1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-26 22:11:05 +02:00

brcm-2.4: rip out all /dev/nvram and nvram setting/committing code from the kernel

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@15440 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
nbd 2009-04-27 14:51:26 +00:00
parent 40efe09d28
commit 0cc51371c0
4 changed files with 155 additions and 984 deletions

View File

@ -9,7 +9,7 @@ O_TARGET := bcm947xx.o
export-objs := export.o
obj-y := prom.o setup.o time.o sbmips.o gpio.o
obj-y += nvram.o nvram_linux.o cfe_env.o hndpmu.o
obj-y += nvram.o cfe_env.o hndpmu.o
obj-y += sbutils.o utils.o bcmsrom.o hndchipc.o
obj-$(CONFIG_PCI) += sbpci.o pcibios.o
obj-y += export.o

View File

@ -69,9 +69,6 @@ _export(getintvar)
_export(nvram_get)
_export(nvram_getall)
_export(nvram_set)
_export(nvram_unset)
_export(nvram_commit)
_export(srom_read)
_export(srom_write)

View File

@ -1,7 +1,7 @@
/*
* NVRAM variable manipulation (common)
* NVRAM variable manipulation (Linux kernel half)
*
* Copyright 2004, Broadcom Corporation
* Copyright 2006, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
@ -11,306 +11,203 @@
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/wrapper.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/mtd/mtd.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <typedefs.h>
#include <osl.h>
#include <bcmendian.h>
#include <bcmnvram.h>
#include <sbsdram.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbutils.h>
#include <hndmips.h>
#include <sflash.h>
extern struct nvram_tuple * BCMINIT(_nvram_realloc)(struct nvram_tuple *t, const char *name, const char *value);
extern void BCMINIT(_nvram_free)(struct nvram_tuple *t);
extern int BCMINIT(_nvram_read)(void *buf);
/* In BSS to minimize text size and page aligned so it can be mmap()-ed */
static char nvram_buf[NVRAM_SPACE] __attribute__((aligned(PAGE_SIZE)));
char * BCMINIT(_nvram_get)(const char *name);
int BCMINIT(_nvram_set)(const char *name, const char *value);
int BCMINIT(_nvram_unset)(const char *name);
int BCMINIT(_nvram_getall)(char *buf, int count);
int BCMINIT(_nvram_commit)(struct nvram_header *header);
int BCMINIT(_nvram_init)(void);
void BCMINIT(_nvram_exit)(void);
/* Global SB handle */
extern void *bcm947xx_sbh;
extern spinlock_t bcm947xx_sbh_lock;
static struct nvram_tuple * BCMINITDATA(nvram_hash)[257];
static struct nvram_tuple * nvram_dead;
static int cfe_env;
extern char *cfe_env_get(char *nv_buf, const char *name);
/* Free all tuples. Should be locked. */
static void
BCMINITFN(nvram_free)(void)
/* Convenience */
#define sbh bcm947xx_sbh
#define sbh_lock bcm947xx_sbh_lock
/* Probe for NVRAM header */
static void __init
early_nvram_init(void)
{
uint i;
struct nvram_tuple *t, *next;
struct nvram_header *header;
chipcregs_t *cc;
struct sflash *info = NULL;
int i;
uint32 base, off, lim;
u32 *src, *dst;
/* Free hash table */
for (i = 0; i < ARRAYSIZE(BCMINIT(nvram_hash)); i++) {
for (t = BCMINIT(nvram_hash)[i]; t; t = next) {
next = t->next;
BCMINIT(_nvram_free)(t);
}
BCMINIT(nvram_hash)[i] = NULL;
}
/* Free dead table */
for (t = nvram_dead; t; t = next) {
next = t->next;
BCMINIT(_nvram_free)(t);
}
nvram_dead = NULL;
/* Indicate to per-port code that all tuples have been freed */
BCMINIT(_nvram_free)(NULL);
}
/* String hash */
static INLINE uint
hash(const char *s)
{
