1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-26 15:31:06 +02:00

upgrade to broadcom-wl 4.150.10.5.2

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@10749 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
nbd 2008-04-07 00:24:19 +00:00
parent 2d002f537b
commit 29c37a4647
7 changed files with 13 additions and 1476 deletions

View File

@ -10,13 +10,13 @@ include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/kernel.mk
PKG_NAME:=broadcom-wl
PKG_VERSION:=4.150.10.5.1
PKG_VERSION:=4.150.10.5.2
PKG_RELEASE:=1
WLC_VERSION:=0.1
PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.bz2
PKG_SOURCE_URL:=http://downloads.openwrt.org/sources
PKG_MD5SUM:=13cffebdcc08ef87673fbc02b2d56d52
PKG_MD5SUM:=904a808dd98da076814fb7cb4b66a695
WL_WEXT=1
@ -101,6 +101,7 @@ endef
define Package/wl
$(call Package/broadcom-wl/Default)
DEPENDS+= +nvram
TITLE:=Proprietary Broadcom wl driver config utility
endef
@ -111,7 +112,7 @@ endef
define Package/nas
$(call Package/broadcom-wl/Default)
DEPENDS+= +nvram
DEPENDS+= +nvram
TITLE:=Proprietary Broadcom WPA/WPA2 authenticator
endef
@ -155,7 +156,12 @@ define Build/Compile
$(TARGET_CONFIGURE_OPTS) \
CFLAGS="$(TARGET_CFLAGS)" \
all
$(TARGET_CC) -o $(PKG_BUILD_DIR)/nas $(PKG_BUILD_DIR)/nas_exe.o -L$(STAGING_DIR)/usr/lib -lnvram
# Compile libshared
$(MAKE) -C $(PKG_BUILD_DIR)/router/shared \
$(TARGET_CONFIGURE_OPTS) \
CFLAGS="$(TARGET_CFLAGS) -I. -I$(PKG_BUILD_DIR)/include -Dlinux=1" \
all
$(TARGET_CC) -o $(PKG_BUILD_DIR)/nas $(PKG_BUILD_DIR)/nas_exe.o -L$(STAGING_DIR)/usr/lib -lnvram $(PKG_BUILD_DIR)/router/shared/libshared.a
$(TARGET_CC) -o $(PKG_BUILD_DIR)/wl $(PKG_BUILD_DIR)/wl_exe.o
endef

View File

@ -31,14 +31,14 @@ endef
define Build/InstallDev
mkdir -p $(1)/usr/lib
$(CP) $(PKG_BUILD_DIR)/lib{nvram,shared}*.so $(1)/usr/lib/
$(CP) $(PKG_BUILD_DIR)/libnvram*.so $(1)/usr/lib/
endef
define Package/nvram/install
$(INSTALL_DIR) $(1)/etc/init.d
$(INSTALL_BIN) ./files/nvram.init $(1)/etc/init.d/nvram
$(INSTALL_DIR) $(1)/usr/lib
$(CP) $(PKG_BUILD_DIR)/lib{nvram,shared}*.so $(1)/usr/lib/
$(CP) $(PKG_BUILD_DIR)/libnvram*.so $(1)/usr/lib/
$(INSTALL_DIR) $(1)/usr/sbin
$(INSTALL_BIN) $(PKG_BUILD_DIR)/nvram $(1)/usr/sbin/
endef

View File

@ -1,16 +1,12 @@
# $Id$
LIBSHARED_OBJS := shutils.o wl.o linux_timer.o
LIBNVRAM_OBJS := nvram.o
all: libshared.so libnvram.so nvram
all: libnvram.so nvram
%.o: %.c
$(CC) $(CFLAGS) $(EXTRA_CFLAGS) -c -I. -Iinclude -o $@ $^
libshared.so: $(LIBSHARED_OBJS)
$(CC) -shared -o $@ $^
libnvram.so: $(LIBNVRAM_OBJS)
$(CC) -shared -o $@ $^

View File

@ -1,42 +0,0 @@
/*
* Copyright 2004, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* Low resolution timer interface. Timer handlers may be called
* in a deferred manner in a different task context after the
* timer expires or in the task context from which the timer
* was created, depending on the implementation.
*
* $Id$
*/
#ifndef __bcmtimer_h__
#define __bcmtimer_h__
/* ANSI headers */
#include <time.h>
/* timer ID */
typedef unsigned int bcm_timer_module_id;
typedef unsigned int bcm_timer_id;
/* timer callback */
typedef void (*bcm_timer_cb)(bcm_timer_id id, int data);
/* OS-independant interfaces, applications should call these functions only */
int bcm_timer_module_init(int timer_entries, bcm_timer_module_id *module_id);
int bcm_timer_module_cleanup(bcm_timer_module_id module_id);
int bcm_timer_module_enable(bcm_timer_module_id module_id, int enable);
int bcm_timer_create(bcm_timer_module_id module_id, bcm_timer_id *timer_id);
int bcm_timer_delete(bcm_timer_id timer_id);
int bcm_timer_gettime(bcm_timer_id timer_id, struct itimerspec *value);
int bcm_timer_settime(bcm_timer_id timer_id, const struct itimerspec *value);
int bcm_timer_connect(bcm_timer_id timer_id, bcm_timer_cb func, int data);
int bcm_timer_cancel(bcm_timer_id timer_id);
int bcm_timer_change_expirytime(bcm_timer_id timer_id, const struct itimerspec *timer_spec);
#endif /* #ifndef __bcmtimer_h__ */

