1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-22 18:16:45 +02:00
openwrt-xburst/target/linux/ar7/files/drivers/vlynq/vlynq.c

671 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006, 2007 Eugene Konev <ejka@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/vlynq.h>
#define VLYNQ_CTRL_PM_ENABLE 0x80000000
#define VLYNQ_CTRL_CLOCK_INT 0x00008000
#define VLYNQ_CTRL_CLOCK_DIV(x) (((x) & 7) << 16)
#define VLYNQ_CTRL_INT_LOCAL 0x00004000
#define VLYNQ_CTRL_INT_ENABLE 0x00002000
#define VLYNQ_CTRL_INT_VECTOR(x) (((x) & 0x1f) << 8)
#define VLYNQ_CTRL_INT2CFG 0x00000080
#define VLYNQ_CTRL_RESET 0x00000001
#define VLYNQ_INT_OFFSET 0x00000014
#define VLYNQ_REMOTE_OFFSET 0x00000080
#define VLYNQ_STATUS_LINK 0x00000001
#define VLYNQ_STATUS_LERROR 0x00000080
#define VLYNQ_STATUS_RERROR 0x00000100
#define VINT_ENABLE 0x00000100
#define VINT_TYPE_EDGE 0x00000080
#define VINT_LEVEL_LOW 0x00000040
#define VINT_VECTOR(x) ((x) & 0x1f)
#define VINT_OFFSET(irq) (8 * ((irq) % 4))
#define VLYNQ_AUTONEGO_V2 0x00010000
struct vlynq_regs {
u32 revision;
u32 control;
u32 status;
u32 int_prio;
u32 int_status;
u32 int_pending;
u32 int_ptr;
u32 tx_offset;
struct vlynq_mapping rx_mapping[4];
u32 chip;
u32 autonego;
u32 unused[6];
u32 int_device[8];
};
#define vlynq_reg_read(reg) readl(&(reg))
#define vlynq_reg_write(reg, val) writel(val, &(reg))
static int __vlynq_enable_device(struct vlynq_device *dev);
#ifdef VLYNQ_DEBUG
static void vlynq_dump_regs(struct vlynq_device *dev)
{
int i;
printk(KERN_DEBUG "VLYNQ local=%p remote=%p\n",
dev->local, dev->remote);
for (i = 0; i < 32; i++) {
printk(KERN_DEBUG "VLYNQ: local %d: %08x\n",
i + 1, ((u32 *)dev->local)[i]);
printk(KERN_DEBUG "VLYNQ: remote %d: %08x\n",
i + 1, ((u32 *)dev->remote)[i]);
}
}
static void vlynq_dump_mem(u32 *base, int count)
{
int i;
for (i = 0; i < (count + 3) / 4; i++) {
if (i % 4 == 0) printk(KERN_DEBUG "\nMEM[0x%04x]:", i * 4);
printk(KERN_DEBUG " 0x%08x", *(base + i));
}
printk(KERN_DEBUG "\n");
}
#endif
int vlynq_linked(struct vlynq_device *dev)
{
int i;
for (i = 0; i < 100; i++)
if (vlynq_reg_read(dev->local->status) & VLYNQ_STATUS_LINK)
return 1;
else
cpu_relax();
return 0;
}
static void vlynq_irq_unmask(unsigned int irq)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
val |= (VINT_ENABLE | virq) << VINT_OFFSET(virq);
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
}
static void vlynq_irq_mask(unsigned int irq)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
val &= ~(VINT_ENABLE << VINT_OFFSET(virq));
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
}
static int vlynq_irq_type(unsigned int irq, unsigned int flow_type)
{
u32 val;
struct vlynq_device *dev = get_irq_chip_data(irq);
int virq;
BUG_ON(!dev);
virq = irq - dev->irq_start;
val = vlynq_reg_read(dev->remote->int_device[virq >> 2]);
switch (flow_type & IRQ_TYPE_SENSE_MASK) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_EDGE_BOTH:
val |= VINT_TYPE_EDGE << VINT_OFFSET(virq);
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_HIGH:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_LOW:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val |= VINT_LEVEL_LOW << VINT_OFFSET(virq);
break;
default:
return -EINVAL;
}
vlynq_reg_write(dev->remote->int_device[virq >> 2], val);
return 0;
}
static void vlynq_local_ack(unsigned int irq)
{
struct vlynq_device *dev = get_irq_chip_data(irq);
u32 status = vlynq_reg_read(dev->local->status);
if (printk_ratelimit())
printk(KERN_DEBUG "%s: local status: 0x%08x\n",