uint hash = 0;
while (*s)
hash = 31 * hash + *s++;
return hash;
}
/* (Re)initialize the hash table. Should be locked. */
static int
BCMINITFN(nvram_rehash)(struct nvram_header *header)
{
char buf[] = "0xXXXXXXXX", *name, *value, *end, *eq;
/* (Re)initialize hash table */
BCMINIT(nvram_free)();
/* Parse and set "name=value\0 ... \0\0" */
name = (char *) &header[1];
end = (char *) header + NVRAM_SPACE - 2;
end[0] = end[1] = '\0';
for (; *name; name = value + strlen(value) + 1) {
if (!(eq = strchr(name, '=')))
if ((cc = sb_setcore(sbh, SB_CC, 0)) != NULL) {
base = KSEG1ADDR(SB_FLASH2);
switch (readl(&cc->capabilities) & CC_CAP_FLASH_MASK) {
case PFLASH:
lim = SB_FLASH2_SZ;
break;
*eq = '\0';
value = eq + 1;
BCMINIT(_nvram_set)(name, value);
*eq = '=';
case SFLASH_ST:
case SFLASH_AT:
if ((info = sflash_init(sbh,cc)) == NULL)
return;
lim = info->size;
break;
case FLASH_NONE:
default:
return;
}
} else {
/* extif assumed, Stop at 4 MB */
base = KSEG1ADDR(SB_FLASH1);
lim = SB_FLASH1_SZ;
}
/* Set special SDRAM parameters */
if (!BCMINIT(_nvram_get)("sdram_init")) {
sprintf(buf, "0x%04X", (uint16)(header->crc_ver_init >> 16));
BCMINIT(_nvram_set)("sdram_init", buf);
}
if (!BCMINIT(_nvram_get)("sdram_config")) {
sprintf(buf, "0x%04X", (uint16)(header->config_refresh & 0xffff));
BCMINIT(_nvram_set)("sdram_config", buf);
}
if (!BCMINIT(_nvram_get)("sdram_refresh")) {
sprintf(buf, "0x%04X", (uint16)((header->config_refresh >> 16) & 0xffff));
BCMINIT(_nvram_set)("sdram_refresh", buf);
}
if (!BCMINIT(_nvram_get)("sdram_ncdl")) {
sprintf(buf, "0x%08X", header->config_ncdl);
BCMINIT(_nvram_set)("sdram_ncdl", buf);
/* XXX: hack for supporting the CFE environment stuff on WGT634U */
src = (u32 *) KSEG1ADDR(base + 8 * 1024 * 1024 - 0x2000);
dst = (u32 *) nvram_buf;
if ((lim == 0x02000000) && ((*src & 0xff00ff) == 0x000001)) {
printk("early_nvram_init: WGT634U NVRAM found.\n");
for (i = 0; i < 0x1ff0; i++) {
if (*src == 0xFFFFFFFF)
break;
*dst++ = *src++;
}
cfe_env = 1;
return;
}
return 0;
off = FLASH_MIN;
while (off <= lim) {
/* Windowed flash access */
header = (struct nvram_header *) KSEG1ADDR(base + off - NVRAM_SPACE);
if (header->magic == NVRAM_MAGIC)
goto found;
off <<= 1;
}
/* Try embedded NVRAM at 4 KB and 1 KB as last resorts */
header = (struct nvram_header *) KSEG1ADDR(base + 4 * 1024);
if (header->magic == NVRAM_MAGIC)
goto found;
header = (struct nvram_header *) KSEG1ADDR(base + 1 * 1024);
if (header->magic == NVRAM_MAGIC)
goto found;
printk("early_nvram_init: NVRAM not found\n");
return;
found:
src = (u32 *) header;
dst = (u32 *) nvram_buf;
for (i = 0; i < sizeof(struct nvram_header); i += 4)
*dst++ = *src++;
for (; i < header->len && i < NVRAM_SPACE; i += 4)
*dst++ = ltoh32(*src++);
}
/* Get the value of an NVRAM variable. Should be locked. */
char *
BCMINITFN(_nvram_get)(const char *name)
/* Early (before mm or mtd) read-only access to NVRAM */
static char * __init
early_nvram_get(const char *name)
{
uint i;
struct nvram_tuple *t;
char *value;
char *var, *value, *end, *eq;
if (!name)
return NULL;
/* Hash the name */
i = hash(name) % ARRAYSIZE(BCMINIT(nvram_hash));
/* Too early? */
if (sbh == NULL)
return NULL;
/* Find the associated tuple in the hash table */
for (t = BCMINIT(nvram_hash)[i]; t && strcmp(t->name, name); t = t->next);
if (!nvram_buf[0])
early_nvram_init();
