1
0
mirror of git://projects.qi-hardware.com/xue.git synced 2024-12-29 13:29:53 +02:00
xue/sim/verilog/micron_2048Mb_ddr2/ddr2.v
2010-12-19 01:38:43 +00:00

2032 lines
108 KiB
Verilog

/****************************************************************************************
*
* File Name: ddr2.v
* Version: 5.83
* Model: BUS Functional
*
* Dependencies: ddr2_parameters.vh
*
* Description: Micron SDRAM DDR2 (Double Data Rate 2)
*
* Limitation: - doesn't check for average refresh timings
* - positive ck and ck_n edges are used to form internal clock
* - positive dqs and dqs_n edges are used to latch data
* - test mode is not modeled
*
* Note: - Set simulator resolution to "ps" accuracy
* - Set Debug = 0 to disable $display messages
*
* Disclaimer This software code and all associated documentation, comments or other
* of Warranty: information (collectively "Software") is provided "AS IS" without
* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES. Because some jurisdictions prohibit the exclusion or
* limitation of liability for consequential or incidental damages, the
* above limitation may not apply to you.
*
* Copyright 2003 Micron Technology, Inc. All rights reserved.
*
* Rev Author Date Changes
* ---------------------------------------------------------------------------------------
* 1.00 JMK 07/29/03 Initial Release
* 1.10 JMK 08/09/03 Timing Parameter updates to tIS, tIH, tDS, tDH
* 2.20 JMK 08/07/03 General cleanup
* 2.30 JMK 11/26/03 Added CL_MIN, CL_MAX, wl_min and wl_max parameters.
* Added AL_MIN and AL_MAX parameters.
* Removed support for OCD.
* 2.40 JMK 01/15/04 Removed verilog 2001 constructs.
* 2.50 JMK 01/29/04 Removed tRP checks during Precharge command.
* 2.60 JMK 04/20/04 Fixed tWTR check.
* 2.70 JMK 04/30/04 Added tRFC maximum check.
* Combined Self Refresh and Power Down always blocks.
* Added Reset Function (CKE LOW Anytime).
* 2.80 JMK 08/19/04 Precharge is treated as NOP when bank is not active.
* Added checks for tRAS, tWR, tRTP to any bank during Pre-All.
* tRFC maximum violation will only display one time.
* 2.90 JMK 11/05/04 Fixed DQS checking during write.
* Fixed false tRFC max assertion during power up and self ref.
* Added warning for 200us CKE low time during initialization.
* Added -3, -3E, and -37V speed grades to ddr2_parameters.v
* 3.00 JMK 04/22/05 Removed ODT off requirement during power down.
* Added tAOND, tAOFD, tANPD, tAXPD, tAONPD, and tAOFPD parameters.
* Added ODT status messages.
* Updated the initialization sequence.
* Disable ODT and CLK pins during self refresh.
* Disable cmd and addr pins during power down and self refresh.
* 3.10 JMK 06/07/05 Disable trpa checking if the part does not have 8 banks.
* Changed tAXPD message from error to a warning.
* Added tDSS checking.
* Removed tDQSL checking during tWPRE and tWPST.
* Fixed a burst order error during writes.
* Renamed parameters file with .vh extension.
* 3.20 JMK 07/18/05 Removed 14 tCK requirement from LMR to READ.
* 3.30 JMK 08/03/05 Added check for interrupting a burst with auto precharge.
* 4.00 JMK 11/21/05 Parameter names all UPPERCASE, signal names all lowercase.
* Clock jitter can be tolerated within specification range.
* Clock frequency is sampled from the CK pin.
* Scaleable up to 64 DQ and 16 DQS bits.
* Read data can be randomly skewed using RANDOM_OUT_DELAY.
* Parameterized read and write DQS, and read DQ.
* Initialization can be bypassed using initialize task.
* 4.10 JMK 11/30/05 Fixed compile errors when `MAX_MEM was defined.
* 4.20 JMK 12/09/05 Fixed memory addressing error when `MAX_MEM was defined.
* 4.30 JMK 02/15/06 Added dummy write to initialization sequence.
* Removed tWPST maximum checking.
* Rising dqs_n edge latches data when enabled in EMR.
* Fixed a sign error in the tJIT(cc) calculation.
* 4.40 JMK 02/16/06 Fixed dummy write when`MAX_MEM was defined.
* 4.50 JMK 02/27/06 Fixed extra tDQSS assertions.
* Fixed tRCD and tWTR checking.
* Errors entering Power Down or Self Refresh will cause reset.
* Ignore dqs_n when disabled in EMR.
* 5.00 JMK 04/24/06 Test stimulus now included from external file (subtest.vh)
* Fixed tRFC max assertion during self refresh.
* Fixed tANPD checking during Power Down.
* Removed dummy write from initialization sequence.
* 5.01 JMK 04/28/06 Fixed Auto Precharge to Load Mode, Refresh and Self Refresh.
* Removed Auto Precharge error message during Power Down Enter.
* 5.10 JMK 07/26/06 Created internal clock using ck and ck_n.
* RDQS can only be enabled in EMR for x8 configurations.
* CAS latency is checked vs frequency when DLL locks.
* tMOD changed from tCK units to ns units.
* Added 50 Ohm setting for Rtt in EMR.
* Improved checking of DQS during writes.
* 5.20 JMK 10/02/06 Fixed DQS checking for interrupting write to write and x16.
* 5.30 JMK 05/25/07 Fixed checking for 0-Z transition on write postamble.
* 5.50 JMK 05/30/08 Renamed ddr2_dimm.v to ddr2_module.v and added SODIMM support.
* Added a register delay to ddr2_module.v when RDIMM is defined.
* Added multi-chip package model support in ddr2_mcp.v
* Added High Temp Self Refresh rate setting in EMRS2[7]
* 5.70 JMK 04/23/09 Updated tRPA definition
* Increased internal width to 72 bit DQ bus
* 5.80 SPH 08/12/09 Fixed tRAS maximum violation (only check if bank still open)
* 5.81 SPH 12/08/09 Only check tIH for cmd_addr if CS# LOW
* 5.82 SPH 04/08/10 Correct debug message for SRT in EMR2
* 5.83 SPH 04/29/10 Correct tDQSS check on valid DQS group
****************************************************************************************/
// DO NOT CHANGE THE TIMESCALE
// MAKE SURE YOUR SIMULATOR USES "PS" RESOLUTION
`timescale 1ps / 1ps
module ddr2 (
ck,
ck_n,
cke,
cs_n,
ras_n,
cas_n,
we_n,
dm_rdqs,
ba,
addr,
dq,
dqs,
dqs_n,
rdqs_n,
odt
);
`include "ddr2_parameters.vh"
// text macros
`define DQ_PER_DQS DQ_BITS/DQS_BITS
`define BANKS (1<<BA_BITS)
`define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS)
`define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS))
`define MEM_SIZE (1<<MEM_BITS)
`define MAX_PIPE 2*(AL_MAX + CL_MAX)
// Declare Ports
input ck;
input ck_n;
input cke;
input cs_n;
input ras_n;
input cas_n;
input we_n;
inout [DM_BITS-1:0] dm_rdqs;
input [BA_BITS-1:0] ba;
input [ADDR_BITS-1:0] addr;
inout [DQ_BITS-1:0] dq;
inout [DQS_BITS-1:0] dqs;
inout [DQS_BITS-1:0] dqs_n;
output [DQS_BITS-1:0] rdqs_n;
input odt;
// clock jitter
real tck_avg;
time tck_sample [TDLLK-1:0];
time tch_sample [TDLLK-1:0];
time tcl_sample [TDLLK-1:0];
time tck_i;
time tch_i;
time tcl_i;
real tch_avg;
real tcl_avg;
time tm_ck_pos;
time tm_ck_neg;
real tjit_per_rtime;
integer tjit_cc_time;
real terr_nper_rtime;
// clock skew
real out_delay;
integer dqsck [DQS_BITS-1:0];
integer dqsck_min;
integer dqsck_max;
integer dqsq_min;
integer dqsq_max;
integer seed;
// Mode Registers
reg burst_order;
reg [BL_BITS:0] burst_length;
integer cas_latency;
integer additive_latency;
reg dll_reset;
reg dll_locked;
reg dll_en;
integer write_recovery;
reg low_power;
reg [1:0] odt_rtt;
reg odt_en;
reg [2:0] ocd;
reg dqs_n_en;
reg rdqs_en;
reg out_en;
integer read_latency;
integer write_latency;
// cmd encoding
parameter
LOAD_MODE = 4'b0000,
REFRESH = 4'b0001,
PRECHARGE = 4'b0010,
ACTIVATE = 4'b0011,
WRITE = 4'b0100,
READ = 4'b0101,
NOP = 4'b0111,
PWR_DOWN = 4'b1000,
SELF_REF = 4'b1001
;