dev->dev.bus_id, status);
vlynq_reg_write(dev->local->status, status);
}
static void vlynq_remote_ack(unsigned int irq)
{
struct vlynq_device *dev = get_irq_chip_data(irq);
u32 status = vlynq_reg_read(dev->remote->status);
if (printk_ratelimit())
printk(KERN_DEBUG "%s: remote status: 0x%08x\n",
dev->dev.bus_id, status);
vlynq_reg_write(dev->remote->status, status);
}
static irqreturn_t vlynq_irq(int irq, void *dev_id)
{
struct vlynq_device *dev = dev_id;
u32 status;
int virq = 0;
status = vlynq_reg_read(dev->local->int_status);
vlynq_reg_write(dev->local->int_status, status);
if (unlikely(!status))
spurious_interrupt();
while (status) {
if (status & 1)
do_IRQ(dev->irq_start + virq);
status >>= 1;
virq++;
}
return IRQ_HANDLED;
}
static struct irq_chip vlynq_irq_chip = {
.name = "vlynq",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.set_type = vlynq_irq_type,
};
static struct irq_chip vlynq_local_chip = {
.name = "vlynq local error",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.ack = vlynq_local_ack,
};
static struct irq_chip vlynq_remote_chip = {
.name = "vlynq local error",
.unmask = vlynq_irq_unmask,
.mask = vlynq_irq_mask,
.ack = vlynq_remote_ack,
};
static int vlynq_setup_irq(struct vlynq_device *dev)
{
u32 val;
int i, virq;
if (dev->local_irq == dev->remote_irq) {
printk(KERN_ERR
"%s: local vlynq irq should be different from remote\n",
dev->dev.bus_id);
return -EINVAL;
}
/* Clear local and remote error bits */
vlynq_reg_write(dev->local->status, vlynq_reg_read(dev->local->status));
vlynq_reg_write(dev->remote->status,
vlynq_reg_read(dev->remote->status));
/* Now setup interrupts */
val = VLYNQ_CTRL_INT_VECTOR(dev->local_irq);
val |= VLYNQ_CTRL_INT_ENABLE | VLYNQ_CTRL_INT_LOCAL |
VLYNQ_CTRL_INT2CFG;
val |= vlynq_reg_read(dev->local->control);
vlynq_reg_write(dev->local->int_ptr, VLYNQ_INT_OFFSET);
vlynq_reg_write(dev->local->control, val);
val = VLYNQ_CTRL_INT_VECTOR(dev->remote_irq);
val |= VLYNQ_CTRL_INT_ENABLE;
val |= vlynq_reg_read(dev->remote->control);
vlynq_reg_write(dev->remote->int_ptr, VLYNQ_INT_OFFSET);
vlynq_reg_write(dev->remote->control, val);
for (i = dev->irq_start; i <= dev->irq_end; i++) {
virq = i - dev->irq_start;
if (virq == dev->local_irq) {
set_irq_chip_and_handler(i, &vlynq_local_chip,
handle_level_irq);
set_irq_chip_data(i, dev);
} else if (virq == dev->remote_irq) {
set_irq_chip_and_handler(i, &vlynq_remote_chip,
handle_level_irq);
set_irq_chip_data(i, dev);
} else {
set_irq_chip_and_handler(i, &vlynq_irq_chip,
handle_simple_irq);
set_irq_chip_data(i, dev);
vlynq_reg_write(dev->remote->int_device[virq >> 2], 0);
}
}
if (request_irq(dev->irq, vlynq_irq, IRQF_SHARED, "vlynq", dev)) {
printk(KERN_ERR "%s: request_irq failed\n", dev->dev.bus_id);
return -EAGAIN;
}
return 0;
}
static void vlynq_device_release(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
kfree(vdev);
}
static int vlynq_device_match(struct device *dev,
struct device_driver *drv)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *vdrv = to_vlynq_driver(drv);
struct plat_vlynq_ops *ops = dev->platform_data;
struct vlynq_device_id *ids = vdrv->id_table;
u32 id = 0;
int result;
while (ids->id) {
vdev->divisor = ids->divisor;
result = __vlynq_enable_device(vdev);
if (result == 0) {
id = vlynq_reg_read(vdev->remote->chip);
ops->off(vdev);
if (ids->id == id) {
vlynq_set_drvdata(vdev, ids);
return 1;
}
}
ids++;
}
return 0;
}
static int vlynq_device_probe(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
