mirror of
git://projects.qi-hardware.com/cae-tools.git
synced 2025-01-10 18:50:14 +02:00
552 lines
11 KiB
C
552 lines
11 KiB
C
/*
|
|
* path.c - 2D path operations
|
|
*
|
|
* Written 2011 by Werner Almesberger
|
|
* Copyright 2011 by Werner Almesberger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include "ptrude.h"
|
|
#include "path.h"
|
|
|
|
|
|
#define alloc_type(t) ((t *) malloc(sizeof(t)))
|
|
#define stralloc(s) strdup(s)
|
|
|
|
|
|
static double deg(double rad)
|
|
{
|
|
return rad/M_PI*180.0;
|
|
}
|
|
|
|
|
|
static struct path *alloc_path(void)
|
|
{
|
|
struct path *path;
|
|
|
|
path = alloc_type(struct path);
|
|
path->vertices = NULL;
|
|
path->last = &path->vertices;
|
|
return path;
|
|
}
|
|
|
|
|
|
static struct vertex *alloc_vertex(void)
|
|
{
|
|
struct vertex *v;
|
|
|
|
v = alloc_type(struct vertex);
|
|
v->r = 0;
|
|
v->d = 0;
|
|
v->tag = NULL;
|
|
v->next = NULL;
|
|
v->len = 0;
|
|
return v;
|
|
}
|
|
|
|
|
|
static void free_vertex(struct vertex *v)
|
|
{
|
|
free(v);
|
|
}
|
|
|
|
|
|
void free_path(struct path *path)
|
|
{
|
|
struct vertex *v, *next;
|
|
|
|
for (v = path->vertices; v; v = next) {
|
|
next = v->next;
|
|
free_vertex(v);
|
|
}
|
|
free(path);
|
|
}
|
|
|
|
|
|
static struct vertex *clone_vertex(const struct vertex *v)
|
|
{
|
|
struct vertex *new;
|
|
|
|
new = alloc_type(struct vertex);
|
|
*new = *v;
|
|
new->next = NULL;
|
|
return new;
|
|
}
|
|
|
|
|
|
static void append_vertex(struct path *path, struct vertex *v)
|
|
{
|
|
*path->last = v;
|
|
path->last = &v->next;
|
|
}
|
|
|
|
|
|
static struct vertex *add_vertex(struct path *path, double x, double y,
|
|
double r, double d, const char *tag)
|
|
{
|
|
struct vertex *v;
|
|
|
|
v = alloc_vertex();
|
|
v->x = x;
|
|
v->y = y;
|
|
v->r = r;
|
|
v->d = d;
|
|
v->tag = tag;
|
|
append_vertex(path, v);
|
|
return v;
|
|
}
|
|
|
|
|
|
double path_set_length(struct path *path)
|
|
{
|
|
struct vertex *v;
|
|
double sum = 0;
|
|
|
|
if (!path->vertices)
|
|
return 0;
|
|
for (v = path->vertices; v->next; v = v->next) {
|
|
v->len = hypot(v->x-v->next->x, v->y-v->next->y);
|
|
sum += v->len;
|
|
}
|
|
v->len = 0;
|
|
return sum;
|
|
}
|
|
|
|
|
|
static void adjust_length(struct vertex *from, struct vertex *to, double len)
|
|
{
|
|
struct vertex *v;
|
|
double sum, f;
|
|
|
|
if (from == to)
|
|
return;
|
|
sum = 0;
|
|
for (v = from->next; v != to; v = v->next) {
|
|
v->len = hypot(v->x-v->next->x, v->y-v->next->y);
|
|
sum += v->len;
|
|
}
|
|
|
|
f = len/sum;
|
|
for (v = from->next; v != to; v = v->next)
|
|
v->len *= f;
|
|
}
|
|
|
|
|
|
/*
|
|
* "corner" replaces a corner with a ploygon if the corner is too sharp to be
|
|
* within distance "d" of the bend radius. This may change the point from
|
|
* where we resume drawing (originally the corner point, "b"). "corner"
|
|
* therefore returns the new end of the arc.
