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x1800},
{"rssisav5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x0700},
{"rssismc5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x00f0},
{"rssismf5g", 0xffffff00, 0, SROM8_BXARSSI5G, 0x000f},
{"tri2g", 0x00000008, 0, SROM_TRI52G, 0xff},
{"tri5g", 0x00000008, 0, SROM_TRI52G, 0xff00},
{"tri5gl", 0x00000008, 0, SROM_TRI5GHL, 0xff},
{"tri5gh", 0x00000008, 0, SROM_TRI5GHL, 0xff00},
{"tri2g", 0xffffff00, 0, SROM8_TRI52G, 0xff},
{"tri5g", 0xffffff00, 0, SROM8_TRI52G, 0xff00},
{"tri5gl", 0xffffff00, 0, SROM8_TRI5GHL, 0xff},
{"tri5gh", 0xffffff00, 0, SROM8_TRI5GHL, 0xff00},
{"rxpo2g", 0x00000008, SRFL_PRSIGN, SROM_RXPO52G, 0xff},
{"rxpo5g", 0x00000008, SRFL_PRSIGN, SROM_RXPO52G, 0xff00},
{"rxpo2g", 0xffffff00, SRFL_PRSIGN, SROM8_RXPO52G, 0xff},
{"rxpo5g", 0xffffff00, SRFL_PRSIGN, SROM8_RXPO52G, 0xff00},
{"txchain", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_TXCHAIN_MASK},
{"rxchain", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_RXCHAIN_MASK},
{"antswitch", 0x000000f0, SRFL_NOFFS, SROM4_TXRXC, SROM4_SWITCH_MASK},
{"txchain", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_TXCHAIN_MASK},
{"rxchain", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_RXCHAIN_MASK},
{"antswitch", 0xffffff00, SRFL_NOFFS, SROM8_TXRXC, SROM4_SWITCH_MASK},
{"txpid2ga0", 0x000000f0, 0, SROM4_TXPID2G, 0xff},
{"txpid2ga1", 0x000000f0, 0, SROM4_TXPID2G, 0xff00},
{"txpid2ga2", 0x000000f0, 0, SROM4_TXPID2G + 1, 0xff},
{"txpid2ga3", 0x000000f0, 0, SROM4_TXPID2G + 1, 0xff00},
{"txpid5ga0", 0x000000f0, 0, SROM4_TXPID5G, 0xff},
{"txpid5ga1", 0x000000f0, 0, SROM4_TXPID5G, 0xff00},
{"txpid5ga2", 0x000000f0, 0, SROM4_TXPID5G + 1, 0xff},
{"txpid5ga3", 0x000000f0, 0, SROM4_TXPID5G + 1, 0xff00},
{"txpid5gla0", 0x000000f0, 0, SROM4_TXPID5GL, 0xff},
{"txpid5gla1", 0x000000f0, 0, SROM4_TXPID5GL, 0xff00},
{"txpid5gla2", 0x000000f0, 0, SROM4_TXPID5GL + 1, 0xff},
{"txpid5gla3", 0x000000f0, 0, SROM4_TXPID5GL + 1, 0xff00},
{"txpid5gha0", 0x000000f0, 0, SROM4_TXPID5GH, 0xff},
{"txpid5gha1", 0x000000f0, 0, SROM4_TXPID5GH, 0xff00},
{"txpid5gha2", 0x000000f0, 0, SROM4_TXPID5GH + 1, 0xff},
{"txpid5gha3", 0x000000f0, 0, SROM4_TXPID5GH + 1, 0xff00},
{"cck2gpo", 0x000000f0, 0, SROM4_2G_CCKPO, 0xffff},
{"cck2gpo", 0xffffff00, 0, SROM8_2G_CCKPO, 0xffff},
{"ofdm2gpo", 0x000000f0, SRFL_MORE, SROM4_2G_OFDMPO, 0xffff},
{"", 0, 0, SROM4_2G_OFDMPO + 1, 0xffff},
{"ofdm5gpo", 0x000000f0, SRFL_MORE, SROM4_5G_OFDMPO, 0xffff},
{"", 0, 0, SROM4_5G_OFDMPO + 1, 0xffff},
{"ofdm5glpo", 0x000000f0, SRFL_MORE, SROM4_5GL_OFDMPO, 0xffff},
{"", 0, 0, SROM4_5GL_OFDMPO + 1, 0xffff},
{"ofdm5ghpo", 0x000000f0, SRFL_MORE, SROM4_5GH_OFDMPO, 0xffff},