reg [8*9-1:0] cmd_string [9:0];
initial begin
cmd_string[LOAD_MODE] = "Load Mode";
cmd_string[REFRESH ] = "Refresh ";
cmd_string[PRECHARGE] = "Precharge";
cmd_string[ACTIVATE ] = "Activate ";
cmd_string[WRITE ] = "Write ";
cmd_string[READ ] = "Read ";
cmd_string[NOP ] = "No Op ";
cmd_string[PWR_DOWN ] = "Pwr Down ";
cmd_string[SELF_REF ] = "Self Ref ";
end
// command state
reg [`BANKS-1:0] active_bank;
reg [`BANKS-1:0] auto_precharge_bank;
reg [`BANKS-1:0] write_precharge_bank;
reg [`BANKS-1:0] read_precharge_bank;
reg [ROW_BITS-1:0] active_row [`BANKS-1:0];
reg in_power_down;
reg in_self_refresh;
reg [3:0] init_mode_reg;
reg init_done;
integer init_step;
reg er_trfc_max;
reg odt_state;
reg prev_odt;
// cmd timers/counters
integer ref_cntr;
integer ck_cntr;
integer ck_load_mode;
integer ck_write;
integer ck_read;
integer ck_write_ap;
integer ck_power_down;
integer ck_slow_exit_pd;
integer ck_self_refresh;
integer ck_cke;
integer ck_odt;
integer ck_dll_reset;
integer ck_bank_write [`BANKS-1:0];
integer ck_bank_read [`BANKS-1:0];
time tm_refresh;
time tm_precharge;
time tm_precharge_all;
time tm_activate;
time tm_write_end;
time tm_self_refresh;
time tm_odt_en;
time tm_bank_precharge [`BANKS-1:0];
time tm_bank_activate [`BANKS-1:0];
time tm_bank_write_end [`BANKS-1:0];
time tm_bank_read_end [`BANKS-1:0];
// pipelines
reg [`MAX_PIPE:0] al_pipeline;
reg [`MAX_PIPE:0] wr_pipeline;
reg [`MAX_PIPE:0] rd_pipeline;
reg [`MAX_PIPE:0] odt_pipeline;
reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0];
reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0];
reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0];
reg prev_cke;
// data state
reg [BL_MAX*DQ_BITS-1:0] memory_data;
reg [BL_MAX*DQ_BITS-1:0] bit_mask;
reg [BL_BITS-1:0] burst_position;
reg [BL_BITS:0] burst_cntr;
reg [DQ_BITS-1:0] dq_temp;
reg [35:0] check_write_postamble;
reg [35:0] check_write_preamble;
reg [35:0] check_write_dqs_high;
reg [35:0] check_write_dqs_low;
reg [17:0] check_dm_tdipw;
reg [71:0] check_dq_tdipw;
// data timers/counters
time tm_cke;
time tm_odt;
time tm_tdqss;
time tm_dm [17:0];
time tm_dqs [17:0];
time tm_dqs_pos [35:0];
time tm_dqss_pos [35:0];
time tm_dqs_neg [35:0];
time tm_dq [71:0];
time tm_cmd_addr [22:0];
reg [8*7-1:0] cmd_addr_string [22:0];
initial begin
cmd_addr_string[ 0] = "CS_N ";
cmd_addr_string[ 1] = "RAS_N ";
cmd_addr_string[ 2] = "CAS_N ";
cmd_addr_string[ 3] = "WE_N ";
cmd_addr_string[ 4] = "BA 0 ";
cmd_addr_string[ 5] = "BA 1 ";
cmd_addr_string[ 6] = "BA 2 ";
cmd_addr_string[ 7] = "ADDR 0";
cmd_addr_string[ 8] = "ADDR 1";
cmd_addr_string[ 9] = "ADDR 2";
cmd_addr_string[10] = "ADDR 3";
cmd_addr_string[11] = "ADDR 4";
cmd_addr_string[12] = "ADDR 5";
cmd_addr_string[13] = "ADDR 6";
cmd_addr_string[14] = "ADDR 7";
cmd_addr_string[15] = "ADDR 8";
cmd_addr_string[16] = "ADDR 9";
cmd_addr_string[17] = "ADDR 10";
cmd_addr_string[18] = "ADDR 11";
cmd_addr_string[19] = "ADDR 12";
cmd_addr_string[20] = "ADDR 13";
cmd_addr_string[21] = "ADDR 14";
cmd_addr_string[22] = "ADDR 15";
end
reg [8*5-1:0] dqs_string [1:0];
initial begin
dqs_string[0] = "DQS ";
dqs_string[1] = "DQS_N";
end
// Memory Storage
`ifdef MAX_MEM
reg [BL_MAX*DQ_BITS-1:0] memory [0:`MAX_SIZE-1];
`else
reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1];
reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1];
reg [MEM_BITS:0] memory_index;
reg [MEM_BITS:0] memory_used;
`endif
// receive
reg ck_in;
reg ck_n_in;
reg cke_in;
reg cs_n_in;
reg ras_n_in;
reg cas_n_in;
reg we_n_in;
reg [17:0] dm_in;
reg [2:0] ba_in;
reg [15:0] addr_in;
reg [71:0] dq_in;
reg [35:0] dqs_in;
reg odt_in;
reg [17:0] dm_in_pos;
reg [17:0] dm_in_neg;
reg [71:0] dq_in_pos;
reg [71:0] dq_in_neg;
reg dq_in_valid;
reg dqs_in_valid;
integer wdqs_cntr;
integer wdq_cntr;
integer wdqs_pos_cntr [35:0];
reg b2b_write;
reg [35:0] prev_dqs_in;
reg diff_ck;
always @(ck ) ck_in <= #BUS_DELAY ck;
always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n;
always @(cke ) cke_in <= #BUS_DELAY cke;
always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n;
always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n;
always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n;
always @(we_n ) we_n_in <= #BUS_DELAY we_n;
always @(dm_rdqs) dm_in <= #BUS_DELAY dm_rdqs;
always @(ba ) ba_in <= #BUS_DELAY ba;
always @(addr ) addr_in <= #BUS_DELAY addr;
always @(dq ) dq_in <= #BUS_DELAY dq;
always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<18) | dqs;
always @(odt ) odt_in <= #BUS_DELAY odt;
// create internal clock
always @(posedge ck_in) diff_ck <= ck_in;
always @(posedge ck_n_in) diff_ck <= ~ck_n_in;
wire [17:0] dqs_even = dqs_in[17:0];
wire [17:0] dqs_odd = dqs_n_en ? dqs_in[35:18] : ~dqs_in[17:0];
wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop
// transmit
reg dqs_out_en;
reg [DQS_BITS-1:0] dqs_out_en_dly;
reg dqs_out;
reg [DQS_BITS-1:0] dqs_out_dly;
reg dq_out_en;
reg [DQ_BITS-1:0] dq_out_en_dly;
reg [DQ_BITS-1:0] dq_out;
reg [DQ_BITS-1:0] dq_out_dly;
integer rdqsen_cntr;
integer rdqs_cntr;
integer rdqen_cntr;
integer rdq_cntr;
bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}});
bufif1 buf_dm [DM_BITS-1:0] (dm_rdqs, dqs_out_dly, dqs_out_en_dly & {DM_BITS {out_en}} & {DM_BITS{rdqs_en}});
bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}});
bufif1 buf_rdqs_n [DQS_BITS-1:0] (rdqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}} & {DQS_BITS{dqs_n_en}} & {DQS_BITS{rdqs_en}});
bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en}});
initial begin
if (BL_MAX < 2)
$display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX);
if ((1<<BO_BITS) > BL_MAX)
$display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter.");
$timeformat (-12, 1, " ps", 1);
reset_task;
seed = RANDOM_SEED;
ck_cntr = 0;
end
// calculate the absolute value of a real number
function real abs_value;
input arg;
real arg;
begin
if (arg < 0.0)
abs_value = -1.0 * arg;
else
abs_value = arg;
end
endfunction
`ifdef MAX_MEM
`else
function get_index;
input [`MAX_BITS-1:0] addr;
begin : index
get_index = 0;
for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
if (address[memory_index] == addr) begin
get_index = 1;
disable index;
end
end
end
endfunction
`endif
task memory_write;
input [BA_BITS-1:0] bank;
input [ROW_BITS-1:0] row;
input [COL_BITS-1:0] col;
input [BL_MAX*DQ_BITS-1:0] data;
reg [`MAX_BITS-1:0] addr;
begin
// chop off the lowest address bits
addr = {bank, row, col}/BL_MAX;
`ifdef MAX_MEM
memory[addr] = data;
`else
if (get_index(addr)) begin
address[memory_index] = addr;
memory[memory_index] = data;
end else if (memory_used == `MEM_SIZE) begin
$display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data);
if (STOP_ON_ERROR) $stop(0);
end else begin
address[memory_used] = addr;
memory[memory_used] = data;
memory_used = memory_used + 1;
end
`endif
end
endtask
task memory_read;
input [BA_BITS-1:0] bank;
input [ROW_BITS-1:0] row;
input [COL_BITS-1:0] col;
output [BL_MAX*DQ_BITS-1:0] data;
reg [`MAX_BITS-1:0] addr;
begin
// chop off the lowest address bits
addr = {bank, row, col}/BL_MAX;
`ifdef MAX_MEM
data = memory[addr];
`else
if (get_index(addr)) begin
data = memory[memory_index];
end else begin
data = {BL_MAX*DQ_BITS{1'bx}};
end
`endif
end
endtask
// Before this task runs, the model must be in a valid state for precharge power down.