struct vlynq_device_id *id = vlynq_get_drvdata(vdev);
int result = -ENODEV;
get_device(dev);
if (drv && drv->probe)
result = drv->probe(vdev, id);
if (result)
put_device(dev);
return result;
}
static int vlynq_device_remove(struct device *dev)
{
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
if (drv && drv->remove)
drv->remove(to_vlynq_device(dev));
put_device(dev);
return 0;
}
int __vlynq_register_driver(struct vlynq_driver *driver, struct module *owner)
{
driver->driver.name = driver->name;
driver->driver.bus = &vlynq_bus_type;
return driver_register(&driver->driver);
}
EXPORT_SYMBOL(__vlynq_register_driver);
void vlynq_unregister_driver(struct vlynq_driver *driver)
{
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL(vlynq_unregister_driver);
static int __vlynq_enable_device(struct vlynq_device *dev)
{
int i, result;
struct plat_vlynq_ops *ops = dev->dev.platform_data;
result = ops->on(dev);
if (result)
return result;
vlynq_reg_write(dev->local->control, 0);
vlynq_reg_write(dev->remote->control, 0);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG "%s: using external clock\n",
dev->dev.bus_id);
return 0;
}
switch (dev->divisor) {
case vlynq_div_auto:
/* Only try locally supplied clock, others cause problems */
vlynq_reg_write(dev->local->control, 0);
vlynq_reg_write(dev->remote->control, 0);
for (i = vlynq_ldiv2; i <= vlynq_ldiv8; i++) {
vlynq_reg_write(dev->local->control,
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_ldiv1));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev->dev.bus_id, i - vlynq_ldiv1 + 1);
dev->divisor = i;
return 0;
}
}
case vlynq_ldiv1: case vlynq_ldiv2: case vlynq_ldiv3: case vlynq_ldiv4:
case vlynq_ldiv5: case vlynq_ldiv6: case vlynq_ldiv7: case vlynq_ldiv8:
vlynq_reg_write(dev->local->control,
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_ldiv1));
vlynq_reg_write(dev->remote->control, 0);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev->dev.bus_id, dev->divisor - vlynq_ldiv1 + 1);
return 0;
}
break;
case vlynq_rdiv1: case vlynq_rdiv2: case vlynq_rdiv3: case vlynq_rdiv4:
case vlynq_rdiv5: case vlynq_rdiv6: case vlynq_rdiv7: case vlynq_rdiv8:
vlynq_reg_write(dev->local->control, 0);
vlynq_reg_write(dev->remote->control,
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_rdiv1));
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using remote clock divisor %d\n",
dev->dev.bus_id, dev->divisor - vlynq_rdiv1 + 1);
return 0;
}
break;
}
ops->off(dev);
return -ENODEV;
}
int vlynq_enable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
int result = -ENODEV;
result = __vlynq_enable_device(dev);
if (result)
return result;
result = vlynq_setup_irq(dev);
if (result)
ops->off(dev);
dev->enabled = !result;
return result;
}
EXPORT_SYMBOL(vlynq_enable_device);
void vlynq_disable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
dev->enabled = 0;
free_irq(dev->irq, dev);
ops->off(dev);
}
EXPORT_SYMBOL(vlynq_disable_device);
int vlynq_set_local_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
vlynq_reg_write(dev->local->tx_offset, tx_offset);
for (i = 0; i < 4; i++) {
vlynq_reg_write(dev->local->rx_mapping[i].offset,
mapping[i].offset);
vlynq_reg_write(dev->local->rx_mapping[i].size,
mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_mapping);
int vlynq_set_remote_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
vlynq_reg_write(dev->remote->tx_offset, tx_offset);
for (i = 0; i < 4; i++) {
vlynq_reg_write(dev->remote->rx_mapping[i].offset,