{"", 0, 0, SROM4_5GH_OFDMPO + 1, 0xffff},
{"ofdm2gpo", 0xffffff00, SRFL_MORE, SROM8_2G_OFDMPO, 0xffff},
{"", 0, 0, SROM8_2G_OFDMPO + 1, 0xffff},
{"ofdm5gpo", 0xffffff00, SRFL_MORE, SROM8_5G_OFDMPO, 0xffff},
{"", 0, 0, SROM8_5G_OFDMPO + 1, 0xffff},
{"ofdm5glpo", 0xffffff00, SRFL_MORE, SROM8_5GL_OFDMPO, 0xffff},
{"", 0, 0, SROM8_5GL_OFDMPO + 1, 0xffff},
{"ofdm5ghpo", 0xffffff00, SRFL_MORE, SROM8_5GH_OFDMPO, 0xffff},
{"", 0, 0, SROM8_5GH_OFDMPO + 1, 0xffff},
{"mcs2gpo0", 0x000000f0, 0, SROM4_2G_MCSPO, 0xffff},
{"mcs2gpo1", 0x000000f0, 0, SROM4_2G_MCSPO + 1, 0xffff},
{"mcs2gpo2", 0x000000f0, 0, SROM4_2G_MCSPO + 2, 0xffff},
{"mcs2gpo3", 0x000000f0, 0, SROM4_2G_MCSPO + 3, 0xffff},
{"mcs2gpo4", 0x000000f0, 0, SROM4_2G_MCSPO + 4, 0xffff},
{"mcs2gpo5", 0x000000f0, 0, SROM4_2G_MCSPO + 5, 0xffff},
{"mcs2gpo6", 0x000000f0, 0, SROM4_2G_MCSPO + 6, 0xffff},
{"mcs2gpo7", 0x000000f0, 0, SROM4_2G_MCSPO + 7, 0xffff},
{"mcs5gpo0", 0x000000f0, 0, SROM4_5G_MCSPO, 0xffff},
{"mcs5gpo1", 0x000000f0, 0, SROM4_5G_MCSPO + 1, 0xffff},
{"mcs5gpo2", 0x000000f0, 0, SROM4_5G_MCSPO + 2, 0xffff},
{"mcs5gpo3", 0x000000f0, 0, SROM4_5G_MCSPO + 3, 0xffff},
{"mcs5gpo4", 0x000000f0, 0, SROM4_5G_MCSPO + 4, 0xffff},
{"mcs5gpo5", 0x000000f0, 0, SROM4_5G_MCSPO + 5, 0xffff},
{"mcs5gpo6", 0x000000f0, 0, SROM4_5G_MCSPO + 6, 0xffff},
{"mcs5gpo7", 0x000000f0, 0, SROM4_5G_MCSPO + 7, 0xffff},
{"mcs5glpo0", 0x000000f0, 0, SROM4_5GL_MCSPO, 0xffff},
{"mcs5glpo1", 0x000000f0, 0, SROM4_5GL_MCSPO + 1, 0xffff},
{"mcs5glpo2", 0x000000f0, 0, SROM4_5GL_MCSPO + 2, 0xffff},
{"mcs5glpo3", 0x000000f0, 0, SROM4_5GL_MCSPO + 3, 0xffff},
{"mcs5glpo4", 0x000000f0, 0, SROM4_5GL_MCSPO + 4, 0xffff},
{"mcs5glpo5", 0x000000f0, 0, SROM4_5GL_MCSPO + 5, 0xffff},
{"mcs5glpo6", 0x000000f0, 0, SROM4_5GL_MCSPO + 6, 0xffff},
{"mcs5glpo7", 0x000000f0, 0, SROM4_5GL_MCSPO + 7, 0xffff},
{"mcs5ghpo0", 0x000000f0, 0, SROM4_5GH_MCSPO, 0xffff},
{"mcs5ghpo1", 0x000000f0, 0, SROM4_5GH_MCSPO + 1, 0xffff},
{"mcs5ghpo2", 0x000000f0, 0, SROM4_5GH_MCSPO + 2, 0xffff},
{"mcs5ghpo3", 0x000000f0, 0, SROM4_5GH_MCSPO + 3, 0xffff},
{"mcs5ghpo4", 0x000000f0, 0, SROM4_5GH_MCSPO + 4, 0xffff},
{"mcs5ghpo5", 0x000000f0, 0, SROM4_5GH_MCSPO + 5, 0xffff},
{"mcs5ghpo6", 0x000000f0, 0, SROM4_5GH_MCSPO + 6, 0xffff},
{"mcs5ghpo7", 0x000000f0, 0, SROM4_5GH_MCSPO + 7, 0xffff},
{"mcs2gpo0", 0xffffff00, 0, SROM8_2G_MCSPO, 0xffff},
{"mcs2gpo1", 0xffffff00, 0, SROM8_2G_MCSPO + 1, 0xffff},
{"mcs2gpo2", 0xffffff00, 0, SROM8_2G_MCSPO + 2, 0xffff},
{"mcs2gpo3", 0xffffff00, 0, SROM8_2G_MCSPO + 3, 0xffff},
{"mcs2gpo4", 0xffffff00, 0, SROM8_2G_MCSPO + 4, 0xffff},
{"mcs2gpo5", 0xffffff00, 0, SROM8_2G_MCSPO + 5, 0xffff},
{"mcs2gpo6", 0xffffff00, 0, SROM8_2G_MCSPO + 6, 0xffff},