View File

@ -1,738 +0,0 @@
/*
* Copyright 2004, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* Low resolution timer interface linux specific implementation.
*
* $Id$
*/
/*
* debug facilities
*/
#define TIMER_DEBUG 0
#if TIMER_DEBUG
#define TIMERDBG(fmt, args...) printf("%s: " fmt "\n" , __FUNCTION__ , ## args)
#else
#define TIMERDBG(fmt, args...)
#endif
/*
* POSIX timer support for Linux. Taken from linux_timer.c in upnp
*/
#define __USE_GNU
#include <stdlib.h> // for malloc, free, etc.
#include <string.h> // for memset, strncasecmp, etc.
#include <assert.h> // for assert, of course.
#include <signal.h> // for sigemptyset, etc.
#include <stdio.h> // for printf, etc.
#include <sys/time.h>
#include <time.h>
/* define TIMER_PROFILE to enable code which guages how accurate the timer functions are.
For each expiring timer the code will print the expected time interval and the actual time interval.
#define TIMER_PROFILE
*/
#undef TIMER_PROFILE
/*
timer_cancel( ) - cancel a timer
timer_connect( ) - connect a user routine to the timer signal
timer_create( ) - allocate a timer using the specified clock for a timing base (POSIX)
timer_delete( ) - remove a previously created timer (POSIX)
timer_gettime( ) - get the remaining time before expiration and the reload value (POSIX)
timer_getoverrun( ) - return the timer expiration overrun (POSIX)
timer_settime( ) - set the time until the next expiration and arm timer (POSIX)
nanosleep( ) - suspend the current task until the time interval elapses (POSIX)
*/
#define MS_PER_SEC 1000
#define US_PER_SEC 1000000
#define US_PER_MS 1000
#define UCLOCKS_PER_SEC 1000000
typedef void (*event_callback_t)(timer_t, int);
#ifndef TIMESPEC_TO_TIMEVAL
# define TIMESPEC_TO_TIMEVAL(tv, ts) { \
(tv)->tv_sec = (ts)->tv_sec; \
(tv)->tv_usec = (ts)->tv_nsec / 1000; \
}
#endif
#ifndef TIMEVAL_TO_TIMESPEC
# define TIMEVAL_TO_TIMESPEC(tv, ts) { \
(ts)->tv_sec = (tv)->tv_sec; \
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
}
#endif
#define ROUNDUP(x,y) ((((x)+(y)-1)/(y))*(y))
#define timerroundup(t,g) \
do { \
if (!timerisset(t)) (t)->tv_usec=1; \
if ((t)->tv_sec == 0) (t)->tv_usec=ROUNDUP((t)->tv_usec, g); \
} while (0)
typedef long uclock_t;
#define TFLAG_NONE 0
#define TFLAG_CANCELLED (1<<0)
#define TFLAG_DELETED (1<<1)
struct event {
struct timeval it_interval;
struct timeval it_value;
event_callback_t func;
int arg;
unsigned short flags;
struct event *next;
#ifdef TIMER_PROFILE
uint expected_ms;
uclock_t start;
#endif
};
void timer_cancel(timer_t timerid);
static void alarm_handler(int i);
static void check_event_queue();
static void print_event_queue();
static void check_timer();
#if THIS_FINDS_USE
static int count_queue(struct event *);
#endif
static int timer_change_settime(timer_t timer_id, const struct itimerspec *timer_spec);
void block_timer();
void unblock_timer();
static struct event *event_queue = NULL;
static struct event *event_freelist;
static uint g_granularity;
static int g_maxevents = 0;
uclock_t uclock()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return ((tv.tv_sec * US_PER_SEC) + tv.tv_usec);
}
void init_event_queue(int n)
{
int i;
struct itimerval tv;
g_maxevents = n;
event_freelist = (struct event *) malloc(n * sizeof(struct event));
memset(event_freelist, 0, n * sizeof(struct event));
for (i = 0; i < (n-1); i++)
event_freelist[i].next = &event_freelist[i+1];
event_freelist[i].next = NULL;
tv.it_interval.tv_sec = 0;
tv.it_interval.tv_usec = 1;
tv.it_value.tv_sec = 0;
tv.it_value.tv_usec = 0;
setitimer (ITIMER_REAL, &tv, 0);
setitimer (ITIMER_REAL, 0, &tv);
g_granularity = tv.it_interval.tv_usec;
signal(SIGALRM, alarm_handler);
}
int clock_gettime(
clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */
struct timespec * tp /* where to store current time */
)
{
struct timeval tv;
int n;
n = gettimeofday(&tv, NULL);
TIMEVAL_TO_TIMESPEC(&tv, tp);
return n;
}
int timer_create(
clockid_t clock_id, /* clock ID (always CLOCK_REALTIME) */
struct sigevent * evp, /* user event handler */
timer_t * pTimer /* ptr to return value */
)
{
struct event *event;
if (clock_id != CLOCK_REALTIME) {
TIMERDBG("timer_create can only support clock id CLOCK_REALTIME");
exit(1);
}
if (evp != NULL) {
if (evp->sigev_notify != SIGEV_SIGNAL || evp->sigev_signo != SIGALRM) {
TIMERDBG("timer_create can only support signalled alarms using SIGALRM");
exit(1);
}
}
event = event_freelist;
if (event == NULL) {
print_event_queue();
}
