1
0
mirror of git://projects.qi-hardware.com/ben-scans.git synced 2024-11-23 00:08:26 +02:00
ben-scans/solidify/overlap.c

481 lines
9.9 KiB
C
Raw Normal View History

/*
* overlap.c - Overlap two parallel faces
*
* Written 2010 by Werner Almesberger
* Copyright 2010 by Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <gtk/gtk.h>
#include "util.h"
#include "face.h"
#include "solid.h"
#include "style.h"
#include "overlap.h"
#define UNDEF_F HUGE_VAL
static int has_osd;
static int sx(const struct solid *s)
{
return (s->a->sx > s->b->sx ? s->a->sx : s->b->sx)+2*OVERLAP_BORDER;
}
static int sy(const struct solid *s)
{
return (s->a->sy > s->b->sy ? s->a->sy : s->b->sy)+2*OVERLAP_BORDER;
}
static double r_center(const struct solid *s)
{
return hypot(sx(s), sy(s))/OVERLAP_CENTER_DIV;
}
static double ramp(int z0, double w0, int z1, double w1)
{
if (z0 != UNDEF && z1 != UNDEF)
return z0*w0+z1*w1;
if (z0 == UNDEF && z0 == UNDEF)
return UNDEF_F;
if (z0 == UNDEF && w0 < w1)
return z1;
if (z1 == UNDEF && w0 > w1)
return z0;
return UNDEF_F;
}
static double zmix(struct face *f, double x, double y)
{
int xa, xb, ya, yb;
double zx0, zx1;
xa = floor(x);
xb = xa+1;
ya = floor(y);
yb = ya+1;
zx0 = ramp(
get_bounded(f->a, xa, ya), yb-y,
get_bounded(f->a, xa, yb), y-ya);
zx1 = ramp(
get_bounded(f->a, xb, ya), yb-y,
get_bounded(f->a, xb, yb), y-ya);
return ramp(zx0, xb-x, zx1, x-xa);
}
/*
* Coordinate transformations, on the example of the x coordinate:
*
* - the x coordinate runs from 0 to sx(s)-1
* - since we work relative to the screen center, this becomes x-sx(s)/2
* This is what we perform the coordinate transform on.
* - our model runs from min_x to max_x. Its center is at cx.
*/
static void point(const struct solid *s, int x, int y, guchar *p,
const struct matrix *ma, const struct matrix *mb)
{
double za, zb, z;
double xaf, xbf, yaf, ybf;
matrix_map(x, y, ma, &xaf, &yaf);
matrix_map(x, y, mb, &xbf, &ybf);
za = zmix(s->a, xaf, yaf);
zb = zmix(s->b, xbf, ybf);
if (za == UNDEF_F && zb == UNDEF_F)
return;
if (za == UNDEF_F) {
z = 128.0*(zb-s->b->a->min_z)/(s->b->a->max_z-s->b->a->min_z);
if (z < 0)
z = 0;
if (z > 255)
z = 255;
p[0] = 255;
p[1] = z;
p[2] = z;
return;
}
if (zb == UNDEF_F) {
z = 128.0*(za-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z);
if (z < 0)
z = 0;
if (z > 255)
z = 255;
p[0] = z;
p[1] = 255;
p[2] = z;
return;
}
z = za;
za -= face_z0(s->a, xaf, yaf);
zb -= face_z0(s->b, xbf, ybf);
if (za+zb < -s->dist) {
p[0] = 0;
p[1] = 0;
p[2] = 255;
return;
}
z = 256.0*(z-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z);
if (z < 0)
z = 0;
if (z > 255)
z = 255;
p[0] = z;
p[1] = z;
p[2] = z;
}
static void merge_matrix(struct matrix *m, const struct solid *s,
const struct face *f)
{
double tm[2][2], tm2[2][2];
double tv[2];
double f_x, f_y;
/*
* Finally, we convert to model matrix coordinates.