{"mcs2gpo7", 0xffffff00, 0, SROM8_2G_MCSPO + 7, 0xffff},
{"mcs5gpo0", 0xffffff00, 0, SROM8_5G_MCSPO, 0xffff},
{"mcs5gpo1", 0xffffff00, 0, SROM8_5G_MCSPO + 1, 0xffff},
{"mcs5gpo2", 0xffffff00, 0, SROM8_5G_MCSPO + 2, 0xffff},
{"mcs5gpo3", 0xffffff00, 0, SROM8_5G_MCSPO + 3, 0xffff},
{"mcs5gpo4", 0xffffff00, 0, SROM8_5G_MCSPO + 4, 0xffff},
{"mcs5gpo5", 0xffffff00, 0, SROM8_5G_MCSPO + 5, 0xffff},
{"mcs5gpo6", 0xffffff00, 0, SROM8_5G_MCSPO + 6, 0xffff},
{"mcs5gpo7", 0xffffff00, 0, SROM8_5G_MCSPO + 7, 0xffff},
{"mcs5glpo0", 0xffffff00, 0, SROM8_5GL_MCSPO, 0xffff},
{"mcs5glpo1", 0xffffff00, 0, SROM8_5GL_MCSPO + 1, 0xffff},
{"mcs5glpo2", 0xffffff00, 0, SROM8_5GL_MCSPO + 2, 0xffff},
{"mcs5glpo3", 0xffffff00, 0, SROM8_5GL_MCSPO + 3, 0xffff},
{"mcs5glpo4", 0xffffff00, 0, SROM8_5GL_MCSPO + 4, 0xffff},
{"mcs5glpo5", 0xffffff00, 0, SROM8_5GL_MCSPO + 5, 0xffff},
{"mcs5glpo6", 0xffffff00, 0, SROM8_5GL_MCSPO + 6, 0xffff},
{"mcs5glpo7", 0xffffff00, 0, SROM8_5GL_MCSPO + 7, 0xffff},
{"mcs5ghpo0", 0xffffff00, 0, SROM8_5GH_MCSPO, 0xffff},
{"mcs5ghpo1", 0xffffff00, 0, SROM8_5GH_MCSPO + 1, 0xffff},
{"mcs5ghpo2", 0xffffff00, 0, SROM8_5GH_MCSPO + 2, 0xffff},
{"mcs5ghpo3", 0xffffff00, 0, SROM8_5GH_MCSPO + 3, 0xffff},
{"mcs5ghpo4", 0xffffff00, 0, SROM8_5GH_MCSPO + 4, 0xffff},
{"mcs5ghpo5", 0xffffff00, 0, SROM8_5GH_MCSPO + 5, 0xffff},
{"mcs5ghpo6", 0xffffff00, 0, SROM8_5GH_MCSPO + 6, 0xffff},
{"mcs5ghpo7", 0xffffff00, 0, SROM8_5GH_MCSPO + 7, 0xffff},
{"cddpo", 0x000000f0, 0, SROM4_CDDPO, 0xffff},
{"stbcpo", 0x000000f0, 0, SROM4_STBCPO, 0xffff},
{"bw40po", 0x000000f0, 0, SROM4_BW40PO, 0xffff},
{"bwduppo", 0x000000f0, 0, SROM4_BWDUPPO, 0xffff},
{"cddpo", 0xffffff00, 0, SROM8_CDDPO, 0xffff},
{"stbcpo", 0xffffff00, 0, SROM8_STBCPO, 0xffff},
{"bw40po", 0xffffff00, 0, SROM8_BW40PO, 0xffff},
{"bwduppo", 0xffffff00, 0, SROM8_BWDUPPO, 0xffff},
{"ccode", 0x0000000f, SRFL_CCODE, SROM_CCODE, 0xffff},
{"ccode", 0x00000010, SRFL_CCODE, SROM4_CCODE, 0xffff},
{"ccode", 0x000000e0, SRFL_CCODE, SROM5_CCODE, 0xffff},
{"ccode", 0xffffff00, SRFL_CCODE, SROM8_CCODE, 0xffff},
{"macaddr", 0xffffff00, SRFL_ETHADDR, SROM8_MACHI, 0xffff},
{"macaddr", 0x000000e0, SRFL_ETHADDR, SROM5_MACHI, 0xffff},
{"macaddr", 0x00000010, SRFL_ETHADDR, SROM4_MACHI, 0xffff},
{"macaddr", 0x00000008, SRFL_ETHADDR, SROM3_MACHI, 0xffff},
{"il0macaddr", 0x00000007, SRFL_ETHADDR, SROM_MACHI_IL0, 0xffff},
{"et1macaddr", 0x00000007, SRFL_ETHADDR, SROM_MACHI_ET1, 0xffff},
{"leddc", 0xffffff00, SRFL_NOFFS | SRFL_LEDDC, SROM8_LEDDC, 0xffff},
{"leddc", 0x000000e0, SRFL_NOFFS | SRFL_LEDDC, SROM5_LEDDC, 0xffff},
{"leddc", 0x00000010, SRFL_NOFFS | SRFL_LEDDC, SROM4_LEDDC, 0xffff},
{"leddc", 0x00000008, SRFL_NOFFS | SRFL_LEDDC, SROM3_LEDDC, 0xffff},
{NULL, 0, 0, 0, 0}
