1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-02 14:26:27 +02:00

update work in progress rewritten bcm947xx code. wifi and usb seem to be working, flash access still has problems

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@6276 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
nbd 2007-02-08 02:34:18 +00:00
parent b89ba4c713
commit 4238a3aead
35 changed files with 7097 additions and 7226 deletions

View File

@ -0,0 +1,7 @@
#
# Makefile for the BCM47xx specific kernel interface routines
# under Linux.
#
obj-y := irq.o prom.o setup.o time.o
obj-y += nvram.o cfe_env.o

View File

@ -0,0 +1,229 @@
/*
* CFE environment variable access
*
* Copyright 2001-2003, Broadcom Corporation
* Copyright 2006, Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#define NVRAM_SIZE (0x1ff0)
static char _nvdata[NVRAM_SIZE] __initdata;
static char _valuestr[256] __initdata;
/*
* TLV types. These codes are used in the "type-length-value"
* encoding of the items stored in the NVRAM device (flash or EEPROM)
*
* The layout of the flash/nvram is as follows:
*
* <type> <length> <data ...> <type> <length> <data ...> <type_end>
*
* The type code of "ENV_TLV_TYPE_END" marks the end of the list.
* The "length" field marks the length of the data section, not
* including the type and length fields.
*
* Environment variables are stored as follows:
*
* <type_env> <length> <flags> <name> = <value>
*
* If bit 0 (low bit) is set, the length is an 8-bit value.
* If bit 0 (low bit) is clear, the length is a 16-bit value
*
* Bit 7 set indicates "user" TLVs. In this case, bit 0 still
* indicates the size of the length field.
*
* Flags are from the constants below:
*
*/
#define ENV_LENGTH_16BITS 0x00 /* for low bit */
#define ENV_LENGTH_8BITS 0x01
#define ENV_TYPE_USER 0x80
#define ENV_CODE_SYS(n,l) (((n)<<1)|(l))
#define ENV_CODE_USER(n,l) ((((n)<<1)|(l)) | ENV_TYPE_USER)
/*
* The actual TLV types we support
*/
#define ENV_TLV_TYPE_END 0x00
#define ENV_TLV_TYPE_ENV ENV_CODE_SYS(0,ENV_LENGTH_8BITS)
/*
* Environment variable flags
*/
#define ENV_FLG_NORMAL 0x00 /* normal read/write */
#define ENV_FLG_BUILTIN 0x01 /* builtin - not stored in flash */
#define ENV_FLG_READONLY 0x02 /* read-only - cannot be changed */
#define ENV_FLG_MASK 0xFF /* mask of attributes we keep */
#define ENV_FLG_ADMIN 0x100 /* lets us internally override permissions */
/* *********************************************************************
* _nvram_read(buffer,offset,length)
*
* Read data from the NVRAM device
*
* Input parameters:
* buffer - destination buffer
* offset - offset of data to read
* length - number of bytes to read
*
* Return value:
* number of bytes read, or <0 if error occured
********************************************************************* */
static int
_nvram_read(unsigned char *nv_buf, unsigned char *buffer, int offset, int length)
{
int i;
if (offset > NVRAM_SIZE)
return -1;
for ( i = 0; i < length; i++) {
buffer[i] = ((volatile unsigned char*)nv_buf)[offset + i];
}
return length;
}
static char*
_strnchr(const char *dest,int c,size_t cnt)
{
while (*dest && (cnt > 0)) {
if (*dest == c) return (char *) dest;
dest++;
cnt--;
}
return NULL;
}
/*
* Core support API: Externally visible.
*/
/*
* Get the value of an NVRAM variable
* @param name name of variable to get
* @return value of variable or NULL if undefined
*/
char*
cfe_env_get(unsigned char *nv_buf, char* name)
{
int size;
unsigned char *buffer;
unsigned char *ptr;
unsigned char *envval;
unsigned int reclen;
unsigned int rectype;
int offset;
int flg;
if (!strcmp(name, "nvram_type"))
return "cfe";
size = NVRAM_SIZE;
buffer = &_nvdata[0];
ptr = buffer;
offset = 0;
/* Read the record type and length */
if (_nvram_read(nv_buf, ptr,offset,1) != 1) {
goto error;
}
while ((*ptr != ENV_TLV_TYPE_END) && (size > 1)) {
/* Adjust pointer for TLV type */
rectype = *(ptr);
offset++;
size--;
/*
* Read the length. It can be either 1 or 2 bytes
* depending on the code
*/
if (rectype & ENV_LENGTH_8BITS) {
/* Read the record type and length - 8 bits */
if (_nvram_read(nv_buf, ptr,offset,1) != 1) {
goto error;
}
reclen = *(ptr);
size--;
offset++;
}
else {
/* Read the record type and length - 16 bits, MSB first */
if (_nvram_read(nv_buf, ptr,offset,2) != 2) {
goto error;
}
reclen = (((unsigned int) *(ptr)) << 8) + (unsigned int) *(ptr+1);
size -= 2;
offset += 2;
}
if (reclen > size)
break; /* should not happen, bad NVRAM */
switch (rectype) {
case ENV_TLV_TYPE_ENV:
/* Read the TLV data */
if (_nvram_read(nv_buf, ptr,offset,reclen) != reclen)
goto error;
flg = *ptr++;
envval = (unsigned char *) _strnchr(ptr,'=',(reclen-1));
if (envval) {
*envval++ = '\0';
memcpy(_valuestr,envval,(reclen-1)-(envval-ptr));
_valuestr[(reclen-1)-(envval-ptr)] = '\0';
#if 0
printk(KERN_INFO "NVRAM:%s=%s\n", ptr, _valuestr);
#endif
if(!strcmp(ptr, name)){
return _valuestr;
}
if((strlen(ptr) > 1) && !strcmp(&ptr[1], name))
return _valuestr;
}
break;
default:
/* Unknown TLV type, skip it. */
break;
}
/*
* Advance to next TLV
*/
size -= (int)reclen;
offset += reclen;
/* Read the next record type */
ptr = buffer;
if (_nvram_read(nv_buf, ptr,offset,1) != 1)
goto error;
}
error:
return NULL;
}

View File

@ -0,0 +1,37 @@
/*
* Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef __NVRAM_H
#define __NVRAM_H
struct nvram_header {
u32 magic;
u32 len;
u32 crc_ver_init; /* 0:7 crc, 8:15 ver, 16:31 sdram_init */
u32 config_refresh; /* 0:15 sdram_config, 16:31 sdram_refresh */
u32 config_ncdl; /* ncdl values for memc */
};
struct nvram_tuple {
char *name;
char *value;
struct nvram_tuple *next;
};
#define NVRAM_HEADER 0x48534C46 /* 'FLSH' */
#define NVRAM_VERSION 1
#define NVRAM_HEADER_SIZE 20
#define NVRAM_SPACE 0x8000
#define NVRAM_MAX_VALUE_LEN 255
#define NVRAM_MAX_PARAM_LEN 64
char *nvram_get(const char *name);
#endif

View File

@ -0,0 +1,63 @@
/*
* Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/irq_cpu.h>
void plat_irq_dispatch(void)
{
u32 cause;
cause = read_c0_cause() & read_c0_status() & CAUSEF_IP;
clear_c0_status(cause);
if (cause & CAUSEF_IP7)
do_IRQ(7);
if (cause & CAUSEF_IP2)
do_IRQ(2);
if (cause & CAUSEF_IP3)
do_IRQ(3);
if (cause & CAUSEF_IP4)
do_IRQ(4);
if (cause & CAUSEF_IP5)
do_IRQ(5);
if (cause & CAUSEF_IP6)
do_IRQ(6);
}
void __init arch_init_irq(void)
{
mips_cpu_irq_init(0);
}