value = t ? t->value : NULL;
if (cfe_env)
return cfe_env_get(nvram_buf, name);
return value;
}
/* Get the value of an NVRAM variable. Should be locked. */
int
BCMINITFN(_nvram_set)(const char *name, const char *value)
{
uint i;
struct nvram_tuple *t, *u, **prev;
/* Hash the name */
i = hash(name) % ARRAYSIZE(BCMINIT(nvram_hash));
/* Find the associated tuple in the hash table */
for (prev = &BCMINIT(nvram_hash)[i], t = *prev; t && strcmp(t->name, name); prev = &t->next, t = *prev);
/* (Re)allocate tuple */
if (!(u = BCMINIT(_nvram_realloc)(t, name, value)))
return -12; /* -ENOMEM */
/* Value reallocated */
if (t && t == u)
return 0;
/* Move old tuple to the dead table */
if (t) {
*prev = t->next;
t->next = nvram_dead;
nvram_dead = t;
/* Look for name=value and return value */
var = &nvram_buf[sizeof(struct nvram_header)];
end = nvram_buf + sizeof(nvram_buf) - 2;
end[0] = end[1] = '\0';
for (; *var; var = value + strlen(value) + 1) {
if (!(eq = strchr(var, '=')))
break;
value = eq + 1;
if ((eq - var) == strlen(name) && strncmp(var, name, (eq - var)) == 0)
return value;
}
/* Add new tuple to the hash table */
u->next = BCMINIT(nvram_hash)[i];
BCMINIT(nvram_hash)[i] = u;
return 0;
return NULL;
}
/* Unset the value of an NVRAM variable. Should be locked. */
int
BCMINITFN(_nvram_unset)(const char *name)
static int __init
early_nvram_getall(char *buf, int count)
{
uint i;
struct nvram_tuple *t, **prev;
if (!name)
return 0;
/* Hash the name */
i = hash(name) % ARRAYSIZE(BCMINIT(nvram_hash));
/* Find the associated tuple in the hash table */
for (prev = &BCMINIT(nvram_hash)[i], t = *prev; t && strcmp(t->name, name); prev = &t->next, t = *prev);
/* Move it to the dead table */
if (t) {
*prev = t->next;
t->next = nvram_dead;
nvram_dead = t;
}
return 0;
}
/* Get all NVRAM variables. Should be locked. */
int
BCMINITFN(_nvram_getall)(char *buf, int count)
{
uint i;
struct nvram_tuple *t;
char *var, *end;
int len = 0;
/* Too early? */
if (sbh == NULL)
return -1;
if (!nvram_buf[0])
early_nvram_init();
bzero(buf, count);
/* Write name=value\0 ... \0\0 */
for (i = 0; i < ARRAYSIZE(BCMINIT(nvram_hash)); i++) {
for (t = BCMINIT(nvram_hash)[i]; t; t = t->next) {
if ((count - len) > (strlen(t->name) + 1 + strlen(t->value) + 1))
len += sprintf(buf + len, "%s=%s", t->name, t->value) + 1;
else
break;
}
var = &nvram_buf[sizeof(struct nvram_header)];
end = nvram_buf + sizeof(nvram_buf) - 2;
end[0] = end[1] = '\0';
for (; *var; var += strlen(var) + 1) {
if ((count - len) <= (strlen(var) + 1))
break;
len += sprintf(buf + len, "%s", var) + 1;
}
return 0;
}
/* Regenerate NVRAM. Should be locked. */
int
BCMINITFN(_nvram_commit)(struct nvram_header *header)
char *
nvram_get(const char *name)
{
char *init, *config, *refresh, *ncdl;
char *ptr, *end;
int i;
struct nvram_tuple *t;
struct nvram_header tmp;
uint8 crc;
/* Regenerate header */
header->magic = NVRAM_MAGIC;
header->crc_ver_init = (NVRAM_VERSION << 8);
if (!(init = BCMINIT(_nvram_get)("sdram_init")) ||
!(config = BCMINIT(_nvram_get)("sdram_config")) ||
!(refresh = BCMINIT(_nvram_get)("sdram_refresh")) ||
!(ncdl = BCMINIT(_nvram_get)("sdram_ncdl"))) {
header->crc_ver_init |= SDRAM_INIT << 16;
header->config_refresh = SDRAM_CONFIG;
header->config_refresh |= SDRAM_REFRESH << 16;
header->config_ncdl = 0;
} else {
header->crc_ver_init |= (simple_strtoul(init, NULL, 0) & 0xffff) << 16;