*
* v' = v+c
*/
m->b[0] += f->cx;
m->b[1] += f->cy;
/*
* Apply shrinkage caused by rotation out of z0. We use that
* cos a = sqrt(1-sin^2 a)
*/
f_x = 1.0/sqrt(1-f->fx*f->fx);
f_y = 1.0/sqrt(1-f->fy*f->fy);
m->a[0][0] *= f_x;
m->a[0][1] *= f_x;
m->b[0] *= f_x;
m->a[1][0] *= f_y;
m->a[1][1] *= f_y;
m->b[1] *= f_y;
/*
* The transformation matrix f->m describes a transformation of
* (centered) model coordinates. We therefore have to reverse it:
*
* v = v'A+b
* v-b = v'A
* (v-b)A^-1 = v'
* vA^-1-bA^-1 = v'
*/
matrix_invert(f->m.a, tm);
matrix_multv(f->m.b, tm, tv);
tv[0] = -tv[0];
tv[1] = -tv[1];
/*
* Merge with the transformations we have so far:
*
* v' = vA1+b1 the transformation we have so far
* v'' = v'A2+b2 the transformation we apply
*
* v'' = (vA1+b1)A2+b2
* v'' = vA1A2+b1A2+b2
*/
/*
* So far, the theory. To make it really work, we have to calculate
* v'' = vA1A2+b1+b2
* duh ?!?
*/
matrix_mult(m->a, tm, tm2); /* A1A2 */
matrix_copy(tm2, m->a);
// matrix_multv(m->b, tm, m->b); /* b1A2 */
m->b[0] += tv[0]; /* b2 */
m->b[1] += tv[1];
/*
* Our input is a screen coordinate, its origin is in a corner so we
* first have to make it center-based:
*
* v' = (v-s/2)A+b
* v' = vA+(b-s/2*A)
*/
tv[0] = sx(s)/2;
tv[1] = sy(s)/2;
matrix_multv(tv, m->a, tv);
m->b[0] -= tv[0];
m->b[1] -= tv[1];
}
static void draw_map(GtkWidget *widget, struct solid *s)
{
guchar *rgbbuf, *p;
int x, y;
struct matrix ma = {
.a = { { 1, 0 }, { 0, 1 } },
.b = { 0, 0 },
};
struct matrix mb = {
.a = { { -1, 0 }, { 0, 1 } },
.b = { 0, 0 },
};
rgbbuf = p = calloc(sx(s)*sy(s), 3);
if (!rgbbuf) {
perror("calloc");
exit(1);
}
merge_matrix(&ma, s, s->a);
merge_matrix(&mb, s, s->b);
for (y = sy(s)-1; y >= 0; y--)
for (x = 0; x != sx(s) ; x++) {
point(s, x, y, p, &ma, &mb);
p += 3;
}
gdk_draw_rgb_image(widget->window,
widget->style->fg_gc[GTK_STATE_NORMAL],
0, 0, sx(s), sy(s), GDK_RGB_DITHER_MAX, rgbbuf, sx(s)*3);
free(rgbbuf);
}
static void draw_image(GtkWidget *widget, struct solid *s, int osd)
{
int cx = sx(s)/2;
int cy = sy(s)/2;
int p;
draw_map(widget, s);
has_osd = osd;
if (!osd)
return;
draw_circle(widget->window, gc_osd, cx, cy, r_center(s));
p = r_center(s)/sqrt(2);
gdk_draw_line(widget->window, gc_osd, cx-p, cy-p, cx+p, cy+p);
gdk_draw_line(widget->window, gc_osd, cx-p, cy+p, cx+p, cy-p);
}
/*
* Rotate such that a point at distance "r" moves one unit. Rotate
* counter-clockwise for r > 1, clockwise for r < 0.
*/
static void rotate(struct matrix *m, double r)
{
struct matrix t;
double s, c;
s = 1/r;
c = sqrt(1-s*s);
t.a[0][0] = m->a[0][0]*c-m->a[1][0]*s;
t.a[0][1] = m->a[0][1]*c-m->a[1][1]*s;
t.a[1][0] = m->a[1][0]*c+m->a[0][0]*s;
t.a[1][1] = m->a[1][1]*c+m->a[0][1]*s;
t.b[0] = m->b[0]*c-m->b[1]*s;
t.b[1] = m->b[0]*s+m->b[1]*c;
*m = t;
}
static void do_shift(struct matrix *m, double dx, double dy)
{
m->b[0] += dx;
m->b[1] += dy;
}
static void shift(struct matrix *m, int dx, int dy, double dist)
{
/*
* Wheeling "up" in each quadrant shifts in the respective direction,
* wheeling "down" in the opposite direction.
*
* No rule without exception: we treat the "down" quadrant like the
* "up" quadrant, because it would be extremely counter-intuitive to
* wheel "up" to move "down".