|
|
*/
|
|
|
|
static struct vertex *corner(struct path *path, struct vertex *a,
|
|
const struct vertex *b, const struct vertex *c, double r, double d)
|
|
{
|
|
/* points to vectors */
|
|
double ax = b->x-a->x;
|
|
double ay = b->y-a->y;
|
|
double bx = c->x-b->x;
|
|
double by = c->y-b->y;
|
|
|
|
/* vector length */
|
|
double aa = hypot(ax, ay);
|
|
double bb = hypot(bx, by);
|
|
|
|
/* dot and cross product */
|
|
double dp = ax*bx+ay*by; /* a * b = a*b*cos 2t */
|
|
double cp = ax*by-ay*bx; /* |a x b| = a*b*sin 2t */
|
|
double dir = copysign(1, cp);
|
|
|
|
/* see corner.fig */
|
|
double dd; /* "d" of the given vectors */
|
|
double tt; /* tan t */
|
|
double s; /* distance between start of arc and corner */
|
|
double t2; /* angle, t*2 */
|
|
|
|
/* see arc.fig */
|
|
double p; /* half-angle of border side of border segment */
|
|
double q; /* half-angle of connecting segment */
|
|
double u; /* length of border side of border segment */
|
|
double v; /* half-length of connecting segment */
|
|
int n; /* number of connecting segments (0 if none) */
|
|
|
|
double f; /* scale factor; various uses */
|
|
double fa, fb; /* scale factors for first and last vertex */
|
|
double ang; /* current angle, for iteration */
|
|
double x, y; /* current position; for iteration */
|
|
int i; /* segment; for iteration */
|
|
|
|
struct vertex *v0; /* first vertex of arc */
|
|
struct vertex *v1; /* last vertex of arc */
|
|
|
|
|
|
/*
|
|
* http://en.wikipedia.org/wiki/Dot_product
|
|
* dp = a*b*cos 2t
|
|
*
|
|
* http://en.wikipedia.org/wiki/Cross_product
|
|
* cp = a*b*sin 2t
|
|
*
|
|
* http://en.wikipedia.org/wiki/Tangent_half-angle_formula
|
|
* tan t = sin 2t/(1+cos 2t)
|
|
*/
|
|
tt = cp/(aa*bb+dp);
|
|
|
|
/*
|
|
* From s = r*tan t
|
|
*/
|
|
s = fabs(r*tt);
|
|
|
|
/*
|
|
* From r^2+s^2 = (r+d)^2
|
|
*/
|
|
dd = hypot(r, s)-r;
|
|
|
|
if (debug) {
|
|
fprintf(stderr, "a = (%g, %g)-(%g, %g) = (%g, %g); |a| = %g\n",
|
|
b->x, b->y, a->x, a->y, ax, ay, aa);
|
|
fprintf(stderr, "b = (%g, %g)-(%g, %g) = (%g, %g); |b| = %g\n",
|
|
c->x, c->y, b->x, b->y, bx, by, bb);
|
|
fprintf(stderr, "sin 2t = %g, cos 2t = %g, tan t = %g\n",
|
|
cp/aa/bb, dp/aa/bb, tt);
|
|
fprintf(stderr, "r = %g, d = %g, s = %g, dd = %g\n",
|
|
r, d, s, dd);
|
|
}
|
|
|
|
/*
|
|
* We only know how to make a rounded corner if two vectors are
|
|
* involved. They therefore have to be long enough to accommodate the
|
|
* entire arc, from beginning to end. Furthermore, we split the
|
|
* available length in half, one for the inbound arc, the other for the
|
|
* outbound arc.
|
|
*/
|
|
|
|
/*
|
|
* @@@ Our error checking is a bit overzealous and doesn't provide
|
|
* enough information to debug any problems. Turn errors into warnings
|
|
* for now.
|
|
*/
|
|
if (aa/2 < s) {
|
|
fprintf(stderr, "first vector is too short (%g/2 < %g)\n",
|
|
aa, s);
|
|
// exit(1);
|
|
}
|
|
if (bb/2 < s) {
|
|
fprintf(stderr, "second vector is too short (%g/2 < %g)\n",
|
|
bb, s);
|
|
// exit(1);
|
|
}
|
|
|
|
/*
|
|
* If the corner is already smooth enough, we just keep what we have.
|
|
*/
|
|
if (dd <= d) {
|
|
v1 = clone_vertex(b);
|
|
append_vertex(path, v1);
|
|
return v1;
|
|
}
|
|
|
|
/* Step 1: determine the total angle (2*t) */
|
|
|
|
t2 = acos(dp/aa/bb);
|
|
|
|
/*
|
|
* Step 2: determine the maximum angle of the first and last segment.
|
|
*
|
|
* We use
|
|
* r*cos p = r-d
|
|
* cos p = 1-d/r
|
|
*/
|
|
|
|
p = acos(1-d/r);
|
|
|
|
/*
|
|
* Step 3: determine the maximum angle of intermediate segments (if
|
|
* there are any).
