Arti Zirk
054740c5de
subrepo: subdir: "libopencm3" merged: "88e91c9a7cce" upstream: origin: "https://github.com/libopencm3/libopencm3.git" branch: "master" commit: "88e91c9a7cce" git-subrepo: version: "0.4.3" origin: "???" commit: "???"
620 lines
16 KiB
C
620 lines
16 KiB
C
/** @defgroup rcc_file RCC peripheral API
|
|
*
|
|
* @ingroup peripheral_apis
|
|
*
|
|
* @brief <b>libopencm3 STM32G0xx Reset and Clock Control</b>
|
|
*
|
|
* @author @htmlonly © @endhtmlonly 2019 Guillaume Revaillot <g.revaillot@gmail.com>
|
|
*
|
|
* @date 10 January 2019
|
|
*
|
|
* This library supports the Reset and Clock Control System in the STM32 series
|
|
* of ARM Cortex Microcontrollers by ST Microelectronics.
|
|
*
|
|
* LGPL License Terms @ref lgpl_license
|
|
*/
|
|
|
|
/*
|
|
* This file is part of the libopencm3 project.
|
|
*
|
|
* This library is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**@{*/
|
|
|
|
#include <libopencm3/stm32/rcc.h>
|
|
#include <libopencm3/stm32/pwr.h>
|
|
#include <libopencm3/stm32/flash.h>
|
|
#include <libopencm3/cm3/assert.h>
|
|
|
|
/* Set the default clock frequencies after reset. */
|
|
uint32_t rcc_ahb_frequency = 16000000;
|
|
uint32_t rcc_apb1_frequency = 16000000;
|
|
|
|
const struct rcc_clock_scale rcc_clock_config[RCC_CLOCK_CONFIG_END] = {
|
|
[RCC_CLOCK_CONFIG_LSI_32KHZ] = {
|
|
/* 32khz from lsi, scale2, 0ws */
|
|
.sysclock_source = RCC_LSI,
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
|
|
.voltage_scale = PWR_SCALE2,
|
|
.ahb_frequency = 32000,
|
|
.apb_frequency = 32000,
|
|
},
|
|
[RCC_CLOCK_CONFIG_HSI_4MHZ] = {
|
|
/* 4mhz from hsi/4, scale2, 0ws */
|
|
.sysclock_source = RCC_HSI,
|
|
.hsisys_div = RCC_CR_HSIDIV_DIV4,
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
|
|
.voltage_scale = PWR_SCALE2,
|
|
.ahb_frequency = 4000000,
|
|
.apb_frequency = 4000000,
|
|
},
|
|
[RCC_CLOCK_CONFIG_HSI_16MHZ] = {
|
|
/* 16mhz from hsi, scale2, 0ws */
|
|
.sysclock_source = RCC_HSI,
|
|
.hsisys_div = RCC_CR_HSIDIV_DIV1,
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_0WS,
|
|
.voltage_scale = PWR_SCALE2,
|
|
.ahb_frequency = 16000000,
|
|
.apb_frequency = 16000000,
|
|
},
|
|
[RCC_CLOCK_CONFIG_HSI_PLL_32MHZ] = {
|
|
/* 32mhz from hsi via pll @ 128mhz / 4, scale1, 1ws */
|
|
.sysclock_source = RCC_PLL,
|
|
.pll_source = RCC_PLLCFGR_PLLSRC_HSI16,
|
|
.pll_div = RCC_PLLCFGR_PLLM_DIV(1),
|
|
.pll_mul = RCC_PLLCFGR_PLLN_MUL(8),
|
|
.pllp_div = RCC_PLLCFGR_PLLP_DIV(4),
|
|
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(4),
|
|
.pllr_div = RCC_PLLCFGR_PLLR_DIV(4),
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_1WS,
|
|
.voltage_scale = PWR_SCALE1,
|
|
.ahb_frequency = 32000000,
|
|
.apb_frequency = 32000000,
|
|
},
|
|
[RCC_CLOCK_CONFIG_HSI_PLL_64MHZ] = {
|
|
/* 64mhz from hsi via pll @ 128mhz / 2, scale1, 2ws */
|
|