assert(event != NULL);
event->flags = TFLAG_NONE;
event_freelist = event->next;
event->next = NULL;
check_event_queue();
*pTimer = (timer_t) event;
return 0;
}
int timer_delete(
timer_t timerid /* timer ID */
)
{
struct event *event = (struct event *) timerid;
if (event->flags & TFLAG_DELETED) {
TIMERDBG("Cannot delete a deleted event");
return 1;
}
timer_cancel(timerid);
event->flags |= TFLAG_DELETED;
event->next = event_freelist;
event_freelist = event;
return 0;
}
int timer_connect
(
timer_t timerid, /* timer ID */
void (*routine)(timer_t, int), /* user routine */
int arg /* user argument */
)
{
struct event *event = (struct event *) timerid;
assert(routine != NULL);
event->func = routine;
event->arg = arg;
return 0;
}
/*
* Please Call this function only from the call back functions of the alarm_handler.
* This is just a hack
*/
int timer_change_settime
(
timer_t timerid, /* timer ID */
const struct itimerspec * value /* time to be set */
)
{
struct event *event = (struct event *) timerid;
TIMESPEC_TO_TIMEVAL(&event->it_interval, &value->it_interval);
TIMESPEC_TO_TIMEVAL(&event->it_value, &value->it_value);
return 1;
}
int timer_settime
(
timer_t timerid, /* timer ID */
int flags, /* absolute or relative */
const struct itimerspec * value, /* time to be set */
struct itimerspec * ovalue /* previous time set (NULL=no result) */
)
{
struct itimerval itimer;
struct event *event = (struct event *) timerid;
struct event **ppevent;
TIMESPEC_TO_TIMEVAL(&event->it_interval, &value->it_interval);
TIMESPEC_TO_TIMEVAL(&event->it_value, &value->it_value);
/* if .it_value is zero, the timer is disarmed */
if (!timerisset(&event->it_value)) {
timer_cancel(timerid);
return 0;
}
block_timer();
#ifdef TIMER_PROFILE
event->expected_ms = (event->it_value.tv_sec * MS_PER_SEC) + (event->it_value.tv_usec / US_PER_MS);
event->start = uclock();
#endif
if (event->next) {
TIMERDBG("calling timer_settime with a timer that is already on the queue.");
}
/* We always want to make sure that the event at the head of the
queue has a timeout greater than the itimer granularity.
Otherwise we end up with the situation that the time remaining
on an itimer is greater than the time at the head of the queue
in the first place. */
timerroundup(&event->it_value, g_granularity);
timerclear(&itimer.it_value);
getitimer(ITIMER_REAL, &itimer);
if (timerisset(&itimer.it_value)) {
// reset the top timer to have an interval equal to the remaining interval
// when the timer was cancelled.
if (event_queue) {
if (timercmp(&(itimer.it_value), &(event_queue->it_value), >)) {
// it is an error if the amount of time remaining is more than the amount of time
// requested by the top event.
//
TIMERDBG("timer_settime: TIMER ERROR!");
} else {
// some portion of the top event has already expired.
// Reset the interval of the top event to remaining
// time left in that interval.
//
event_queue->it_value = itimer.it_value;
// if we were the earliest timer before now, we are still the earliest timer now.
// we do not need to reorder the list.
}
}
}
// Now, march down the list, decrementing the new timer by the
// current it_value of each event on the queue.
ppevent = &event_queue;
while (*ppevent) {
if ( timercmp(&(event->it_value), &((*ppevent)->it_value), <) ) {
// if the proposed event will trigger sooner than the next event
// in the queue, we will insert the new event just before the next one.
//
// we also need to adjust the delta value to the next event.
timersub(&((*ppevent)->it_value), &(event->it_value), &((*ppevent)->it_value));
break;
}
// subtract the interval of the next event from the proposed interval.
timersub(&(event->it_value), &((*ppevent)->it_value), &(event->it_value));
ppevent = &((*ppevent)->next);
}
// we have found our proper place in the queue,
// link our new event into the pending event queue.
event->next = *ppevent;
*ppevent = event;
check_event_queue();
// if our new event ended up at the front of the queue, reissue the timer.
if (event == event_queue) {
timerroundup(&event_queue->it_value, g_granularity);
timerclear(&itimer.it_interval);
itimer.it_value = event_queue->it_value;
// we want to be sure to never turn off the timer completely,
// so if the next interval is zero, set it to some small value.
if (!timerisset(&(itimer.it_value)))
itimer.it_value = (struct timeval) { 0, 1 };
assert(!timerisset(&itimer.it_interval));
assert(itimer.it_value.tv_sec > 0 || itimer.it_value.tv_usec >= g_granularity);
