usbtest/libopencm3/lib/stm32/f3/rcc.c
Arti Zirk 244fdbc35c git subrepo clone https://github.com/libopencm3/libopencm3
subrepo:
  subdir:   "libopencm3"
  merged:   "f5813a54"
upstream:
  origin:   "https://github.com/libopencm3/libopencm3"
  branch:   "master"
  commit:   "f5813a54"
git-subrepo:
  version:  "0.4.3"
  origin:   "???"
  commit:   "???"
2021-09-30 16:34:10 +03:00

580 lines
14 KiB
C

/** @defgroup rcc_file RCC peripheral API
*
* @ingroup peripheral_apis
*
* @brief <b>libopencm3 STM32F3xx Reset and Clock Control</b>
*
* @version 1.0.0
*
* @date 11 July 2013
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2009 Federico Ruiz-Ugalde <memeruiz at gmail dot com>
* Copyright (C) 2009 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2010 Thomas Otto <tommi@viadmin.org>
* Modified by 2013 Fernando Cortes <fernando.corcam@gmail.com> (stm32f3)
* Modified by 2013 Guillermo Rivera <memogrg@gmail.com> (stm32f3)
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**@{*/
#include <libopencm3/cm3/assert.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/flash.h>
#include <libopencm3/stm32/i2c.h>
/* Set the default clock frequencies after reset. */
uint32_t rcc_ahb_frequency = 8000000;
uint32_t rcc_apb1_frequency = 8000000;
uint32_t rcc_apb2_frequency = 8000000;
const struct rcc_clock_scale rcc_hsi_configs[] = {
{ /* 48MHz */
.pllmul = RCC_CFGR_PLLMUL_MUL12,
.pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre1 = RCC_CFGR_PPRE_DIV2,
.ppre2 = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = 1,
.ahb_frequency = 48000000,
.apb1_frequency = 24000000,
.apb2_frequency = 48000000,
},
{ /* 64MHz */
.pllmul = RCC_CFGR_PLLMUL_MUL16,
.pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre1 = RCC_CFGR_PPRE_DIV2,
.ppre2 = RCC_CFGR_PPRE_NODIV,
.flash_waitstates = 2,
.ahb_frequency = 64000000,
.apb1_frequency = 32000000,
.apb2_frequency = 64000000,
}
};
const struct rcc_clock_scale rcc_hse8mhz_configs[] = {
{
.pllsrc = RCC_CFGR_PLLSRC_HSE_PREDIV,
.pllmul = RCC_CFGR_PLLMUL_MUL9,
.plldiv = RCC_CFGR2_PREDIV_NODIV,
.usbdiv1 = false,
.flash_waitstates = 2,
.hpre = RCC_CFGR_HPRE_NODIV,
.ppre1 = RCC_CFGR_PPRE_DIV2,
.ppre2 = RCC_CFGR_PPRE_NODIV,
.ahb_frequency = 72e6,
.apb1_frequency = 36e6,
.apb2_frequency = 72e6,
}
};
void rcc_osc_ready_int_clear(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR |= RCC_CIR_PLLRDYC;
break;
case RCC_HSE:
RCC_CIR |= RCC_CIR_HSERDYC;
break;
case RCC_HSI:
RCC_CIR |= RCC_CIR_HSIRDYC;
break;
case RCC_LSE:
RCC_CIR |= RCC_CIR_LSERDYC;
break;
case RCC_LSI:
RCC_CIR |= RCC_CIR_LSIRDYC;
break;
}
}
void rcc_osc_ready_int_enable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR |= RCC_CIR_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIR |= RCC_CIR_HSERDYIE;
break;
case RCC_HSI:
RCC_CIR |= RCC_CIR_HSIRDYIE;
break;
case RCC_LSE:
RCC_CIR |= RCC_CIR_LSERDYIE;
break;
case RCC_LSI:
RCC_CIR |= RCC_CIR_LSIRDYIE;
break;
}
}
void rcc_osc_ready_int_disable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIR &= ~RCC_CIR_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIR &= ~RCC_CIR_HSERDYIE;
break;
case RCC_HSI:
RCC_CIR &= ~RCC_CIR_HSIRDYIE;
break;
case RCC_LSE:
RCC_CIR &= ~RCC_CIR_LSERDYIE;
break;
case RCC_LSI:
RCC_CIR &= ~RCC_CIR_LSIRDYIE;
break;
}
}
int rcc_osc_ready_int_flag(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0);
break;
case RCC_HSE:
return ((RCC_CIR & RCC_CIR_HSERDYF) != 0);
break;
case RCC_HSI:
return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0);
break;
case RCC_LSE:
return ((RCC_CIR & RCC_CIR_LSERDYF) != 0);
break;
case RCC_LSI:
return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0);
break;
}
cm3_assert_not_reached();
}
void rcc_css_int_clear(void)
{
RCC_CIR |= RCC_CIR_CSSC;
}
int rcc_css_int_flag(void)
{
return ((RCC_CIR & RCC_CIR_CSSF) != 0);
}
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return RCC_CR & RCC_CR_PLLRDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_HSI:
return RCC_CR & RCC_CR_HSIRDY;
case RCC_LSE:
return RCC_BDCR & RCC_BDCR_LSERDY;
case RCC_LSI:
return RCC_CSR & RCC_CSR_LSIRDY;
}
return false;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
