1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-22 04:31:06 +02:00
luka e0dd91dd95 cns3xxx: use files directory
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@34101 3c298f89-4303-0410-b956-a3cf2f4a3e73
2012-11-06 11:16:41 +00:00

351 lines
8.4 KiB
C

/*
* linux/arch/arm/mach-cns3xxx/platsmp.c
*
* Copyright (C) 2002 ARM Ltd.
* Copyright 2012 Gateworks Corporation
* Chris Lang <clang@gateworks.com>
* Tim Harvey <tharvey@gateworks.com>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <asm/cacheflush.h>
#include <asm/hardware/gic.h>
#include <asm/smp_scu.h>
#include <asm/unified.h>
#include <asm/fiq.h>
#include <mach/smp.h>
#include <mach/cns3xxx.h>
static struct fiq_handler fh = {
.name = "cns3xxx-fiq"
};
static unsigned int fiq_buffer[8];
#define FIQ_ENABLED 0x80000000
#define FIQ_GENERATE 0x00010000
#define CNS3XXX_MAP_AREA 0x01000000
#define CNS3XXX_UNMAP_AREA 0x02000000
#define CNS3XXX_FLUSH_RANGE 0x03000000
extern void cns3xxx_secondary_startup(void);
extern unsigned char cns3xxx_fiq_start, cns3xxx_fiq_end;
extern unsigned int fiq_number[2];
extern struct cpu_cache_fns cpu_cache;
struct cpu_cache_fns cpu_cache_save;
#define SCU_CPU_STATUS 0x08
static void __iomem *scu_base;
/*
* control for which core is the next to come out of the secondary
* boot "holding pen"
*/
volatile int __cpuinitdata pen_release = -1;
static void __init cns3xxx_set_fiq_regs(void)
{
struct pt_regs FIQ_regs;
unsigned int cpu = smp_processor_id();
if (cpu) {
FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[4];
FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(0);
} else {
FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[0];
FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(1);
}
set_fiq_regs(&FIQ_regs);
}
static void __init cns3xxx_init_fiq(void)
{
void *fiqhandler_start;
unsigned int fiqhandler_length;
int ret;
fiqhandler_start = &cns3xxx_fiq_start;
fiqhandler_length = &cns3xxx_fiq_end - &cns3xxx_fiq_start;
ret = claim_fiq(&fh);
if (ret) {
return;
}
set_fiq_handler(fiqhandler_start, fiqhandler_length);
fiq_buffer[0] = (unsigned int)&fiq_number[0];
fiq_buffer[3] = 0;
fiq_buffer[4] = (unsigned int)&fiq_number[1];
fiq_buffer[7] = 0;
}
/*
* Write pen_release in a way that is guaranteed to be visible to all
* observers, irrespective of whether they're taking part in coherency
* or not. This is necessary for the hotplug code to work reliably.
*/
static void __cpuinit write_pen_release(int val)
{
pen_release = val;
smp_wmb();
__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
}
static DEFINE_SPINLOCK(boot_lock);
void __cpuinit platform_secondary_init(unsigned int cpu)
{
/*
* if any interrupts are already enabled for the primary
* core (e.g. timer irq), then they will not have been enabled
* for us: do so
*/
gic_secondary_init(0);
/*
* Setup Secondary Core FIQ regs
*/
cns3xxx_set_fiq_regs();
/*
* let the primary processor know we're out of the
* pen, then head off into the C entry point
*/
write_pen_release(-1);
/*
* Fixup DMA Operations
*
*/
cpu_cache.dma_map_area = (void *)smp_dma_map_area;
cpu_cache.dma_unmap_area = (void *)smp_dma_unmap_area;
cpu_cache.dma_flush_range = (void *)smp_dma_flush_range;
/*
* Synchronise with the boot thread.
*/
spin_lock(&boot_lock);
spin_unlock(&boot_lock);
}
int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
unsigned long timeout;
/*
* Set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
/*
* The secondary processor is waiting to be released from
* the holding pen - release it, then wait for it to flag
* that it has been released by resetting pen_release.
*
* Note that "pen_release" is the hardware CPU ID, whereas
* "cpu" is Linux's internal ID.
