Arti Zirk 054740c5de git subrepo clone https://github.com/libopencm3/libopencm3.git
subrepo:
  subdir:   "libopencm3"
  merged:   "88e91c9a7cce"
upstream:
  origin:   "https://github.com/libopencm3/libopencm3.git"
  branch:   "master"
  commit:   "88e91c9a7cce"
git-subrepo:
  version:  "0.4.3"
  origin:   "???"
  commit:   "???"
2023-01-21 21:54:42 +02:00

620 lines
16 KiB
C

/** @defgroup rcc_file RCC peripheral API
*
* @ingroup peripheral_apis
*
* @brief <b>libopencm3 STM32G0xx Reset and Clock Control</b>
*
* @author @htmlonly &copy; @endhtmlonly 2019 Guillaume Revaillot <g.revaillot@gmail.com>
*
* @date 10 January 2019
*
* This library supports the Reset and Clock Control System in the STM32 series
* of ARM Cortex Microcontrollers by ST Microelectronics.
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**@{*/
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/pwr.h>
#include <libopencm3/stm32/flash.h>
#include <libopencm3/cm3/assert.h>
/* Set the default clock frequencies after reset. */
uint32_t rcc_ahb_frequency = 16000000;
uint32_t rcc_apb1_frequency = 16000000;
const struct rcc_clock_scale rcc_clock_config[RCC_CLOCK_CONFIG_END] = {
[RCC_CLOCK_CONFIG_LSI_32KHZ] = {
/* 32khz from lsi, scale2, 0ws */
.sysclock_source = RCC_LSI,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
.voltage_scale = PWR_SCALE2,
.ahb_frequency = 32000,
.apb_frequency = 32000,
},
[RCC_CLOCK_CONFIG_HSI_4MHZ] = {
/* 4mhz from hsi/4, scale2, 0ws */
.sysclock_source = RCC_HSI,
.hsisys_div = RCC_CR_HSIDIV_DIV4,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
.voltage_scale = PWR_SCALE2,
.ahb_frequency = 4000000,
.apb_frequency = 4000000,
},
[RCC_CLOCK_CONFIG_HSI_16MHZ] = {
/* 16mhz from hsi, scale2, 0ws */
.sysclock_source = RCC_HSI,
.hsisys_div = RCC_CR_HSIDIV_DIV1,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
.voltage_scale = PWR_SCALE2,
.ahb_frequency = 16000000,
.apb_frequency = 16000000,
},
[RCC_CLOCK_CONFIG_HSI_PLL_32MHZ] = {
/* 32mhz from hsi via pll @ 128mhz / 4, scale1, 1ws */
.sysclock_source = RCC_PLL,
.pll_source = RCC_PLLCFGR_PLLSRC_HSI16,
.pll_div = RCC_PLLCFGR_PLLM_DIV(1),
.pll_mul = RCC_PLLCFGR_PLLN_MUL(8),
.pllp_div = RCC_PLLCFGR_PLLP_DIV(4),
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(4),
.pllr_div = RCC_PLLCFGR_PLLR_DIV(4),
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_1WS,
.voltage_scale = PWR_SCALE1,
.ahb_frequency = 32000000,
.apb_frequency = 32000000,
},
[RCC_CLOCK_CONFIG_HSI_PLL_64MHZ] = {
/* 64mhz from hsi via pll @ 128mhz / 2, scale1, 2ws */
.sysclock_source = RCC_PLL,
.pll_source = RCC_PLLCFGR_PLLSRC_HSI16,
.pll_div = RCC_PLLCFGR_PLLM_DIV(1),
.pll_mul = RCC_PLLCFGR_PLLN_MUL(8),
.pllp_div = RCC_PLLCFGR_PLLP_DIV(2),
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(2),
.pllr_div = RCC_PLLCFGR_PLLR_DIV(2),
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_2WS,
.voltage_scale = PWR_SCALE1,
.ahb_frequency = 64000000,
.apb_frequency = 64000000,
},
[RCC_CLOCK_CONFIG_HSE_12MHZ_PLL_64MHZ] = {
/* 64mhz from hse@12mhz via pll @ 128mhz / 2, scale1, 2ws */
.sysclock_source = RCC_PLL,
.pll_source = RCC_PLLCFGR_PLLSRC_HSE,
.pll_div = RCC_PLLCFGR_PLLM_DIV(3),
.pll_mul = RCC_PLLCFGR_PLLN_MUL(32),
.pllp_div = RCC_PLLCFGR_PLLP_DIV(2),
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(2),
.pllr_div = RCC_PLLCFGR_PLLR_DIV(2),
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = FLASH_ACR_LATENCY_2WS,
.voltage_scale = PWR_SCALE1,
.ahb_frequency = 64000000,
.apb_frequency = 64000000,
},
};
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR |= RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR |= RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR |= RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR |= RCC_CSR_LSION;
break;
default:
cm3_assert_not_reached();
break;
}
}
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR &= ~RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR &= ~RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR &= ~RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR &= ~RCC_CSR_LSION;
break;
default:
cm3_assert_not_reached();
break;
}
}
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return RCC_CR & RCC_CR_PLLRDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_HSI:
return RCC_CR & RCC_CR_HSIRDY;
case RCC_LSE:
return RCC_BDCR & RCC_BDCR_LSERDY;
case RCC_LSI:
return RCC_CSR & RCC_CSR_LSIRDY;
default:
cm3_assert_not_reached();
return 0;
}
return false;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
void rcc_css_enable(void)
{
RCC_CR |= RCC_CR_CSSON;
}
void rcc_css_disable(void)
{
RCC_CR &= ~RCC_CR_CSSON;
}
void rcc_css_int_clear(void)
{
RCC_CICR |= RCC_CICR_CSSC;
}
int rcc_css_int_flag(void)
{
return ((RCC_CIFR & RCC_CIFR_CSSF) != 0);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the Source for the System Clock.