void rcc_wait_for_osc_not_ready(enum rcc_osc osc)
{
while (rcc_is_osc_ready(osc));
}
void rcc_wait_for_sysclk_status(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_PLL);
break;
case RCC_HSE:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_HSE);
break;
case RCC_HSI:
while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) !=
RCC_CFGR_SWS_HSI);
break;
default:
/* Shouldn't be reached. */
break;
}
}
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR |= RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR |= RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR |= RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR |= RCC_CSR_LSION;
break;
}
}
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR &= ~RCC_CR_PLLON;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_HSI:
RCC_CR &= ~RCC_CR_HSION;
break;
case RCC_LSE:
RCC_BDCR &= ~RCC_BDCR_LSEON;
break;
case RCC_LSI:
RCC_CSR &= ~RCC_CSR_LSION;
break;
}
}
void rcc_css_enable(void)
{
RCC_CR |= RCC_CR_CSSON;
}
void rcc_css_disable(void)
{
RCC_CR &= ~RCC_CR_CSSON;
}
void rcc_set_sysclk_source(uint32_t clk)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | clk);
}
void rcc_set_pll_source(uint32_t pllsrc)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~RCC_CFGR_PLLSRC;
RCC_CFGR = (reg32 | (pllsrc << 16));
}
void rcc_set_ppre2(uint32_t ppre2)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT);
RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT));
}
void rcc_set_ppre1(uint32_t ppre1)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT);
RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT));
}
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT));
}
/**
* Set PLL Source pre-divider **CAUTION**.
* On some F3 devices, prediv only applies to HSE source. On others,
* this is _after_ source selection. See also f0.
* @param[in] prediv division by prediv+1 @ref rcc_cfgr2_prediv
*/
void rcc_set_prediv(uint32_t prediv)
{
RCC_CFGR2 = (RCC_CFGR2 & ~RCC_CFGR2_PREDIV) | prediv;
}
void rcc_set_pll_multiplier(uint32_t pll)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PLLMUL_MASK << RCC_CFGR_PLLMUL_SHIFT);
RCC_CFGR = (reg32 | (pll << RCC_CFGR_PLLMUL_SHIFT));
}
uint32_t rcc_get_system_clock_source(void)
{
/* Return the clock source which is used as system clock. */
return (RCC_CFGR & 0x000c) >> 2;
}
/**
* Setup clocks to run from PLL.
* The arguments provide the pll source, multipliers, dividers, all that's
* needed to establish a system clock.
* @param clock clock information structure
*/
void rcc_clock_setup_pll(const struct rcc_clock_scale *clock)
{
if (clock->pllsrc == RCC_CFGR_PLLSRC_HSE_PREDIV) {
rcc_osc_on(RCC_HSE);
rcc_wait_for_osc_ready(RCC_HSE);
} else {
rcc_osc_on(RCC_HSI);
rcc_wait_for_osc_ready(RCC_HSI);
}
rcc_osc_off(RCC_PLL);
rcc_usb_prescale_1_5();
if (clock->usbdiv1) {
rcc_usb_prescale_1();
}
rcc_wait_for_osc_not_ready(RCC_PLL);
rcc_set_pll_source(clock->pllsrc);
rcc_set_pll_multiplier(clock->pllmul);
rcc_set_prediv(clock->plldiv);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
/* Configure flash settings. */
flash_prefetch_enable();
flash_set_ws(clock->flash_waitstates);
rcc_set_hpre(clock->hpre);
rcc_set_ppre2(clock->ppre2);
rcc_set_ppre1(clock->ppre1);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_PLL);
/* Wait for PLL clock to be selected. */
rcc_wait_for_sysclk_status(RCC_PLL);
/* Set the peripheral clock frequencies used. */
rcc_ahb_frequency = clock->ahb_frequency;
rcc_apb1_frequency = clock->apb1_frequency;
rcc_apb2_frequency = clock->apb2_frequency;
}
void __attribute__((deprecated)) rcc_clock_setup_hsi(const struct rcc_clock_scale *clock)
{
/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
rcc_wait_for_osc_ready(RCC_HSI);
/* Select HSI as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* XXX: se cayo */
rcc_wait_for_sysclk_status(RCC_HSI);
rcc_osc_off(RCC_PLL);
rcc_wait_for_osc_not_ready(RCC_PLL);
rcc_set_pll_source(clock->pllsrc);
rcc_set_pll_multiplier(clock->pllmul);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
/*
* Set prescalers for AHB, ADC, APB1, APB2.
* Do this before touching the PLL (TODO: why?).