*/
write_pen_release(cpu);
/*
* Send the secondary CPU a soft interrupt, thereby causing
* the boot monitor to read the system wide flags register,
* and branch to the address found there.
*/
gic_raise_softirq(cpumask_of(cpu), 1);
timeout = jiffies + (1 * HZ);
while (time_before(jiffies, timeout)) {
smp_rmb();
if (pen_release == -1)
break;
udelay(10);
}
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return pen_release != -1 ? -ENOSYS : 0;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
unsigned int i, ncores;
unsigned int status;
scu_base = (void __iomem *) CNS3XXX_TC11MP_SCU_BASE_VIRT;
/* for CNS3xxx SCU_CPU_STATUS must be examined instead of SCU_CONFIGURATION
* used in scu_get_core_count
*/
status = __raw_readl(scu_base + SCU_CPU_STATUS);
for (i = 0; i < NR_CPUS+1; i++) {
if (((status >> (i*2)) & 0x3) == 0)
set_cpu_possible(i, true);
else
break;
}
ncores = i;
set_smp_cross_call(gic_raise_softirq);
}
void __init platform_smp_prepare_cpus(unsigned int max_cpus)
{
int i;
/*
* Initialise the present map, which describes the set of CPUs
* actually populated at the present time.
*/
for (i = 0; i < max_cpus; i++) {
set_cpu_present(i, true);
}
/*
* enable SCU
*/
scu_enable(scu_base);
/*
* Write the address of secondary startup into the
* system-wide flags register. The boot monitor waits
* until it receives a soft interrupt, and then the
* secondary CPU branches to this address.
*/
__raw_writel(virt_to_phys(cns3xxx_secondary_startup),
(void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0600));
/*
* Setup FIQ's for main cpu
*/
cns3xxx_init_fiq();
cns3xxx_set_fiq_regs();
memcpy((void *)&cpu_cache_save, (void *)&cpu_cache, sizeof(struct cpu_cache_fns));
}
static inline unsigned long cns3xxx_cpu_id(void)
{
unsigned long cpu;
asm volatile(
" mrc p15, 0, %0, c0, c0, 5 @ cns3xxx_cpu_id\n"
: "=r" (cpu) : : "memory", "cc");
return (cpu & 0xf);
}
void smp_dma_map_area(const void *addr, size_t size, int dir)
{
unsigned int cpu;
unsigned long flags;
raw_local_irq_save(flags);
cpu = cns3xxx_cpu_id();
if (cpu) {
fiq_buffer[1] = (unsigned int)addr;
fiq_buffer[2] = size;
fiq_buffer[3] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
cpu_cache_save.dma_map_area(addr, size, dir);
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
} else {
fiq_buffer[5] = (unsigned int)addr;
fiq_buffer[6] = size;
fiq_buffer[7] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
cpu_cache_save.dma_map_area(addr, size, dir);
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
}
raw_local_irq_restore(flags);
}
void smp_dma_unmap_area(const void *addr, size_t size, int dir)
{
unsigned int cpu;
unsigned long flags;
raw_local_irq_save(flags);
cpu = cns3xxx_cpu_id();
if (cpu) {
fiq_buffer[1] = (unsigned int)addr;
fiq_buffer[2] = size;
fiq_buffer[3] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
cpu_cache_save.dma_unmap_area(addr, size, dir);
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
} else {
fiq_buffer[5] = (unsigned int)addr;
fiq_buffer[6] = size;
fiq_buffer[7] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
cpu_cache_save.dma_unmap_area(addr, size, dir);
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
}
raw_local_irq_restore(flags);
}
void smp_dma_flush_range(const void *start, const void *end)
{
unsigned int cpu;
unsigned long flags;
raw_local_irq_save(flags);
cpu = cns3xxx_cpu_id();
if (cpu) {
fiq_buffer[1] = (unsigned int)start;
fiq_buffer[2] = (unsigned int)end;
fiq_buffer[3] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
cpu_cache_save.dma_flush_range(start, end);
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
} else {
fiq_buffer[5] = (unsigned int)start;
fiq_buffer[6] = (unsigned int)end;
fiq_buffer[7] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
smp_mb();
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
cpu_cache_save.dma_flush_range(start, end);
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
}
raw_local_irq_restore(flags);
}