.sysclock_source = RCC_PLL,
|
|
.pll_source = RCC_PLLCFGR_PLLSRC_HSI16,
|
|
.pll_div = RCC_PLLCFGR_PLLM_DIV(1),
|
|
.pll_mul = RCC_PLLCFGR_PLLN_MUL(8),
|
|
.pllp_div = RCC_PLLCFGR_PLLP_DIV(2),
|
|
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(2),
|
|
.pllr_div = RCC_PLLCFGR_PLLR_DIV(2),
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_2WS,
|
|
.voltage_scale = PWR_SCALE1,
|
|
.ahb_frequency = 64000000,
|
|
.apb_frequency = 64000000,
|
|
},
|
|
[RCC_CLOCK_CONFIG_HSE_12MHZ_PLL_64MHZ] = {
|
|
/* 64mhz from hse@12mhz via pll @ 128mhz / 2, scale1, 2ws */
|
|
.sysclock_source = RCC_PLL,
|
|
.pll_source = RCC_PLLCFGR_PLLSRC_HSE,
|
|
.pll_div = RCC_PLLCFGR_PLLM_DIV(3),
|
|
.pll_mul = RCC_PLLCFGR_PLLN_MUL(32),
|
|
.pllp_div = RCC_PLLCFGR_PLLP_DIV(2),
|
|
.pllq_div = RCC_PLLCFGR_PLLQ_DIV(2),
|
|
.pllr_div = RCC_PLLCFGR_PLLR_DIV(2),
|
|
.hpre = RCC_CFGR_HPRE_NODIV,
|
|
.ppre = RCC_CFGR_PPRE_NODIV,
|
|
.flash_waitstates = FLASH_ACR_LATENCY_2WS,
|
|
.voltage_scale = PWR_SCALE1,
|
|
.ahb_frequency = 64000000,
|
|
.apb_frequency = 64000000,
|
|
},
|
|
};
|
|
|
|
void rcc_osc_on(enum rcc_osc osc)
|
|
{
|
|
switch (osc) {
|
|
case RCC_PLL:
|
|
RCC_CR |= RCC_CR_PLLON;
|
|
break;
|
|
case RCC_HSE:
|
|
RCC_CR |= RCC_CR_HSEON;
|
|
break;
|
|
case RCC_HSI:
|
|
RCC_CR |= RCC_CR_HSION;
|
|
break;
|
|
case RCC_LSE:
|
|
RCC_BDCR |= RCC_BDCR_LSEON;
|
|
break;
|
|
case RCC_LSI:
|
|
RCC_CSR |= RCC_CSR_LSION;
|
|
break;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rcc_osc_off(enum rcc_osc osc)
|
|
{
|
|
switch (osc) {
|
|
case RCC_PLL:
|
|
RCC_CR &= ~RCC_CR_PLLON;
|
|
break;
|
|
case RCC_HSE:
|
|
RCC_CR &= ~RCC_CR_HSEON;
|
|
break;
|
|
case RCC_HSI:
|
|
RCC_CR &= ~RCC_CR_HSION;
|
|
break;
|
|
case RCC_LSE:
|
|
RCC_BDCR &= ~RCC_BDCR_LSEON;
|
|
break;
|
|
case RCC_LSI:
|
|
RCC_CSR &= ~RCC_CSR_LSION;
|
|
break;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool rcc_is_osc_ready(enum rcc_osc osc)
|
|
{
|
|
switch (osc) {
|
|
case RCC_PLL:
|
|
return RCC_CR & RCC_CR_PLLRDY;
|
|
case RCC_HSE:
|
|
return RCC_CR & RCC_CR_HSERDY;
|
|
case RCC_HSI:
|
|
return RCC_CR & RCC_CR_HSIRDY;
|
|
case RCC_LSE:
|
|
return RCC_BDCR & RCC_BDCR_LSERDY;
|
|
case RCC_LSI:
|
|
return RCC_CSR & RCC_CSR_LSIRDY;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
return 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void rcc_wait_for_osc_ready(enum rcc_osc osc)
|
|
{
|
|
while (!rcc_is_osc_ready(osc));
|
|
}
|
|
|
|
void rcc_css_enable(void)
|
|
{
|
|
RCC_CR |= RCC_CR_CSSON;
|
|
}
|
|
|
|
void rcc_css_disable(void)
|
|
{
|
|
RCC_CR &= ~RCC_CR_CSSON;
|
|
}
|
|
|
|
void rcc_css_int_clear(void)
|
|
{
|
|
RCC_CICR |= RCC_CICR_CSSC;
|
|
}
|
|
|
|
int rcc_css_int_flag(void)
|
|
{
|
|
return ((RCC_CIFR & RCC_CIFR_CSSF) != 0);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Set the Source for the System Clock.