header->config_refresh = simple_strtoul(config, NULL, 0) & 0xffff;
header->config_refresh |= (simple_strtoul(refresh, NULL, 0) & 0xffff) << 16;
header->config_ncdl = simple_strtoul(ncdl, NULL, 0);
}
/* Clear data area */
ptr = (char *) header + sizeof(struct nvram_header);
bzero(ptr, NVRAM_SPACE - sizeof(struct nvram_header));
/* Leave space for a double NUL at the end */
end = (char *) header + NVRAM_SPACE - 2;
/* Write out all tuples */
for (i = 0; i < ARRAYSIZE(BCMINIT(nvram_hash)); i++) {
for (t = BCMINIT(nvram_hash)[i]; t; t = t->next) {
if ((ptr + strlen(t->name) + 1 + strlen(t->value) + 1) > end)
break;
ptr += sprintf(ptr, "%s=%s", t->name, t->value) + 1;
}
}
/* End with a double NUL */
ptr += 2;
/* Set new length */
header->len = ROUNDUP(ptr - (char *) header, 4);
/* Little-endian CRC8 over the last 11 bytes of the header */
tmp.crc_ver_init = htol32(header->crc_ver_init);
tmp.config_refresh = htol32(header->config_refresh);
tmp.config_ncdl = htol32(header->config_ncdl);
crc = hndcrc8((char *) &tmp + 9, sizeof(struct nvram_header) - 9, 0xff);
/* Continue CRC8 over data bytes */
crc = hndcrc8((char *) &header[1], header->len - sizeof(struct nvram_header), crc);
/* Set new CRC8 */
header->crc_ver_init |= crc;
/* Reinitialize hash table */
return BCMINIT(nvram_rehash)(header);
return early_nvram_get(name);
}
/* Initialize hash table. Should be locked. */
int
BCMINITFN(_nvram_init)(void)
int
nvram_getall(char *buf, int count)
{
struct nvram_header *header;
unsigned long flags;
int ret;
if (!(header = (struct nvram_header *) kmalloc(NVRAM_SPACE, GFP_ATOMIC))) {
return -12; /* -ENOMEM */
}
if ((ret = BCMINIT(_nvram_read)(header)) == 0 &&
header->magic == NVRAM_MAGIC)
BCMINIT(nvram_rehash)(header);
kfree(header);
return ret;
}
/* Free hash table. Should be locked. */
void
BCMINITFN(_nvram_exit)(void)
{
BCMINIT(nvram_free)();
return early_nvram_getall(buf, count);
}
/*
@ -331,8 +228,7 @@ getvar(char *vars, const char *name)
if ((memcmp(s, name, len) == 0) && (s[len] == '='))
return (&s[len+1]);
while (*s++)
;
while (*s++);
}
/* then query nvram */
@ -354,4 +250,3 @@ getintvar(char *vars, const char *name)
return (simple_strtoul(val, NULL, 0));
}

View File

@ -1,721 +0,0 @@
/*
* NVRAM variable manipulation (Linux kernel half)
*
* Copyright 2006, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
*/
#include <linux/config.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/wrapper.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/mtd/mtd.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <typedefs.h>
#include <osl.h>
#include <bcmendian.h>
#include <bcmnvram.h>
#include <sbconfig.h>
#include <sbchipc.h>
#include <sbutils.h>
#include <hndmips.h>
#include <sflash.h>
/* In BSS to minimize text size and page aligned so it can be mmap()-ed */
static char nvram_buf[NVRAM_SPACE] __attribute__((aligned(PAGE_SIZE)));
#ifdef MODULE
#define early_nvram_get(name) nvram_get(name)
#else /* !MODULE */
/* Global SB handle */
extern void *bcm947xx_sbh;
extern spinlock_t bcm947xx_sbh_lock;
static int cfe_env;
extern char *cfe_env_get(char *nv_buf, const char *name);
/* Convenience */
#define sbh bcm947xx_sbh
#define sbh_lock bcm947xx_sbh_lock
#define KB * 1024
#define MB * 1024 * 1024
/* Probe for NVRAM header */
static void __init
early_nvram_init(void)
{