* @param osc Oscillator to use.
*/
void rcc_set_sysclk_source(enum rcc_osc osc)
{
uint32_t reg32;
uint32_t sw = 0;
switch (osc) {
case RCC_HSI:
sw = RCC_CFGR_SW_HSISYS;
break;
case RCC_HSE:
sw = RCC_CFGR_SW_HSE;
break;
case RCC_PLL:
sw = RCC_CFGR_SW_PLLRCLK;
break;
case RCC_LSE:
sw = RCC_CFGR_SW_LSE;
break;
case RCC_LSI:
sw = RCC_CFGR_SW_LSI;
break;
default:
cm3_assert_not_reached();
return;
}
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT);
RCC_CFGR = (reg32 | (sw << RCC_CFGR_SW_SHIFT));
}
/*---------------------------------------------------------------------------*/
/** @brief Return the clock source which is used as system clock.
* @return rcc_osc system clock source
*/
enum rcc_osc rcc_system_clock_source(void)
{
switch ((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) {
case RCC_CFGR_SW_HSISYS:
return RCC_HSI;
case RCC_CFGR_SW_HSE:
return RCC_HSE;
case RCC_CFGR_SWS_PLLRCLK:
return RCC_PLL;
case RCC_CFGR_SW_LSE:
return RCC_LSE;
case RCC_CFGR_SW_LSI:
return RCC_LSI;
default:
cm3_assert_not_reached();
return 0;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Wait until system clock switched to given oscillator.
* @param osc Oscillator.
*/
void rcc_wait_for_sysclk_status(enum rcc_osc osc)
{
uint32_t sws = 0;
switch (osc) {
case RCC_PLL:
sws = RCC_CFGR_SWS_PLLRCLK;
break;
case RCC_HSE:
sws = RCC_CFGR_SWS_HSE;
break;
case RCC_HSI:
sws = RCC_CFGR_SWS_HSISYS;
break;
case RCC_LSI:
sws = RCC_CFGR_SWS_LSI;
break;
case RCC_LSE:
sws = RCC_CFGR_SWS_LSE;
break;
default:
cm3_assert_not_reached();
break;
}
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != sws);
}
/**
* @brief Configure pll source.
* @param[in] pllsrc pll clock source @ref rcc_pllcfgr_pllsrc
*/
void rcc_set_pll_source(uint32_t pllsrc)
{
uint32_t reg32;
reg32 = RCC_PLLCFGR;
reg32 &= ~(RCC_PLLCFGR_PLLSRC_MASK << RCC_PLLCFGR_PLLSRC_SHIFT);
RCC_PLLCFGR = (reg32 | (pllsrc << RCC_PLLCFGR_PLLSRC_SHIFT));
}
/**
* @brief Configure pll source and output frequencies.