};
static const sromvar_t perpath_pci_sromvars[] = {
{"maxp2ga", 0x000000f0, 0, SROM4_2G_ITT_MAXP, 0xff},
{"itt2ga", 0x000000f0, 0, SROM4_2G_ITT_MAXP, 0xff00},
{"itt5ga", 0x000000f0, 0, SROM4_5G_ITT_MAXP, 0xff00},
{"pa2gw0a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA, 0xffff},
{"pa2gw1a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 1, 0xffff},
{"pa2gw2a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 2, 0xffff},
{"pa2gw3a", 0x000000f0, SRFL_PRHEX, SROM4_2G_PA + 3, 0xffff},
{"maxp5ga", 0x000000f0, 0, SROM4_5G_ITT_MAXP, 0xff},
{"maxp5gha", 0x000000f0, 0, SROM4_5GLH_MAXP, 0xff},
{"maxp5gla", 0x000000f0, 0, SROM4_5GLH_MAXP, 0xff00},
{"pa5gw0a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA, 0xffff},
{"pa5gw1a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 1, 0xffff},
{"pa5gw2a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 2, 0xffff},
{"pa5gw3a", 0x000000f0, SRFL_PRHEX, SROM4_5G_PA + 3, 0xffff},
{"pa5glw0a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA, 0xffff},
{"pa5glw1a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 1, 0xffff},
{"pa5glw2a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 2, 0xffff},
{"pa5glw3a", 0x000000f0, SRFL_PRHEX, SROM4_5GL_PA + 3, 0xffff},
{"pa5ghw0a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA, 0xffff},
{"pa5ghw1a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 1, 0xffff},
{"pa5ghw2a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 2, 0xffff},
{"pa5ghw3a", 0x000000f0, SRFL_PRHEX, SROM4_5GH_PA + 3, 0xffff},
{"maxp2ga", 0xffffff00, 0, SROM8_2G_ITT_MAXP, 0xff},
{"itt2ga", 0xffffff00, 0, SROM8_2G_ITT_MAXP, 0xff00},
{"itt5ga", 0xffffff00, 0, SROM8_5G_ITT_MAXP, 0xff00},
{"pa2gw0a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA, 0xffff},
{"pa2gw1a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA + 1, 0xffff},
{"pa2gw2a", 0xffffff00, SRFL_PRHEX, SROM8_2G_PA + 2, 0xffff},
{"maxp5ga", 0xffffff00, 0, SROM8_5G_ITT_MAXP, 0xff},
{"maxp5gha", 0xffffff00, 0, SROM8_5GLH_MAXP, 0xff},
{"maxp5gla", 0xffffff00, 0, SROM8_5GLH_MAXP, 0xff00},
{"pa5gw0a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA, 0xffff},
{"pa5gw1a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA + 1, 0xffff},
{"pa5gw2a", 0xffffff00, SRFL_PRHEX, SROM8_5G_PA + 2, 0xffff},
{"pa5glw0a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA, 0xffff},
{"pa5glw1a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA + 1, 0xffff},
{"pa5glw2a", 0xffffff00, SRFL_PRHEX, SROM8_5GL_PA + 2, 0xffff},
{"pa5ghw0a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA, 0xffff},
{"pa5ghw1a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA + 1, 0xffff},
{"pa5ghw2a", 0xffffff00, SRFL_PRHEX, SROM8_5GH_PA + 2, 0xffff},