struct nvram_header *header;
chipcregs_t *cc;
struct sflash *info = NULL;
int i;
uint32 base, off, lim;
u32 *src, *dst;
if ((cc = sb_setcore(sbh, SB_CC, 0)) != NULL) {
base = KSEG1ADDR(SB_FLASH2);
switch (readl(&cc->capabilities) & CC_CAP_FLASH_MASK) {
case PFLASH:
lim = SB_FLASH2_SZ;
break;
case SFLASH_ST:
case SFLASH_AT:
if ((info = sflash_init(sbh,cc)) == NULL)
return;
lim = info->size;
break;
case FLASH_NONE:
default:
return;
}
} else {
/* extif assumed, Stop at 4 MB */
base = KSEG1ADDR(SB_FLASH1);
lim = SB_FLASH1_SZ;
}
/* XXX: hack for supporting the CFE environment stuff on WGT634U */
src = (u32 *) KSEG1ADDR(base + 8 * 1024 * 1024 - 0x2000);
dst = (u32 *) nvram_buf;
if ((lim == 0x02000000) && ((*src & 0xff00ff) == 0x000001)) {
printk("early_nvram_init: WGT634U NVRAM found.\n");
for (i = 0; i < 0x1ff0; i++) {
if (*src == 0xFFFFFFFF)
break;
*dst++ = *src++;
}
cfe_env = 1;
return;
}
off = FLASH_MIN;
while (off <= lim) {
/* Windowed flash access */
header = (struct nvram_header *) KSEG1ADDR(base + off - NVRAM_SPACE);
if (header->magic == NVRAM_MAGIC)
goto found;
off <<= 1;
}
/* Try embedded NVRAM at 4 KB and 1 KB as last resorts */
header = (struct nvram_header *) KSEG1ADDR(base + 4 KB);
if (header->magic == NVRAM_MAGIC)
goto found;
header = (struct nvram_header *) KSEG1ADDR(base + 1 KB);
if (header->magic == NVRAM_MAGIC)
goto found;
printk("early_nvram_init: NVRAM not found\n");
return;
found:
src = (u32 *) header;
dst = (u32 *) nvram_buf;
for (i = 0; i < sizeof(struct nvram_header); i += 4)
*dst++ = *src++;
for (; i < header->len && i < NVRAM_SPACE; i += 4)
*dst++ = ltoh32(*src++);
}
/* Early (before mm or mtd) read-only access to NVRAM */
static char * __init
early_nvram_get(const char *name)
{
char *var, *value, *end, *eq;
if (!name)
return NULL;
/* Too early? */
if (sbh == NULL)
return NULL;
if (!nvram_buf[0])
early_nvram_init();
if (cfe_env)
return cfe_env_get(nvram_buf, name);
/* Look for name=value and return value */
var = &nvram_buf[sizeof(struct nvram_header)];
end = nvram_buf + sizeof(nvram_buf) - 2;
end[0] = end[1] = '\0';
for (; *var; var = value + strlen(value) + 1) {
if (!(eq = strchr(var, '=')))
break;
value = eq + 1;
if ((eq - var) == strlen(name) && strncmp(var, name, (eq - var)) == 0)
return value;
}
return NULL;
}
static int __init
early_nvram_getall(char *buf, int count)
{
char *var, *end;
int len = 0;
/* Too early? */
if (sbh == NULL)
return -1;
if (!nvram_buf[0])
early_nvram_init();
bzero(buf, count);
/* Write name=value\0 ... \0\0 */
var = &nvram_buf[sizeof(struct nvram_header)];
end = nvram_buf + sizeof(nvram_buf) - 2;
end[0] = end[1] = '\0';
for (; *var; var += strlen(var) + 1) {
if ((count - len) <= (strlen(var) + 1))
break;
len += sprintf(buf + len, "%s", var) + 1;
}
return 0;
}
#endif /* !MODULE */
extern char * _nvram_get(const char *name);
extern int _nvram_set(const char *name, const char *value);
extern int _nvram_unset(const char *name);
extern int _nvram_getall(char *buf, int count);
extern int _nvram_commit(struct nvram_header *header);
extern int _nvram_init(void *sbh);
extern void _nvram_exit(void);
/* Globals */
static spinlock_t nvram_lock = SPIN_LOCK_UNLOCKED;
static struct semaphore nvram_sem;
static unsigned long nvram_offset = 0;
static int nvram_major = -1;
static devfs_handle_t nvram_handle = NULL;
static struct mtd_info *nvram_mtd = NULL;
