mirror of
git://projects.qi-hardware.com/xue.git
synced 2024-12-29 13:09:53 +02:00
469 lines
15 KiB
Verilog
469 lines
15 KiB
Verilog
/****************************************************************************************
|
|
*
|
|
* File Name: tb.v
|
|
*
|
|
* Dependencies: ddr2.v, ddr2_parameters.vh
|
|
*
|
|
* Description: Micron SDRAM DDR2 (Double Data Rate 2) test bench
|
|
*
|
|
* Note: -Set simulator resolution to "ps" accuracy
|
|
* -Set Debug = 0 to disable $display messages
|
|
*
|
|
* Disclaimer This software code and all associated documentation, comments or other
|
|
* of Warranty: information (collectively "Software") is provided "AS IS" without
|
|
* warranty of any kind. MICRON TECHNOLOGY, INC. ("MTI") EXPRESSLY
|
|
* DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
|
* TO, NONINFRINGEMENT OF THIRD PARTY RIGHTS, AND ANY IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. MTI DOES NOT
|
|
* WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
|
|
* OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE.
|
|
* FURTHERMORE, MTI DOES NOT MAKE ANY REPRESENTATIONS REGARDING THE USE OR
|
|
* THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
|
|
* ACCURACY, RELIABILITY, OR OTHERWISE. THE ENTIRE RISK ARISING OUT OF USE
|
|
* OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU. IN NO EVENT SHALL MTI,
|
|
* ITS AFFILIATED COMPANIES OR THEIR SUPPLIERS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES (INCLUDING,
|
|
* WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION,
|
|
* OR LOSS OF INFORMATION) ARISING OUT OF YOUR USE OF OR INABILITY TO USE
|
|
* THE SOFTWARE, EVEN IF MTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGES. Because some jurisdictions prohibit the exclusion or
|
|
* limitation of liability for consequential or incidental damages, the
|
|
* above limitation may not apply to you.
|
|
*
|
|
* Copyright 2003 Micron Technology, Inc. All rights reserved.
|
|
*
|
|
****************************************************************************************/
|
|
|
|
// DO NOT CHANGE THE TIMESCALE
|
|
|
|
`timescale 1ps / 1ps
|
|
|
|
module tb;
|
|
|
|
`include "ddr2_parameters.vh"
|
|
|
|
// ports
|
|
reg ck;
|
|
wire ck_n = ~ck;
|
|
reg cke;
|
|
reg cs_n;
|
|
reg ras_n;
|
|
reg cas_n;
|
|
reg we_n;
|
|
reg [BA_BITS-1:0] ba;
|
|
reg [ADDR_BITS-1:0] a;
|
|
wire [DM_BITS-1:0] dm;
|
|
wire [DQ_BITS-1:0] dq;
|
|
wire [DQS_BITS-1:0] dqs;
|
|
wire [DQS_BITS-1:0] dqs_n;
|
|
wire [DQS_BITS-1:0] rdqs_n;
|
|
reg odt;
|
|
|
|
// mode registers
|
|
reg [ADDR_BITS-1:0] mode_reg0; //Mode Register
|
|
reg [ADDR_BITS-1:0] mode_reg1; //Extended Mode Register
|
|
wire [2:0] cl = mode_reg0[6:4]; //CAS Latency
|
|
wire bo = mode_reg0[3]; //Burst Order
|
|
wire [7:0] bl = (1<<mode_reg0[2:0]); //Burst Length
|
|
wire rdqs_en = mode_reg1[11]; //RDQS Enable
|
|
wire dqs_n_en = ~mode_reg1[10]; //dqs# Enable
|
|
wire [2:0] al = mode_reg1[5:3]; //Additive Latency
|
|
wire [3:0] rl = al + cl; //Read Latency
|
|
wire [3:0] wl = al + cl-1'b1; //Write Latency