assert(event_queue->it_value.tv_sec > 0 || event_queue->it_value.tv_usec >= g_granularity);
setitimer(ITIMER_REAL, &itimer, NULL);
check_timer();
}
event->flags &= ~TFLAG_CANCELLED;
unblock_timer();
return 0;
}
static void check_timer()
{
struct itimerval itimer;
getitimer(ITIMER_REAL, &itimer);
if (timerisset(&itimer.it_interval)) {
TIMERDBG("ERROR timer interval is set.");
}
if (timercmp(&(itimer.it_value), &(event_queue->it_value), >)) {
TIMERDBG("ERROR timer expires later than top event.");
}
}
static void check_event_queue()
{
struct timeval sum;
struct event *event;
int i = 0;
#ifdef notdef
int nfree = 0;
struct event *p;
for (p = event_freelist; p; p = p->next)
nfree++;
printf("%d free events\n", nfree);
#endif
timerclear(&sum);
for (event = event_queue; event; event = event->next) {
if (i > g_maxevents) {
TIMERDBG("timer queue looks like it loops back on itself!");
print_event_queue();
exit(1);
}
i++;
}
}
#if THIS_FINDS_USE
/* The original upnp version has this unused function, so I left it in
to maintain the resemblance. */
static int count_queue(struct event *event_queue)
{
struct event *event;
int i = 0;
for (event = event_queue; event; event = event->next)
i++;
return i;
}
#endif
static void print_event_queue()
{
struct event *event;
int i = 0;
for (event = event_queue; event; event = event->next) {
printf("#%d (0x%x)->0x%x: \t%d sec %d usec\t%p\n",
i++, (unsigned int) event, (unsigned int) event->next, (int) event->it_value.tv_sec, (int) event->it_value.tv_usec, event->func);
if (i > g_maxevents) {
printf("...(giving up)\n");
break;
}
}
}
// The top element of the event queue must have expired.
// Remove that element, run its function, and reset the timer.
// if there is no interval, recycle the event structure.
static void alarm_handler(int i)
{
struct event *event, **ppevent;
struct itimerval itimer;
struct timeval small_interval = { 0, g_granularity/2 };
#ifdef TIMER_PROFILE
uint junk;
uclock_t end;
uint actual;
#endif
block_timer();
// Loop through the event queue and remove the first event plus any
// subsequent events that will expire very soon thereafter (within 'small_interval'}.
//
do {
// remove the top event.
event = event_queue;
event_queue = event_queue->next;
event->next = NULL;
#ifdef TIMER_PROFILE
end = uclock();
actual = ((end-event->start)/((uclock_t)UCLOCKS_PER_SEC/1000));
if (actual < 0)
junk = end;
TIMERDBG("expected %d ms actual %d ms", event->expected_ms, ((end-event->start)/((uclock_t)UCLOCKS_PER_SEC/1000)));
#endif
// call the event callback function
(*(event->func))((timer_t) event, (int)event->arg);
/* If the event has been cancelled, do NOT put it back on the queue. */
if ( !(event->flags & TFLAG_CANCELLED) ) {
// if the event is a recurring event, reset the timer and
// find its correct place in the sorted list of events.
//
if (timerisset(&event->it_interval)) {
// event is recurring...
//
event->it_value = event->it_interval;
#ifdef TIMER_PROFILE
event->expected_ms = (event->it_value.tv_sec * MS_PER_SEC) + (event->it_value.tv_usec / US_PER_MS);
event->start = uclock();
#endif
timerroundup(&event->it_value, g_granularity);
// Now, march down the list, decrementing the new timer by the
// current delta of each event on the queue.
ppevent = &event_queue;
while (*ppevent) {
if ( timercmp(&(event->it_value), &((*ppevent)->it_value), <) ) {
// if the proposed event will trigger sooner than the next event
// in the queue, we will insert the new event just before the next one.
//
// we also need to adjust the delta value to the next event.
timersub(&((*ppevent)->it_value), &(event->it_value), &((*ppevent)->it_value));
break;
}
timersub(&(event->it_value), &((*ppevent)->it_value), &(event->it_value));
ppevent = &((*ppevent)->next);
}
// we have found our proper place in the queue,
// link our new event into the pending event queue.
event->next = *ppevent;
*ppevent = event;
} else {
// there is no interval, so recycle the event structure.
//timer_delete((timer_t) event);
}
}
check_event_queue();
} while (event_queue && timercmp(&event_queue->it_value, &small_interval, <));
// re-issue the timer...
if (event_queue) {
timerroundup(&event_queue->it_value, g_granularity);
timerclear(&itimer.it_interval);
itimer.it_value = event_queue->it_value;
// we want to be sure to never turn off the timer completely,
// so if the next interval is zero, set it to some small value.
if (!timerisset(&(itimer.it_value)))