|
|
*
|
|
* We use
|
|
* (r+d)*cos q = r-d
|
|
* cos q = r-q/(r+d)
|
|
*/
|
|
|
|
q = acos((r-d)/(r+d));
|
|
|
|
if (debug)
|
|
fprintf(stderr, "t2 = %g, p(max) = %g, q(max) = %g\n",
|
|
deg(t2), deg(p), deg(q));
|
|
|
|
/*
|
|
* Step 4: emit the starting point of the arc
|
|
*/
|
|
|
|
fa = s/aa;
|
|
x = b->x-fa*ax;
|
|
y = b->y-fa*ay;
|
|
v0 = add_vertex(path, x, y, b->r, b->d, b->tag);
|
|
v0->len = a->len*(1-fa);
|
|
|
|
/*
|
|
* Step 5: determine if we need intermediate points. If yes, how many,
|
|
* and then proceed to add them.
|
|
*/
|
|
|
|
if (t2 > 2*p) {
|
|
n = (int) ceil((t2-2*(p+q))/(2*q));
|
|
|
|
/*
|
|
* We could evenly distribute the slack and try to pick a
|
|
* smaller value for d, but that seems difficult.
|
|
*
|
|
* A drawback of reducing p would be that we may make the
|
|
* corner unnecessarily sharp, possibly even turning against
|
|
* the general direction of the turn. We'd still respect the
|
|
* bend radius and the tolerance, but the result may look weird
|
|
* anyway.
|
|
*
|
|
* For now, we just center the polygon.
|
|
*/
|
|
q = (t2/2-p)/(n+1);
|
|
|
|
if (n)
|
|
ang = p+q;
|
|
else {
|
|
ang = t2/2;
|
|
/*
|
|
* @@@ To do: adjust the radius such that we always hug
|
|
* the r-d circle (see arc.fig) and usually not the
|
|
* r+d circle. Right now, it's just the opposite.
|
|
*/
|
|
}
|
|
|
|
u = tan(p)*(r-d);
|
|
v = tan(q)*(r-d);
|
|
f = (u+v)/aa;
|
|
for (i = 0; i <= n; i++) {
|
|
x += f*ax*cos(ang-q)-dir*f*ay*sin(ang-q);
|
|
y += dir*f*ax*sin(ang-q)+f*ay*cos(ang-q);
|
|
if (debug)
|
|
fprintf(stderr, " %d/%d: %g %g @ %g\n", i, n,
|
|
x, y, deg(ang));
|
|
add_vertex(path, x, y, 0, 0, NULL);
|
|
ang += 2*q;
|
|
f = (2*v)/aa;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 6: emit the finishing point of the arc
|
|
*/
|
|
|
|
fb = s/bb;
|
|
v1 = add_vertex(path, b->x+fb*bx, b->y+fb*by, 0, 0, NULL);
|
|
v1->len = b->len*(1-fb);
|
|
|
|
/*
|
|
* Step 7: adjust the nominal length of the segments
|
|
*/
|
|
|
|
adjust_length(v0, v1, a->len*fa+b->len*fb);
|
|
|
|
|
|
return v1;
|
|
}
|
|
|
|
|
|
struct path *round_path(const struct path *path, double r, double d)
|
|
{
|
|
struct path *new;
|
|
struct vertex *prev;
|
|
const struct vertex *v;
|
|
|
|
new = alloc_path();
|
|
if (!path->vertices)
|
|
return new;
|
|
|
|
prev = clone_vertex(path->vertices);
|
|
append_vertex(new, prev);
|
|
|
|
if (!path->vertices->next)
|
|
return new;
|
|
|
|
if (prev->r)
|
|
r = prev->r;
|
|
if (prev->d)
|
|
d = prev->d;
|
|
|
|
for (v = path->vertices->next; v->next; v = v->next) {
|
|
if (v->r)
|
|
r = v->r;
|
|
if (v->d)
|
|
d = v->d;
|
|
prev = corner(new, prev, v, v->next, r, d);
|
|
}
|
|
append_vertex(new, clone_vertex(v));
|
|
return new;
|
|
}
|
|
|
|
|
|
static void move_vertex(struct path *path, const struct vertex *v,
|
|
double nx, double ny, double dist, double r)
|
|
{
|
|
struct vertex *new;
|
|
|
|
new = clone_vertex(v);
|
|
new->x += nx*dist;
|
|
new->y += ny*dist;
|
|
new->r = r;
|
|
append_vertex(path, new);
|
|
}
|
|
|
|
|
|