|
|
|
|
// dq transmit
|
|
reg dq_en;
|
|
reg [DM_BITS-1:0] dm_out;
|
|
reg [DQ_BITS-1:0] dq_out;
|
|
reg dqs_en;
|
|
reg [DQS_BITS-1:0] dqs_out;
|
|
assign dm = dq_en ? dm_out : {DM_BITS{1'bz}};
|
|
assign dq = dq_en ? dq_out : {DQ_BITS{1'bz}};
|
|
assign dqs = dqs_en ? dqs_out : {DQS_BITS{1'bz}};
|
|
assign dqs_n = (dqs_en & dqs_n_en) ? ~dqs_out : {DQS_BITS{1'bz}};
|
|
|
|
// dq receive
|
|
reg [DM_BITS-1:0] dm_fifo [2*(AL_MAX+CL_MAX)+BL_MAX:0];
|
|
reg [DQ_BITS-1:0] dq_fifo [2*(AL_MAX+CL_MAX)+BL_MAX:0];
|
|
wire [DQ_BITS-1:0] q0, q1, q2, q3;
|
|
reg [1:0] burst_cntr;
|
|
assign rdqs_n = {DQS_BITS{1'bz}};
|
|
|
|
// timing definition in tCK units
|
|
real tck;
|
|
wire [11:0] taa = ceil(CL_TIME/tck);
|
|
wire [11:0] tanpd = TANPD;
|
|
wire [11:0] taond = TAOND;
|
|
wire [11:0] taofd = ceil(TAOFD);
|
|
wire [11:0] taxpd = TAXPD;
|
|
wire [11:0] tccd = TCCD;
|
|
wire [11:0] tcke = TCKE;
|
|
wire [11:0] tdllk = TDLLK;
|
|
wire [11:0] tfaw = ceil(TFAW/tck);
|
|
wire [11:0] tmod = ceil(TMOD/tck);
|
|
wire [11:0] tmrd = TMRD;
|
|
wire [11:0] tras = ceil(TRAS_MIN/tck);
|
|
wire [11:0] trc = TRC;
|
|
wire [11:0] trcd = ceil(TRCD/tck);
|
|
wire [11:0] trfc = ceil(TRFC_MIN/tck);
|
|
wire [11:0] trp = ceil(TRP/tck);
|
|
wire [11:0] trrd = ceil(TRRD/tck);
|
|
wire [11:0] trtp = ceil(TRTP/tck);
|
|
wire [11:0] twr = ceil(TWR/tck);
|
|
wire [11:0] twtr = ceil(TWTR/tck);
|
|
wire [11:0] txard = TXARD;
|
|
wire [11:0] txards = TXARDS;
|
|
wire [11:0] txp = TXP;
|
|
wire [11:0] txsnr = ceil(TXSNR/tck);
|
|
wire [11:0] txsrd = TXSRD;
|
|
|
|
initial begin
|
|
$timeformat (-9, 1, " ns", 1);
|
|
`ifdef period
|
|
tck <= `period;
|
|
`else
|
|
tck <= TCK_MIN;
|
|
`endif
|
|
ck <= 1'b1;
|
|
end
|
|
|
|
// component instantiation
|
|
ddr2 sdramddr2 (
|
|
ck,
|
|
ck_n,
|
|
cke,
|
|
cs_n,
|
|
ras_n,
|
|
cas_n,
|
|
we_n,
|
|
dm,
|
|
ba,
|
|
a,
|
|
dq,
|
|
dqs,
|
|
dqs_n,
|
|
rdqs_n,
|
|
odt
|
|
);
|
|
|
|
// clock generator
|
|
always @(posedge ck) begin
|
|
ck <= #(tck/2) 1'b0;
|
|
ck <= #(tck) 1'b1;
|
|
end
|
|
|
|
function integer ceil;
|
|
input number;
|
|
real number;
|
|
if (number > $rtoi(number))
|
|
ceil = $rtoi(number) + 1;
|
|
else
|
|
ceil = number;
|
|
endfunction
|
|
|
|
function integer max;
|
|
input arg1;
|
|
input arg2;
|
|
integer arg1;
|
|
integer arg2;
|
|
if (arg1 > arg2)
|
|
max = arg1;
|
|
else
|
|
max = arg2;
|
|
endfunction
|
|
|
|
task power_up;
|
|
begin
|
|
cke <= 1'b0;
|
|
odt <= 1'b0;
|
|
repeat(10) @(negedge ck);
|
|
cke <= 1'b1;
|
|
nop (400000/tck+1);
|
|
end
|
|
endtask
|
|
|
|
task load_mode;
|
|
input [BA_BITS-1:0] bank;
|
|
input [ADDR_BITS-1:0] addr;
|
|
begin
|
|
case (bank)
|
|
0: mode_reg0 = addr;
|
|
1: mode_reg1 = addr;
|
|
endcase
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b0;
|
|
cas_n <= 1'b0;
|
|
we_n <= 1'b0;
|
|
ba <= bank;
|
|
a <= addr;
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task refresh;
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b0;
|
|
cas_n <= 1'b0;
|
|
we_n <= 1'b1;