// After this task runs, NOP commands must be issued until tRFC has been met
task initialize;
input [ADDR_BITS-1:0] mode_reg0;
input [ADDR_BITS-1:0] mode_reg1;
input [ADDR_BITS-1:0] mode_reg2;
input [ADDR_BITS-1:0] mode_reg3;
begin
if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time);
cmd_task(1, NOP, 'bx, 'bx);
cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL
cmd_task(1, LOAD_MODE, 3, mode_reg3);
cmd_task(1, LOAD_MODE, 2, mode_reg2);
cmd_task(1, LOAD_MODE, 1, mode_reg1);
cmd_task(1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset
cmd_task(1, PRECHARGE, 'bx, 1<<AP); // Precharege ALL
cmd_task(1, REFRESH, 'bx, 'bx);
cmd_task(1, REFRESH, 'bx, 'bx);
cmd_task(1, LOAD_MODE, 0, mode_reg0);
cmd_task(1, LOAD_MODE, 1, mode_reg1 | 'h380); // OCD Default
cmd_task(1, LOAD_MODE, 1, mode_reg1);
cmd_task(0, NOP, 'bx, 'bx);
end
endtask
task reset_task;
integer i;
begin
// disable inputs
dq_in_valid = 0;
dqs_in_valid <= 0;
wdqs_cntr = 0;
wdq_cntr = 0;
for (i=0; i<36; i=i+1) begin
wdqs_pos_cntr[i] <= 0;
end
b2b_write <= 0;
// disable outputs
out_en = 0;
dqs_n_en = 0;
rdqs_en = 0;
dq_out_en = 0;
rdq_cntr = 0;
dqs_out_en = 0;
rdqs_cntr = 0;
// disable ODT
odt_en = 0;
odt_state = 0;
// reset bank state
active_bank = {`BANKS{1'b1}};
auto_precharge_bank = 0;
read_precharge_bank = 0;
write_precharge_bank = 0;
// require initialization sequence
init_done = 0;
init_step = 0;
init_mode_reg = 0;
// reset DLL
dll_en = 0;
dll_reset = 0;
dll_locked = 0;
ocd = 0;
// exit power down and self refresh
in_power_down = 0;
in_self_refresh = 0;
// clear pipelines
al_pipeline = 0;
wr_pipeline = 0;
rd_pipeline = 0;
odt_pipeline = 0;
// clear memory
`ifdef MAX_MEM
for (i=0; i<=`MAX_SIZE; i=i+1) begin //erase memory ... one address at a time
memory[i] <= 'bx;
end
`else
memory_used <= 0; //erase memory
`endif
// clear maximum timing checks
tm_refresh <= 'bx;
for (i=0; i<`BANKS; i=i+1) begin
tm_bank_activate[i] <= 'bx;
end
end
endtask
task chk_err;
input samebank;
input [BA_BITS-1:0] bank;
input [3:0] fromcmd;
input [3:0] cmd;
reg err;
begin
// all matching case expressions will be evaluated
casex ({samebank, fromcmd, cmd})
{1'b0, LOAD_MODE, 4'b0xxx } : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end
{1'b0, LOAD_MODE, 4'b100x } : begin if (ck_cntr - ck_load_mode < TMRD) begin $display ("%m: at time %t INFO: Load Mode to Reset condition.", $time); init_done = 0; end end
{1'b0, REFRESH , 4'b0xxx } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); end
{1'b0, REFRESH , PWR_DOWN } : ; // 1 tCK
{1'b0, REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) begin $display ("%m: at time %t INFO: Refresh to Reset condition", $time); init_done = 0; end end
{1'b0, PRECHARGE, 4'b000x } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]);
if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end
{1'b1, PRECHARGE, PRECHARGE} : begin if (DEBUG && ($time - tm_precharge_all < TRPA)) $display ("%m: at time %t INFO: Precharge All interruption during %s", $time, cmd_string[cmd]);
if (DEBUG && ($time - tm_bank_precharge[bank] < TRP)) $display ("%m: at time %t INFO: Precharge bank %d interruption during %s", $time, cmd_string[cmd], bank); end
{1'b1, PRECHARGE, ACTIVATE } : begin if ($time - tm_precharge_all < TRPA) $display ("%m: at time %t ERROR: tRPA violation during %s", $time, cmd_string[cmd]);
if ($time - tm_bank_precharge[bank] < TRP) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, PRECHARGE, PWR_DOWN } : ; //1 tCK, can be concurrent with auto precharge
{1'b0, PRECHARGE, SELF_REF } : begin if (($time - tm_precharge_all < TRPA) || ($time - tm_precharge < TRP)) begin $display ("%m: at time %t INFO: Precharge to Reset condition", $time); init_done = 0; end end
{1'b0, ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end
{1'b1, ACTIVATE , PRECHARGE} : begin if (($time - tm_bank_activate[bank] > TRAS_MAX) && (active_bank[bank] === 1'b1)) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank);
if ($time - tm_bank_activate[bank] < TRAS_MIN) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end
{1'b0, ACTIVATE , ACTIVATE } : begin if ($time - tm_activate < TRRD) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, ACTIVATE , 4'b010x } : ; // tRCD is checked outside this task
{1'b1, ACTIVATE , PWR_DOWN } : ; // 1 tCK
{1'b1, WRITE , PRECHARGE} : begin if ((ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2) || ($time - tm_bank_write_end[bank] < TWR)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, WRITE , READ } : begin if ((ck_load_mode < ck_write) && (ck_cntr - ck_write < write_latency + burst_length/2 + 2 - additive_latency)) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, WRITE , PWR_DOWN } : begin if ((ck_load_mode < ck_write) && (
|write_precharge_bank
|| (ck_cntr - ck_write_ap < 1)
|| (ck_cntr - ck_write < write_latency + burst_length/2 + 2)
|| ($time - tm_write_end < TWTR))) begin $display ("%m: at time %t INFO: Write to Reset condition", $time); init_done = 0; end end
{1'b1, READ , PRECHARGE} : begin if ((ck_cntr - ck_bank_read[bank] < additive_latency + burst_length/2) || ($time - tm_bank_read_end[bank] < TRTP)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, READ , WRITE } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1 - write_latency)) $display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, READ , PWR_DOWN } : begin if ((ck_load_mode < ck_read) && (ck_cntr - ck_read < read_latency + burst_length/2 + 1)) begin $display ("%m: at time %t INFO: Read to Reset condition", $time); init_done = 0; end end
{1'b0, PWR_DOWN , 4'b00xx } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end
{1'b0, PWR_DOWN , WRITE } : begin if (ck_cntr - ck_power_down < TXP) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end
{1'b0, PWR_DOWN , READ } : begin if (ck_cntr - ck_slow_exit_pd < TXARDS - additive_latency) $display ("%m: at time %t ERROR: tXARDS violation during %s", $time, cmd_string[cmd]);
else if (ck_cntr - ck_power_down < TXARD) $display ("%m: at time %t ERROR: tXARD violation during %s", $time, cmd_string[cmd]); end
{1'b0, SELF_REF , 4'b00xx } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end
{1'b0, SELF_REF , WRITE } : begin if ($time - tm_self_refresh < TXSNR) $display ("%m: at time %t ERROR: tXSNR violation during %s", $time, cmd_string[cmd]); end
{1'b0, SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSRD) $display ("%m: at time %t ERROR: tXSRD violation during %s", $time, cmd_string[cmd]); end
{1'b0, 4'b100x , 4'b100x } : begin if (ck_cntr - ck_cke < TCKE) begin $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); init_done = 0; end end
endcase
end
endtask
task cmd_task;
input cke;
input [2:0] cmd;
input [BA_BITS-1:0] bank;
input [ADDR_BITS-1:0] addr;
reg [`BANKS:0] i;
integer j;
reg [`BANKS:0] tfaw_cntr;
reg [COL_BITS-1:0] col;
begin
// tRFC max check
if (!er_trfc_max && !in_self_refresh) begin
if ($time - tm_refresh > TRFC_MAX) begin
$display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]);
er_trfc_max = 1;
end
end
if (cke) begin
if ((cmd < NOP) && ((cmd != PRECHARGE) || !addr[AP])) begin
for (j=0; j<NOP; j=j+1) begin
chk_err(1'b0, bank, j, cmd);
chk_err(1'b1, bank, j, cmd);
end
chk_err(1'b0, bank, PWR_DOWN, cmd);
chk_err(1'b0, bank, SELF_REF, cmd);
end
case (cmd)
LOAD_MODE : begin
if (|active_bank) begin
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank);
case (bank)
0 : begin
// Burst Length
burst_length = 1<<addr[2:0];
if ((burst_length >= BL_MIN) && (burst_length <= BL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, burst_length);
end
// Burst Order
burst_order = addr[3];
if (!burst_order) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank);
end else if (burst_order) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order);
end
// CAS Latency
cas_latency = addr[6:4];
read_latency = cas_latency + additive_latency;
write_latency = read_latency - 1;
if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
end
// Test Mode
if (!addr[7]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Test Mode = Normal", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Test Mode = %d", $time, cmd_string[cmd], bank, addr[7]);
end
// DLL Reset
dll_reset = addr[8];
if (!dll_reset) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank);
end else if (dll_reset) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank);
dll_locked = 0;
ck_dll_reset <= ck_cntr;
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset);
end
// Write Recovery
write_recovery = addr[11:9] + 1;
if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
end
// Power Down Mode
low_power = addr[12];
if (!low_power) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Fast Exit", $time, cmd_string[cmd], bank);
end else if (low_power) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = Slow Exit", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power);
end
end
1 : begin
// DLL Enable
dll_en = !addr[0];
if (!dll_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (dll_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en);
end
// Output Drive Strength
if (!addr[1]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Full", $time, cmd_string[cmd], bank);