View File

@ -0,0 +1,125 @@
/*
* BCM947xx nvram variable access
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, Felix Fietkau <nbd@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ssb/ssb.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/bootinfo.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <nvram.h>
#define MB * 1048576
extern struct ssb_bus ssb;
static char nvram_buf[NVRAM_SPACE];
static int cfe_env;
extern char *cfe_env_get(char *nv_buf, const char *name);
/* Probe for NVRAM header */
static void __init early_nvram_init(void)
{
struct ssb_mipscore *mcore = &ssb.mipscore;
struct nvram_header *header;
int i;
u32 base, lim, off;
u32 *src, *dst;
base = mcore->flash_window;
lim = mcore->flash_window_size;
cfe_env = 0;
/* XXX: hack for supporting the CFE environment stuff on WGT634U */
if (lim >= 8 MB) {
src = (u32 *) KSEG1ADDR(base + 8 MB - 0x2000);
dst = (u32 *) nvram_buf;
if ((*src & 0xff00ff) == 0x000001) {
printk("early_nvram_init: WGT634U NVRAM found.\n");
for (i = 0; i < 0x1ff0; i++) {
if (*src == 0xFFFFFFFF)
break;
*dst++ = *src++;
}
cfe_env = 1;
return;
}
}
off = 0x20000;
while (off <= lim) {
/* Windowed flash access */
header = (struct nvram_header *) KSEG1ADDR(base + off - NVRAM_SPACE);
if (header->magic == NVRAM_HEADER)
goto found;
off <<= 1;
}
/* Try embedded NVRAM at 4 KB and 1 KB as last resorts */
header = (struct nvram_header *) KSEG1ADDR(base + 4096);
if (header->magic == NVRAM_HEADER)
goto found;
header = (struct nvram_header *) KSEG1ADDR(base + 1024);
if (header->magic == NVRAM_HEADER)
goto found;
return;
found:
src = (u32 *) header;
dst = (u32 *) nvram_buf;
for (i = 0; i < sizeof(struct nvram_header); i += 4)
*dst++ = *src++;
for (; i < header->len && i < NVRAM_SPACE; i += 4)
*dst++ = le32_to_cpu(*src++);
}
char *nvram_get(const char *name)
{
char *var, *value, *end, *eq;
if (!name)
return NULL;
if (!nvram_buf[0])
early_nvram_init();
if (cfe_env)
return cfe_env_get(nvram_buf, name);
/* Look for name=value and return value */
var = &nvram_buf[sizeof(struct nvram_header)];
end = nvram_buf + sizeof(nvram_buf) - 2;
end[0] = end[1] = '\0';
for (; *var; var = value + strlen(value) + 1) {
if (!(eq = strchr(var, '=')))
break;
value = eq + 1;
if ((eq - var) == strlen(name) && strncmp(var, name, (eq - var)) == 0)
return value;
}
return NULL;
}
EXPORT_SYMBOL(nvram_get);

View File

@ -0,0 +1,62 @@
/*
* Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/pmon.h>
#include "../cfe/cfe_private.h"
const char *get_system_type(void)
{
return "Broadcom BCM47xx";
}
void __init prom_init(void)
{
unsigned long mem;
mips_machgroup = MACH_GROUP_BRCM;
mips_machtype = MACH_BCM47XX;
cfe_setup(fw_arg0, fw_arg1, fw_arg2, fw_arg3);
/* Figure out memory size by finding aliases */
for (mem = (1 << 20); mem < (128 << 20); mem += (1 << 20)) {
if (*(unsigned long *)((unsigned long)(prom_init) + mem) ==
*(unsigned long *)(prom_init))
break;
}
add_memory_region(0, mem, BOOT_MEM_RAM);
}
unsigned long __init prom_free_prom_memory(void)
{
return 0;
}

View File

@ -0,0 +1,163 @@
/*
* Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
* Copyright (C) 2005 Waldemar Brodkorb <wbx@openwrt.org>
* Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2006 Michael Buesch
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/tty.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <asm/bootinfo.h>
#include <asm/time.h>
#include <asm/reboot.h>
#include <asm/cfe.h>
#include <linux/pm.h>
#include <linux/ssb/ssb.h>
#include <nvram.h>
extern void bcm47xx_pci_init(void);
extern void bcm47xx_time_init(void);
struct ssb_bus ssb;
static void bcm47xx_machine_restart(char *command)
{
printk(KERN_ALERT "Please stand by while rebooting the system...\n");
local_irq_disable();
/* CFE has a reboot callback, but that does not work.
* Oopses with: Reserved instruction in kernel code.
*/
/* Set the watchdog timer to reset immediately */
//TODO sb_watchdog(sbh, 1);
while (1)
cpu_relax();
}
static void bcm47xx_machine_halt(void)
{
/* Disable interrupts and watchdog and spin forever */
local_irq_disable();
//TODO sb_watchdog(sbh, 0);
while (1)
cpu_relax();
}
static void e_aton(char *str, char *dest)
{
int i = 0;
if (str == NULL) {
memset(dest, 0, 6);
return;
}
for (;;) {
dest[i++] = (char) simple_strtoul(str, NULL, 16);
str += 2;
if (!*str++ || i == 6)
break;
}
}
static void bcm47xx_fill_sprom(struct ssb_sprom *sprom)
{
// TODO
}
static void bcm47xx_fill_sprom_nvram(struct ssb_sprom *sprom)
{
char *s;
memset(sprom, 0, sizeof(struct ssb_sprom));
sprom->revision = 3;
if ((s = nvram_get("et0macaddr")))
e_aton(s, sprom->r1.et0mac);
if ((s = nvram_get("et1macaddr")))
e_aton(s, sprom->r1.et1mac);
if ((s = nvram_get("et0phyaddr")))
sprom->r1.et0phyaddr = simple_strtoul(s, NULL, 10);
if ((s = nvram_get("et1phyaddr")))
sprom->r1.et1phyaddr = simple_strtoul(s, NULL, 10);
}
void __init plat_mem_setup(void)
{
int i, err;
char *s;
struct ssb_mipscore *mcore;
err = ssb_bus_ssbbus_register(&ssb, SSB_ENUM_BASE, bcm47xx_fill_sprom);
if (err) {
const char *msg = "Failed to initialize SSB bus (err %d)\n";
cfe_printk(msg, err); /* Make sure the message gets out of the box. */
panic(msg, err);
}
mcore = &ssb.mipscore;
/* FIXME: the nvram init depends on the ssb being fully initializes,
* can't use the fill_sprom callback yet! */
bcm47xx_fill_sprom_nvram(&ssb.sprom);
s = nvram_get("kernel_args");
if (s && !strncmp(s, "console=ttyS1", 13)) {
struct ssb_serial_port port;
cfe_printk("Swapping serial ports!\n");
/* swap serial ports */
memcpy(&port, &mcore->serial_ports[0], sizeof(port));
memcpy(&mcore->serial_ports[0], &mcore->serial_ports[1], sizeof(port));
memcpy(&mcore->serial_ports[1], &port, sizeof(port));
}
for (i = 0; i < mcore->nr_serial_ports; i++) {
struct ssb_serial_port *port = &(mcore->serial_ports[i]);
struct uart_port s;
memset(&s, 0, sizeof(s));
s.line = i;
s.membase = port->regs;
s.irq = port->irq + 2;//FIXME?
s.uartclk = port->baud_base;
s.flags = UPF_BOOT_AUTOCONF | UPF_SHARE_IRQ;
s.iotype = SERIAL_IO_MEM;
s.regshift = port->reg_shift;
early_serial_setup(&s);
}
cfe_printk("Serial init done.\n");
_machine_restart = bcm47xx_machine_restart;
_machine_halt = bcm47xx_machine_halt;
pm_power_off = bcm47xx_machine_halt;
board_time_init = bcm47xx_time_init;//FIXME move into ssb
}
EXPORT_SYMBOL(ssb);

View File

@ -0,0 +1,62 @@
/*
* Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/serial_reg.h>
#include <linux/interrupt.h>
#include <linux/ssb/ssb.h>
#include <asm/addrspace.h>
#include <asm/io.h>
#include <asm/time.h>
extern struct ssb_bus ssb;
void __init
bcm47xx_time_init(void)
{
unsigned long hz;
/*
* Use deterministic values for initial counter interrupt
* so that calibrate delay avoids encountering a counter wrap.
*/
write_c0_count(0);
write_c0_compare(0xffff);
hz = ssb_cpu_clock(&ssb.mipscore) / 2;
if (!hz)
hz = 100000000;
/* Set MIPS counter frequency for fixed_rate_gettimeoffset() */
mips_hpt_frequency = hz;
}
void __init
plat_timer_setup(struct irqaction *irq)
{
/* Enable the timer interrupt */
setup_irq(7, irq);
}