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task precharge;
|
|
input [BA_BITS-1:0] bank;
|
|
input ap; //precharge all
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b0;
|
|
cas_n <= 1'b1;
|
|
we_n <= 1'b0;
|
|
ba <= bank;
|
|
a <= (ap<<10);
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task activate;
|
|
input [BA_BITS-1:0] bank;
|
|
input [ROW_BITS-1:0] row;
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b0;
|
|
cas_n <= 1'b1;
|
|
we_n <= 1'b1;
|
|
ba <= bank;
|
|
a <= row;
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
//write task supports burst lengths <= 8
|
|
task write;
|
|
input [BA_BITS-1:0] bank;
|
|
input [COL_BITS-1:0] col;
|
|
input ap; //Auto Precharge
|
|
input [8*DM_BITS-1:0] dm;
|
|
input [8*DQ_BITS-1:0] dq;
|
|
reg [ADDR_BITS-1:0] atemp [1:0];
|
|
integer i;
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b1;
|
|
cas_n <= 1'b0;
|
|
we_n <= 1'b0;
|
|
ba <= bank;
|
|
atemp[0] = col & 10'h3ff; //addr[ 9: 0] = COL[ 9: 0]
|
|
atemp[1] = (col>>10)<<11; //addr[ N:11] = COL[ N:10]
|
|
a <= atemp[0] | atemp[1] | (ap<<10);
|
|
for (i=0; i<=bl; i=i+1) begin
|
|
|
|
dqs_en <= #(wl*tck + i*tck/2) 1'b1;
|
|
if (i%2 == 0) begin
|
|
dqs_out <= #(wl*tck + i*tck/2) {DQS_BITS{1'b0}};
|
|
end else begin
|
|
dqs_out <= #(wl*tck + i*tck/2) {DQS_BITS{1'b1}};
|
|
end
|
|
|
|
dq_en <= #(wl*tck + i*tck/2 + tck/4) 1'b1;
|
|
dm_out <= #(wl*tck + i*tck/2 + tck/4) dm>>i*DM_BITS;
|
|
dq_out <= #(wl*tck + i*tck/2 + tck/4) dq>>i*DQ_BITS;
|
|
end
|
|
dqs_en <= #(wl*tck + bl*tck/2 + tck/2) 1'b0;
|
|
dq_en <= #(wl*tck + bl*tck/2 + tck/4) 1'b0;
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
// read without data verification
|
|
task read;
|
|
input [BA_BITS-1:0] bank;
|
|
input [COL_BITS-1:0] col;
|
|
input ap; //Auto Precharge
|
|
reg [ADDR_BITS-1:0] atemp [1:0];
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b1;
|
|
cas_n <= 1'b0;
|
|
we_n <= 1'b1;
|
|
ba <= bank;
|
|
atemp[0] = col & 10'h3ff; //addr[ 9: 0] = COL[ 9: 0]
|
|
atemp[1] = (col>>10)<<11; //addr[ N:11] = COL[ N:10]
|
|
a <= atemp[0] | atemp[1] | (ap<<10);
|
|
@(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task nop;
|
|
input [31:0] count;
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b1;
|
|
cas_n <= 1'b1;
|
|
we_n <= 1'b1;
|
|
repeat(count) @(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task deselect;
|
|
input [31:0] count;
|
|
begin
|
|
cke <= 1'b1;
|
|
cs_n <= 1'b1;
|
|
ras_n <= 1'b1;
|
|
cas_n <= 1'b1;
|
|
we_n <= 1'b1;
|
|
repeat(count) @(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task power_down;
|
|
input [31:0] count;
|
|
begin
|
|
cke <= 1'b0;
|
|
cs_n <= 1'b1;
|
|
ras_n <= 1'b1;
|
|
cas_n <= 1'b1;
|
|
we_n <= 1'b1;
|
|
repeat(count) @(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
task self_refresh;
|
|
input [31:0] count;
|
|
begin
|
|
cke <= 1'b0;
|
|
cs_n <= 1'b0;
|
|
ras_n <= 1'b0;
|
|
cas_n <= 1'b0;
|
|
we_n <= 1'b1;
|
|
cs_n <= #(tck) 1'b1;
|
|
ras_n <= #(tck) 1'b1;
|
|
cas_n <= #(tck) 1'b1;
|
|
we_n <= #(tck) 1'b1;
|
|
repeat(count) @(negedge ck);
