1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-19 01:44:39 +02:00
openwrt-xburst/package/uboot-ifxmips/files/drivers/ifx_sw.c

424 lines
10 KiB
C
Raw Normal View History

/*
* DANUBE internal switch ethernet driver.
*
* (C) Copyright 2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
&& defined(CONFIG_DANUBE_SWITCH)
#include <malloc.h>
#include <net.h>
#include <asm/danube.h>
#include <asm/addrspace.h>
#include <asm/pinstrap.h>
#define MII_MODE 1
#define REV_MII_MODE 2
#define TX_CHAN_NO 7
#define RX_CHAN_NO 6
#define NUM_RX_DESC PKTBUFSRX
#define NUM_TX_DESC 8
#define MAX_PACKET_SIZE 1536
#define TOUT_LOOP 100
#define PHY0_ADDR 1 /*fixme: set the correct value here*/
#define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value
#define DMA_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
#define SW_WRITE_REG(reg, value) *((volatile u32*)reg) = (u32)value
#define SW_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
typedef struct
{
union
{
struct
{
volatile u32 OWN :1;
volatile u32 C :1;
volatile u32 Sop :1;
volatile u32 Eop :1;
volatile u32 reserved :3;
volatile u32 Byteoffset :2;
volatile u32 reserve :7;
volatile u32 DataLen :16;
}field;
volatile u32 word;
}status;
volatile u32 DataPtr;
} danube_rx_descriptor_t;
typedef struct
{
union
{
struct
{
volatile u32 OWN :1;
volatile u32 C :1;
volatile u32 Sop :1;
volatile u32 Eop :1;
volatile u32 Byteoffset :5;
volatile u32 reserved :7;
volatile u32 DataLen :16;
}field;
volatile u32 word;
}status;
volatile u32 DataPtr;
} danube_tx_descriptor_t;
static danube_rx_descriptor_t rx_des_ring[NUM_RX_DESC] __attribute__ ((aligned(8)));
static danube_tx_descriptor_t tx_des_ring[NUM_TX_DESC] __attribute__ ((aligned(8)));
static int tx_num, rx_num;
int danube_switch_init(struct eth_device *dev, bd_t * bis);
int danube_switch_send(struct eth_device *dev, volatile void *packet,int length);
int danube_switch_recv(struct eth_device *dev);
void danube_switch_halt(struct eth_device *dev);
static void danube_init_switch_chip(int mode);
static void danube_dma_init(void);
int danube_switch_initialize(bd_t * bis)
{
struct eth_device *dev;
#if 0
printf("Entered danube_switch_initialize()\n");
#endif
if (!(dev = (struct eth_device *) malloc (sizeof *dev)))
{
printf("Failed to allocate memory\n");
return 0;
}
memset(dev, 0, sizeof(*dev));
danube_dma_init();
danube_init_switch_chip(REV_MII_MODE);
#ifdef CLK_OUT2_25MHZ
*DANUBE_GPIO_P0_DIR=0x0000ae78;
*DANUBE_GPIO_P0_ALTSEL0=0x00008078;
//joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
*DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
*DANUBE_CGU_IFCCR=0x00400010;
*DANUBE_GPIO_P0_OD=0x0000ae78;
#endif
/*patch for 6996*/
*DANUBE_RCU_RST_REQ |=1;
mdelay(200);
*DANUBE_RCU_RST_REQ &=(unsigned long)~1;
mdelay(1);
/*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
*/
/*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
*/
/***************/
sprintf(dev->name, "danube Switch");
dev->init = danube_switch_init;
dev->halt = danube_switch_halt;
dev->send = danube_switch_send;
dev->recv = danube_switch_recv;
eth_register(dev);
#if 0
printf("Leaving danube_switch_initialize()\n");
#endif
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F;
//while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
//*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
#ifdef CLK_OUT2_25MHZ
while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
*DANUBE_PPE_ETOP_MDIO_ACC =0x80334000;
#endif
return 1;
}
int danube_switch_init(struct eth_device *dev, bd_t * bis)
{
int i;
tx_num=0;
rx_num=0;
/* Reset DMA
*/
// serial_puts("i \n\0");
*DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040;
/*set descriptor base*/
*DANUBE_DMA_CDBA=(u32)rx_des_ring;
*DANUBE_DMA_CDLEN=NUM_RX_DESC;
*DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30000;
*DANUBE_DMA_CS=TX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040;
*DANUBE_DMA_CDBA=(u32)tx_des_ring;
*DANUBE_DMA_CDLEN=NUM_TX_DESC;
*DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30100;
