1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2024-12-14 05:43:08 +02:00
nn-usb-fpga/plasma/logic/plasma.vhd

163 lines
5.4 KiB
VHDL
Raw Normal View History

2010-04-22 04:01:38 +03:00
---------------------------------------------------------------------
-- TITLE: Plasma (CPU core with memory)
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 6/4/02
-- FILENAME: plasma.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- This entity combines the CPU core with memory and a UART.
--
-- Memory Map:
-- 0x00000000 - 0x0000ffff Internal RAM (8KB)
-- 0x10000000 - 0x100fffff External RAM (1MB)
-- Access all Misc registers with 32-bit accesses
-- 0x20000000 Uart Write (will pause CPU if busy)
-- 0x20000000 Uart Read
-- 0x20000010 IRQ Mask
-- 0x20000020 IRQ Status
-- 0x20000030 GPIO0 Out Set bits
-- 0x20000040 GPIO0 Out Clear bits
-- 0x20000050 GPIOA In
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use work.mlite_pack.all;
2010-05-26 05:49:58 +03:00
library UNISIM;
use UNISIM.vcomponents.all;
2010-04-22 04:01:38 +03:00
entity plasma is
2010-05-26 05:49:58 +03:00
generic(memory_type : string := "XILINX_16X");
port(clk : in std_logic;
reset : in std_logic;
U_TxD : out std_logic;
U_RxD : in std_logic;
addr : in std_logic_vector(12 downto 0);
sram_data : in std_logic_vector(7 downto 0);
nwe : in std_logic;
noe : in std_logic;
ncs : in std_logic;
led : out std_logic
);
2010-04-22 04:01:38 +03:00
end; --entity plasma
architecture logic of plasma is
2010-05-26 05:49:58 +03:00
signal address_next : std_logic_vector(31 downto 0);
2010-04-22 04:01:38 +03:00
signal byte_we_next : std_logic_vector(3 downto 0);
signal cpu_address : std_logic_vector(31 downto 0);
signal cpu_byte_we : std_logic_vector(3 downto 0);
signal cpu_data_w : std_logic_vector(31 downto 0);
signal cpu_data_r : std_logic_vector(31 downto 0);
signal cpu_pause : std_logic;
signal data_read_uart : std_logic_vector(7 downto 0);
2010-05-26 05:49:58 +03:00
signal cs_uart : std_logic;
2010-04-22 04:01:38 +03:00
signal uart_write_busy : std_logic;
signal uart_data_avail : std_logic;
signal irq_mask_reg : std_logic_vector(7 downto 0);
signal irq_status : std_logic_vector(7 downto 0);
signal irq : std_logic;
2010-05-26 05:49:58 +03:00
signal cs_ram : std_logic;
2010-04-22 04:01:38 +03:00
signal ram_address : std_logic_vector(31 downto 2);
signal ram_data_r : std_logic_vector(31 downto 0);
2010-05-26 05:49:58 +03:00
signal nreset : std_logic;
2010-04-22 04:01:38 +03:00
begin --architecture
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- PROCESSOR
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2010-04-22 04:01:38 +03:00
u1_cpu: mlite_cpu
generic map (memory_type => memory_type)
PORT MAP (
clk => clk,
2010-05-26 05:49:58 +03:00
reset_in => nreset,
2010-04-22 04:01:38 +03:00
intr_in => irq,
2010-05-26 05:49:58 +03:00
address_next => address_next(31 downto 2), --before rising_edge(clk)
2010-04-22 04:01:38 +03:00
byte_we_next => byte_we_next,
address => cpu_address(31 downto 2), --after rising_edge(clk)
byte_we => cpu_byte_we,
data_w => cpu_data_w,
data_r => cpu_data_r,
mem_pause => cpu_pause);
2010-05-26 05:49:58 +03:00
u2_ram: ram
port map (
clk => clk,
enable => cs_ram,
write_byte_enable => byte_we_next,
address => ram_address(12 downto 2),
data_write => cpu_data_w,
data_read => ram_data_r);
u3_uart: uart
port map(
clk => clk,
reset => nreset,
cs => cs_uart,
nRdWr => cpu_byte_we(0),
data_in => cpu_data_w(7 downto 0),
data_out => data_read_uart,
uart_read => U_RxD,
uart_write => U_TxD,
addr => cpu_address(7 downto 4));
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- ADDRESS DECODER
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2010-05-26 05:49:58 +03:00
cpu_pause <= '0'; --(uart_write_busy and enable_uart and write_enable) or --UART busy
ram_address <= ZERO(31 downto 13) & (address_next(12)) & address_next(11 downto 2);
cpu_address(1 downto 0) <= "00";
address_next(1 downto 0) <= "00";
nreset <= not(reset);
led <= not(reset);
addr_dec: process (cpu_address(30 downto 4))
begin
if (cpu_address(30 downto 28) = "000") then
cs_ram <= '1';
cs_uart <= '0';
elsif ( (cpu_address(30 downto 28) = "010") and ( (cpu_address(11 downto 8) = "0000") )) then
cs_ram <= '0';
cs_uart <= '1';
else
cs_ram <= '0';
cs_uart <= '0';
end if;
end process;
misc_proc: process(clk, nreset, cpu_address,
ram_data_r, data_read_uart, cpu_pause,
irq_mask_reg, irq_status, cpu_data_w)
2010-04-22 04:01:38 +03:00
begin
case cpu_address(30 downto 28) is
when "000" => --internal RAM
cpu_data_r <= ram_data_r;
when "010" => --misc
case cpu_address(6 downto 4) is
when "000" => --uart
cpu_data_r <= ZERO(31 downto 8) & data_read_uart;
2010-05-26 05:49:58 +03:00
when "010" => --uart
cpu_data_r <= ZERO(31 downto 8) & data_read_uart;
2010-05-26 05:49:58 +03:00
when others =>
cpu_data_r <= ZERO;
2010-04-22 04:01:38 +03:00
end case;
when others =>
cpu_data_r <= ZERO;
end case;
end process;
2010-04-22 04:01:38 +03:00
end; --architecture logic