mapping[i].offset);
vlynq_reg_write(dev->remote->rx_mapping[i].size,
mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_mapping);
int vlynq_set_local_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->remote_irq)
return -EINVAL;
dev->local_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_irq);
int vlynq_set_remote_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->local_irq)
return -EINVAL;
dev->remote_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_irq);
static int vlynq_probe(struct platform_device *pdev)
{
struct vlynq_device *dev;
struct resource *regs_res, *mem_res, *irq_res;
int len, result;
regs_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!regs_res)
return -ENODEV;
mem_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem");
if (!mem_res)
return -ENODEV;
irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "devirq");
if (!irq_res)
return -ENODEV;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
printk(KERN_ERR
"vlynq: failed to allocate device structure\n");
return -ENOMEM;
}
dev->id = pdev->id;
dev->dev.bus = &vlynq_bus_type;
dev->dev.parent = &pdev->dev;
snprintf(dev->dev.bus_id, BUS_ID_SIZE, "vlynq%d", dev->id);
dev->dev.bus_id[BUS_ID_SIZE - 1] = 0;
dev->dev.platform_data = pdev->dev.platform_data;
dev->dev.release = vlynq_device_release;
dev->regs_start = regs_res->start;
dev->regs_end = regs_res->end;
dev->mem_start = mem_res->start;
dev->mem_end = mem_res->end;
len = regs_res->end - regs_res->start;
if (!request_mem_region(regs_res->start, len, dev->dev.bus_id)) {
printk(KERN_ERR "%s: Can't request vlynq registers\n",
dev->dev.bus_id);
result = -ENXIO;
goto fail_request;
}
dev->local = ioremap(regs_res->start, len);
if (!dev->local) {
printk(KERN_ERR "%s: Can't remap vlynq registers\n",
dev->dev.bus_id);
result = -ENXIO;
goto fail_remap;
}
dev->remote = (struct vlynq_regs *)((void *)dev->local +
VLYNQ_REMOTE_OFFSET);
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->irq_start = irq_res->start;
dev->irq_end = irq_res->end;
dev->local_irq = dev->irq_end - dev->irq_start;
dev->remote_irq = dev->local_irq - 1;
if (device_register(&dev->dev))
goto fail_register;
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: regs 0x%p, irq %d, mem 0x%p\n",
dev->dev.bus_id, (void *)dev->regs_start, dev->irq,
(void *)dev->mem_start);
return 0;
fail_register:
iounmap(dev->local);
fail_remap:
fail_request:
release_mem_region(regs_res->start, len);
kfree(dev);
return result;
}
static int vlynq_remove(struct platform_device *pdev)
{
struct vlynq_device *dev = platform_get_drvdata(pdev);
device_unregister(&dev->dev);
iounmap(dev->local);
release_mem_region(dev->regs_start, dev->regs_end - dev->regs_start);
kfree(dev);
return 0;
}
static struct platform_driver vlynq_driver = {
.driver.name = "vlynq",
.probe = vlynq_probe,
.remove = __devexit_p(vlynq_remove),
};
struct bus_type vlynq_bus_type = {
.name = "vlynq",
.match = vlynq_device_match,
.probe = vlynq_device_probe,
.remove = vlynq_device_remove,
};
EXPORT_SYMBOL(vlynq_bus_type);
static int __devinit vlynq_init(void)
{
int res = 0;
res = bus_register(&vlynq_bus_type);
if (res)
goto fail_bus;
res = platform_driver_register(&vlynq_driver);
if (res)
goto fail_platform;
return 0;
fail_platform:
bus_unregister(&vlynq_bus_type);
fail_bus:
return res;
}
static void __devexit vlynq_exit(void)
{
platform_driver_unregister(&vlynq_driver);
bus_unregister(&vlynq_bus_type);
}
module_init(vlynq_init);
module_exit(vlynq_exit);