*/
rcc_set_hpre(clock->hpre);
rcc_set_ppre2(clock->ppre2);
rcc_set_ppre1(clock->ppre1);
/* Configure flash settings. */
flash_set_ws(clock->flash_waitstates);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* XXX: se cayo */
/* Wait for PLL clock to be selected. */
rcc_wait_for_sysclk_status(RCC_PLL);
/* Set the peripheral clock frequencies used. */
rcc_ahb_frequency = clock->ahb_frequency;
rcc_apb1_frequency = clock->apb1_frequency;
rcc_apb2_frequency = clock->apb2_frequency;
}
void rcc_backupdomain_reset(void)
{
/* Set the backup domain software reset. */
RCC_BDCR |= RCC_BDCR_BDRST;
/* Clear the backup domain software reset. */
RCC_BDCR &= ~RCC_BDCR_BDRST;
}
void rcc_set_i2c_clock_hsi(uint32_t i2c)
{
if (i2c == I2C1) {
RCC_CFGR3 &= ~RCC_CFGR3_I2C1SW;
}
if (i2c == I2C2) {
RCC_CFGR3 &= ~RCC_CFGR3_I2C2SW;
}
}
void rcc_set_i2c_clock_sysclk(uint32_t i2c)
{
if (i2c == I2C1) {
RCC_CFGR3 |= RCC_CFGR3_I2C1SW;
}
if (i2c == I2C2) {
RCC_CFGR3 |= RCC_CFGR3_I2C2SW;
}
}
uint32_t rcc_get_i2c_clocks(void)
{
return RCC_CFGR3 & (RCC_CFGR3_I2C1SW | RCC_CFGR3_I2C2SW);
}
void rcc_usb_prescale_1_5(void)
{
RCC_CFGR &= ~RCC_CFGR_USBPRES;
}
void rcc_usb_prescale_1(void)
{
RCC_CFGR |= RCC_CFGR_USBPRES;
}
void rcc_adc_prescale(uint32_t prescale1, uint32_t prescale2)
{
uint32_t clear_mask = (RCC_CFGR2_ADCxPRES_MASK
<< RCC_CFGR2_ADC12PRES_SHIFT)
| (RCC_CFGR2_ADCxPRES_MASK
<< RCC_CFGR2_ADC34PRES_SHIFT);
uint32_t set = (prescale1 << RCC_CFGR2_ADC12PRES_SHIFT) |
(prescale2 << RCC_CFGR2_ADC34PRES_SHIFT);
RCC_CFGR2 &= ~(clear_mask);
RCC_CFGR2 |= (set);
}
static uint32_t rcc_get_usart_clksel_freq(uint32_t apb_clk, uint8_t shift) {
uint8_t clksel = (RCC_CFGR3 >> shift) & RCC_CFGR3_UARTxSW_MASK;
uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK;
switch (clksel) {
case RCC_CFGR3_UART1SW_PCLK:
return apb_clk;
case RCC_CFGR3_UART1SW_SYSCLK:
return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre);
case RCC_CFGR3_UART1SW_HSI:
return 8000000U;
}
cm3_assert_not_reached();
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the USART at base specified.
* @param usart Base address of USART to get clock frequency for.
*/
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
{
/* Handle values with selectable clocks. */
if (usart == USART1_BASE) {
return rcc_get_usart_clksel_freq(rcc_apb2_frequency, RCC_CFGR3_UART1SW_SHIFT);
} else if (usart == USART2_BASE) {
return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART2SW_SHIFT);
} else if (usart == USART3_BASE) {
return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART3SW_SHIFT);
} else if (usart == UART4_BASE) {
return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART4SW_SHIFT);
} else { /* UART5 */
return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART5SW_SHIFT);
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the Timer at base specified.
* @param timer Base address of TIM to get clock frequency for.
*/
uint32_t rcc_get_timer_clk_freq(uint32_t timer)
{
/* Handle APB1 timer clocks. */
if (timer >= TIM2_BASE && timer <= TIM7_BASE) {
uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK;
return (ppre1 == RCC_CFGR_PPRE1_DIV_NONE) ? rcc_apb1_frequency
: 2 * rcc_apb1_frequency;
} else {
uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK;
return (ppre2 == RCC_CFGR_PPRE2_DIV_NONE) ? rcc_apb2_frequency
: 2 * rcc_apb2_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the I2C device at base specified.
* @param i2c Base address of I2C to get clock frequency for.
*/
uint32_t rcc_get_i2c_clk_freq(uint32_t i2c)
{
if (i2c == I2C1_BASE) {
if (RCC_CFGR3 & RCC_CFGR3_I2C1SW) {
uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK;
return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre);
} else {
return 8000000U;
}
} else {
return rcc_apb1_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the SPI device at base specified.
* @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE).
*/
uint32_t rcc_get_spi_clk_freq(uint32_t spi) {
if (spi == SPI1_BASE || spi == SPI4_BASE) {
return rcc_apb2_frequency;
} else {
return rcc_apb1_frequency;
}
}
/**@}*/