int
_nvram_read(char *buf)
{
struct nvram_header *header = (struct nvram_header *) buf;
size_t len;
if (!nvram_mtd ||
MTD_READ(nvram_mtd, nvram_mtd->size - NVRAM_SPACE, NVRAM_SPACE, &len, buf) ||
len != NVRAM_SPACE ||
header->magic != NVRAM_MAGIC) {
/* Maybe we can recover some data from early initialization */
memcpy(buf, nvram_buf, NVRAM_SPACE);
}
return 0;
}
struct nvram_tuple *
_nvram_realloc(struct nvram_tuple *t, const char *name, const char *value)
{
if ((nvram_offset + strlen(value) + 1) > NVRAM_SPACE)
return NULL;
if (!t) {
if (!(t = kmalloc(sizeof(struct nvram_tuple) + strlen(name) + 1, GFP_ATOMIC)))
return NULL;
/* Copy name */
t->name = (char *) &t[1];
strcpy(t->name, name);
t->value = NULL;
}
/* Copy value */
if (!t->value || strcmp(t->value, value)) {
t->value = &nvram_buf[nvram_offset];
strcpy(t->value, value);
nvram_offset += strlen(value) + 1;
}
return t;
}
void
_nvram_free(struct nvram_tuple *t)
{
if (!t)
nvram_offset = 0;
else
kfree(t);
}
int
nvram_set(const char *name, const char *value)
{
unsigned long flags;
int ret;
struct nvram_header *header;
spin_lock_irqsave(&nvram_lock, flags);
if ((ret = _nvram_set(name, value))) {
/* Consolidate space and try again */
if ((header = kmalloc(NVRAM_SPACE, GFP_ATOMIC))) {
if (_nvram_commit(header) == 0)
ret = _nvram_set(name, value);
kfree(header);
}
}
spin_unlock_irqrestore(&nvram_lock, flags);
return ret;
}
char *
real_nvram_get(const char *name)
{
unsigned long flags;
char *value;
spin_lock_irqsave(&nvram_lock, flags);
value = _nvram_get(name);
spin_unlock_irqrestore(&nvram_lock, flags);
return value;
}
char *
nvram_get(const char *name)
{
if (nvram_major >= 0)
return real_nvram_get(name);
else
return early_nvram_get(name);
}
int
nvram_unset(const char *name)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nvram_lock, flags);
ret = _nvram_unset(name);
spin_unlock_irqrestore(&nvram_lock, flags);
return ret;
}
static void
erase_callback(struct erase_info *done)
{
wait_queue_head_t *wait_q = (wait_queue_head_t *) done->priv;
wake_up(wait_q);
}
int
nvram_commit(void)
{
char *buf;
size_t erasesize, len, magic_len;
unsigned int i;
int ret;
struct nvram_header *header;
unsigned long flags;
u_int32_t offset;
DECLARE_WAITQUEUE(wait, current);
wait_queue_head_t wait_q;
struct erase_info erase;
u_int32_t magic_offset = 0; /* Offset for writing MAGIC # */
if (!nvram_mtd) {
printk("nvram_commit: NVRAM not found\n");
return -ENODEV;
}
if (in_interrupt()) {
printk("nvram_commit: not committing in interrupt\n");
return -EINVAL;
}
/* Backup sector blocks to be erased */
erasesize = ROUNDUP(NVRAM_SPACE, nvram_mtd->erasesize);
if (!(buf = kmalloc(erasesize, GFP_KERNEL))) {
printk("nvram_commit: out of memory\n");
return -ENOMEM;
}
down(&nvram_sem);
if ((i = erasesize - NVRAM_SPACE) > 0) {
offset = nvram_mtd->size - erasesize;
len = 0;
ret = MTD_READ(nvram_mtd, offset, i, &len, buf);
if (ret || len != i) {
printk("nvram_commit: read error ret = %d, len = %d/%d\n", ret, len, i);
ret = -EIO;
goto done;
}
header = (struct nvram_header *)(buf + i);
magic_offset = i + ((void *)&header->magic - (void *)header);
} else {
offset = nvram_mtd->size - NVRAM_SPACE;
magic_offset = ((void *)&header->magic - (void *)header);
header = (struct nvram_header *)buf;
}
/* clear the existing magic # to mark the NVRAM as unusable
we can pull MAGIC bits low without erase */