|
|
* @param osc Oscillator to use.
|
|
*/
|
|
void rcc_set_sysclk_source(enum rcc_osc osc)
|
|
{
|
|
uint32_t reg32;
|
|
uint32_t sw = 0;
|
|
|
|
switch (osc) {
|
|
case RCC_HSI:
|
|
sw = RCC_CFGR_SW_HSISYS;
|
|
break;
|
|
case RCC_HSE:
|
|
sw = RCC_CFGR_SW_HSE;
|
|
break;
|
|
case RCC_PLL:
|
|
sw = RCC_CFGR_SW_PLLRCLK;
|
|
break;
|
|
case RCC_LSE:
|
|
sw = RCC_CFGR_SW_LSE;
|
|
break;
|
|
case RCC_LSI:
|
|
sw = RCC_CFGR_SW_LSI;
|
|
break;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
return;
|
|
}
|
|
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT);
|
|
RCC_CFGR = (reg32 | (sw << RCC_CFGR_SW_SHIFT));
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Return the clock source which is used as system clock.
|
|
* @return rcc_osc system clock source
|
|
*/
|
|
enum rcc_osc rcc_system_clock_source(void)
|
|
{
|
|
switch ((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) {
|
|
case RCC_CFGR_SW_HSISYS:
|
|
return RCC_HSI;
|
|
case RCC_CFGR_SW_HSE:
|
|
return RCC_HSE;
|
|
case RCC_CFGR_SWS_PLLRCLK:
|
|
return RCC_PLL;
|
|
case RCC_CFGR_SW_LSE:
|
|
return RCC_LSE;
|
|
case RCC_CFGR_SW_LSI:
|
|
return RCC_LSI;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Wait until system clock switched to given oscillator.
|
|
* @param osc Oscillator.
|
|
*/
|
|
void rcc_wait_for_sysclk_status(enum rcc_osc osc)
|
|
{
|
|
uint32_t sws = 0;
|
|
|
|
switch (osc) {
|
|
case RCC_PLL:
|
|
sws = RCC_CFGR_SWS_PLLRCLK;
|
|
break;
|
|
case RCC_HSE:
|
|
sws = RCC_CFGR_SWS_HSE;
|
|
break;
|
|
case RCC_HSI:
|
|
sws = RCC_CFGR_SWS_HSISYS;
|
|
break;
|
|
case RCC_LSI:
|
|
sws = RCC_CFGR_SWS_LSI;
|
|
break;
|
|
case RCC_LSE:
|
|
sws = RCC_CFGR_SWS_LSE;
|
|
break;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
break;
|
|
}
|
|
|
|
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != sws);
|
|
}
|
|
|
|
/**
|
|
* @brief Configure pll source.
|
|
* @param[in] pllsrc pll clock source @ref rcc_pllcfgr_pllsrc
|
|
*/
|
|
void rcc_set_pll_source(uint32_t pllsrc)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
reg32 = RCC_PLLCFGR;
|
|
reg32 &= ~(RCC_PLLCFGR_PLLSRC_MASK << RCC_PLLCFGR_PLLSRC_SHIFT);
|
|
RCC_PLLCFGR = (reg32 | (pllsrc << RCC_PLLCFGR_PLLSRC_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure pll source and output frequencies.