itimer.it_value = (struct timeval) { 0, 1 };
setitimer(ITIMER_REAL, &itimer, NULL);
check_timer();
} else {
TIMERDBG("There are no events in the queue - timer not reset.");
}
unblock_timer();
}
static int block_count = 0;
void block_timer()
{
sigset_t set;
if (block_count++ == 0) {
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_BLOCK, &set, NULL);
}
}
void unblock_timer()
{
sigset_t set;
if (--block_count == 0) {
sigemptyset(&set);
sigaddset(&set, SIGALRM);
sigprocmask(SIG_UNBLOCK, &set, NULL);
}
}
void timer_cancel_all()
{
struct itimerval timeroff = { { 0, 0 }, { 0, 0} };
struct event *event;
struct event **ppevent;
setitimer(ITIMER_REAL, &timeroff, NULL);
ppevent = &event_queue;
while (*ppevent) {
event = *ppevent;
*ppevent = event->next;
event->next = NULL;
}
}
void timer_cancel(timer_t timerid)
{
struct itimerval itimer;
struct itimerval timeroff = { { 0, 0 }, { 0, 0} };
struct event *event = (struct event *) timerid;
struct event **ppevent;
if (event->flags & TFLAG_CANCELLED) {
TIMERDBG("Cannot cancel a cancelled event");
return;
}
block_timer();
ppevent = &event_queue;
while (*ppevent) {
if ( *ppevent == event ) {
/* RACE CONDITION - if the alarm goes off while we are in
this loop, and if the timer we want to cancel is the
next to expire, the alarm will end up firing
after this routine is complete, causing it to go off early. */
/* If the cancelled timer is the next to expire,
we need to do something special to clean up correctly. */
if (event == event_queue && event->next != NULL) {
timerclear(&itimer.it_value);
getitimer(ITIMER_REAL, &itimer);
/* subtract the time that has already passed while waiting for this timer... */
timersub(&(event->it_value), &(itimer.it_value), &(event->it_value));
/* and add any remainder to the next timer in the list */
timeradd(&(event->next->it_value), &(event->it_value), &(event->next->it_value));
}
*ppevent = event->next;
event->next = NULL;
if (event_queue) {
timerroundup(&event_queue->it_value, g_granularity);
timerclear(&itimer.it_interval);
itimer.it_value = event_queue->it_value;
/* We want to be sure to never turn off the timer
completely if there are more events on the queue,
so if the next interval is zero, set it to some
small value. */
if (!timerisset(&(itimer.it_value)))
itimer.it_value = (struct timeval) { 0, 1 };
assert(itimer.it_value.tv_sec > 0 || itimer.it_value.tv_usec >= g_granularity);
assert(event_queue->it_value.tv_sec > 0 || event_queue->it_value.tv_usec >= g_granularity);
setitimer(ITIMER_REAL, &itimer, NULL);
check_timer();
} else {
setitimer(ITIMER_REAL, &timeroff, NULL);
}
break;
}
ppevent = &((*ppevent)->next);
}
event->flags |= TFLAG_CANCELLED;
unblock_timer();
}
/*
* timer related headers
*/
#include "bcmtimer.h"
/*
* locally used global variables and constants
*/
/*
* Initialize internal resources used in the timer module. It must be called
* before any other timer function calls. The param 'timer_entries' is used
* to pre-allocate fixed number of timer entries.
*/
int bcm_timer_module_init(int timer_entries, bcm_timer_module_id *module_id)
{
init_event_queue(timer_entries);
*module_id = (bcm_timer_module_id)event_freelist;
return 0;
}
/*
* Cleanup internal resources used by this timer module. It deletes all
* pending timer entries from the backend timer system as well.
*/
int bcm_timer_module_cleanup(bcm_timer_module_id module_id)
{
module_id = 0;
return 0;
}
/* Enable/Disable timer module */
int bcm_timer_module_enable(bcm_timer_module_id module_id, int enable)
{
if (enable)
unblock_timer();
else
block_timer();
return 0;
}
int bcm_timer_create(bcm_timer_module_id module_id, bcm_timer_id *timer_id)
{
module_id = 0;
return timer_create(CLOCK_REALTIME, NULL, (timer_t *)timer_id);
}
int bcm_timer_delete(bcm_timer_id timer_id)
{
return timer_delete((timer_t)timer_id);
}
int bcm_timer_gettime(bcm_timer_id timer_id, struct itimerspec *timer_spec)
{
return -1;
}
int bcm_timer_settime(bcm_timer_id timer_id, const struct itimerspec *timer_spec)
{
return timer_settime((timer_t)timer_id, 0, timer_spec, NULL);
}
int bcm_timer_connect(bcm_timer_id timer_id, bcm_timer_cb func, int data)
{
return timer_connect((timer_t)timer_id, (void *)func, data);
}
int bcm_timer_cancel(bcm_timer_id timer_id)
{
timer_cancel((timer_t)timer_id);
return 0;
}
int bcm_timer_change_expirytime(bcm_timer_id timer_id, const struct itimerspec *timer_spec)
{
timer_change_settime((timer_t)timer_id, timer_spec);
return 1;
}