*/
if (dx > 0 && dy < dx && dy > -dx)
do_shift(m, dist, 0);
if (dx < 0 && dy < -dx && dy > dx)
do_shift(m, -dist, 0);
if (dy > 0 && dx < dy && dx > -dy)
do_shift(m, 0, dist);
if (dy < 0 && dx < -dy && dx > dy)
do_shift(m, 0, dist); /* exception ! */
}
static int osd_proximity(const struct solid *s, int dx, int dy)
{
double r = hypot(dx, dy);
double rc = r_center(s);
if (fabs(r-rc) < OSD_PROXIMITY)
return 1;
if (r > rc)
return 0;
if (abs(abs(dx)-abs(dy)) < OSD_PROXIMITY)
return 1;
return 0;
}
static gboolean scroll_event(GtkWidget *widget, GdkEventScroll *event,
gpointer data)
{
GtkWidget *darea = gtk_bin_get_child(GTK_BIN(widget));
struct solid *s = data;
int dx = event->x-sx(s)/2;
int dy = event->y-sy(s)/2;
double r = hypot(dx, dy);
double rc = r_center(s);
double rs, rot, dist;
int center = r < rc;
int osd = osd_proximity(s, dx, dy);
if (r < 1)
return TRUE;
/*
* rot goes exponentially from SLOWEST_ROT*rs to FASTEST_ROT for
* r = rc to rs, with rs being half the canvas diagonal.
*
* The values are picked such that we achieve sufficient precision at
* a reasonably large distance from the circle (for accidently entering
* the circle would change the mode) but can also spin quickly, e.g.,
* when a 180 degrees rotation is needed.
*
* First, normalize to 0 ... 1
* Then, we start at exp(0) and end at
* exp(ln(SLOWEST_ROT*rs/FASTEST_ROT)))
*/
rs = hypot(sx(s), sy(s))/2;
rot = (r-rc)/(rs-rc);
rot = SLOWEST_ROT*rs*exp(-rot*log(SLOWEST_ROT*rs/FASTEST_ROT));
/*
* dist stays at 1 from 0...rc/DIST_STEPS, then linearly goes up to
* DIST_STEPS from rc/DIST_STEPS...rc
*/
dist = r/rc*DIST_STEPS;
if (dist < 0)
dist = 1;
switch (event->direction) {
case GDK_SCROLL_UP:
if (center)
shift(&s->a->m, dx, dy, dist);
else
rotate(&s->a->m, dx > 0 ? rot : -rot);
draw_image(darea, s, osd);
break;
case GDK_SCROLL_DOWN:
if (center)
shift(&s->a->m, dx, dy, -dist);
else
rotate(&s->a->m, dx > 0 ? -rot : rot);
draw_image(darea, s, osd);
break;
default:
/* ignore */;
}
return TRUE;
}
static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event,
gpointer user_data)
{
draw_image(widget, user_data, has_osd);
return TRUE;
}
static gboolean motion_notify_event(GtkWidget *widget, GdkEventMotion *event,
gpointer data)
{
struct solid *s = data;
int dx = event->x-sx(s)/2;
int dy = event->y-sy(s)/2;
int osd = osd_proximity(s, dx, dy);
if (osd != has_osd)
draw_image(widget, s, osd);
return FALSE;
}
void overlap(GtkWidget *canvas, struct solid *s)
{
GtkWidget *evbox, *darea;
evbox = gtk_event_box_new();
darea = gtk_drawing_area_new();
gtk_widget_set_events(darea,
GDK_EXPOSE | GDK_KEY_PRESS_MASK |
GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK |
GDK_SCROLL |
GDK_POINTER_MOTION_MASK);
gtk_widget_set_size_request(darea, sx(s), sy(s));
gtk_container_add(GTK_CONTAINER(canvas), evbox);
gtk_container_add(GTK_CONTAINER(evbox), darea);
draw_image(darea, s, 0);
g_signal_connect(G_OBJECT(evbox), "scroll-event",
G_CALLBACK(scroll_event), s);
g_signal_connect(G_OBJECT(darea), "expose-event",
G_CALLBACK(expose_event), s);
g_signal_connect(G_OBJECT(darea), "motion-notify-event",
G_CALLBACK(motion_notify_event), s);
if (0) {
int i;
long t0 = time(NULL);
gtk_widget_show_all(canvas);
for (i = 0; i != 1000; i++) {
rotate(&s->a->m, 100);
draw_image(darea, s, 0);
while (gtk_events_pending())
gtk_main_iteration();
}
fprintf(stderr, "%lu\n", time(NULL)-t0);
}
}