header->magic = NVRAM_CLEAR_MAGIC; /* All zeros magic */
/* Unlock sector blocks (for Intel 28F320C3B flash) , 20060309 */
if(nvram_mtd->unlock)
nvram_mtd->unlock(nvram_mtd, offset, nvram_mtd->erasesize);
ret = MTD_WRITE(nvram_mtd, offset + magic_offset, sizeof(header->magic),
&magic_len, (char *)&header->magic);
if (ret || magic_len != sizeof(header->magic)) {
printk("nvram_commit: clear MAGIC error\n");
ret = -EIO;
goto done;
}
header->magic = NVRAM_MAGIC; /* reset MAGIC before we regenerate the NVRAM,
otherwise we'll have an incorrect CRC */
/* Regenerate NVRAM */
spin_lock_irqsave(&nvram_lock, flags);
ret = _nvram_commit(header);
spin_unlock_irqrestore(&nvram_lock, flags);
if (ret)
goto done;
/* Erase sector blocks */
init_waitqueue_head(&wait_q);
for (; offset < nvram_mtd->size - NVRAM_SPACE + header->len; offset += nvram_mtd->erasesize) {
erase.mtd = nvram_mtd;
erase.addr = offset;
erase.len = nvram_mtd->erasesize;
erase.callback = erase_callback;
erase.priv = (u_long) &wait_q;
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&wait_q, &wait);
/* Unlock sector blocks */
if (nvram_mtd->unlock)
nvram_mtd->unlock(nvram_mtd, offset, nvram_mtd->erasesize);
if ((ret = MTD_ERASE(nvram_mtd, &erase))) {
set_current_state(TASK_RUNNING);
remove_wait_queue(&wait_q, &wait);
printk("nvram_commit: erase error\n");
goto done;
}
/* Wait for erase to finish */
schedule();
remove_wait_queue(&wait_q, &wait);
}
/* Write partition up to end of data area */
header->magic = NVRAM_INVALID_MAGIC; /* All ones magic */
offset = nvram_mtd->size - erasesize;
i = erasesize - NVRAM_SPACE + header->len;
ret = MTD_WRITE(nvram_mtd, offset, i, &len, buf);
if (ret || len != i) {
printk("nvram_commit: write error\n");
ret = -EIO;
goto done;
}
/* Now mark the NVRAM in flash as "valid" by setting the correct
MAGIC # */
header->magic = NVRAM_MAGIC;
ret = MTD_WRITE(nvram_mtd, offset + magic_offset, sizeof(header->magic),
&magic_len, (char *)&header->magic);
if (ret || magic_len != sizeof(header->magic)) {
printk("nvram_commit: write MAGIC error\n");
ret = -EIO;
goto done;
}
/*
* Reading a few bytes back here will put the device
* back to the correct mode on certain flashes */
offset = nvram_mtd->size - erasesize;
ret = MTD_READ(nvram_mtd, offset, 4, &len, buf);
done:
up(&nvram_sem);
kfree(buf);
return ret;
}
int
nvram_getall(char *buf, int count)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nvram_lock, flags);
if (nvram_major >= 0)
ret = _nvram_getall(buf, count);
else
ret = early_nvram_getall(buf, count);
spin_unlock_irqrestore(&nvram_lock, flags);
return ret;
}
/* User mode interface below */
static ssize_t
dev_nvram_read(struct file *file, char *buf, size_t count, loff_t *ppos)
{
char tmp[100], *name = tmp, *value;
ssize_t ret;
unsigned long off;
if (count > sizeof(tmp)) {
if (!(name = kmalloc(count, GFP_KERNEL)))
return -ENOMEM;
}
if (copy_from_user(name, buf, count)) {
ret = -EFAULT;
goto done;
}
if (*name == '\0') {
/* Get all variables */
ret = nvram_getall(name, count);
if (ret == 0) {
if (copy_to_user(buf, name, count)) {
ret = -EFAULT;
goto done;
}
ret = count;
}
} else {
if (!(value = nvram_get(name))) {
ret = 0;
goto done;
}
/* Provide the offset into mmap() space */
off = (unsigned long) value - (unsigned long) nvram_buf;
if (put_user(off, (unsigned long *) buf)) {