* @param[in] source pll clock source @ref rcc_pllcfgr_pllsrc
* @param[in] pllm pll vco division factor @ref rcc_pllcfgr_pllm
* @param[in] plln pll vco multiplation factor @ref rcc_pllcfgr_plln
* @param[in] pllp pll P clock output division factor @ref rcc_pllcfgr_pllp
* @param[in] pllq pll Q clock output division factor @ref rcc_pllcfgr_pllq
* @param[in] pllr pll R clock output (sysclock pll) division factor @ref rcc_pllcfgr_pllr
*/
void rcc_set_main_pll(uint32_t source, uint32_t pllm, uint32_t plln, uint32_t pllp,
uint32_t pllq, uint32_t pllr)
{
RCC_PLLCFGR = (source << RCC_PLLCFGR_PLLSRC_SHIFT) |
(pllm << RCC_PLLCFGR_PLLM_SHIFT) |
(plln << RCC_PLLCFGR_PLLN_SHIFT) |
(pllp << RCC_PLLCFGR_PLLP_SHIFT) |
(pllq << RCC_PLLCFGR_PLLQ_SHIFT) |
(pllr << RCC_PLLCFGR_PLLR_SHIFT);
}
/**
* @brief Enable PLL P clock output.
* @param[in] enable or disable P clock output
*/
void rcc_enable_pllp(bool enable)
{
if (enable) {
RCC_PLLCFGR |= RCC_PLLCFGR_PLLPEN;
} else {
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLPEN;
}
}
/**
* @brief Enable PLL Q clock output.
* @param[in] enable or disable Q clock output
*/
void rcc_enable_pllq(bool enable)
{
if (enable) {
RCC_PLLCFGR |= RCC_PLLCFGR_PLLQEN;
} else {
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLQEN;
}
}
/**
* @brief Enable PLL R clock output.
* @param[in] enable or disable R clock output
*/
void rcc_enable_pllr(bool enable)
{
if (enable) {
RCC_PLLCFGR |= RCC_PLLCFGR_PLLREN;
} else {
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLREN;
}
}
/**
* @brief Configure APB peripheral clock prescaler
* @param[in] ppre APB clock prescaler value @ref rcc_cfgr_ppre
*/
void rcc_set_ppre(uint32_t ppre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE_MASK << RCC_CFGR_PPRE_SHIFT);
RCC_CFGR = (reg32 | (ppre << RCC_CFGR_PPRE_SHIFT));
}
/**
* @brief Configure AHB peripheral clock prescaler
* @param[in] hpre AHB clock prescaler value @ref rcc_cfgr_hpre
*/
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT));
}
/**
* @brief Configure HSI16 clock division factor to feed SYSCLK
* @param[in] hsidiv HSYSSIS clock division factor @ref rcc_cr_hsidiv
*/
void rcc_set_hsisys_div(uint32_t hsidiv)
{
uint32_t reg32;
reg32 = RCC_CR;
reg32 &= ~(RCC_CR_HSIDIV_MASK << RCC_CR_HSIDIV_SHIFT);
RCC_CR = (reg32 | (hsidiv << RCC_CR_HSIDIV_SHIFT));
}
/**
* @brief Configure mco prescaler.
* @param[in] mcopre prescaler value @ref rcc_cfgr_mcopre
*/
void rcc_set_mcopre(uint32_t mcopre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_MCOPRE_MASK << RCC_CFGR_MCOPRE_SHIFT);
RCC_CFGR = (reg32 | (mcopre << RCC_CFGR_MCOPRE_SHIFT));
}
/**
* @brief Setup sysclock with desired source (HSE/HSI/PLL/LSE/LSI). taking care of flash/pwr and src configuration
* @param clock rcc_clock_scale with desired parameters
*/
void rcc_clock_setup(const struct rcc_clock_scale *clock)
{
if (clock->sysclock_source == RCC_PLL) {
enum rcc_osc pll_source;
if (clock->pll_source == RCC_PLLCFGR_PLLSRC_HSE)
pll_source = RCC_HSE;
else
pll_source = RCC_HSI;
/* start pll src osc. */
rcc_osc_on(pll_source);
rcc_wait_for_osc_ready(pll_source);
/* stop pll to reconfigure it. */
rcc_osc_off(RCC_PLL);
while (rcc_is_osc_ready(RCC_PLL));
rcc_set_main_pll(clock->pll_source, clock->pll_div, clock->pll_mul, clock->pllp_div, clock->pllq_div, clock->pllr_div);
rcc_enable_pllr(true);
} else if (clock->sysclock_source == RCC_HSI) {
rcc_set_hsisys_div(clock->hsisys_div);
}
rcc_periph_clock_enable(RCC_PWR);
pwr_set_vos_scale(clock->voltage_scale);
flash_set_ws(clock->flash_waitstates);
/* enable flash prefetch if we have at least 1WS */
if (clock->flash_waitstates > FLASH_ACR_LATENCY_0WS)
flash_prefetch_enable();
else
flash_prefetch_disable();
rcc_set_hpre(clock->hpre);
rcc_set_ppre(clock->ppre);
rcc_osc_on(clock->sysclock_source);
rcc_wait_for_osc_ready(clock->sysclock_source);