|
|
* @param[in] source pll clock source @ref rcc_pllcfgr_pllsrc
|
|
* @param[in] pllm pll vco division factor @ref rcc_pllcfgr_pllm
|
|
* @param[in] plln pll vco multiplation factor @ref rcc_pllcfgr_plln
|
|
* @param[in] pllp pll P clock output division factor @ref rcc_pllcfgr_pllp
|
|
* @param[in] pllq pll Q clock output division factor @ref rcc_pllcfgr_pllq
|
|
* @param[in] pllr pll R clock output (sysclock pll) division factor @ref rcc_pllcfgr_pllr
|
|
*/
|
|
void rcc_set_main_pll(uint32_t source, uint32_t pllm, uint32_t plln, uint32_t pllp,
|
|
uint32_t pllq, uint32_t pllr)
|
|
{
|
|
RCC_PLLCFGR = (source << RCC_PLLCFGR_PLLSRC_SHIFT) |
|
|
(pllm << RCC_PLLCFGR_PLLM_SHIFT) |
|
|
(plln << RCC_PLLCFGR_PLLN_SHIFT) |
|
|
(pllp << RCC_PLLCFGR_PLLP_SHIFT) |
|
|
(pllq << RCC_PLLCFGR_PLLQ_SHIFT) |
|
|
(pllr << RCC_PLLCFGR_PLLR_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable PLL P clock output.
|
|
* @param[in] enable or disable P clock output
|
|
*/
|
|
void rcc_enable_pllp(bool enable)
|
|
{
|
|
if (enable) {
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_PLLPEN;
|
|
} else {
|
|
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLPEN;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enable PLL Q clock output.
|
|
* @param[in] enable or disable Q clock output
|
|
*/
|
|
void rcc_enable_pllq(bool enable)
|
|
{
|
|
if (enable) {
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_PLLQEN;
|
|
} else {
|
|
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLQEN;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Enable PLL R clock output.
|
|
* @param[in] enable or disable R clock output
|
|
*/
|
|
void rcc_enable_pllr(bool enable)
|
|
{
|
|
if (enable) {
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_PLLREN;
|
|
} else {
|
|
RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLREN;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Configure APB peripheral clock prescaler
|
|
* @param[in] ppre APB clock prescaler value @ref rcc_cfgr_ppre
|
|
*/
|
|
void rcc_set_ppre(uint32_t ppre)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~(RCC_CFGR_PPRE_MASK << RCC_CFGR_PPRE_SHIFT);
|
|
RCC_CFGR = (reg32 | (ppre << RCC_CFGR_PPRE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure AHB peripheral clock prescaler
|
|
* @param[in] hpre AHB clock prescaler value @ref rcc_cfgr_hpre
|
|
*/
|
|
void rcc_set_hpre(uint32_t hpre)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
|
|
RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure HSI16 clock division factor to feed SYSCLK
|
|
* @param[in] hsidiv HSYSSIS clock division factor @ref rcc_cr_hsidiv
|
|
*/
|
|
void rcc_set_hsisys_div(uint32_t hsidiv)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
reg32 = RCC_CR;
|
|
reg32 &= ~(RCC_CR_HSIDIV_MASK << RCC_CR_HSIDIV_SHIFT);
|
|
RCC_CR = (reg32 | (hsidiv << RCC_CR_HSIDIV_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* @brief Configure mco prescaler.