for(i=0;i < NUM_RX_DESC; i++)
{
danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]);
rx_desc->status.word=0;
rx_desc->status.field.OWN=1;
rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */
rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]);
}
for(i=0;i < NUM_TX_DESC; i++)
{
danube_tx_descriptor_t * tx_desc = KSEG1ADDR(&tx_des_ring[i]);
memset(tx_desc, 0, sizeof(tx_des_ring[0]));
}
/* turn on DMA rx & tx channel
*/
*DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/
return 0;
}
void danube_switch_halt(struct eth_device *dev)
{
int i;
for(i=0;i<8;i++)
{
*DANUBE_DMA_CS=i;
*DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/
}
// udelay(1000000);
}
int danube_switch_send(struct eth_device *dev, volatile void *packet,int length)
{
int i;
int res = -1;
danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]);
if (length <= 0)
{
printf ("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
for(i=0; tx_desc->status.field.OWN==1; i++)
{
if(i>=TOUT_LOOP)
{
printf("NO Tx Descriptor...");
goto Done;
}
}
//serial_putc('s');
tx_desc->status.field.Sop=1;
tx_desc->status.field.Eop=1;
tx_desc->status.field.C=0;
tx_desc->DataPtr = (u32)KSEG1ADDR(packet);
if(length<60)
tx_desc->status.field.DataLen = 60;
else
tx_desc->status.field.DataLen = (u32)length;
asm("SYNC");
tx_desc->status.field.OWN=1;
res=length;
tx_num++;
if(tx_num==NUM_TX_DESC) tx_num=0;
*DANUBE_DMA_CS=TX_CHAN_NO;
if(!(*DANUBE_DMA_CCTRL & 1))
*DANUBE_DMA_CCTRL|=1;
Done:
return res;
}
int danube_switch_recv(struct eth_device *dev)
{
int length = 0;
danube_rx_descriptor_t * rx_desc;
int anchor_num=0;
int i;
for (;;)
{
rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]);
if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1))
{
break;
}
length = rx_desc->status.field.DataLen;
if (length)
{
NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4);
// serial_putc('*');
}
else
{
printf("Zero length!!!\n");
}
rx_desc->status.field.Sop=0;
rx_desc->status.field.Eop=0;
rx_desc->status.field.C=0;
rx_desc->status.field.DataLen=PKTSIZE_ALIGN;
rx_desc->status.field.OWN=1;
rx_num++;
if(rx_num==NUM_RX_DESC) rx_num=0;
}
return length;
}
static void danube_init_switch_chip(int mode)
{
int i;
/*get and set mac address for MAC*/
static unsigned char addr[6];
char *tmp,*end;
tmp = getenv ("ethaddr");
if (NULL == tmp) {
printf("Can't get environment ethaddr!!!\n");
// return NULL;
} else {
printf("ethaddr=%s\n", tmp);
}
*DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF;
*DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6;
*DANUBE_PPE32_ENET_MAC_CFG = 0x187;
// turn on port0, set to rmii and turn off port1.
if(mode==REV_MII_MODE)
{
*DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a;
}
else if (mode == MII_MODE)
{
*DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008;
}
*DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen.
*ENET_MAC_CFG|=1<<11;/*enable the crc*/
return;
}
static void danube_dma_init(void)
{
int i;
// serial_puts("d \n\0");
*DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
/* Reset DMA
*/
*DANUBE_DMA_CTRL|=1;
*DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/
/* Clear Interrupt Status Register
*/
*DANUBE_DMA_IRNCR=0xfffff;
/*disable all the dma interrupts*/
*DANUBE_DMA_IRNEN=0;
/*disable channel 0 and channel 1 interrupts*/
*DANUBE_DMA_CS=RX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040;
/*set descriptor base*/
*DANUBE_DMA_CDBA=(u32)rx_des_ring;
*DANUBE_DMA_CDLEN=NUM_RX_DESC;
*DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30000;
*DANUBE_DMA_CS=TX_CHAN_NO;
*DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
*DANUBE_DMA_CPOLL= 0x80000040;
*DANUBE_DMA_CDBA=(u32)tx_des_ring;
*DANUBE_DMA_CDLEN=NUM_TX_DESC;
*DANUBE_DMA_CIE = 0;
*DANUBE_DMA_CCTRL=0x30100;
/*enable the poll function and set the poll counter*/
//*DANUBE_DMA_CPOLL=DANUBE_DMA_POLL_EN | (DANUBE_DMA_POLL_COUNT<<4);
/*set port properties, enable endian conversion for switch*/
*DANUBE_DMA_PS=0;
*DANUBE_DMA_PCTRL|=0xf<<8;/*enable 32 bit endian conversion*/
return;
}
#endif