ret = -EFAULT;
goto done;
}
ret = sizeof(unsigned long);
}
flush_cache_all();
done:
if (name != tmp)
kfree(name);
return ret;
}
static ssize_t
dev_nvram_write(struct file *file, const char *buf, size_t count, loff_t *ppos)
{
char tmp[100], *name = tmp, *value;
ssize_t ret;
if (count > sizeof(tmp)) {
if (!(name = kmalloc(count, GFP_KERNEL)))
return -ENOMEM;
}
if (copy_from_user(name, buf, count)) {
ret = -EFAULT;
goto done;
}
value = name;
name = strsep(&value, "=");
if (value)
ret = nvram_set(name, value) ? : count;
else
ret = nvram_unset(name) ? : count;
done:
if (name != tmp)
kfree(name);
return ret;
}
static int
dev_nvram_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
if (cmd != NVRAM_MAGIC)
return -EINVAL;
return nvram_commit();
}
static int
dev_nvram_mmap(struct file *file, struct vm_area_struct *vma)
{
unsigned long offset = virt_to_phys(nvram_buf);
if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start,
vma->vm_page_prot))
return -EAGAIN;
return 0;
}
static int
dev_nvram_open(struct inode *inode, struct file * file)
{
MOD_INC_USE_COUNT;
return 0;
}
static int
dev_nvram_release(struct inode *inode, struct file * file)
{
MOD_DEC_USE_COUNT;
return 0;
}
static struct file_operations dev_nvram_fops = {
owner: THIS_MODULE,
open: dev_nvram_open,
release: dev_nvram_release,
read: dev_nvram_read,
write: dev_nvram_write,
ioctl: dev_nvram_ioctl,
mmap: dev_nvram_mmap,
};
static void
dev_nvram_exit(void)
{
int order = 0;
struct page *page, *end;
if (nvram_handle)
devfs_unregister(nvram_handle);
if (nvram_major >= 0)
devfs_unregister_chrdev(nvram_major, "nvram");
if (nvram_mtd)
put_mtd_device(nvram_mtd);
while ((PAGE_SIZE << order) < NVRAM_SPACE)
order++;
end = virt_to_page(nvram_buf + (PAGE_SIZE << order) - 1);
for (page = virt_to_page(nvram_buf); page <= end; page++)
mem_map_unreserve(page);
_nvram_exit();
}
static int __init
dev_nvram_init(void)
{
int order = 0, ret = 0;
struct page *page, *end;
unsigned int i;
/* Allocate and reserve memory to mmap() */
while ((PAGE_SIZE << order) < NVRAM_SPACE)
order++;
end = virt_to_page(nvram_buf + (PAGE_SIZE << order) - 1);
for (page = virt_to_page(nvram_buf); page <= end; page++)
mem_map_reserve(page);
#ifdef CONFIG_MTD
/* Find associated MTD device */
for (i = 0; i < MAX_MTD_DEVICES; i++) {
nvram_mtd = get_mtd_device(NULL, i);
if (nvram_mtd) {
if (!strcmp(nvram_mtd->name, "nvram") &&
nvram_mtd->size >= NVRAM_SPACE)
break;
put_mtd_device(nvram_mtd);
}
}
if (i >= MAX_MTD_DEVICES)
nvram_mtd = NULL;
#endif
/* Initialize hash table lock */
spin_lock_init(&nvram_lock);
/* Initialize commit semaphore */
init_MUTEX(&nvram_sem);
/* Register char device */
if ((nvram_major = devfs_register_chrdev(0, "nvram", &dev_nvram_fops)) < 0) {
ret = nvram_major;
goto err;
}
/* Initialize hash table */
_nvram_init(sbh);
/* Create /dev/nvram handle */
nvram_handle = devfs_register(NULL, "nvram", DEVFS_FL_NONE, nvram_major, 0,
S_IFCHR | S_IRUSR | S_IWUSR | S_IRGRP, &dev_nvram_fops, NULL);
/* Set the SDRAM NCDL value into NVRAM if not already done */
if (getintvar(NULL, "sdram_ncdl") == 0) {
unsigned int ncdl;
char buf[] = "0x00000000";
if ((ncdl = sb_memc_get_ncdl(sbh))) {
sprintf(buf, "0x%08x", ncdl);
nvram_set("sdram_ncdl", buf);
nvram_commit();
}
}
return 0;
err:
dev_nvram_exit();
return ret;
}
module_init(dev_nvram_init);
module_exit(dev_nvram_exit);