|
|
* @param[in] mcopre prescaler value @ref rcc_cfgr_mcopre
|
|
*/
|
|
void rcc_set_mcopre(uint32_t mcopre)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~(RCC_CFGR_MCOPRE_MASK << RCC_CFGR_MCOPRE_SHIFT);
|
|
RCC_CFGR = (reg32 | (mcopre << RCC_CFGR_MCOPRE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* @brief Setup sysclock with desired source (HSE/HSI/PLL/LSE/LSI). taking care of flash/pwr and src configuration
|
|
* @param clock rcc_clock_scale with desired parameters
|
|
*/
|
|
void rcc_clock_setup(const struct rcc_clock_scale *clock)
|
|
{
|
|
if (clock->sysclock_source == RCC_PLL) {
|
|
enum rcc_osc pll_source;
|
|
|
|
if (clock->pll_source == RCC_PLLCFGR_PLLSRC_HSE)
|
|
pll_source = RCC_HSE;
|
|
else
|
|
pll_source = RCC_HSI;
|
|
|
|
/* start pll src osc. */
|
|
rcc_osc_on(pll_source);
|
|
rcc_wait_for_osc_ready(pll_source);
|
|
|
|
/* stop pll to reconfigure it. */
|
|
rcc_osc_off(RCC_PLL);
|
|
while (rcc_is_osc_ready(RCC_PLL));
|
|
|
|
rcc_set_main_pll(clock->pll_source, clock->pll_div, clock->pll_mul, clock->pllp_div, clock->pllq_div, clock->pllr_div);
|
|
|
|
rcc_enable_pllr(true);
|
|
} else if (clock->sysclock_source == RCC_HSI) {
|
|
rcc_set_hsisys_div(clock->hsisys_div);
|
|
}
|
|
|
|
rcc_periph_clock_enable(RCC_PWR);
|
|
pwr_set_vos_scale(clock->voltage_scale);
|
|
|
|
flash_set_ws(clock->flash_waitstates);
|
|
|
|
/* enable flash prefetch if we have at least 1WS */
|
|
if (clock->flash_waitstates > FLASH_ACR_LATENCY_0WS)
|
|
flash_prefetch_enable();
|
|
else
|
|
flash_prefetch_disable();
|
|
|
|
rcc_set_hpre(clock->hpre);
|
|
rcc_set_ppre(clock->ppre);
|
|
|
|
rcc_osc_on(clock->sysclock_source);
|
|
rcc_wait_for_osc_ready(clock->sysclock_source);
|
|
|
|
rcc_set_sysclk_source(clock->sysclock_source);
|
|
rcc_wait_for_sysclk_status(clock->sysclock_source);
|
|
|
|
rcc_ahb_frequency = clock->ahb_frequency;
|
|
rcc_apb1_frequency = clock->apb_frequency;
|
|
}
|
|
|
|
/**
|
|
* @brief Setup RNG Peripheral Clock Divider
|
|
* @param rng_div clock divider @ref rcc_ccipr_rngdiv
|
|
*/
|
|
void rcc_set_rng_clk_div(uint32_t rng_div)
|
|
{
|
|
uint32_t reg32 = RCC_CCIPR & ~(RCC_CCIPR_RNGDIV_MASK << RCC_CCIPR_RNGDIV_SHIFT);
|
|
RCC_CCIPR = reg32 | (rng_div << RCC_CCIPR_RNGDIV_SHIFT);
|
|
}
|
|
|
|
/**
|
|
* @brief Set the peripheral clock source
|
|
* @param periph peripheral of choice, eg XXX_BASE
|
|
* @param sel periphral clock source
|
|
*/
|
|
void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel)
|
|
{
|
|
uint8_t shift;
|
|
uint32_t mask;
|
|
|
|
switch (periph) {
|
|
case ADC1_BASE:
|
|
shift = RCC_CCIPR_ADCSEL_SHIFT;
|
|
mask = RCC_CCIPR_ADCSEL_MASK;
|
|
break;
|
|
case RNG_BASE:
|
|
shift = RCC_CCIPR_RNGSEL_SHIFT;
|
|
mask = RCC_CCIPR_RNGSEL_MASK;
|
|
break;
|
|
case TIM1_BASE:
|
|
shift = RCC_CCIPR_TIM1SEL_SHIFT;
|
|
mask = RCC_CCIPR_TIM1SEL_MASK;
|
|
break;
|
|
case LPTIM1_BASE:
|
|
shift = RCC_CCIPR_LPTIM1SEL_SHIFT;
|
|
mask = RCC_CCIPR_LPTIM1SEL_MASK;
|
|
break;
|
|
case LPTIM2_BASE:
|
|
shift = RCC_CCIPR_LPTIM2SEL_SHIFT;
|
|
mask = RCC_CCIPR_LPTIM2SEL_MASK;
|
|
break;