{NULL, 0, 0, 0, 0}
};
/* Parse SROM and create name=value pairs. 'srom' points to
* the SROM word array. 'off' specifies the offset of the
* first word 'srom' points to, which should be either 0 or
* SROM3_SWRG_OFF (full SROM or software region).
*/
static uint
mask_shift (uint16 mask)
{
uint i;
for (i = 0; i < (sizeof (mask) << 3); i++)
{
if (mask & (1 << i))
return i;
}
ASSERT (mask);
return 0;
}
static uint
mask_width (uint16 mask)
{
int i;
for (i = (sizeof (mask) << 3) - 1; i >= 0; i--)
{
if (mask & (1 << i))
return (uint) (i - mask_shift (mask) + 1);
}
ASSERT (mask);
return 0;
}
#ifdef BCMDBG_ASSERT
static bool
mask_valid (uint16 mask)
{
uint shift = mask_shift (mask);
uint width = mask_width (mask);
return mask == ((~0 << shift) & ~(~0 << (shift + width)));
}
#endif
static void
_initvars_srom_pci (uint8 sromrev, uint16 * srom, uint off, varbuf_t * b)
{
uint16 w;
uint32 val;
const sromvar_t *srv;
uint width;
uint flags;
uint32 sr = (1 << sromrev);
varbuf_append (b, "sromrev=%d", sromrev);
for (srv = pci_sromvars; srv->name != NULL; srv++)
{
const char *name;
if ((srv->revmask & sr) == 0)
continue;
if (srv->off < off)
continue;
flags = srv->flags;
name = srv->name;
if (flags & SRFL_ETHADDR)
{
char eabuf[ETHER_ADDR_STR_LEN];
struct ether_addr ea;
ea.octet[0] = (srom[srv->off - off] >> 8) & 0xff;
ea.octet[1] = srom[srv->off - off] & 0xff;
ea.octet[2] = (srom[srv->off + 1 - off] >> 8) & 0xff;
ea.octet[3] = srom[srv->off + 1 - off] & 0xff;
ea.octet[4] = (srom[srv->off + 2 - off] >> 8) & 0xff;
ea.octet[5] = srom[srv->off + 2 - off] & 0xff;
bcm_ether_ntoa (&ea, eabuf);
varbuf_append (b, "%s=%s", name, eabuf);
}
else
{
ASSERT (mask_valid (srv->mask));
ASSERT (mask_width (srv->mask));
w = srom[srv->off - off];
val = (w & srv->mask) >> mask_shift (srv->mask);
width = mask_width (srv->mask);
while (srv->flags & SRFL_MORE)
{
srv++;
ASSERT (srv->name);
if (srv->off == 0 || srv->off < off)
continue;
ASSERT (mask_valid (srv->mask));
ASSERT (mask_width (srv->mask));
w = srom[srv->off - off];
val += ((w & srv->mask) >> mask_shift (srv->mask)) << width;
width += mask_width (srv->mask);
}
if ((flags & SRFL_NOFFS) && ((int) val == (1 << width) - 1))
continue;
if (flags & SRFL_CCODE)
{
if (val == 0)
varbuf_append (b, "ccode=");
else
varbuf_append (b, "ccode=%c%c", (val >> 8), (val & 0xff));
}
/* LED Powersave duty cycle has to be scaled:
*(oncount >> 24) (offcount >> 8)
*/
else if (flags & SRFL_LEDDC)
{
uint32 w32 = (((val >> 8) & 0xff) << 24) | /* oncount */
(((val & 0xff)) << 8); /* offcount */
varbuf_append (b, "leddc=%d", w32);
}
else if (flags & SRFL_PRHEX)
varbuf_append (b, "%s=0x%x", name, val);
else if ((flags & SRFL_PRSIGN) && (val & (1 << (width - 1))))