View File

@ -0,0 +1,5 @@
#
# Makefile for the Broadcom Common Firmware Environment support
#
obj-y += cfe.o

View File

@ -0,0 +1,533 @@
/*
* Broadcom Common Firmware Environment (CFE) support
*
* Copyright 2000, 2001, 2002
* Broadcom Corporation. All rights reserved.
*
* Copyright (C) 2006 Michael Buesch
*
* Original Authors: Mitch Lichtenberg, Chris Demetriou
*
* This software is furnished under license and may be used and copied only
* in accordance with the following terms and conditions. Subject to these
* conditions, you may download, copy, install, use, modify and distribute
* modified or unmodified copies of this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce and
* retain this copyright notice and list of conditions as they appear in
* the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Broadcom Corporation. The "Broadcom Corporation" name may not be
* used to endorse or promote products derived from this software
* without the prior written permission of Broadcom Corporation.
*
* 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
* FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
* LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/init.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <asm/cfe.h>
#include "cfe_private.h"
static cfe_uint_t cfe_handle;
static int (*cfe_trampoline)(long handle, long iocb);
#include <linux/kernel.h>
void __init cfe_setup(unsigned long fwarg0, unsigned long fwarg1,
unsigned long fwarg2, unsigned long fwarg3)
{
if (fwarg3 == 0x80300000) {
/* WRT54G workaround */
fwarg3 = CFE_EPTSEAL;
fwarg2 = 0xBFC00500;
}
if (fwarg3 != CFE_EPTSEAL) {
/* We are not booted from CFE */
return;
}
if (fwarg1 == 0) {
/* We are on the boot CPU */
cfe_handle = (cfe_uint_t)fwarg0;
cfe_trampoline = CFE_TO_PTR(fwarg2);
}
}
int cfe_vprintk(const char *fmt, va_list args)
{
static char buffer[1024];
static DEFINE_SPINLOCK(lock);
static const char pfx[] = "CFE-console: ";
static const size_t pfx_len = sizeof(pfx) - 1;
unsigned long flags;
int len, cnt, pos;
int handle;
int res;
if (!cfe_present())
return -ENODEV;
spin_lock_irqsave(&lock, flags);
handle = cfe_getstdhandle(CFE_STDHANDLE_CONSOLE);
if (CFE_ISERR(handle)) {
len = -EIO;
goto out;
}
strcpy(buffer, pfx);
len = vscnprintf(buffer + pfx_len,
sizeof(buffer) - pfx_len - 2,
fmt, args);
len += pfx_len;
/* The CFE console requires CR-LF line-ends.
* Add a CR, if we only terminate lines with a LF.
* This does only fix CR-LF at the end of the string.
* So for multiple lines, use multiple cfe_vprintk calls.
*/
if (len > 1 &&
buffer[len - 1] == '\n' && buffer[len - 2] != '\r') {
buffer[len - 1] = '\r';
buffer[len] = '\n';
len += 1;
}
cnt = len;
pos = 0;
while (cnt > 0) {
res = cfe_write(handle, buffer + pos, len - pos);
if (CFE_ISERR(res)) {
len = -EIO;
goto out;
}
cnt -= res;
pos += res;
}
out:
spin_unlock_irqrestore(&lock, flags);
return len;
}
int cfe_printk(const char *fmt, ...)
{
va_list args;
int res;
va_start(args, fmt);
res = cfe_vprintk(fmt, args);
va_end(args);
return res;
}
static int cfe_iocb_dispatch(struct cfe_iocb *iocb)
{
if (!cfe_present())
return CFE_ERR_UNSUPPORTED;
return cfe_trampoline((long)cfe_handle, (long)iocb);
}
int cfe_present(void)
{
return (cfe_trampoline != NULL);
}
int cfe_close(int handle)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_CLOSE;
iocb.handle = handle;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_cpu_start(int cpu, void (*fn)(void), long sp, long gp, long a1)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_CPUCTL;
iocb.psize = sizeof(struct cfe_iocb_cpuctl);
iocb.cpuctl.number = cpu;
iocb.cpuctl.command = CFE_CPU_CMD_START;
iocb.cpuctl.gp = gp;
iocb.cpuctl.sp = sp;
iocb.cpuctl.a1 = a1;
iocb.cpuctl.start_addr = (long)fn;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_cpu_stop(int cpu)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_CPUCTL;
iocb.psize = sizeof(struct cfe_iocb_cpuctl);
iocb.cpuctl.number = cpu;
iocb.cpuctl.command = CFE_CPU_CMD_STOP;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_enumenv(int idx, char *name, int namelen, char *val, int vallen)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_ENV_ENUM;
iocb.psize = sizeof(struct cfe_iocb_envbuf);
iocb.envbuf.index = idx;
iocb.envbuf.name = PTR_TO_CFE(name);
iocb.envbuf.name_len = namelen;
iocb.envbuf.val = PTR_TO_CFE(val);
iocb.envbuf.val_len = vallen;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_enumdev(int idx, char *name, int namelen)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_ENUM;
iocb.psize = sizeof(struct cfe_iocb_envbuf);
iocb.envbuf.index = idx;
iocb.envbuf.name = PTR_TO_CFE(name);
iocb.envbuf.name_len = namelen;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_enummem(int idx, int flags, u64 *start, u64 *length,
u64 *type)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_MEMENUM;
iocb.flags = flags;
iocb.psize = sizeof(struct cfe_iocb_meminfo);
iocb.meminfo.index = idx;
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (!CFE_ISERR(iocb.status)) {
*start = iocb.meminfo.addr;
*length = iocb.meminfo.size;
*type = iocb.meminfo.type;
}
return iocb.status;
}
int cfe_exit(int warm, int status)
{
struct cfe_iocb iocb;
int err;
printk("CFE REBOOT\n");
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_RESTART;
if (warm)
iocb.flags = CFE_FLG_WARMSTART;
iocb.psize = sizeof(struct cfe_iocb_exitstat);
iocb.exitstat.status = status;
printk("CALL\n");
err = cfe_iocb_dispatch(&iocb);
printk("DONE\n");
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_flushcache(int flags)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_FLUSHCACHE;
iocb.flags = flags;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_getdevinfo(char *name)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_GETINFO;
iocb.psize = sizeof(struct cfe_iocb_buf);
iocb.buffer.ptr = PTR_TO_CFE(name);
iocb.buffer.length = strlen(name);
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.buffer.devflags;
}
int cfe_getenv(char *name, char *dest, int destlen)
{
struct cfe_iocb iocb;
int err;
dest[0] = '\0';
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_ENV_GET;
iocb.psize = sizeof(struct cfe_iocb_envbuf);
iocb.envbuf.name = PTR_TO_CFE(name);
iocb.envbuf.name_len = strlen(name);
iocb.envbuf.val = PTR_TO_CFE(dest);
iocb.envbuf.val_len = destlen;
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_getfwinfo(struct cfe_fwinfo *info)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_GETINFO;
iocb.psize = sizeof(struct cfe_iocb_fwinfo);
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return err;
info->version = iocb.fwinfo.version;
info->totalmem = iocb.fwinfo.totalmem;
info->flags = iocb.fwinfo.flags;
info->boardid = iocb.fwinfo.boardid;
info->bootarea_va = iocb.fwinfo.bootarea_va;
info->bootarea_pa = iocb.fwinfo.bootarea_pa;
info->bootarea_size = iocb.fwinfo.bootarea_size;
return iocb.status;
}
int cfe_getstdhandle(int handletype)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_GETHANDLE;
iocb.flags = handletype;
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.handle;
}
int cfe_getticks(s64 *ticks)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_FW_GETTIME;
iocb.psize = sizeof(struct cfe_iocb_time);
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (!CFE_ISERR(iocb.status))
*ticks = iocb.time.ticks;
return iocb.status;
}
int cfe_inpstat(int handle)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_INPSTAT;
iocb.handle = handle;
iocb.psize = sizeof(struct cfe_iocb_inpstat);
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.inpstat.status;
}
int cfe_ioctl(int handle, unsigned int ioctlnum,
unsigned char *buffer, int length,
int *retlen, u64 offset)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_IOCTL;
iocb.handle = handle;
iocb.psize = sizeof(struct cfe_iocb_buf);
iocb.buffer.offset = offset;
iocb.buffer.ioctlcmd = ioctlnum;
iocb.buffer.ptr = PTR_TO_CFE(buffer);
iocb.buffer.length = length;
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
if (retlen)
*retlen = iocb.buffer.retlen;
return iocb.status;
}
int cfe_open(char *name)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_OPEN;
iocb.psize = sizeof(struct cfe_iocb_buf);
iocb.buffer.ptr = PTR_TO_CFE(name);
iocb.buffer.length = strlen(name);
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.handle;
}
int cfe_read(int handle, unsigned char *buffer, int length)
{
return cfe_readblk(handle, 0, buffer, length);
}
int cfe_readblk(int handle, s64 offset, unsigned char *buffer, int length)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_READ;
iocb.handle = handle;
iocb.psize = sizeof(struct cfe_iocb_buf);
iocb.buffer.offset = offset;
iocb.buffer.ptr = PTR_TO_CFE(buffer);
iocb.buffer.length = length;
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.buffer.retlen;
}
int cfe_setenv(char *name, char *val)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_ENV_SET;
iocb.psize = sizeof(struct cfe_iocb_envbuf);
iocb.envbuf.name = PTR_TO_CFE(name);
iocb.envbuf.name_len = strlen(name);
iocb.envbuf.val = PTR_TO_CFE(val);
iocb.envbuf.val_len = strlen(val);
err = cfe_iocb_dispatch(&iocb);
return (CFE_ISERR(err)) ? err : iocb.status;
}
int cfe_write(int handle, unsigned char *buffer, int length)
{
return cfe_writeblk(handle, 0, buffer, length);
}
int cfe_writeblk(int handle, s64 offset, unsigned char *buffer, int length)
{
struct cfe_iocb iocb;
int err;
memset(&iocb, 0, sizeof(iocb));
iocb.fcode = CFE_CMD_DEV_WRITE;
iocb.handle = handle;
iocb.psize = sizeof(struct cfe_iocb_buf);
iocb.buffer.offset = offset;
iocb.buffer.ptr = PTR_TO_CFE(buffer);
iocb.buffer.length = length;
err = cfe_iocb_dispatch(&iocb);
if (CFE_ISERR(err))
return err;
if (CFE_ISERR(iocb.status))
return iocb.status;
return iocb.buffer.retlen;
}