end else if (addr[1]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = Reduced", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, addr[1]);
end
// ODT Rtt
odt_rtt = {addr[6], addr[2]};
if (odt_rtt == 2'b00) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank);
odt_en = 0;
end else if (odt_rtt == 2'b01) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 75 Ohm", $time, cmd_string[cmd], bank);
odt_en = 1;
tm_odt_en <= $time;
end else if (odt_rtt == 2'b10) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 150 Ohm", $time, cmd_string[cmd], bank);
odt_en = 1;
tm_odt_en <= $time;
end else if (odt_rtt == 2'b11) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = 50 Ohm", $time, cmd_string[cmd], bank);
odt_en = 1;
tm_odt_en <= $time;
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt);
odt_en = 0;
end
// Additive Latency
additive_latency = addr[5:3];
read_latency = cas_latency + additive_latency;
write_latency = read_latency - 1;
if ((additive_latency >= AL_MIN) && (additive_latency <= AL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, additive_latency);
end
// OCD Program
ocd = addr[9:7];
if (ocd == 3'b000) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Exit", $time, cmd_string[cmd], bank);
end else if (ocd == 3'b111) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d OCD Program = OCD Default", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal OCD Program = %b", $time, cmd_string[cmd], bank, ocd);
end
// DQS_N Enable
dqs_n_en = !addr[10];
if (!dqs_n_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (dqs_n_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DQS_N Enable = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal DQS_N Enable = %d", $time, cmd_string[cmd], bank, dqs_n_en);
end
// RDQS Enable
rdqs_en = addr[11];
if (!rdqs_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (rdqs_en) begin
`ifdef x8
if (DEBUG) $display ("%m: at time %t INFO: %s %d RDQS Enable = Enabled", $time, cmd_string[cmd], bank);
`else
$display ("%m: at time %t WARNING: %s %d Illegal RDQS Enable. RDQS only exists on a x8 part", $time, cmd_string[cmd], bank);
rdqs_en = 0;
`endif
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal RDQS Enable = %d", $time, cmd_string[cmd], bank, rdqs_en);
end
// Output Enable
out_en = !addr[12];
if (!out_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (out_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Enable = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Output Enable = %d", $time, cmd_string[cmd], bank, out_en);
end
end
2 : begin
// High Temperature Self Refresh rate
if (!addr[7]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = 1X (0C-85C)", $time, cmd_string[cmd], bank);
end else if (addr[7]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d High Temperature Self Refresh rate = 2X (>85C)", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal High Temperature Self Refresh rate = %d", $time, cmd_string[cmd], bank, addr[7]);
end
if ((addr & ~(1<<7)) !== 0) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
3 : begin
if (addr !== 0) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
endcase
init_mode_reg[bank] = 1;
ck_load_mode <= ck_cntr;
end
end
REFRESH : begin
if (|active_bank) begin
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]);
er_trfc_max = 0;
ref_cntr = ref_cntr + 1;
tm_refresh <= $time;
end
end
PRECHARGE : begin
if (addr[AP]) begin
// tRPA timing applies when the PRECHARGE (ALL) command is issued, regardless of
// the number of banks already open or closed.
for (i=0; i<`BANKS; i=i+1) begin
for (j=0; j<NOP; j=j+1) begin
chk_err(1'b0, i, j, cmd);
chk_err(1'b1, i, j, cmd);
end
chk_err(1'b0, i, PWR_DOWN, cmd);
chk_err(1'b0, i, SELF_REF, cmd);
end
if (|auto_precharge_bank) begin
$display ("%m: at time %t ERROR: %s All Failure. Auto Precharge is scheduled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]);
active_bank = 0;
tm_precharge_all <= $time;
end
end else begin
// A PRECHARGE command is allowed if there is no open row in that bank (idle state)
// or if the previously open row is already in the process of precharging.
// However, the precharge period will be determined by the last PRECHARGE command issued to the bank.
if (auto_precharge_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], bank);
active_bank[bank] = 1'b0;
tm_bank_precharge[bank] <= $time;
tm_precharge <= $time;
end
end
end
ACTIVATE : begin
if (`BANKS == 8) begin
tfaw_cntr = 0;
for (i=0; i<`BANKS; i=i+1) begin
if ($time - tm_bank_activate[i] < TFAW) begin
tfaw_cntr = tfaw_cntr + 1;
end
end
if (tfaw_cntr > 3) begin
$display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank);
end
end
if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (active_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr >= 1<<ROW_BITS) begin
$display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1);
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr);
active_bank[bank] = 1'b1;
active_row[bank] = addr;
tm_bank_activate[bank] <= $time;
tm_activate <= $time;
end
end
WRITE : begin
if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!active_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (auto_precharge_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if ((ck_cntr - ck_write < burst_length/2) && (ck_cntr - ck_write)%2) begin
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr[AP]) begin
auto_precharge_bank[bank] = 1'b1;
write_precharge_bank[bank] = 1'b1;
end
col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}});
if (col >= 1<<COL_BITS) begin
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
wr_pipeline[2*write_latency + 1] = 1;
ba_pipeline[2*write_latency + 1] = bank;
row_pipeline[2*write_latency + 1] = active_row[bank];
col_pipeline[2*write_latency + 1] = col;
ck_bank_write[bank] <= ck_cntr;
ck_write <= ck_cntr;
end
end
READ : begin
if (!dll_locked)
$display ("%m: at time %t WARNING: %s prior to DLL locked. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters.", $time, cmd_string[cmd]);
if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!active_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (auto_precharge_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if ((ck_cntr - ck_read < burst_length/2) && (ck_cntr - ck_read)%2) begin
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr[AP]) begin
auto_precharge_bank[bank] = 1'b1;
read_precharge_bank[bank] = 1'b1;
end
col = ((addr>>1) & -1*(1<<AP)) | (addr & {AP{1'b1}});
if (col >= 1<<COL_BITS) begin
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
rd_pipeline[2*read_latency - 1] = 1;
ba_pipeline[2*read_latency - 1] = bank;
row_pipeline[2*read_latency - 1] = active_row[bank];
col_pipeline[2*read_latency - 1] = col;
ck_bank_read[bank] <= ck_cntr;
ck_read <= ck_cntr;
end
end
NOP: begin
if (in_power_down) begin
if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time);
in_power_down = 0;
if (|active_bank & low_power) begin // slow exit active power down
ck_slow_exit_pd <= ck_cntr;
end
ck_power_down <= ck_cntr;
end
if (in_self_refresh) begin
if ($time - tm_cke < TISXR)
$display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time);
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time);
in_self_refresh = 0;
ck_dll_reset <= ck_cntr;
ck_self_refresh <= ck_cntr;
tm_self_refresh <= $time;
tm_refresh <= $time;
end
end
endcase
if ((prev_cke !== 1) && (cmd !== NOP)) begin
$display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time);
end
if (!init_done) begin
case (init_step)
0 : begin
if ($time < 200000000)
$display ("%m: at time %t WARNING: 200 us is required before CKE goes active.", $time);
// if (cmd_chk + 200000000 > $time)
// $display("%m: at time %t WARNING: NOP or DESELECT is required for 200 us before CKE is brought high", $time);
init_step = init_step + 1;
end
1 : if (dll_en) init_step = init_step + 1;
2 : begin
if (&init_mode_reg && dll_reset) begin
active_bank = {`BANKS{1'b1}}; // require Precharge All or bank Precharges
ref_cntr = 0; // require refresh
init_step = init_step + 1;
end
end
3 : if (ref_cntr == 2) begin
init_step = init_step + 1;
end
4 : if (!dll_reset) init_step = init_step + 1;
5 : if (ocd == 3'b111) init_step = init_step + 1;
6 : begin
if (ocd == 3'b000) begin
if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time);
init_done = 1;
end
end
endcase
end
end else if (prev_cke) begin
if ((!init_done) && (init_step > 1)) begin
$display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end
case (cmd)
REFRESH : begin
for (j=0; j<NOP; j=j+1) begin
chk_err(1'b0, bank, j, SELF_REF);
end
chk_err(1'b0, bank, PWR_DOWN, SELF_REF);
chk_err(1'b0, bank, SELF_REF, SELF_REF);
if (|active_bank) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time);
if (STOP_ON_ERROR) $stop(0);
init_done = 0;
end else if (odt_en && odt_state) begin
$display ("%m: at time %t ERROR: ODT must be off prior to entering Self Refresh", $time);
if (STOP_ON_ERROR) $stop(0);
init_done = 0;
end else if (!init_done) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time);
in_self_refresh = 1;
dll_locked = 0;
end
end
NOP : begin
// entering slow_exit or precharge power down and tANPD has not been satisfied