varbuf_append (b, "%s=%d", name, (int) (val | (~0 << width)));
else
varbuf_append (b, "%s=%u", name, val);
}
}
if (sromrev >= 4)
{
/* Do per-path variables */
uint p, pb, psz;
if (sromrev >= 8)
{
pb = SROM8_PATH0;
psz = SROM8_PATH1 - SROM8_PATH0;
}
else
{
pb = SROM4_PATH0;
psz = SROM4_PATH1 - SROM4_PATH0;
}
for (p = 0; p < MAX_PATH; p++)
{
for (srv = perpath_pci_sromvars; srv->name != NULL; srv++)
{
if ((srv->revmask & sr) == 0)
continue;
if (pb + srv->off < off)
continue;
w = srom[pb + srv->off - off];
ASSERT (mask_valid (srv->mask));
val = (w & srv->mask) >> mask_shift (srv->mask);
width = mask_width (srv->mask);
/* Cheating: no per-path var is more than 1 word */
if ((srv->flags & SRFL_NOFFS)
&& ((int) val == (1 << width) - 1))
continue;
if (srv->flags & SRFL_PRHEX)
varbuf_append (b, "%s%d=0x%x", srv->name, p, val);
else
varbuf_append (b, "%s%d=%d", srv->name, p, val);
}
pb += psz;
}
}
}
static int
initvars_srom_pci (sb_t * sbh, void *curmap, char **vars, uint * count)
{
uint16 *srom;
uint8 sromrev = 0;
uint32 sr;
varbuf_t b;
char *vp, *base = NULL;
osl_t *osh = sb_osh (sbh);
bool flash = FALSE;
char *value;
int err;
/*
* Apply CRC over SROM content regardless SROM is present or not,
* and use variable <devpath>sromrev's existance in flash to decide
* if we should return an error when CRC fails or read SROM variables
* from flash.
*/
srom = MALLOC (osh, SROM_MAX);
ASSERT (srom);
if (!srom)
return -2;
err =
sprom_read_pci (osh, (void *) ((int8 *) curmap + PCI_BAR0_SPROM_OFFSET),
0, srom, SROM_WORDS, TRUE);
if ((srom[SROM4_SIGN] == SROM4_SIGNATURE) ||
((sbh->buscoretype == SB_PCIE) && (sbh->buscorerev >= 6)))
{
/* sromrev >= 4, read more */
err =
sprom_read_pci (osh,
(void *) ((int8 *) curmap + PCI_BAR0_SPROM_OFFSET), 0,
srom, SROM4_WORDS, TRUE);
sromrev = srom[SROM4_CRCREV] & 0xff;
}
else if (err == 0)
{
/* srom is good and is rev < 4 */
/* top word of sprom contains version and crc8 */
sromrev = srom[SROM_CRCREV] & 0xff;
/* bcm4401 sroms misprogrammed */
if (sromrev == 0x10)
sromrev = 1;
}
if (err)
{
#ifdef WLTEST
uint32 val;
BS_ERROR (("SROM Crc Error, so see if we could use a default\n"));
val = OSL_PCI_READ_CONFIG (osh, PCI_SPROM_CONTROL, sizeof (uint32));
if (val & SPROM_OTPIN_USE)
{
BS_ERROR (("srom crc failed with OTP, use default vars....\n"));
vp = base = mfgsromvars;
if (sb_chip (sbh) == BCM4311_CHIP_ID)
{
const char *devid = "devid=0x4311";
const size_t devid_strlen = strlen (devid);
BS_ERROR (("setting the devid to be 4311\n"));
bcopy (devid, vp, devid_strlen + 1);
vp += devid_strlen + 1;
}
bcopy (defaultsromvars, vp, MFGSROM_DEFVARSLEN);
vp += MFGSROM_DEFVARSLEN;
goto varsdone;
}
else
{
#endif /* WLTEST */
BS_ERROR (("srom crc failed with SPROM....\n"));