View File

@ -0,0 +1,176 @@
/*
* Broadcom Common Firmware Environment (CFE) support
*
* Copyright 2000, 2001, 2002
* Broadcom Corporation. All rights reserved.
*
* Copyright (C) 2006 Michael Buesch
*
* Original Authors: Mitch Lichtenberg, Chris Demetriou
*
* This software is furnished under license and may be used and copied only
* in accordance with the following terms and conditions. Subject to these
* conditions, you may download, copy, install, use, modify and distribute
* modified or unmodified copies of this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce and
* retain this copyright notice and list of conditions as they appear in
* the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Broadcom Corporation. The "Broadcom Corporation" name may not be
* used to endorse or promote products derived from this software
* without the prior written permission of Broadcom Corporation.
*
* 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
* FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
* LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LINUX_CFE_PRIVATE_H_
#define LINUX_CFE_PRIVATE_H_
#ifndef __ASSEMBLY__
/* Seal indicating CFE's presence, passed to the kernel. */
#define CFE_EPTSEAL 0x43464531
#define CFE_CMD_FW_GETINFO 0
#define CFE_CMD_FW_RESTART 1
#define CFE_CMD_FW_BOOT 2
#define CFE_CMD_FW_CPUCTL 3
#define CFE_CMD_FW_GETTIME 4
#define CFE_CMD_FW_MEMENUM 5
#define CFE_CMD_FW_FLUSHCACHE 6
#define CFE_CMD_DEV_GETHANDLE 9
#define CFE_CMD_DEV_ENUM 10
#define CFE_CMD_DEV_OPEN 11
#define CFE_CMD_DEV_INPSTAT 12
#define CFE_CMD_DEV_READ 13
#define CFE_CMD_DEV_WRITE 14
#define CFE_CMD_DEV_IOCTL 15
#define CFE_CMD_DEV_CLOSE 16
#define CFE_CMD_DEV_GETINFO 17
#define CFE_CMD_ENV_ENUM 20
#define CFE_CMD_ENV_GET 22
#define CFE_CMD_ENV_SET 23
#define CFE_CMD_ENV_DEL 24
#define CFE_CMD_MAX 32
#define CFE_CMD_VENDOR_USE 0x8000 /* codes above this are for customer use */
typedef u64 cfe_uint_t;
typedef s64 cfe_int_t;
typedef s64 cfe_ptr_t;
/* Cast a pointer from native to CFE-API pointer and back */
#define CFE_TO_PTR(p) ((void *)(unsigned long)(p))
#define PTR_TO_CFE(p) ((cfe_ptr_t)(unsigned long)(p))
struct cfe_iocb_buf {
cfe_uint_t offset; /* offset on device (bytes) */
cfe_ptr_t ptr; /* pointer to a buffer */
cfe_uint_t length; /* length of this buffer */
cfe_uint_t retlen; /* returned length (for read ops) */
union {
cfe_uint_t ioctlcmd; /* IOCTL command (used only for IOCTLs) */
cfe_uint_t devflags; /* Returned device info flags */
};
};
struct cfe_iocb_inpstat {
cfe_uint_t status; /* 1 means input available */
};
struct cfe_iocb_envbuf {
cfe_int_t index; /* 0-based enumeration index */
cfe_ptr_t name; /* name string buffer */
cfe_int_t name_len; /* size of name buffer */
cfe_ptr_t val; /* value string buffer */
cfe_int_t val_len; /* size of value string buffer */
};
struct cfe_iocb_cpuctl {
cfe_uint_t number; /* cpu number to control */
cfe_uint_t command; /* command to issue to CPU */
cfe_uint_t start_addr; /* CPU start address */
cfe_uint_t gp; /* starting GP value */
cfe_uint_t sp; /* starting SP value */
cfe_uint_t a1; /* starting A1 value */
};
struct cfe_iocb_time {
cfe_int_t ticks; /* current time in ticks */
};
struct cfe_iocb_exitstat {
cfe_int_t status;
};
struct cfe_iocb_meminfo {
cfe_int_t index; /* 0-based enumeration index */
cfe_int_t type; /* type of memory block */
cfe_uint_t addr; /* physical start address */
cfe_uint_t size; /* block size */
};
struct cfe_iocb_fwinfo {
cfe_int_t version; /* major, minor, eco version */
cfe_int_t totalmem; /* total installed mem */
cfe_int_t flags; /* various flags */
cfe_int_t boardid; /* board ID */
cfe_int_t bootarea_va; /* VA of boot area */
cfe_int_t bootarea_pa; /* PA of boot area */
cfe_int_t bootarea_size; /* size of boot area */
cfe_int_t reserved1;
cfe_int_t reserved2;
cfe_int_t reserved3;
};
/* CFE I/O Control Block */
struct cfe_iocb {
cfe_uint_t fcode; /* IOCB function code */
cfe_int_t status; /* return status */
cfe_int_t handle; /* file/device handle */
cfe_uint_t flags; /* flags for this IOCB */
cfe_uint_t psize; /* size of parameter list */
union {
struct cfe_iocb_buf buffer; /* buffer parameters */
struct cfe_iocb_inpstat inpstat; /* input status parameters */
struct cfe_iocb_envbuf envbuf; /* environment function parameters */
struct cfe_iocb_cpuctl cpuctl; /* CPU control parameters */
struct cfe_iocb_time time; /* timer parameters */
struct cfe_iocb_meminfo meminfo; /* memory arena info parameters */
struct cfe_iocb_fwinfo fwinfo; /* firmware information */
struct cfe_iocb_exitstat exitstat; /* Exit Status */
};
};
#include <linux/init.h>
void __init cfe_setup(unsigned long fwarg0, unsigned long fwarg1,
unsigned long fwarg2, unsigned long fwarg3);
#else /* __ASSEMBLY__ */
.macro cfe_early_init
#ifdef CONFIG_CFE
jal cfe_setup
#endif
.endm
#endif /* __ASSEMBLY__ */
#endif /* LINUX_CFE_PRIVATE_H_ */