View File

@ -1,329 +0,0 @@
/*
* Shell-like utility functions
*
* Copyright 2004, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id$
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <signal.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <net/ethernet.h>
#include <shutils.h>
/*
* Reads file and returns contents
* @param fd file descriptor
* @return contents of file or NULL if an error occurred
*/
char *
fd2str(int fd)
{
char *buf = NULL;
size_t count = 0, n;
do {
buf = realloc(buf, count + 512);
n = read(fd, buf + count, 512);
if (n < 0) {
free(buf);
buf = NULL;
}
count += n;
} while (n == 512);
close(fd);
if (buf)
buf[count] = '\0';
return buf;
}
/*
* Reads file and returns contents
* @param path path to file
* @return contents of file or NULL if an error occurred
*/
char *
file2str(const char *path)
{
int fd;
if ((fd = open(path, O_RDONLY)) == -1) {
perror(path);
return NULL;
}
return fd2str(fd);
}
/*
* Waits for a file descriptor to change status or unblocked signal
* @param fd file descriptor
* @param timeout seconds to wait before timing out or 0 for no timeout
* @return 1 if descriptor changed status or 0 if timed out or -1 on error
*/
int
waitfor(int fd, int timeout)
{
fd_set rfds;
struct timeval tv = { timeout, 0 };
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
return select(fd + 1, &rfds, NULL, NULL, (timeout > 0) ? &tv : NULL);
}
/*
* Concatenates NULL-terminated list of arguments into a single
* commmand and executes it
* @param argv argument list
* @param path NULL, ">output", or ">>output"
* @param timeout seconds to wait before timing out or 0 for no timeout
* @param ppid NULL to wait for child termination or pointer to pid
* @return return value of executed command or errno
*/
int
_eval(char *const argv[], char *path, int timeout, int *ppid)
{
pid_t pid;
int status;
int fd;
int flags;
int sig;
char buf[254]="";
int i;
switch (pid = fork()) {
case -1: /* error */
perror("fork");
return errno;
case 0: /* child */
/* Reset signal handlers set for parent process */
for (sig = 0; sig < (_NSIG-1); sig++)
signal(sig, SIG_DFL);
/* Clean up */
ioctl(0, TIOCNOTTY, 0);
close(STDIN_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
setsid();
/* We want to check the board if exist UART? , add by honor 2003-12-04 */
if ((fd = open("/dev/console", O_RDWR)) < 0) {
(void) open("/dev/null", O_RDONLY);
(void) open("/dev/null", O_WRONLY);
(void) open("/dev/null", O_WRONLY);
}
else{
close(fd);
(void) open("/dev/console", O_RDONLY);
(void) open("/dev/console", O_WRONLY);
(void) open("/dev/console", O_WRONLY);
}
/* Redirect stdout to <path> */
if (path) {
flags = O_WRONLY | O_CREAT;
if (!strncmp(path, ">>", 2)) {
/* append to <path> */
flags |= O_APPEND;
path += 2;
} else if (!strncmp(path, ">", 1)) {
/* overwrite <path> */
flags |= O_TRUNC;
path += 1;
}
if ((fd = open(path, flags, 0644)) < 0)
perror(path);
else {
dup2(fd, STDOUT_FILENO);
close(fd);
}
}
/* execute command */
for(i=0 ; argv[i] ; i++)
snprintf(buf+strlen(buf), sizeof(buf), "%s ", argv[i]);
dprintf("cmd=[%s]\n", buf);
setenv("PATH", "/sbin:/bin:/usr/sbin:/usr/bin", 1);
alarm(timeout);
execvp(argv[0], argv);
perror(argv[0]);
exit(errno);
default: /* parent */
if (ppid) {
*ppid = pid;
return 0;
} else {
waitpid(pid, &status, 0);
if (WIFEXITED(status))
return WEXITSTATUS(status);
else
return status;
}
}
}
/*
* Concatenates NULL-terminated list of arguments into a single
* commmand and executes it
* @param argv argument list
* @return stdout of executed command or NULL if an error occurred
*/
char *
_backtick(char *const argv[])
{
int filedes[2];
pid_t pid;
int status;
char *buf = NULL;
/* create pipe */
if (pipe(filedes) == -1) {
perror(argv[0]);
return NULL;
}
switch (pid = fork()) {
case -1: /* error */
return NULL;
case 0: /* child */
close(filedes[0]); /* close read end of pipe */
dup2(filedes[1], 1); /* redirect stdout to write end of pipe */
close(filedes[1]); /* close write end of pipe */
execvp(argv[0], argv);
exit(errno);
break;
default: /* parent */
close(filedes[1]); /* close write end of pipe */
buf = fd2str(filedes[0]);
waitpid(pid, &status, 0);
break;
}
return buf;
}
/*
* Kills process whose PID is stored in plaintext in pidfile
* @param pidfile PID file
* @return 0 on success and errno on failure
*/
int
kill_pidfile(char *pidfile)
{
FILE *fp = fopen(pidfile, "r");
char buf[256];
if (fp && fgets(buf, sizeof(buf), fp)) {
pid_t pid = strtoul(buf, NULL, 0);
fclose(fp);
return kill(pid, SIGTERM);
} else
return errno;
}
/*
* fread() with automatic retry on syscall interrupt
* @param ptr location to store to
* @param size size of each element of data
* @param nmemb number of elements
* @param stream file stream
* @return number of items successfully read
*/
int
safe_fread(void *ptr, size_t size, size_t nmemb, FILE *stream)
{
size_t ret = 0;
do {
clearerr(stream);
ret += fread((char *)ptr + (ret * size), size, nmemb - ret, stream);
} while (ret < nmemb && ferror(stream) && errno == EINTR);
return ret;
}
/*
* fwrite() with automatic retry on syscall interrupt
* @param ptr location to read from
* @param size size of each element of data
* @param nmemb number of elements
* @param stream file stream
* @return number of items successfully written
*/
int
safe_fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)
{
size_t ret = 0;
do {
clearerr(stream);
ret += fwrite((char *)ptr + (ret * size), size, nmemb - ret, stream);
} while (ret < nmemb && ferror(stream) && errno == EINTR);
return ret;
}
/*
* Convert Ethernet address string representation to binary data
* @param a string in xx:xx:xx:xx:xx:xx notation
* @param e binary data
* @return TRUE if conversion was successful and FALSE otherwise
*/
int
ether_atoe(const char *a, unsigned char *e)
{
char *c = (char *) a;
int i = 0;
memset(e, 0, ETHER_ADDR_LEN);
for (;;) {
e[i++] = (unsigned char) strtoul(c, &c, 16);
if (!*c++ || i == ETHER_ADDR_LEN)
break;
}
return (i == ETHER_ADDR_LEN);
}
/*
* Convert Ethernet address binary data to string representation
* @param e binary data
* @param a string in xx:xx:xx:xx:xx:xx notation
* @return a
*/
char *
ether_etoa(const unsigned char *e, char *a)
{
char *c = a;
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
if (i)
*c++ = ':';
c += sprintf(c, "%02X", e[i] & 0xff);
}
return a;
}