if ((low_power || (active_bank == 0)) && (ck_cntr - ck_odt < TANPD))
$display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]);
for (j=0; j<NOP; j=j+1) begin
chk_err(1'b0, bank, j, PWR_DOWN);
end
chk_err(1'b0, bank, PWR_DOWN, PWR_DOWN);
chk_err(1'b0, bank, SELF_REF, PWR_DOWN);
if (!init_done) begin
$display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) begin
if (|active_bank) begin
$display ("%m: at time %t INFO: Active Power Down Enter", $time);
end else begin
$display ("%m: at time %t INFO: Precharge Power Down Enter", $time);
end
end
in_power_down = 1;
end
end
default : begin
$display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time);
init_done = 0;
end
endcase
if (!init_done) begin
if (DEBUG) $display ("%m: at time %t WARNING: Reset has occurred. Device must be re-initialized.", $time);
reset_task;
end
end
prev_cke = cke;
end
endtask
task data_task;
reg [BA_BITS-1:0] bank;
reg [ROW_BITS-1:0] row;
reg [COL_BITS-1:0] col;
integer i;
integer j;
begin
if (diff_ck) begin
for (i=0; i<36; i=i+1) begin
if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg)))
$display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/18], i%18);
if (check_write_dqs_high[i])
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/18], i%18);
end
check_write_dqs_high <= 0;
end else begin
for (i=0; i<36; i=i+1) begin
if (dll_locked && dq_in_valid && (i % 18 < DQS_BITS)) begin // Only check valid DQS group
tm_tdqss = abs_value($itor(tm_ck_pos) - tm_dqss_pos[i]);
//$display ("at time %t, tm_tdqss = %0d, tm_ck_pos = %0d, tm_dqss_pos [%0d] = %0d", $time, tm_tdqss, tm_ck_pos, i, tm_dqss_pos[i]);
if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg))
$display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/18], i%18);
end
if (check_write_dqs_low[i])
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/18], i%18);
end
check_write_preamble <= 0;
check_write_postamble <= 0;
check_write_dqs_low <= 0;
end
if (wr_pipeline[0] || rd_pipeline[0]) begin
bank = ba_pipeline[0];
row = row_pipeline[0];
col = col_pipeline[0];
burst_cntr = 0;
memory_read(bank, row, col, memory_data);
end
// burst counter
if (burst_cntr < burst_length) begin
burst_position = col ^ burst_cntr;
if (!burst_order) begin
burst_position[BO_BITS-1:0] = col + burst_cntr;
end
burst_cntr = burst_cntr + 1;
end
// write dqs counter
if (wr_pipeline[WDQS_PRE + 1]) begin
wdqs_cntr = WDQS_PRE + burst_length + WDQS_PST - 1;
end
// write dqs
if ((wdqs_cntr == burst_length + WDQS_PST) && (wdq_cntr == 0)) begin //write preamble
check_write_preamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}};
end
if (wdqs_cntr > 1) begin // write data
if ((wdqs_cntr - WDQS_PST)%2) begin
check_write_dqs_high <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}};
end else begin
check_write_dqs_low <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}};
end
end
if (wdqs_cntr == WDQS_PST) begin // write postamble
check_write_postamble <= ({DQS_BITS{dqs_n_en}}<<18) | {DQS_BITS{1'b1}};
end
if (wdqs_cntr > 0) begin
wdqs_cntr = wdqs_cntr - 1;
end
// write dq
if (dq_in_valid) begin // write data
bit_mask = 0;
if (diff_ck) begin
for (i=0; i<DM_BITS; i=i+1) begin
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
end
memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
end else begin
for (i=0; i<DM_BITS; i=i+1) begin
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
end
memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
end
dq_temp = memory_data>>(burst_position*DQ_BITS);
if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
if (burst_cntr%BL_MIN == 0) begin
memory_write(bank, row, col, memory_data);
end
end
if (wr_pipeline[1]) begin
wdq_cntr = burst_length;
end
if (wdq_cntr > 0) begin
wdq_cntr = wdq_cntr - 1;
dq_in_valid = 1'b1;
end else begin
dq_in_valid = 1'b0;
dqs_in_valid <= 1'b0;
for (i=0; i<36; i=i+1) begin
wdqs_pos_cntr[i] <= 0;
end
end
if (wr_pipeline[0]) begin
b2b_write <= 1'b0;
end
if (wr_pipeline[2]) begin
if (dqs_in_valid) begin
b2b_write <= 1'b1;
end
dqs_in_valid <= 1'b1;
end
// read dqs enable counter
if (rd_pipeline[RDQSEN_PRE]) begin
rdqsen_cntr = RDQSEN_PRE + burst_length + RDQSEN_PST - 1;
end
if (rdqsen_cntr > 0) begin
rdqsen_cntr = rdqsen_cntr - 1;
dqs_out_en = 1'b1;
end else begin
dqs_out_en = 1'b0;
end
// read dqs counter
if (rd_pipeline[RDQS_PRE]) begin
rdqs_cntr = RDQS_PRE + burst_length + RDQS_PST - 1;
end
// read dqs
if ((rdqs_cntr >= burst_length + RDQS_PST) && (rdq_cntr == 0)) begin //read preamble
dqs_out = 1'b0;
end else if (rdqs_cntr > RDQS_PST) begin // read data
dqs_out = rdqs_cntr - RDQS_PST;
end else if (rdqs_cntr > 0) begin // read postamble
dqs_out = 1'b0;
end else begin
dqs_out = 1'b1;
end
if (rdqs_cntr > 0) begin
rdqs_cntr = rdqs_cntr - 1;
end
// read dq enable counter
if (rd_pipeline[RDQEN_PRE]) begin
rdqen_cntr = RDQEN_PRE + burst_length + RDQEN_PST;
end
if (rdqen_cntr > 0) begin
rdqen_cntr = rdqen_cntr - 1;
dq_out_en = 1'b1;
end else begin
dq_out_en = 1'b0;
end
// read dq
if (rd_pipeline[0]) begin
rdq_cntr = burst_length;
end
if (rdq_cntr > 0) begin // read data
dq_temp = memory_data>>(burst_position*DQ_BITS);
dq_out = dq_temp;
if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
rdq_cntr = rdq_cntr - 1;
end else begin
dq_out = {DQ_BITS{1'b1}};
end
// delay signals prior to output
if (RANDOM_OUT_DELAY && (dqs_out_en || |dqs_out_en_dly || dq_out_en || |dq_out_en_dly)) begin
for (i=0; i<DQS_BITS; i=i+1) begin
// DQSCK requirements
// 1.) less than tDQSCK
// 2.) greater than -tDQSCK
// 3.) cannot change more than tQHS + tDQSQ from previous DQS edge
dqsck_max = TDQSCK;
if (dqsck_max > dqsck[i] + TQHS + TDQSQ) begin
dqsck_max = dqsck[i] + TQHS + TDQSQ;
end
dqsck_min = -1*TDQSCK;
if (dqsck_min < dqsck[i] - TQHS - TDQSQ) begin
dqsck_min = dqsck[i] - TQHS - TDQSQ;
end
// DQSQ requirements
// 1.) less than tAC - DQSCK
// 2.) less than tDQSQ
// 3.) greater than -tAC
// 4.) greater than tQH from previous DQS edge
dqsq_min = -1*TAC;
if (dqsq_min < dqsck[i] - TQHS) begin
dqsq_min = dqsck[i] - TQHS;
end
if (dqsck_min == dqsck_max) begin
dqsck[i] = dqsck_min;
end else begin
dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max);
end
dqsq_max = TAC;
if (dqsq_max > TDQSQ + dqsck[i]) begin
dqsq_max = TDQSQ + dqsck[i];
end
dqs_out_en_dly[i] <= #(tck_avg/2.0 + ($random % TAC)) dqs_out_en;
dqs_out_dly[i] <= #(tck_avg/2.0 + dqsck[i]) dqs_out;
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
if (dq_out_en) begin // tLZ2
dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, -2*TAC, dqsq_max)) dq_out_en;
end else begin // tHZ
dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + ($random % TAC)) dq_out_en;
end
if (dqsq_min == dqsq_max) begin
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + dqsq_min) dq_out[i*`DQ_PER_DQS + j];
end else begin
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2.0 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j];
end
end
end
end else begin
out_delay = tck_avg/2.0;
dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}};
dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }};
dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }};
dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }};
end
end
endtask
always @(diff_ck) begin : main
integer i;
if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1))
$display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time);
data_task;
if (diff_ck) begin
// check setup of command signals
if ($time > TIS) begin
if ($time - tm_cke < TIS)
$display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time);
if (cke_in) begin
for (i=0; i<22; i=i+1) begin
if ($time - tm_cmd_addr[i] < TIS)
$display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time);
end
end
end
// update current state
if (!dll_locked && !in_self_refresh && (ck_cntr - ck_dll_reset == TDLLK)) begin
// check CL value against the clock frequency
if (cas_latency*tck_avg < CL_TIME)
$display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg);
// check WR value against the clock frequency
if (write_recovery*tck_avg < TWR)
$display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg);
dll_locked = 1;
end
if (|auto_precharge_bank) begin
for (i=0; i<`BANKS; i=i+1) begin
// Write with Auto Precharge Calculation
// 1. Meet minimum tRAS requirement
// 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command
if (write_precharge_bank[i]
&& ($time - tm_bank_activate[i] >= TRAS_MIN)
&& (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery)) begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
write_precharge_bank[i] = 0;
active_bank[i] = 0;
auto_precharge_bank[i] = 0;
ck_write_ap = ck_cntr;
tm_bank_precharge[i] = $time;
tm_precharge = $time;
end
// Read with Auto Precharge Calculation
// 1. Meet minimum tRAS requirement
// 2. Additive Latency plus BL/2 cycles after Read command
// 3. tRTP after the last 4-bit prefetch
if (read_precharge_bank[i]
&& ($time - tm_bank_activate[i] >= TRAS_MIN)
&& (ck_cntr - ck_bank_read[i] >= additive_latency + burst_length/2)) begin
read_precharge_bank[i] = 0;
// In case the internal precharge is pushed out by tRTP, tRP starts at the point where
// the internal precharge happens (not at the next rising clock edge after this event).