View File

@ -0,0 +1,473 @@
/*
* Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2005 Waldemar Brodkorb <wbx@openwrt.org>
* Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
*
* original functions for finding root filesystem from Mike Baker
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Copyright 2001-2003, Broadcom Corporation
* All Rights Reserved.
*
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
*
* Flash mapping for BCM947XX boards
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#ifdef CONFIG_MTD_PARTITIONS
#include <linux/mtd/partitions.h>
#endif
#include <linux/squashfs_fs.h>
#include <linux/jffs2.h>
#include <linux/crc32.h>
#include <linux/ssb/ssb.h>
#include <asm/io.h>
#define TRX_MAGIC 0x30524448 /* "HDR0" */
#define TRX_VERSION 1
#define TRX_MAX_LEN 0x3A0000
#define TRX_NO_HEADER 1 /* Do not write TRX header */
#define TRX_GZ_FILES 0x2 /* Contains up to TRX_MAX_OFFSET individual gzip files */
#define TRX_MAX_OFFSET 3
struct trx_header {
u32 magic; /* "HDR0" */
u32 len; /* Length of file including header */
u32 crc32; /* 32-bit CRC from flag_version to end of file */
u32 flag_version; /* 0:15 flags, 16:31 version */
u32 offsets[TRX_MAX_OFFSET]; /* Offsets of partitions from start of header */
};
#define ROUNDUP(x, y) ((((x)+((y)-1))/(y))*(y))
#define NVRAM_SPACE 0x8000
#define WINDOW_ADDR 0x1fc00000
#define WINDOW_SIZE 0x400000
#define BUSWIDTH 2
extern struct ssb_bus ssb;
static struct mtd_info *bcm947xx_mtd;
static void bcm947xx_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
{
#define MIPS_MEMCPY_ALIGN 4
map_word ret;
ssize_t transfer;
ssize_t done = 0;
if ((len >= MIPS_MEMCPY_ALIGN) && (!(from & (MIPS_MEMCPY_ALIGN - 1))) && (!(((unsigned int)to & (MIPS_MEMCPY_ALIGN - 1))))) {
done = len & ~(MIPS_MEMCPY_ALIGN - 1);
memcpy_fromio(to, map->virt + from, done);
}
while (done < len) {
ret = map->read(map, from + done);
transfer = len - done;
if (transfer > map->bankwidth)
transfer = map->bankwidth;
memcpy((void *)((unsigned long)to + done), &ret.x[0], transfer);
done += transfer;
}
}
static struct map_info bcm947xx_map = {
name: "Physically mapped flash",
size: WINDOW_SIZE,
bankwidth: BUSWIDTH,
phys: WINDOW_ADDR,
};
#ifdef CONFIG_MTD_PARTITIONS
static struct mtd_partition bcm947xx_parts[] = {
{ name: "cfe", offset: 0, size: 0, mask_flags: MTD_WRITEABLE, },
{ name: "linux", offset: 0, size: 0, },
{ name: "rootfs", offset: 0, size: 0, },
{ name: "nvram", offset: 0, size: 0, },
{ name: "OpenWrt", offset: 0, size: 0, },
{ name: NULL, },
};
static int __init
find_cfe_size(struct mtd_info *mtd, size_t size)
{
struct trx_header *trx;
unsigned char buf[512];
int off;
size_t len;
int blocksize;
trx = (struct trx_header *) buf;
blocksize = mtd->erasesize;
if (blocksize < 0x10000)
blocksize = 0x10000;
for (off = (128*1024); off < size; off += blocksize) {
memset(buf, 0xe5, sizeof(buf));
/*
* Read into buffer
*/
if (mtd->read(mtd, off, sizeof(buf), &len, buf) ||
len != sizeof(buf))
continue;
/* found a TRX header */
if (le32_to_cpu(trx->magic) == TRX_MAGIC) {
goto found;
}
}
printk(KERN_NOTICE
"%s: Couldn't find bootloader size\n",
mtd->name);
return -1;
found:
printk(KERN_NOTICE "bootloader size: %d\n", off);
return off;
}
/*
* Copied from mtdblock.c
*
* Cache stuff...
*
* Since typical flash erasable sectors are much larger than what Linux's
* buffer cache can handle, we must implement read-modify-write on flash
* sectors for each block write requests. To avoid over-erasing flash sectors
* and to speed things up, we locally cache a whole flash sector while it is
* being written to until a different sector is required.
*/
static void erase_callback(struct erase_info *done)
{
wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
wake_up(wait_q);
}
static int erase_write (struct mtd_info *mtd, unsigned long pos,
int len, const char *buf)
{
struct erase_info erase;
DECLARE_WAITQUEUE(wait, current);
wait_queue_head_t wait_q;
size_t retlen;
int ret;
/*
* First, let's erase the flash block.
*/
init_waitqueue_head(&wait_q);
erase.mtd = mtd;
erase.callback = erase_callback;
erase.addr = pos;
erase.len = len;
erase.priv = (u_long)&wait_q;
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&wait_q, &wait);
ret = mtd->erase(mtd, &erase);
if (ret) {
set_current_state(TASK_RUNNING);
remove_wait_queue(&wait_q, &wait);
printk (KERN_WARNING "erase of region [0x%lx, 0x%x] "
"on \"%s\" failed\n",
pos, len, mtd->name);
return ret;
}
schedule(); /* Wait for erase to finish. */
remove_wait_queue(&wait_q, &wait);
/*
* Next, writhe data to flash.
*/
ret = mtd->write (mtd, pos, len, &retlen, buf);
if (ret)
return ret;
if (retlen != len)
return -EIO;
return 0;
}
static int __init
find_root(struct mtd_info *mtd, size_t size, struct mtd_partition *part)
{
struct trx_header trx, *trx2;
unsigned char buf[512], *block;
int off, blocksize;
u32 i, crc = ~0;
size_t len;
struct squashfs_super_block *sb = (struct squashfs_super_block *) buf;
blocksize = mtd->erasesize;
if (blocksize < 0x10000)
blocksize = 0x10000;
for (off = (128*1024); off < size; off += blocksize) {
memset(&trx, 0xe5, sizeof(trx));
/*
* Read into buffer
*/
if (mtd->read(mtd, off, sizeof(trx), &len, (char *) &trx) ||
len != sizeof(trx))
continue;
/* found a TRX header */
if (le32_to_cpu(trx.magic) == TRX_MAGIC) {
part->offset = le32_to_cpu(trx.offsets[2]) ? :
le32_to_cpu(trx.offsets[1]);
part->size = le32_to_cpu(trx.len);
part->size -= part->offset;
part->offset += off;
goto found;
}
}
printk(KERN_NOTICE
"%s: Couldn't find root filesystem\n",
mtd->name);
return -1;
found:
if (part->size == 0)
return 0;
if (mtd->read(mtd, part->offset, sizeof(buf), &len, buf) || len != sizeof(buf))
return 0;
if (*((__u32 *) buf) == SQUASHFS_MAGIC) {
printk(KERN_INFO "%s: Filesystem type: squashfs, size=0x%x\n", mtd->name, (u32) sb->bytes_used);
/* Update the squashfs partition size based on the superblock info */
part->size = sb->bytes_used;
len = part->offset + part->size;
len += (mtd->erasesize - 1);
len &= ~(mtd->erasesize - 1);
part->size = len - part->offset;
} else if (*((__u16 *) buf) == JFFS2_MAGIC_BITMASK) {
printk(KERN_INFO "%s: Filesystem type: jffs2\n", mtd->name);
/* Move the squashfs outside of the trx */
part->size = 0;
} else {
printk(KERN_INFO "%s: Filesystem type: unknown\n", mtd->name);
return 0;
}
if (trx.len != part->offset + part->size - off) {
/* Update the trx offsets and length */
trx.len = part->offset + part->size - off;
/* Update the trx crc32 */
for (i = (u32) &(((struct trx_header *)NULL)->flag_version); i <= trx.len; i += sizeof(buf)) {
if (mtd->read(mtd, off + i, sizeof(buf), &len, buf) || len != sizeof(buf))
return 0;
crc = crc32_le(crc, buf, min(sizeof(buf), trx.len - i));
}
trx.crc32 = crc;
/* read first eraseblock from the trx */
block = kmalloc(mtd->erasesize, GFP_KERNEL);
trx2 = (struct trx_header *) block;
if (mtd->read(mtd, off, mtd->erasesize, &len, block) || len != mtd->erasesize) {
printk("Error accessing the first trx eraseblock\n");
return 0;
}
printk("Updating TRX offsets and length:\n");
printk("old trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx2->offsets[0], trx2->offsets[1], trx2->offsets[2], trx2->len, trx2->crc32);
printk("new trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx.offsets[0], trx.offsets[1], trx.offsets[2], trx.len, trx.crc32);
/* Write updated trx header to the flash */
memcpy(block, &trx, sizeof(trx));
if (mtd->unlock)
mtd->unlock(mtd, off, mtd->erasesize);
erase_write(mtd, off, mtd->erasesize, block);
if (mtd->sync)
mtd->sync(mtd);
kfree(block);
printk("Done\n");
}
return part->size;
}
struct mtd_partition * __init
init_mtd_partitions(struct mtd_info *mtd, size_t size)
{
int cfe_size;
if ((cfe_size = find_cfe_size(mtd,size)) < 0)
return NULL;
/* boot loader */
bcm947xx_parts[0].offset = 0;
bcm947xx_parts[0].size = cfe_size;
/* nvram */
if (cfe_size != 384 * 1024) {
bcm947xx_parts[3].offset = size - ROUNDUP(NVRAM_SPACE, mtd->erasesize);
bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize);
} else {
/* nvram (old 128kb config partition on netgear wgt634u) */
bcm947xx_parts[3].offset = bcm947xx_parts[0].size;
bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize);
}
/* linux (kernel and rootfs) */
if (cfe_size != 384 * 1024) {
bcm947xx_parts[1].offset = bcm947xx_parts[0].size;
bcm947xx_parts[1].size = bcm947xx_parts[3].offset -
bcm947xx_parts[1].offset;
} else {
/* do not count the elf loader, which is on one block */
bcm947xx_parts[1].offset = bcm947xx_parts[0].size +
bcm947xx_parts[3].size + mtd->erasesize;
bcm947xx_parts[1].size = size -
bcm947xx_parts[0].size -
(2*bcm947xx_parts[3].size) -
mtd->erasesize;
}
/* find and size rootfs */
if (find_root(mtd,size,&bcm947xx_parts[2])==0) {
/* entirely jffs2 */
bcm947xx_parts[4].name = NULL;
bcm947xx_parts[2].size = size - bcm947xx_parts[2].offset -
bcm947xx_parts[3].size;
} else {
/* legacy setup */
/* calculate leftover flash, and assign it to the jffs2 partition */
if (cfe_size != 384 * 1024) {
bcm947xx_parts[4].offset = bcm947xx_parts[2].offset +
bcm947xx_parts[2].size;
if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) {
bcm947xx_parts[4].offset += mtd->erasesize -
(bcm947xx_parts[4].offset % mtd->erasesize);
}
bcm947xx_parts[4].size = bcm947xx_parts[3].offset -
bcm947xx_parts[4].offset;
} else {
bcm947xx_parts[4].offset = bcm947xx_parts[2].offset +
bcm947xx_parts[2].size;
if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) {
bcm947xx_parts[4].offset += mtd->erasesize -
(bcm947xx_parts[4].offset % mtd->erasesize);
}
bcm947xx_parts[4].size = size - bcm947xx_parts[3].size -
bcm947xx_parts[4].offset;
}
}
return bcm947xx_parts;
}
#endif
int __init init_bcm947xx_map(void)
{
struct ssb_mipscore *mcore = &ssb.mipscore;
size_t size;
int ret = 0;
#ifdef CONFIG_MTD_PARTITIONS
struct mtd_partition *parts;
int i;
#endif
u32 window = mcore->flash_window;
u32 window_size = mcore->flash_window_size;
printk("flash init: 0x%08x 0x%08x\n", window, window_size);
bcm947xx_map.phys = window;
bcm947xx_map.size = window_size;
bcm947xx_map.virt = ioremap_nocache(window, window_size);
if (!bcm947xx_map.virt) {
printk("Failed to ioremap\n");
return -EIO;
}
simple_map_init(&bcm947xx_map);
bcm947xx_map.copy_from = bcm947xx_map_copy_from;
if (!(bcm947xx_mtd = do_map_probe("cfi_probe", &bcm947xx_map))) {
printk("Failed to do_map_probe\n");
iounmap((void *)bcm947xx_map.virt);
return -ENXIO;
}
bcm947xx_mtd->owner = THIS_MODULE;
size = bcm947xx_mtd->size;
printk(KERN_NOTICE "Flash device: 0x%x at 0x%x\n", size, WINDOW_ADDR);
#ifdef CONFIG_MTD_PARTITIONS
parts = init_mtd_partitions(bcm947xx_mtd, size);
for (i = 0; parts[i].name; i++);
ret = add_mtd_partitions(bcm947xx_mtd, parts, i);
if (ret) {
printk(KERN_ERR "Flash: add_mtd_partitions failed\n");
goto fail;
}
#endif
return 0;
fail:
if (bcm947xx_mtd)
map_destroy(bcm947xx_mtd);
if (bcm947xx_map.virt)
iounmap((void *)bcm947xx_map.virt);
bcm947xx_map.virt = 0;
return ret;
}
void __exit cleanup_bcm947xx_map(void)
{
#ifdef CONFIG_MTD_PARTITIONS
del_mtd_partitions(bcm947xx_mtd);
#endif
map_destroy(bcm947xx_mtd);
iounmap((void *)bcm947xx_map.virt);
}
module_init(init_bcm947xx_map);
module_exit(cleanup_bcm947xx_map);