if (!(value = sb_getdevpathvar (sbh, "sromrev")))
{
err = -1;
goto errout;
}
sromrev = (uint8) simple_strtoul (value, NULL, 0);
flash = TRUE;
#ifdef WLTEST
}
#endif /* WLTEST */
}
/* Bitmask for the sromrev */
sr = 1 << sromrev;
/* srom version check
* Current valid versions: 1, 2, 3, 4, 5, 8
*/
if ((sr & 0x13e) == 0)
{
err = -2;
goto errout;
}
ASSERT (vars);
ASSERT (count);
base = vp = MALLOC (osh, MAXSZ_NVRAM_VARS);
ASSERT (vp);
if (!vp)
{
err = -2;
goto errout;
}
/* read variables from flash */
if (flash)
{
if ((err = initvars_flash (sbh, osh, &vp, MAXSZ_NVRAM_VARS)))
goto errout;
goto varsdone;
}
varbuf_init (&b, base, MAXSZ_NVRAM_VARS);
/* parse SROM into name=value pairs. */
_initvars_srom_pci (sromrev, srom, 0, &b);
/* final nullbyte terminator */
ASSERT (b.size >= 1);
vp = b.buf;
*vp++ = '\0';
ASSERT ((vp - base) <= MAXSZ_NVRAM_VARS);
varsdone:
err = initvars_table (osh, base, vp, vars, count);
errout:
#ifdef WLTEST
if (base && (base != mfgsromvars))
#else
if (base)
#endif
MFREE (osh, base, MAXSZ_NVRAM_VARS);
MFREE (osh, srom, SROM_MAX);
return err;
}
/*
* Read the cis and call parsecis to initialize the vars.
* Return 0 on success, nonzero on error.
*/
static int
initvars_cis_pcmcia (sb_t * sbh, osl_t * osh, char **vars, uint * count)
{
uint8 *cis = NULL;
int rc;
uint data_sz;
data_sz = (sb_pcmciarev (sbh) == 1) ? (SPROM_SIZE * 2) : CIS_SIZE;
if ((cis = MALLOC (osh, data_sz)) == NULL)
return (-2);
if (sb_pcmciarev (sbh) == 1)
{
if (srom_read
(sbh, PCMCIA_BUS, (void *) NULL, osh, 0, data_sz, (uint16 *) cis))
{
MFREE (osh, cis, data_sz);
return (-1);
}
/* fix up endianess for 16-bit data vs 8-bit parsing */
htol16_buf ((uint16 *) cis, data_sz);
}
else
OSL_PCMCIA_READ_ATTR (osh, 0, cis, data_sz);
rc = srom_parsecis (osh, &cis, 1, vars, count);
MFREE (osh, cis, data_sz);
return (rc);
}
static int
BCMINITFN (initvars_srom_sb) (sb_t * sbh, osl_t * osh, void *curmap,
char **vars, uint * varsz)
{
#if defined(BCMSDIODEV)
/* CIS is read and supplied by the host */
return BCME_OK;
#elif defined(BCMUSBDEV)
static bool srvars = FALSE; /* Use OTP/SPROM as global variables */
int sel = 0; /* where to read the srom. 0 - nowhere, 1 - otp, 2 - sprom */
uint sz = 0; /* srom size in bytes */
void *oh = NULL;
int rc = BCME_OK;
/* Bail out if we've dealt with OTP/SPROM before! */
if (srvars)
return 0;
#if defined(BCM4328)
if (sbh->chip == BCM4328_CHIP_ID)
{
/* Access the SPROM if it is present */
if ((sz = srom_size (sbh, osh)) != 0)
{
sz <<= 1;
sel = 2;
}
}
#endif
#if defined(BCM4325)
if (sbh->chip == BCM4325_CHIP_ID)
{
uint32 cst = sbh->chipst & CST4325_SPROM_OTP_SEL_MASK;
/* Access OTP if it is present, powered on, and programmed */