View File

@ -1,356 +0,0 @@
/*
* Wireless network adapter utilities
*
* Copyright 2004, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* $Id$
*/
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <typedefs.h>
#include <wlutils.h>
int
wl_ioctl(char *name, int cmd, void *buf, int len)
{
struct ifreq ifr;
wl_ioctl_t ioc;
int ret = 0;
int s;
/* open socket to kernel */
if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("socket");
return errno;
}
/* do it */
ioc.cmd = cmd;
ioc.buf = buf;
ioc.len = len;
strncpy(ifr.ifr_name, name, IFNAMSIZ);
ifr.ifr_data = (caddr_t) &ioc;
if ((ret = ioctl(s, SIOCDEVPRIVATE, &ifr)) < 0)
if (cmd != WLC_GET_MAGIC)
perror(ifr.ifr_name);
/* cleanup */
close(s);
return ret;
}
int
wl_hwaddr(char *name, unsigned char *hwaddr)
{
struct ifreq ifr;
int ret = 0;
int s;
/* open socket to kernel */
if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("socket");
return errno;
}
/* do it */
strncpy(ifr.ifr_name, name, IFNAMSIZ);
if ((ret = ioctl(s, SIOCGIFHWADDR, &ifr)) == 0)
memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN);
/* cleanup */
close(s);
return ret;
}
int
wl_probe(char *name)
{
int ret, val;
/* Check interface */
if ((ret = wl_ioctl(name, WLC_GET_MAGIC, &val, sizeof(val))))
return ret;
if (val != WLC_IOCTL_MAGIC)
return -1;
if ((ret = wl_ioctl(name, WLC_GET_VERSION, &val, sizeof(val))))
return ret;
if (val > WLC_IOCTL_VERSION)
return -1;
return ret;
}
int
wl_set_val(char *name, char *var, void *val, int len)
{
char buf[128];
int buf_len;
/* check for overflow */
if ((buf_len = strlen(var)) + 1 + len > sizeof(buf))
return -1;
strcpy(buf, var);
buf_len += 1;
/* append int value onto the end of the name string */
memcpy(&buf[buf_len], val, len);
buf_len += len;
return wl_ioctl(name, WLC_SET_VAR, buf, buf_len);
}
int
wl_get_val(char *name, char *var, void *val, int len)
{
char buf[128];
int ret;
/* check for overflow */
if (strlen(var) + 1 > sizeof(buf) || len > sizeof(buf))
return -1;
strcpy(buf, var);
if ((ret = wl_ioctl(name, WLC_GET_VAR, buf, sizeof(buf))))
return ret;
memcpy(val, buf, len);
return 0;
}
int
wl_set_int(char *name, char *var, int val)
{
return wl_set_val(name, var, &val, sizeof(val));
}
int
wl_get_int(char *name, char *var, int *val)
{
return wl_get_val(name, var, val, sizeof(*val));
}
/**************************************************************************
* The following code is from Broadcom (wl.c) *
**************************************************************************/
int
wl_iovar_getbuf(char *ifname, char *iovar, void *param,
int paramlen, void *bufptr, int buflen)
{
int err;
uint namelen;
uint iolen;
namelen = strlen(iovar) + 1; /* length of iovar name plus null */
iolen = namelen + paramlen;
/* check for overflow */
if (iolen > buflen)
return (-1);
memcpy(bufptr, iovar, namelen); /* copy iovar name including null */
memcpy((int8*)bufptr + namelen, param, paramlen);
err = wl_ioctl(ifname, WLC_GET_VAR, bufptr, buflen);
return (err);
}
int
wl_iovar_setbuf(char *ifname, char *iovar, void *param,
int paramlen, void *bufptr, int buflen)
{
uint namelen;
uint iolen;
namelen = strlen(iovar) + 1; /* length of iovar name plus null */
iolen = namelen + paramlen;
/* check for overflow */
if (iolen > buflen)
return (-1);
memcpy(bufptr, iovar, namelen); /* copy iovar name including null */
memcpy((int8*)bufptr + namelen, param, paramlen);
return wl_ioctl(ifname, WLC_SET_VAR, bufptr, iolen);
}
int
wl_iovar_set(char *ifname, char *iovar, void *param, int paramlen)
{
char smbuf[WLC_IOCTL_SMLEN];