struct path *stretch_path(const struct path *path, double dist, double r)
|
|
{
|
|
struct path *new; /* new path */
|
|
const struct vertex *v; /* current vertex (for iteration) */
|
|
const struct vertex *a, *b, *c; /* previous, current, next vertex */
|
|
double nx, ny; /* 2D normals */
|
|
double f; /* factor for normalization */
|
|
double tx, ty; /* temporary 2D normals */
|
|
|
|
new = alloc_path();
|
|
|
|
a = path->vertices;
|
|
b = a->next;
|
|
nx = b->y-a->y;
|
|
ny = a->x-b->x;
|
|
f = hypot(nx, ny);
|
|
if (a->r)
|
|
r = a->r;
|
|
move_vertex(new, a, nx/f, ny/f, dist, r);
|
|
|
|
for (v = path->vertices->next; v->next; v = v->next) {
|
|
double tmp;
|
|
|
|
b = v;
|
|
c = v->next;
|
|
|
|
tx = b->y-a->y;
|
|
ty = a->x-b->x;
|
|
f = hypot(tx, ty);
|
|
nx = tx/f;
|
|
ny = ty/f;
|
|
|
|
tmp = f;
|
|
|
|
tx = c->y-b->y;
|
|
ty = b->x-c->x;
|
|
f = hypot(tx, ty);
|
|
nx += tx/f;
|
|
ny += ty/f;
|
|
if (b->r)
|
|
r = b->r;
|
|
|
|
f = hypot(nx, ny);
|
|
nx /= f;
|
|
ny /= f;
|
|
|
|
/*
|
|
* We have this far:
|
|
* nx, ny = normal on corner, normalized
|
|
* tmp = |a|, length of vector "a" (A -> B)
|
|
* dist = the distance by which we stretch
|
|
*
|
|
* As shown in stretch.fig, we the length we need is
|
|
* d' = d/cos(90-t)
|
|
*
|
|
* With
|
|
* http://en.wikipedia.org/wiki/Trigonometric_identities#Symmetry
|
|
* cos(90-t) = sin t = (n x a)/(|n|*|a|)
|
|
*
|
|
* Thus
|
|
* d' = d/sin(t) - d*(|n|*|a|)/(n x a)
|
|
* = d/sin(t) - d*|a|/(n x a)
|
|
*/
|
|
tmp = dist*tmp/(nx*(b->y-a->y)-ny*(b->x-a->x));
|
|
|
|
move_vertex(new, b, nx, ny, tmp, r+dist);
|
|
|
|
a = v;
|
|
}
|
|
|
|
nx = v->y-a->y;
|
|
ny = a->x-v->x;
|
|
f = hypot(nx, ny);
|
|
if (v->r)
|
|
r = v->r;
|
|
move_vertex(new, v, nx/f, ny/f, dist, r);
|
|
|
|
return new;
|
|
}
|
|
|
|
|
|
struct path *load_path(FILE *file)
|
|
{
|
|
struct path *path;
|
|
char buf[1100]; /* plenty :) */
|
|
char buf2[sizeof(buf)];
|
|
char *s;
|
|
float x, y, tmp;
|
|
float r = 0, d = 0;
|
|
const char *tag = NULL;
|
|
|
|
path = alloc_path();
|
|
while (fgets(buf, sizeof(buf),file)) {
|
|
s = strchr(buf, '\n');
|
|
if (s)
|
|
*s = 0;
|
|
if (sscanf(buf, "#r=%f", &tmp) == 1) {
|
|
r = tmp;
|
|
continue;
|
|
}
|
|
if (sscanf(buf, "#delta=%f", &tmp) == 1) {
|
|
d = tmp;
|
|
continue;
|
|
}
|
|
if (sscanf(buf, "#tag=%s", buf2) == 1) {
|
|
tag = stralloc(buf2);
|
|
continue;
|
|
}
|
|
if (*buf == '#')
|
|
continue;
|
|
if (sscanf(buf, "%f %f", &x, &y) != 2) {
|
|
fprintf(stderr, "can't parse \"%s\"\n", buf);
|
|
exit(1);
|
|
}
|
|
|
|
add_vertex(path, x, y, r, d, tag);
|
|
|
|
r = 0;
|
|
d = 0;
|
|
tag = NULL;
|
|
}
|
|
|
|
path_set_length(path);
|
|
return path;
|
|
}
|
|
|
|
|
|
void save_path(FILE *file, const struct path *path)
|
|
{
|
|
const struct vertex *v;
|
|
|
|
for (v = path->vertices; v; v = v->next) {
|
|
if (v->r)
|
|
fprintf(file, "#r=%f\n", v->r);
|
|
if (v->d)
|
|
fprintf(file, "#delta=%f\n", v->d);
|
|
if (v->tag)
|
|
fprintf(file, "#delta=%f\n", v->d);
|
|
fprintf(file, "%f %f\n", v->x, v->y);
|
|
}
|
|
}
|