View File

@ -0,0 +1,74 @@
menu "Sonics Silicon Backplane"
config SSB
tristate "Sonics Silicon Backplane support"
depends on EXPERIMENTAL
help
Support for the Sonics Silicon Backplane bus
The module will be called ssb
If unsure, say M
config SSB_PCIHOST
bool "Support for SSB on PCI-bus host"
depends on SSB && PCI
default y
help
Support for a Sonics Silicon Backplane on top
of a PCI device.
If unsure, say Y
config SSB_PCMCIAHOST
bool "Support for SSB on PCMCIA-bus host"
depends on SSB && PCMCIA
help
Support for a Sonics Silicon Backplane on top
of a PCMCIA device.
If unsure, say N
config SSB_SILENT
bool "No SSB kernel messages"
depends on SSB
help
This option turns off all Sonics Silicon Backplane printks.
Note that you won't be able to identify problems, once
messages are turned off.
This might only be desired for production kernels on
embedded devices to reduce the kernel size.
Say N
config SSB_DEBUG
bool "SSB debugging"
depends on SSB && !SSB_SILENT
help
This turns on additional runtime checks and debugging
messages. Turn this on for SSB troubleshooting.
If unsure, say N
config SSB_SERIAL
bool
depends on SSB
# ChipCommon and ExtIf serial support routines.
config SSB_DRIVER_PCICORE
bool "SSB PCI core driver"
depends on SSB && SSB_PCIHOST
default y
help
Driver for the Sonics Silicon Backplane attached
Broadcom PCI core.
If unsure, say Y
config SSB_PCICORE_HOSTMODE
bool "Hostmode support for SSB PCI core"
depends on SSB_DRIVER_PCICORE && SSB_DRIVER_MIPS
help
PCIcore hostmode operation (external PCI bus).
endmenu