if ($time - tm_bank_read_end[i] < TRTP) begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i);
active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
active_bank[i] = 0;
auto_precharge_bank[i] = 0;
tm_bank_precharge[i] = $time;
tm_precharge = $time;
end
end
end
end
// respond to incoming command
if (cke_in ^ prev_cke) begin
ck_cke <= ck_cntr;
end
cmd_task(cke_in, cmd_n_in, ba_in, addr_in);
if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin
al_pipeline[2*additive_latency] = 1'b1;
end
if (al_pipeline[0]) begin
// check tRCD after additive latency
if ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD) begin
if (rd_pipeline[2*cas_latency - 1]) begin
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]);
end else begin
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]);
end
end
// check tWTR after additive latency
if (rd_pipeline[2*cas_latency - 1]) begin
if ($time - tm_write_end < TWTR)
$display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
end
end
if (rd_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]) begin
tm_bank_read_end[ba_pipeline[2*(cas_latency - burst_length/2 + 2) - 1]] <= $time;
end
for (i=0; i<`BANKS; i=i+1) begin
if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin
tm_bank_write_end[i] <= $time;
tm_write_end <= $time;
end
end
// clk pin is disabled during self refresh
if (!in_self_refresh) begin
tjit_cc_time = $time - tm_ck_pos - tck_i;
tck_i = $time - tm_ck_pos;
tck_avg = tck_avg - tck_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tck_avg = tck_avg + tck_i/$itor(TDLLK);
tck_sample[ck_cntr%TDLLK] = tck_i;
tjit_per_rtime = tck_i - tck_avg;
if (dll_locked) begin
// check accumulated error
terr_nper_rtime = 0;
for (i=0; i<50; i=i+1) begin
terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg;
terr_nper_rtime = abs_value(terr_nper_rtime);
case (i)
0 :;
1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER);
2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER);
3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER);
4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER);
5,6,7,8,9 : if (terr_nper_rtime - TERR_N1PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n1per) violation by %f ps.", $time, terr_nper_rtime - TERR_N1PER);
default : if (terr_nper_rtime - TERR_N2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(n2per) violation by %f ps.", $time, terr_nper_rtime - TERR_N2PER);
endcase
end
// check tCK min/max/jitter
if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0)
$display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER);
if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0)
$display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC);
if (TCK_MIN - tck_avg >= 1.0)
$display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg);
if (tck_avg - TCK_MAX >= 1.0)
$display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX);
if (tm_ck_pos + TCK_MIN - TJIT_PER > $time)
$display ("%m: at time %t ERROR: tCK(abs) minimum violation by %t", $time, tm_ck_pos + TCK_MIN - TJIT_PER - $time);
if (tm_ck_pos + TCK_MAX + TJIT_PER < $time)
$display ("%m: at time %t ERROR: tCK(abs) maximum violation by %t", $time, $time - tm_ck_pos - TCK_MAX - TJIT_PER);
// check tCL
if (tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY > $time)
$display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, tm_ck_neg + TCL_MIN*tck_avg - TJIT_DUTY - $time);
if (tm_ck_neg + TCL_MAX*tck_avg + TJIT_DUTY < $time)
$display ("%m: at time %t ERROR: tCL(abs) maximum violation on CLK by %t", $time, $time - tm_ck_neg - TCL_MAX*tck_avg - TJIT_DUTY);
if (tcl_avg < TCL_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_MIN*tck_avg - tcl_avg);
if (tcl_avg > TCL_MAX*tck_avg)
$display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_MAX*tck_avg);
end
// calculate the tch avg jitter
tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tch_avg = tch_avg + tch_i/$itor(TDLLK);
tch_sample[ck_cntr%TDLLK] = tch_i;
// update timers/counters
tcl_i <= $time - tm_ck_neg;
end
prev_odt <= odt_in;
// update timers/counters
ck_cntr <= ck_cntr + 1;
tm_ck_pos <= $time;
end else begin
// clk pin is disabled during self refresh
if (!in_self_refresh) begin
if (dll_locked) begin
if (tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY > $time)
$display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, tm_ck_pos + TCH_MIN*tck_avg - TJIT_DUTY + $time);
if (tm_ck_pos + TCH_MAX*tck_avg + TJIT_DUTY < $time)
$display ("%m: at time %t ERROR: tCH(abs) maximum violation on CLK by %t", $time, $time - tm_ck_pos - TCH_MAX*tck_avg - TJIT_DUTY);
if (tch_avg < TCH_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_MIN*tck_avg - tch_avg);
if (tch_avg > TCH_MAX*tck_avg)
$display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_MAX*tck_avg);
end
// calculate the tcl avg jitter
tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tcl_avg = tcl_avg + tcl_i/$itor(TDLLK);
tcl_sample[ck_cntr%TDLLK] = tcl_i;
// update timers/counters
tch_i <= $time - tm_ck_pos;
end
tm_ck_neg <= $time;
end
// on die termination
if (odt_en) begin
// clk pin is disabled during self refresh
if (!in_self_refresh && diff_ck) begin
if ($time - tm_odt < TIS) begin
$display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time);
end
if (prev_odt ^ odt_in) begin
if (!dll_locked)
$display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time);
if (odt_in && ($time - tm_odt_en < TMOD))
$display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time);
if ($time - tm_self_refresh < TXSNR)
$display ("%m: at time %t ERROR: tXSNR violation during ODT transition", $time);
if (in_self_refresh)
$display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time);
// async ODT mode applies:
// 1.) during active power down with slow exit
// 2.) during precharge power down
// 3.) if tANPD has not been satisfied
// 4.) until tAXPD has been satisfied
if ((in_power_down && (low_power || (active_bank == 0))) || (ck_cntr - ck_slow_exit_pd < TAXPD)) begin
if (ck_cntr - ck_slow_exit_pd < TAXPD)
$display ("%m: at time %t WARNING: tAXPD violation during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time);
if (odt_in) begin
if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAONPD, 1'b1);
odt_state <= #(TAONPD) 1'b1;
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Async On Die Termination = %d", $time + TAOFPD, 1'b0);
odt_state <= #(TAOFPD) 1'b0;
end
// sync ODT mode applies:
// 1.) during normal operation
// 2.) during active power down with fast exit
end else begin
if (odt_in) begin
i = TAOND*2;
odt_pipeline[i] = 1'b1;
end else begin
i = TAOFD*2;
odt_pipeline[i] = 1'b1;
end
end
ck_odt <= ck_cntr;
end
end
if (odt_pipeline[0]) begin
odt_state = ~odt_state;
if (DEBUG) $display ("%m: at time %t INFO: Sync On Die Termination = %d", $time, odt_state);
end
end
// shift pipelines
if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin
al_pipeline = al_pipeline>>1;
wr_pipeline = wr_pipeline>>1;
rd_pipeline = rd_pipeline>>1;
for (i=0; i<`MAX_PIPE; i=i+1) begin
ba_pipeline[i] = ba_pipeline[i+1];
row_pipeline[i] = row_pipeline[i+1];
col_pipeline[i] = col_pipeline[i+1];
end
end
if (|odt_pipeline) begin
odt_pipeline = odt_pipeline>>1;
end
end
// receiver(s)
task dqs_even_receiver;
input [4:0] i;
reg [71:0] bit_mask;
begin
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
if (dqs_even[i]) begin
if (rdqs_en) begin // rdqs disables dm
dm_in_pos[i] = 1'b0;
end else begin
dm_in_pos[i] = dm_in[i];
end
dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask);
end
end
endtask
always @(posedge dqs_even[ 0]) dqs_even_receiver( 0);
always @(posedge dqs_even[ 1]) dqs_even_receiver( 1);
always @(posedge dqs_even[ 2]) dqs_even_receiver( 2);
always @(posedge dqs_even[ 3]) dqs_even_receiver( 3);
always @(posedge dqs_even[ 4]) dqs_even_receiver( 4);