|
|
end
|
|
endtask
|
|
|
|
// read with data verification
|
|
task read_verify;
|
|
input [BA_BITS-1:0] bank;
|
|
input [COL_BITS-1:0] col;
|
|
input ap; //Auto Precharge
|
|
input [8*DM_BITS-1:0] dm; //Expected Data Mask
|
|
input [8*DQ_BITS-1:0] dq; //Expected Data
|
|
integer i;
|
|
begin
|
|
read (bank, col, ap);
|
|
for (i=0; i<bl; i=i+1) begin
|
|
dm_fifo[2*rl + i] = dm >> (i*DM_BITS);
|
|
dq_fifo[2*rl + i] = dq >> (i*DQ_BITS);
|
|
end
|
|
end
|
|
endtask
|
|
|
|
// receiver(s) for data_verify process
|
|
dqrx dqrx[DQS_BITS-1:0] (dqs, dq, q0, q1, q2, q3);
|
|
|
|
// perform data verification as a result of read_verify task call
|
|
always @(ck) begin:data_verify
|
|
integer i;
|
|
integer j;
|
|
reg [DQ_BITS-1:0] bit_mask;
|
|
reg [DM_BITS-1:0] dm_temp;
|
|
reg [DQ_BITS-1:0] dq_temp;
|
|
|
|
for (i = !ck; (i < 2/(2.0 - !ck)); i=i+1) begin
|
|
if (dm_fifo[i] === {DM_BITS{1'bx}}) begin
|
|
burst_cntr = 0;
|
|
end else begin
|
|
|
|
dm_temp = dm_fifo[i];
|
|
for (j=0; j<DQ_BITS; j=j+1) begin
|
|
bit_mask[j] = !dm_temp[j/8];
|
|
end
|
|
|
|
case (burst_cntr)
|
|
0: dq_temp = q0;
|
|
1: dq_temp = q1;
|
|
2: dq_temp = q2;
|
|
3: dq_temp = q3;
|
|
endcase
|
|
//if ( ((dq_temp & bit_mask) === (dq_fifo[i] & bit_mask)))
|
|
// $display ("%m at time %t: INFO: Successful read data compare. Expected = %h, Actual = %h, Mask = %h, i = %d", $time, dq_fifo[i], dq_temp, bit_mask, burst_cntr);
|
|
if ((dq_temp & bit_mask) !== (dq_fifo[i] & bit_mask))
|
|
$display ("%m at time %t: ERROR: Read data miscompare. Expected = %h, Actual = %h, Mask = %h, i = %d", $time, dq_fifo[i], dq_temp, bit_mask, burst_cntr);
|
|
|
|
burst_cntr = burst_cntr + 1;
|
|
end
|
|
end
|
|
|
|
if (ck) begin
|
|
if (dm_fifo[2] === {DM_BITS{1'bx}}) begin
|
|
dqrx[0%DQS_BITS].ptr <= 0; // v2k syntax
|
|
dqrx[1%DQS_BITS].ptr <= 0; // v2k syntax
|
|
dqrx[2%DQS_BITS].ptr <= 0; // v2k syntax
|
|
dqrx[3%DQS_BITS].ptr <= 0; // v2k syntax
|
|
end
|
|
end else begin
|
|
for (i=0; i<=(2*(AL_MAX+CL_MAX)+BL_MAX); i=i+1) begin
|
|
dm_fifo[i] = dm_fifo[i+2];
|
|
dq_fifo[i] = dq_fifo[i+2];
|
|
end
|
|
end
|
|
end
|
|
|
|
// End-of-test triggered in 'subtest.vh'
|
|
task test_done;
|
|
begin
|
|
$display ("%m at time %t: INFO: Simulation is Complete", $time);
|
|
$stop(0);
|
|
end
|
|
endtask
|
|
|
|
// Test included from external file
|
|
`include "subtest.vh"
|
|
|
|
endmodule
|
|
|
|
module dqrx (
|
|
dqs, dq, q0, q1, q2, q3
|
|
);
|
|
|
|
`include "ddr2_parameters.vh"
|
|
|
|
input dqs;
|
|
input [DQ_BITS/DQS_BITS-1:0] dq;
|
|
output [DQ_BITS/DQS_BITS-1:0] q0;
|
|
output [DQ_BITS/DQS_BITS-1:0] q1;
|
|
output [DQ_BITS/DQS_BITS-1:0] q2;
|
|
output [DQ_BITS/DQS_BITS-1:0] q3;
|
|
|
|
reg [DQ_BITS/DQS_BITS-1:0] q [3:0];
|
|
|
|
assign q0 = q[0];
|
|
assign q1 = q[1];
|
|
assign q2 = q[2];
|
|
assign q3 = q[3];
|
|
|
|
reg [1:0] ptr;
|
|
reg dqs_q;
|
|
|
|
always @(dqs) begin
|
|
if (dqs ^ dqs_q) begin
|
|
#(TDQSQ + 1);
|
|
q[ptr] <= dq;
|
|
ptr <= (ptr + 1)%4;
|
|
end
|
|
dqs_q <= dqs;
|
|
end
|
|
|
|
endmodule
|