|
|
case CEC_BASE:
|
|
shift = RCC_CCIPR_CECSEL_SHIFT;
|
|
mask = RCC_CCIPR_CECSEL_MASK;
|
|
break;
|
|
case USART2_BASE:
|
|
shift = RCC_CCIPR_USART2SEL_SHIFT;
|
|
mask = RCC_CCIPR_USARTxSEL_MASK;
|
|
break;
|
|
case USART1_BASE:
|
|
shift = RCC_CCIPR_USART1SEL_SHIFT;
|
|
mask = RCC_CCIPR_USARTxSEL_MASK;
|
|
break;
|
|
default:
|
|
cm3_assert_not_reached();
|
|
return;
|
|
}
|
|
|
|
uint32_t reg32 = RCC_CCIPR & ~(mask << shift);
|
|
RCC_CCIPR = reg32 | (sel << shift);
|
|
}
|
|
|
|
static uint32_t rcc_get_clksel_freq(uint8_t shift) {
|
|
uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_USARTxSEL_MASK;
|
|
uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK;
|
|
switch (clksel) {
|
|
case RCC_CCIPR_USARTxSEL_PCLK:
|
|
return rcc_apb1_frequency;
|
|
case RCC_CCIPR_USARTxSEL_SYSCLK:
|
|
return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre);
|
|
case RCC_CCIPR_USARTxSEL_LSE:
|
|
return 32768;
|
|
case RCC_CCIPR_USARTxSEL_HSI16:
|
|
return 16000000U;
|
|
}
|
|
cm3_assert_not_reached();
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Get the peripheral clock speed for the USART at base specified.
|
|
* @param usart Base address of USART to get clock frequency for.
|
|
*/
|
|
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
|
|
{
|
|
if (usart == USART1_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_USART1SEL_SHIFT);
|
|
} else if (usart == USART2_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_USART2SEL_SHIFT);
|
|
} else if (usart == USART3_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_USART3SEL_SHIFT);
|
|
} else if (usart == LPUART1_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_LPUART1SEL_SHIFT);
|
|
} else if (usart == LPUART2_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_LPUART2SEL_SHIFT);
|
|
}
|
|
cm3_assert_not_reached();
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Get the peripheral clock speed for the Timer at base specified.
|
|
* @param timer Base address of TIM to get clock frequency for.
|
|
*/
|
|
uint32_t rcc_get_timer_clk_freq(uint32_t timer __attribute__((unused)))
|
|
{
|
|
uint8_t ppre = (RCC_CFGR >> RCC_CFGR_PPRE_SHIFT) & RCC_CFGR_PPRE_MASK;
|
|
return (ppre == RCC_CFGR_PPRE_NODIV) ? rcc_apb1_frequency
|
|
: 2 * rcc_apb1_frequency;
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Get the peripheral clock speed for the I2C device at base specified.
|
|
* @param i2c Base address of I2C to get clock frequency for.
|
|
*/
|
|
uint32_t rcc_get_i2c_clk_freq(uint32_t i2c)
|
|
{
|
|
if (i2c == I2C1_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_I2C1SEL_SHIFT);
|
|
} else if (i2c == I2C2_BASE) {
|
|
return rcc_get_clksel_freq(RCC_CCIPR_I2C2SEL_SHIFT);
|
|
}
|
|
cm3_assert_not_reached();
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @brief Get the peripheral clock speed for the SPI device at base specified.
|
|
* @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE).
|
|
*/
|
|
uint32_t rcc_get_spi_clk_freq(uint32_t spi __attribute__((unused))) {
|
|
return rcc_apb1_frequency;
|
|
}
|
|
|
|
/**@}*/
|