always @(posedge dqs_even[ 5]) dqs_even_receiver( 5);
always @(posedge dqs_even[ 6]) dqs_even_receiver( 6);
always @(posedge dqs_even[ 7]) dqs_even_receiver( 7);
always @(posedge dqs_even[ 8]) dqs_even_receiver( 8);
always @(posedge dqs_even[ 9]) dqs_even_receiver( 9);
always @(posedge dqs_even[10]) dqs_even_receiver(10);
always @(posedge dqs_even[11]) dqs_even_receiver(11);
always @(posedge dqs_even[12]) dqs_even_receiver(12);
always @(posedge dqs_even[13]) dqs_even_receiver(13);
always @(posedge dqs_even[14]) dqs_even_receiver(14);
always @(posedge dqs_even[15]) dqs_even_receiver(15);
always @(posedge dqs_even[16]) dqs_even_receiver(16);
always @(posedge dqs_even[17]) dqs_even_receiver(17);
task dqs_odd_receiver;
input [4:0] i;
reg [71:0] bit_mask;
begin
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
if (dqs_odd[i]) begin
if (rdqs_en) begin // rdqs disables dm
dm_in_neg[i] = 1'b0;
end else begin
dm_in_neg[i] = dm_in[i];
end
dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask);
end
end
endtask
always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0);
always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1);
always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2);
always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3);
always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4);
always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5);
always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6);
always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7);
always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8);
always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9);
always @(posedge dqs_odd[10]) dqs_odd_receiver(10);
always @(posedge dqs_odd[11]) dqs_odd_receiver(11);
always @(posedge dqs_odd[12]) dqs_odd_receiver(12);
always @(posedge dqs_odd[13]) dqs_odd_receiver(13);
always @(posedge dqs_odd[14]) dqs_odd_receiver(14);
always @(posedge dqs_odd[15]) dqs_odd_receiver(15);
always @(posedge dqs_odd[16]) dqs_odd_receiver(16);
always @(posedge dqs_odd[17]) dqs_odd_receiver(17);
// Processes to check hold and pulse width of control signals
always @(cke_in) begin
if ($time > TIH) begin
if ($time - tm_ck_pos < TIH)
$display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time);
end
if (dll_locked && ($time - tm_cke < $rtoi(TIPW*tck_avg)))
$display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW*tck_avg - $time);
tm_cke = $time;
end
always @(odt_in) begin
if (odt_en && !in_self_refresh) begin
if ($time - tm_ck_pos < TIH)
$display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time);
if (dll_locked && ($time - tm_odt < $rtoi(TIPW*tck_avg)))
$display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW*tck_avg - $time);
end
tm_odt = $time;
end
task cmd_addr_timing_check;
input i;
reg [4:0] i;
begin
if (prev_cke) begin
if ((i == 0) && ($time - tm_ck_pos < TIH)) // Always check tIH for CS#
$display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
if ((i > 0) && (cs_n_in == 1'b0) && ($time - tm_ck_pos < TIH)) // Only check tIH for cmd_addr if CS# low
$display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
if (dll_locked && ($time - tm_cmd_addr[i] < $rtoi(TIPW*tck_avg)))
$display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW*tck_avg - $time);
end
tm_cmd_addr[i] = $time;
end
endtask
always @(cs_n_in ) cmd_addr_timing_check( 0);
always @(ras_n_in ) cmd_addr_timing_check( 1);
always @(cas_n_in ) cmd_addr_timing_check( 2);
always @(we_n_in ) cmd_addr_timing_check( 3);
always @(ba_in [ 0]) cmd_addr_timing_check( 4);
always @(ba_in [ 1]) cmd_addr_timing_check( 5);
always @(ba_in [ 2]) cmd_addr_timing_check( 6);
always @(addr_in[ 0]) cmd_addr_timing_check( 7);
always @(addr_in[ 1]) cmd_addr_timing_check( 8);
always @(addr_in[ 2]) cmd_addr_timing_check( 9);
always @(addr_in[ 3]) cmd_addr_timing_check(10);
always @(addr_in[ 4]) cmd_addr_timing_check(11);
always @(addr_in[ 5]) cmd_addr_timing_check(12);
always @(addr_in[ 6]) cmd_addr_timing_check(13);
always @(addr_in[ 7]) cmd_addr_timing_check(14);
always @(addr_in[ 8]) cmd_addr_timing_check(15);
always @(addr_in[ 9]) cmd_addr_timing_check(16);
always @(addr_in[10]) cmd_addr_timing_check(17);
always @(addr_in[11]) cmd_addr_timing_check(18);
always @(addr_in[12]) cmd_addr_timing_check(19);
always @(addr_in[13]) cmd_addr_timing_check(20);
always @(addr_in[14]) cmd_addr_timing_check(21);
always @(addr_in[15]) cmd_addr_timing_check(22);
// Processes to check setup and hold of data signals
task dm_timing_check;
input i;
reg [4:0] i;
begin
if (dqs_in_valid) begin
if ($time - tm_dqs[i] < TDH)
$display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time);
if (check_dm_tdipw[i]) begin
if (dll_locked && ($time - tm_dm[i] < $rtoi(TDIPW*tck_avg)))
$display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW*tck_avg - $time);
end
end
check_dm_tdipw[i] <= 1'b0;
tm_dm[i] = $time;
end
endtask
always @(dm_in[ 0]) dm_timing_check( 0);
always @(dm_in[ 1]) dm_timing_check( 1);
always @(dm_in[ 2]) dm_timing_check( 2);
always @(dm_in[ 3]) dm_timing_check( 3);
always @(dm_in[ 4]) dm_timing_check( 4);
always @(dm_in[ 5]) dm_timing_check( 5);
always @(dm_in[ 6]) dm_timing_check( 6);
always @(dm_in[ 7]) dm_timing_check( 7);
always @(dm_in[ 8]) dm_timing_check( 8);
always @(dm_in[ 9]) dm_timing_check( 9);
always @(dm_in[10]) dm_timing_check(10);
always @(dm_in[11]) dm_timing_check(11);
always @(dm_in[12]) dm_timing_check(12);
always @(dm_in[13]) dm_timing_check(13);
always @(dm_in[14]) dm_timing_check(14);
always @(dm_in[15]) dm_timing_check(15);
always @(dm_in[16]) dm_timing_check(16);
always @(dm_in[17]) dm_timing_check(17);
task dq_timing_check;
input i;
reg [6:0] i;
begin
if (dqs_in_valid) begin
if ($time - tm_dqs[i/`DQ_PER_DQS] < TDH)
$display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time);
if (check_dq_tdipw[i]) begin
if (dll_locked && ($time - tm_dq[i] < $rtoi(TDIPW*tck_avg)))
$display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW*tck_avg - $time);
end
end
check_dq_tdipw[i] <= 1'b0;
tm_dq[i] = $time;
end
endtask
always @(dq_in[ 0]) dq_timing_check( 0);
always @(dq_in[ 1]) dq_timing_check( 1);
always @(dq_in[ 2]) dq_timing_check( 2);
always @(dq_in[ 3]) dq_timing_check( 3);
always @(dq_in[ 4]) dq_timing_check( 4);
always @(dq_in[ 5]) dq_timing_check( 5);
always @(dq_in[ 6]) dq_timing_check( 6);
always @(dq_in[ 7]) dq_timing_check( 7);
always @(dq_in[ 8]) dq_timing_check( 8);
always @(dq_in[ 9]) dq_timing_check( 9);
always @(dq_in[10]) dq_timing_check(10);
always @(dq_in[11]) dq_timing_check(11);
always @(dq_in[12]) dq_timing_check(12);
always @(dq_in[13]) dq_timing_check(13);
always @(dq_in[14]) dq_timing_check(14);
always @(dq_in[15]) dq_timing_check(15);
always @(dq_in[16]) dq_timing_check(16);
always @(dq_in[17]) dq_timing_check(17);
always @(dq_in[18]) dq_timing_check(18);
always @(dq_in[19]) dq_timing_check(19);
always @(dq_in[20]) dq_timing_check(20);
always @(dq_in[21]) dq_timing_check(21);
always @(dq_in[22]) dq_timing_check(22);
always @(dq_in[23]) dq_timing_check(23);
always @(dq_in[24]) dq_timing_check(24);
always @(dq_in[25]) dq_timing_check(25);
always @(dq_in[26]) dq_timing_check(26);
always @(dq_in[27]) dq_timing_check(27);
always @(dq_in[28]) dq_timing_check(28);
always @(dq_in[29]) dq_timing_check(29);
always @(dq_in[30]) dq_timing_check(30);
always @(dq_in[31]) dq_timing_check(31);
always @(dq_in[32]) dq_timing_check(32);
always @(dq_in[33]) dq_timing_check(33);
always @(dq_in[34]) dq_timing_check(34);
always @(dq_in[35]) dq_timing_check(35);
always @(dq_in[36]) dq_timing_check(36);
always @(dq_in[37]) dq_timing_check(37);
always @(dq_in[38]) dq_timing_check(38);
always @(dq_in[39]) dq_timing_check(39);
always @(dq_in[40]) dq_timing_check(40);