View File

@ -0,0 +1,14 @@
ssb-driver-chipcommon-y := driver_chipcommon/chipcommon.o
ssb-driver-mips-$(CONFIG_BCM947XX) := driver_mips/mips.o
ssb-driver-pci-$(CONFIG_SSB_DRIVER_PCICORE) := driver_pci/pcicore.o
ssb-$(CONFIG_SSB_PCIHOST) += pci.o
ssb-$(CONFIG_SSB_PCMCIAHOST) += pcmcia.o
obj-$(CONFIG_SSB) += ssb.o
ssb-objs := core.o scan.o \
$(ssb-y) $(ssb-m) \
$(ssb-driver-chipcommon-y) \
$(ssb-driver-mips-y) \
$(ssb-driver-pci-y)

View File

@ -0,0 +1,805 @@
/*
* Sonics Silicon Backplane
* Subsystem core
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include "ssb_private.h"
#include <linux/delay.h>
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#ifdef CONFIG_SSB_PCIHOST
# include <linux/pci.h>
#endif
#ifdef CONFIG_SSB_PCMCIAHOST
# include <pcmcia/cs_types.h>
# include <pcmcia/cs.h>
# include <pcmcia/cistpl.h>
# include <pcmcia/ds.h>
#endif
MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
MODULE_LICENSE("GPL");
static LIST_HEAD(attach_queue);
static LIST_HEAD(buses);
static int nr_buses;
static DEFINE_MUTEX(buses_mutex);
#define ssb_buses_lock() do { \
if (!is_early_boot()) \
mutex_lock(&buses_mutex); \
} while (0)
#define ssb_buses_unlock() do { \
if (!is_early_boot()) \
mutex_unlock(&buses_mutex); \
} while (0)
static struct ssb_device * ssb_device_get(struct ssb_device *dev)
{
if (dev)
get_device(&dev->dev);
return dev;
}
static void ssb_device_put(struct ssb_device *dev)
{
if (dev)
put_device(&dev->dev);
}
static void ssb_bus_resume(struct ssb_bus *bus)
{
printk("SSB BUS RESUME\n");
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
ssb_chipco_resume(&bus->chipco);
}
static int ssb_device_resume(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
struct ssb_bus *bus;
int err = 0;
printk("SSB DEV RESUME\n");
bus = ssb_dev->bus;
if (bus->suspend_cnt == bus->nr_devices)
ssb_bus_resume(bus);
bus->suspend_cnt--;
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->resume)
err = ssb_drv->resume(ssb_dev);
if (err)
goto out;
}
out:
return err;
}
static void ssb_bus_suspend(struct ssb_bus *bus, pm_message_t state)
{
printk("SSB BUS SUSPEND\n");
// ssb_chipco_suspend(&bus->chipco, state);
// ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
}
static int ssb_device_suspend(struct device *dev, pm_message_t state)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
struct ssb_bus *bus;
int err = 0;
printk("SSB DEV SUSPEND\n");
if (dev->driver) {
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->suspend)
err = ssb_drv->suspend(ssb_dev, state);
if (err)
goto out;
}
bus = ssb_dev->bus;
bus->suspend_cnt++;
if (bus->suspend_cnt == bus->nr_devices) {
/* All devices suspended. Shutdown the bus. */
ssb_bus_suspend(bus, state);
}
out:
return err;
}
static void ssb_device_shutdown(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv;
if (!dev->driver)
return;
ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->shutdown)
ssb_drv->shutdown(ssb_dev);
}
static int ssb_device_remove(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
if (ssb_drv && ssb_drv->remove)
ssb_drv->remove(ssb_dev);
ssb_device_put(ssb_dev);
return 0;
}
static int ssb_device_probe(struct device *dev)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
int err = 0;
ssb_device_get(ssb_dev);
if (ssb_drv && ssb_drv->probe)
err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
if (err)
ssb_device_put(ssb_dev);
return err;
}
static int ssb_match_devid(const struct ssb_device_id *tabid,
const struct ssb_device_id *devid)
{
if ((tabid->vendor != devid->vendor) &&
tabid->vendor != SSB_ANY_VENDOR)
return 0;
if ((tabid->coreid != devid->coreid) &&
tabid->coreid != SSB_ANY_ID)
return 0;
if ((tabid->revision != devid->revision) &&
tabid->revision != SSB_ANY_REV)
return 0;
return 1;
}
static int ssb_bus_match(struct device *dev, struct device_driver *drv)
{
struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
const struct ssb_device_id *id;
for (id = ssb_drv->id_table;
id->vendor || id->coreid || id->revision;
id++) {
if (ssb_match_devid(id, &ssb_dev->id))
return 1; /* found */
}
return 0;
}
struct bus_type ssb_bustype = {
.name = NULL, /* Intentionally NULL to indicate early boot */
.match = ssb_bus_match,
.probe = ssb_device_probe,
.remove = ssb_device_remove,
.shutdown = ssb_device_shutdown,
.suspend = ssb_device_suspend,
.resume = ssb_device_resume,
};
#define is_early_boot() (ssb_bustype.name == NULL)
void ssb_bus_unregister(struct ssb_bus *bus)
{
struct ssb_device *dev;
int i;
ssb_buses_lock();
for (i = bus->nr_devices - 1; i >= 0; i--) {
dev = &(bus->devices[i]);
device_unregister(&dev->dev);
}
list_del(&bus->list);
ssb_buses_unlock();
ssb_iounmap(bus);
}
EXPORT_SYMBOL(ssb_bus_unregister);
static void ssb_release_dev(struct device *dev)
{
/* Nothing, devices are allocated together with struct ssb_bus. */
}
/* Needs ssb_buses_lock() */
static int ssb_attach_queued_buses(void)
{
struct ssb_bus *bus, *n;
struct ssb_device *dev;
int i, err;
list_for_each_entry_safe(bus, n, &attach_queue, list) {
for (i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
dev->dev.release = ssb_release_dev;
err = device_register(&dev->dev);
if (err) {
ssb_printk(KERN_ERR PFX
"Could not register %s\n",
dev->dev.bus_id);
}
}
list_move_tail(&bus->list, &buses);
}
return 0;
}
static void ssb_get_boardtype(struct ssb_bus *bus)
{//FIXME for pcmcia?
if (bus->bustype != SSB_BUSTYPE_PCI) {
/* Must set board_vendor, board_type and board_rev
* before calling ssb_bus_*_register() */
assert(bus->board_vendor && bus->board_type);
return;
}
ssb_pci_get_boardtype(bus);
}
static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readw(bus->mmio + offset);
}
static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
return readl(bus->mmio + offset);
}
static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writew(value, bus->mmio + offset);
}
static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
offset += dev->core_index * SSB_CORE_SIZE;
writel(value, bus->mmio + offset);
}
static const struct ssb_bus_ops ssb_ssb_ops = {
.read16 = ssb_ssb_read16,
.read32 = ssb_ssb_read32,
.write16 = ssb_ssb_write16,
.write32 = ssb_ssb_write32,
};
static int ssb_bus_register(struct ssb_bus *bus,
unsigned long baseaddr)
{
int err;
ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on ");
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
ssb_printk("address 0x%08lX\n", baseaddr);
break;
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
ssb_printk("PCI device %s\n", bus->host_pci->dev.bus_id);
#endif
break;
case SSB_BUSTYPE_PCMCIA:
#ifdef CONFIG_SSB_PCMCIAHOST
ssb_printk("PCMCIA device %s\n", bus->host_pcmcia->devname);
#endif
break;
}
spin_lock_init(&bus->bar_lock);
INIT_LIST_HEAD(&bus->list);
ssb_get_boardtype(bus);
/* Powerup the bus */
err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
if (err)
goto out;
ssb_buses_lock();
bus->busnumber = nr_buses;
/* Scan for devices (cores) */
err = ssb_bus_scan(bus, baseaddr);
if (err)
goto err_disable_xtal;
/* Init PCI-host device (if any) */