rcc_set_sysclk_source(clock->sysclock_source);
rcc_wait_for_sysclk_status(clock->sysclock_source);
rcc_ahb_frequency = clock->ahb_frequency;
rcc_apb1_frequency = clock->apb_frequency;
}
/**
* @brief Setup RNG Peripheral Clock Divider
* @param rng_div clock divider @ref rcc_ccipr_rngdiv
*/
void rcc_set_rng_clk_div(uint32_t rng_div)
{
uint32_t reg32 = RCC_CCIPR & ~(RCC_CCIPR_RNGDIV_MASK << RCC_CCIPR_RNGDIV_SHIFT);
RCC_CCIPR = reg32 | (rng_div << RCC_CCIPR_RNGDIV_SHIFT);
}
/**
* @brief Set the peripheral clock source
* @param periph peripheral of choice, eg XXX_BASE
* @param sel periphral clock source
*/
void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel)
{
uint8_t shift;
uint32_t mask;
switch (periph) {
case ADC1_BASE:
shift = RCC_CCIPR_ADCSEL_SHIFT;
mask = RCC_CCIPR_ADCSEL_MASK;
break;
case RNG_BASE:
shift = RCC_CCIPR_RNGSEL_SHIFT;
mask = RCC_CCIPR_RNGSEL_MASK;
break;
case TIM1_BASE:
shift = RCC_CCIPR_TIM1SEL_SHIFT;
mask = RCC_CCIPR_TIM1SEL_MASK;
break;
case LPTIM1_BASE:
shift = RCC_CCIPR_LPTIM1SEL_SHIFT;
mask = RCC_CCIPR_LPTIM1SEL_MASK;
break;
case LPTIM2_BASE:
shift = RCC_CCIPR_LPTIM2SEL_SHIFT;
mask = RCC_CCIPR_LPTIM2SEL_MASK;
break;
case CEC_BASE:
shift = RCC_CCIPR_CECSEL_SHIFT;
mask = RCC_CCIPR_CECSEL_MASK;
break;
case USART2_BASE:
shift = RCC_CCIPR_USART2SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
case USART1_BASE:
shift = RCC_CCIPR_USART1SEL_SHIFT;
mask = RCC_CCIPR_USARTxSEL_MASK;
break;
default:
cm3_assert_not_reached();
return;
}
uint32_t reg32 = RCC_CCIPR & ~(mask << shift);
RCC_CCIPR = reg32 | (sel << shift);
}
static uint32_t rcc_get_clksel_freq(uint8_t shift) {
uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_USARTxSEL_MASK;
uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK;
switch (clksel) {
case RCC_CCIPR_USARTxSEL_PCLK:
return rcc_apb1_frequency;
case RCC_CCIPR_USARTxSEL_SYSCLK:
return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre);
case RCC_CCIPR_USARTxSEL_LSE:
return 32768;
case RCC_CCIPR_USARTxSEL_HSI16:
return 16000000U;
}
cm3_assert_not_reached();
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the USART at base specified.
* @param usart Base address of USART to get clock frequency for.
*/
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
{
if (usart == USART1_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_USART1SEL_SHIFT);
} else if (usart == USART2_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_USART2SEL_SHIFT);
} else if (usart == USART3_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_USART3SEL_SHIFT);
} else if (usart == LPUART1_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_LPUART1SEL_SHIFT);
} else if (usart == LPUART2_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_LPUART2SEL_SHIFT);
}
cm3_assert_not_reached();
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the Timer at base specified.
* @param timer Base address of TIM to get clock frequency for.
*/
uint32_t rcc_get_timer_clk_freq(uint32_t timer __attribute__((unused)))
{
uint8_t ppre = (RCC_CFGR >> RCC_CFGR_PPRE_SHIFT) & RCC_CFGR_PPRE_MASK;
return (ppre == RCC_CFGR_PPRE_NODIV) ? rcc_apb1_frequency
: 2 * rcc_apb1_frequency;
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the I2C device at base specified.
* @param i2c Base address of I2C to get clock frequency for.
*/
uint32_t rcc_get_i2c_clk_freq(uint32_t i2c)
{
if (i2c == I2C1_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_I2C1SEL_SHIFT);
} else if (i2c == I2C2_BASE) {
return rcc_get_clksel_freq(RCC_CCIPR_I2C2SEL_SHIFT);
}
cm3_assert_not_reached();
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the SPI device at base specified.
* @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE).
*/
uint32_t rcc_get_spi_clk_freq(uint32_t spi __attribute__((unused))) {
return rcc_apb1_frequency;
}
/**@}*/