always @(dq_in[41]) dq_timing_check(41);
always @(dq_in[42]) dq_timing_check(42);
always @(dq_in[43]) dq_timing_check(43);
always @(dq_in[44]) dq_timing_check(44);
always @(dq_in[45]) dq_timing_check(45);
always @(dq_in[46]) dq_timing_check(46);
always @(dq_in[47]) dq_timing_check(47);
always @(dq_in[48]) dq_timing_check(48);
always @(dq_in[49]) dq_timing_check(49);
always @(dq_in[50]) dq_timing_check(50);
always @(dq_in[51]) dq_timing_check(51);
always @(dq_in[52]) dq_timing_check(52);
always @(dq_in[53]) dq_timing_check(53);
always @(dq_in[54]) dq_timing_check(54);
always @(dq_in[55]) dq_timing_check(55);
always @(dq_in[56]) dq_timing_check(56);
always @(dq_in[57]) dq_timing_check(57);
always @(dq_in[58]) dq_timing_check(58);
always @(dq_in[59]) dq_timing_check(59);
always @(dq_in[60]) dq_timing_check(60);
always @(dq_in[61]) dq_timing_check(61);
always @(dq_in[62]) dq_timing_check(62);
always @(dq_in[63]) dq_timing_check(63);
always @(dq_in[64]) dq_timing_check(64);
always @(dq_in[65]) dq_timing_check(65);
always @(dq_in[66]) dq_timing_check(66);
always @(dq_in[67]) dq_timing_check(67);
always @(dq_in[68]) dq_timing_check(68);
always @(dq_in[69]) dq_timing_check(69);
always @(dq_in[70]) dq_timing_check(70);
always @(dq_in[71]) dq_timing_check(71);
task dqs_pos_timing_check;
input i;
reg [5:0] i;
reg [3:0] j;
begin
if (dqs_in_valid && ((wdqs_pos_cntr[i] < burst_length/2) || b2b_write) && (dqs_n_en || i<18)) begin
if (dqs_in[i] ^ prev_dqs_in[i]) begin
if (dll_locked) begin
if (check_write_preamble[i]) begin
if ($time - tm_dqs_neg[i] < $rtoi(TWPRE*tck_avg))
$display ("%m: at time %t ERROR: tWPRE violation on &s bit %d", $time, dqs_string[i/18], i%18);
end else if (check_write_postamble[i]) begin
if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg))
$display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/18], i%18);
end else begin
if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg))
$display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/18], i%18);
end
end
if ($time - tm_dm[i%18] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time);
if (!dq_out_en) begin
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time);
check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1;
end
end
if ((wdqs_pos_cntr[i] < burst_length/2) && !b2b_write) begin
wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1;
end else begin
wdqs_pos_cntr[i] <= 1;
end
check_dm_tdipw[i%18] <= 1'b1;
check_write_preamble[i] <= 1'b0;
check_write_postamble[i] <= 1'b0;
check_write_dqs_low[i] <= 1'b0;
tm_dqs[i%18] <= $time;
end else begin
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18);
end
end
tm_dqss_pos[i] <= $time;
tm_dqs_pos[i] = $time;
prev_dqs_in[i] <= dqs_in[i];
end
endtask
always @(posedge dqs_in[ 0]) dqs_pos_timing_check( 0);
always @(posedge dqs_in[ 1]) dqs_pos_timing_check( 1);
always @(posedge dqs_in[ 2]) dqs_pos_timing_check( 2);
always @(posedge dqs_in[ 3]) dqs_pos_timing_check( 3);
always @(posedge dqs_in[ 4]) dqs_pos_timing_check( 4);
always @(posedge dqs_in[ 5]) dqs_pos_timing_check( 5);
always @(posedge dqs_in[ 6]) dqs_pos_timing_check( 6);
always @(posedge dqs_in[ 7]) dqs_pos_timing_check( 7);
always @(posedge dqs_in[ 8]) dqs_pos_timing_check( 8);
always @(posedge dqs_in[ 9]) dqs_pos_timing_check( 9);
always @(posedge dqs_in[10]) dqs_pos_timing_check(10);
always @(posedge dqs_in[11]) dqs_pos_timing_check(11);
always @(posedge dqs_in[12]) dqs_pos_timing_check(12);
always @(posedge dqs_in[13]) dqs_pos_timing_check(13);
always @(posedge dqs_in[14]) dqs_pos_timing_check(14);
always @(posedge dqs_in[15]) dqs_pos_timing_check(15);
always @(posedge dqs_in[16]) dqs_pos_timing_check(16);
always @(posedge dqs_in[17]) dqs_pos_timing_check(17);
always @(negedge dqs_in[18]) dqs_pos_timing_check(18);
always @(negedge dqs_in[19]) dqs_pos_timing_check(19);
always @(negedge dqs_in[20]) dqs_pos_timing_check(20);
always @(negedge dqs_in[21]) dqs_pos_timing_check(21);
always @(negedge dqs_in[22]) dqs_pos_timing_check(22);
always @(negedge dqs_in[23]) dqs_pos_timing_check(23);
always @(negedge dqs_in[24]) dqs_pos_timing_check(24);
always @(negedge dqs_in[25]) dqs_pos_timing_check(25);
always @(negedge dqs_in[26]) dqs_pos_timing_check(26);
always @(negedge dqs_in[27]) dqs_pos_timing_check(27);
always @(negedge dqs_in[28]) dqs_pos_timing_check(28);
always @(negedge dqs_in[29]) dqs_pos_timing_check(29);
always @(negedge dqs_in[30]) dqs_pos_timing_check(30);
always @(negedge dqs_in[31]) dqs_pos_timing_check(31);
always @(negedge dqs_in[32]) dqs_neg_timing_check(32);
always @(negedge dqs_in[33]) dqs_neg_timing_check(33);
always @(negedge dqs_in[34]) dqs_neg_timing_check(34);
always @(negedge dqs_in[35]) dqs_neg_timing_check(35);
task dqs_neg_timing_check;
input i;
reg [5:0] i;
reg [3:0] j;
begin
if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i] && (dqs_n_en || i < 18)) begin
if (dqs_in[i] ^ prev_dqs_in[i]) begin
if (dll_locked) begin
if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
$display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/18], i%18);
if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg))
$display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/18], i%18);
end
if ($time - tm_dm[i%18] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%18] + TDS - $time);
if (!dq_out_en) begin
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
if ($time - tm_dq[i*`DQ_PER_DQS+j] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[i*`DQ_PER_DQS+j] + TDS - $time);
check_dq_tdipw[i*`DQ_PER_DQS+j] <= 1'b1;
end
end
check_dm_tdipw[i%18] <= 1'b1;
check_write_dqs_high[i] <= 1'b0;
tm_dqs[i%18] <= $time;
end else begin
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/18], i%18);
end
end
tm_dqs_neg[i] = $time;
prev_dqs_in[i] <= dqs_in[i];
end
endtask
always @(negedge dqs_in[ 0]) dqs_neg_timing_check( 0);
always @(negedge dqs_in[ 1]) dqs_neg_timing_check( 1);
always @(negedge dqs_in[ 2]) dqs_neg_timing_check( 2);
always @(negedge dqs_in[ 3]) dqs_neg_timing_check( 3);
always @(negedge dqs_in[ 4]) dqs_neg_timing_check( 4);
always @(negedge dqs_in[ 5]) dqs_neg_timing_check( 5);
always @(negedge dqs_in[ 6]) dqs_neg_timing_check( 6);
always @(negedge dqs_in[ 7]) dqs_neg_timing_check( 7);
always @(negedge dqs_in[ 8]) dqs_neg_timing_check( 8);
always @(negedge dqs_in[ 9]) dqs_neg_timing_check( 9);
always @(negedge dqs_in[10]) dqs_neg_timing_check(10);
always @(negedge dqs_in[11]) dqs_neg_timing_check(11);
always @(negedge dqs_in[12]) dqs_neg_timing_check(12);
always @(negedge dqs_in[13]) dqs_neg_timing_check(13);
always @(negedge dqs_in[14]) dqs_neg_timing_check(14);
always @(negedge dqs_in[15]) dqs_neg_timing_check(15);
always @(negedge dqs_in[16]) dqs_neg_timing_check(16);
always @(negedge dqs_in[17]) dqs_neg_timing_check(17);
always @(posedge dqs_in[18]) dqs_neg_timing_check(18);
always @(posedge dqs_in[19]) dqs_neg_timing_check(19);
always @(posedge dqs_in[20]) dqs_neg_timing_check(20);
always @(posedge dqs_in[21]) dqs_neg_timing_check(21);
always @(posedge dqs_in[22]) dqs_neg_timing_check(22);
always @(posedge dqs_in[23]) dqs_neg_timing_check(23);
always @(posedge dqs_in[24]) dqs_neg_timing_check(24);
always @(posedge dqs_in[25]) dqs_neg_timing_check(25);
always @(posedge dqs_in[26]) dqs_neg_timing_check(26);
always @(posedge dqs_in[27]) dqs_neg_timing_check(27);
always @(posedge dqs_in[28]) dqs_neg_timing_check(28);
always @(posedge dqs_in[29]) dqs_neg_timing_check(29);
always @(posedge dqs_in[30]) dqs_neg_timing_check(30);
always @(posedge dqs_in[31]) dqs_neg_timing_check(31);
always @(posedge dqs_in[32]) dqs_neg_timing_check(32);
always @(posedge dqs_in[33]) dqs_neg_timing_check(33);
always @(posedge dqs_in[34]) dqs_neg_timing_check(34);
always @(posedge dqs_in[35]) dqs_neg_timing_check(35);
endmodule