if ((oh = otp_init (sbh)) != NULL && (otp_status (oh) & OTPS_GUP_SW))
{
sz = otp_size (oh);
sel = 1;
}
/* Access the SPROM if it is present and allow to be accessed */
else if ((cst == CST4325_OTP_PWRDN || cst == CST4325_SPROM_SEL) &&
(sz = srom_size (sbh, osh)) != 0)
{
sz <<= 1;
sel = 2;
}
}
#endif /* BCM4325 */
/* Read CIS in OTP/SPROM */
if (sel != 0)
{
uint16 *srom;
uint8 *body = NULL;
ASSERT (sz);
/* Allocate memory */
if ((srom = (uint16 *) MALLOC (osh, sz)) == NULL)
return BCME_NOMEM;
/* Read CIS */
switch (sel)
{
case 1:
rc = otp_read_region (oh, OTP_SW_RGN, srom, sz);
body = (uint8 *) srom;
break;
case 2:
rc = srom_read (sbh, SB_BUS, curmap, osh, 0, sz, srom);
/* sprom has 8 byte h/w header */
body = (uint8 *) srom + SBSDIO_SPROM_CIS_OFFSET;
break;
default:
/* impossible to come here */
ASSERT (0);
break;
}
/* Parse CIS */
if (rc == BCME_OK)
{
uint i, tpls = 0xffffffff;
/* # sdiod fns + common + extra */
uint8 *cis[SBSDIO_NUM_FUNCTION + 2];
uint ciss = 0;
/* each word is in host endian */
htol16_buf ((uint8 *) srom, sz);
ASSERT (body);
/* count cis tuple chains */
for (i = 0; i < sz && ciss < ARRAYSIZE (cis) && tpls != 0; i++)
{
cis[ciss++] = &body[i];
for (tpls = 0; i < sz - 1; tpls++)
{
if (body[i++] == CISTPL_END)
break;
i += body[i] + 1;
}
}
/* call parser routine only when there are tuple chains */
if (ciss > 1)
rc = srom_parsecis (osh, cis, ciss, vars, varsz);
}
/* Clean up */
MFREE (osh, srom, sz);
/* Make SROM variables global */
if (rc == BCME_OK)
{
rc = nvram_append ((void *) sbh, *vars, *varsz);
srvars = TRUE;
/* Tell the caller there is no individual SROM variables */
*vars = NULL;
*varsz = 0;
}
}
return rc;
#else /* !BCMUSBDEV && !BCMSDIODEV */
/* Search flash nvram section for srom variables */
return initvars_flash_sb (sbh, vars, varsz);
#endif /* !BCMUSBDEV && !BCMSDIODEV */
}
#ifdef BCMUSBDEV
/* Return sprom size in 16-bit words */
static uint
srom_size (sb_t * sbh, osl_t * osh)
{
uint size = 0;
if (SPROMBUS == PCMCIA_BUS)
{
uint32 origidx;
sdpcmd_regs_t *pcmregs;
bool wasup;
origidx = sb_coreidx (sbh);
pcmregs = sb_setcore (sbh, SB_PCMCIA, 0);
ASSERT (pcmregs);
if (!(wasup = sb_iscoreup (sbh)))
sb_core_reset (sbh, 0, 0);
/* not worry about earlier core revs */
if (sb_corerev (sbh) < 8)
goto done;
/* SPROM is accessible only in PCMCIA mode unless there is SDIO clock */
if (!(R_REG (osh, &pcmregs->corestatus) & CS_PCMCIAMODE))
goto done;
switch (SB_PCMCIA_READ (osh, pcmregs, SROM_INFO) & SRI_SZ_MASK)
{
case 1:
size = 256; /* SROM_INFO == 1 means 4kbit */
break;
case 2:
size = 1024; /* SROM_INFO == 2 means 16kbit */
break;
default:
break;
}
done:
if (!wasup)
sb_core_disable (sbh, 0);
sb_setcoreidx (sbh, origidx);
}
return size;
}
#endif /* def BCMUSBDEV */