return wl_iovar_setbuf(ifname, iovar, param, paramlen, smbuf, sizeof(smbuf));
}
int
wl_iovar_get(char *ifname, char *iovar, void *bufptr, int buflen)
{
char smbuf[WLC_IOCTL_SMLEN];
int ret;
/* use the return buffer if it is bigger than what we have on the stack */
if (buflen > sizeof(smbuf)) {
ret = wl_iovar_getbuf(ifname, iovar, NULL, 0, bufptr, buflen);
} else {
ret = wl_iovar_getbuf(ifname, iovar, NULL, 0, smbuf, sizeof(smbuf));
if (ret == 0)
memcpy(bufptr, smbuf, buflen);
}
return ret;
}
/*
* set named driver variable to int value
* calling example: wl_iovar_setint(ifname, "arate", rate)
*/
int
wl_iovar_setint(char *ifname, char *iovar, int val)
{
return wl_iovar_set(ifname, iovar, &val, sizeof(val));
}
/*
* get named driver variable to int value and return error indication
* calling example: wl_iovar_getint(ifname, "arate", &rate)
*/
int
wl_iovar_getint(char *ifname, char *iovar, int *val)
{
return wl_iovar_get(ifname, iovar, val, sizeof(int));
}
/*
* format a bsscfg indexed iovar buffer
*/
static int
wl_bssiovar_mkbuf(char *iovar, int bssidx, void *param,
int paramlen, void *bufptr, int buflen, int *plen)
{
char *prefix = "bsscfg:";
int8* p;
uint prefixlen;
uint namelen;
uint iolen;
prefixlen = strlen(prefix); /* length of bsscfg prefix */
namelen = strlen(iovar) + 1; /* length of iovar name + null */
iolen = prefixlen + namelen + sizeof(int) + paramlen;
/* check for overflow */
if (buflen < 0 || iolen > (uint)buflen) {
*plen = 0;
return -1;
}
p = (int8*)bufptr;
/* copy prefix, no null */
memcpy(p, prefix, prefixlen);
p += prefixlen;
/* copy iovar name including null */
memcpy(p, iovar, namelen);
p += namelen;
/* bss config index as first param */
memcpy(p, &bssidx, sizeof(int32));
p += sizeof(int32);
/* parameter buffer follows */
if (paramlen)
memcpy(p, param, paramlen);
*plen = iolen;
return 0;
}
/*
* set named & bss indexed driver variable to buffer value
*/
int
wl_bssiovar_setbuf(char *ifname, char *iovar, int bssidx, void *param,
int paramlen, void *bufptr, int buflen)
{
int err;
uint iolen;
err = wl_bssiovar_mkbuf(iovar, bssidx, param, paramlen, bufptr, buflen, &iolen);
if (err)
return err;
return wl_ioctl(ifname, WLC_SET_VAR, bufptr, iolen);
}
/*
* get named & bss indexed driver variable buffer value
*/
int
wl_bssiovar_getbuf(char *ifname, char *iovar, int bssidx, void *param,
int paramlen, void *bufptr, int buflen)
{
int err;
uint iolen;
err = wl_bssiovar_mkbuf(iovar, bssidx, param, paramlen, bufptr, buflen, &iolen);
if (err)
return err;
return wl_ioctl(ifname, WLC_GET_VAR, bufptr, buflen);
}
/*
* set named & bss indexed driver variable to buffer value
*/
int
wl_bssiovar_set(char *ifname, char *iovar, int bssidx, void *param, int paramlen)
{
char smbuf[WLC_IOCTL_SMLEN];
return wl_bssiovar_setbuf(ifname, iovar, bssidx, param, paramlen, smbuf, sizeof(smbuf));
}
/*
* get named & bss indexed driver variable buffer value
*/
int
wl_bssiovar_get(char *ifname, char *iovar, int bssidx, void *outbuf, int len)
{
char smbuf[WLC_IOCTL_SMLEN];
int err;
/* use the return buffer if it is bigger than what we have on the stack */
if (len > (int)sizeof(smbuf)) {
err = wl_bssiovar_getbuf(ifname, iovar, bssidx, NULL, 0, outbuf, len);
} else {
memset(smbuf, 0, sizeof(smbuf));
err = wl_bssiovar_getbuf(ifname, iovar, bssidx, NULL, 0, smbuf, sizeof(smbuf));
if (err == 0)
memcpy(outbuf, smbuf, len);
}
return err;
}
/*
* set named & bss indexed driver variable to int value
*/
int
wl_bssiovar_setint(char *ifname, char *iovar, int bssidx, int val)
{
return wl_bssiovar_set(ifname, iovar, bssidx, &val, sizeof(int));
}