err = ssb_pci_init(bus);
if (err)
goto err_unmap;
/* Init PCMCIA-host device (if any) */
err = ssb_pcmcia_init(bus);
if (err)
goto err_unmap;
/* Initialize basic system devices (if available) */
ssb_chipcommon_init(&bus->chipco);
ssb_mipscore_init(&bus->mipscore);
ssb_pcicore_init(&bus->pcicore);
/* Queue it for attach */
list_add_tail(&bus->list, &attach_queue);
if (!is_early_boot()) {
/* This is not early boot, so we must attach the bus now */
err = ssb_attach_queued_buses();
if (err)
goto err_dequeue;
}
nr_buses++;
ssb_buses_unlock();
out:
return err;
err_dequeue:
list_del(&bus->list);
err_unmap:
ssb_iounmap(bus);
err_disable_xtal:
ssb_buses_unlock();
ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
goto out;
}
#ifdef CONFIG_SSB_PCIHOST
int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci)
{
int err;
bus->bustype = SSB_BUSTYPE_PCI;
bus->host_pci = host_pci;
bus->ops = &ssb_pci_ops;
err = ssb_bus_register(bus, 0);
return err;
}
EXPORT_SYMBOL(ssb_bus_pcibus_register);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr,
void (*fill_sprom)(struct ssb_sprom *sprom))
{
int err;
bus->bustype = SSB_BUSTYPE_PCMCIA;
bus->host_pcmcia = pcmcia_dev;
bus->ops = &ssb_pcmcia_ops;
fill_sprom(&bus->sprom);
err = ssb_bus_register(bus, baseaddr);
return err;
}
EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
#endif /* CONFIG_SSB_PCMCIAHOST */
int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
void (*fill_sprom)(struct ssb_sprom *sprom))
{
int err;
bus->bustype = SSB_BUSTYPE_SSB;
bus->ops = &ssb_ssb_ops;
fill_sprom(&bus->sprom);
err = ssb_bus_register(bus, baseaddr);
return err;
}
int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
{
drv->drv.name = drv->name;
drv->drv.bus = &ssb_bustype;
drv->drv.owner = owner;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(__ssb_driver_register);
void ssb_driver_unregister(struct ssb_driver *drv)
{
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(ssb_driver_unregister);
void ssb_set_devtypedata(struct ssb_device *dev, void *data)
{
struct ssb_bus *bus = dev->bus;
struct ssb_device *ent;
int i;
for (i = 0; i < bus->nr_devices; i++) {
ent = &(bus->devices[i]);
if (ent->id.vendor != dev->id.vendor)
continue;
if (ent->id.coreid != dev->id.coreid)
continue;
ent->devtypedata = data;
}
}
EXPORT_SYMBOL(ssb_set_devtypedata);
static u32 clkfactor_f6_resolve(u32 v)
{
/* map the magic values */
switch (v) {
case SSB_CHIPCO_CLK_F6_2:
return 2;
case SSB_CHIPCO_CLK_F6_3:
return 3;
case SSB_CHIPCO_CLK_F6_4:
return 4;
case SSB_CHIPCO_CLK_F6_5:
return 5;
case SSB_CHIPCO_CLK_F6_6:
return 6;
case SSB_CHIPCO_CLK_F6_7:
return 7;
}
return 0;
}
/* Calculate the speed the backplane would run at a given set of clockcontrol values */
u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
{
u32 n1, n2, clock, m1, m2, m3, mc;
n1 = (n & SSB_CHIPCO_CLK_N1);
n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
if (m & SSB_CHIPCO_CLK_T6_MMASK)
return SSB_CHIPCO_CLK_T6_M0;
return SSB_CHIPCO_CLK_T6_M1;
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
n1 = clkfactor_f6_resolve(n1);
n2 += SSB_CHIPCO_CLK_F5_BIAS;
break;
case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
n1 += SSB_CHIPCO_CLK_T2_BIAS;
n2 += SSB_CHIPCO_CLK_T2_BIAS;
assert((n1 >= 2) && (n1 <= 7));
assert((n2 >= 5) && (n2 <= 23));
break;
case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
return 100000000;
default:
assert(0);
}
switch (plltype) {
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
break;
default:
clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
}
if (!clock)
return 0;
m1 = (m & SSB_CHIPCO_CLK_M1);
m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
switch (plltype) {
case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
m1 = clkfactor_f6_resolve(m1);
if ((plltype == SSB_PLLTYPE_1) ||
(plltype == SSB_PLLTYPE_3))
m2 += SSB_CHIPCO_CLK_F5_BIAS;
else
m2 = clkfactor_f6_resolve(m2);
m3 = clkfactor_f6_resolve(m3);
switch (mc) {
case SSB_CHIPCO_CLK_MC_BYPASS:
return clock;
case SSB_CHIPCO_CLK_MC_M1:
return (clock / m1);
case SSB_CHIPCO_CLK_MC_M1M2:
return (clock / (m1 * m2));
case SSB_CHIPCO_CLK_MC_M1M2M3:
return (clock / (m1 * m2 * m3));
case SSB_CHIPCO_CLK_MC_M1M3:
return (clock / (m1 * m3));
}
return 0;
case SSB_PLLTYPE_2:
m1 += SSB_CHIPCO_CLK_T2_BIAS;
m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
m3 += SSB_CHIPCO_CLK_T2_BIAS;
assert((m1 >= 2) && (m1 <= 7));
assert((m2 >= 3) && (m2 <= 10));
assert((m3 >= 2) && (m3 <= 7));
if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
clock /= m1;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
clock /= m2;
if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
clock /= m3;
return clock;
default:
assert(0);
}
return 0;
}
/* Get the current speed the backplane is running at */
u32 ssb_clockspeed(struct ssb_bus *bus)
{
u32 rate;
u32 plltype;
u32 clkctl_n, clkctl_m;
//TODO if EXTIF: PLLTYPE == 1, read n from clockcontrol_n, m from clockcontrol_sb
if (bus->chipco.dev) {
ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
&clkctl_n, &clkctl_m);
} else
return 0;
if (bus->chip_id == 0x5365) {
rate = 100000000;
} else {
rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
rate /= 2;
}
return rate;
}
EXPORT_SYMBOL(ssb_clockspeed);
int ssb_device_is_enabled(struct ssb_device *dev)
{
u32 val;
val = ssb_read32(dev, SSB_TMSLOW);
val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT;
return (val == SSB_TMSLOW_CLOCK);
}
EXPORT_SYMBOL(ssb_device_is_enabled);
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
{
u32 val;
ssb_device_disable(dev, core_specific_flags);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_FGC | core_specific_flags);
/* flush */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
/* Clear SERR if set. This is a hw bug workaround. */
if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
ssb_write32(dev, SSB_TMSHIGH, 0);
val = ssb_read32(dev, SSB_IMSTATE);
if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
ssb_write32(dev, SSB_IMSTATE, val);
}
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
core_specific_flags);
/* flush */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
core_specific_flags);
/* flush */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
}
EXPORT_SYMBOL(ssb_device_enable);
static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
int timeout, int set)
{
int i;
u32 val;
for (i = 0; i < timeout; i++) {
val = ssb_read32(dev, reg);
if (set) {
if (val & bitmask)
return 0;
} else {
if (!(val & bitmask))
return 0;
}
udelay(10);
}
printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
"register %04X to %s.\n",
bitmask, reg, (set ? "set" : "clear"));
return -ETIMEDOUT;
}
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
{
if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
return;
ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_REJECT | SSB_TMSLOW_CLOCK);
ssb_wait_bit(dev, SSB_TMSLOW, SSB_TMSLOW_REJECT, 1000, 1);
ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET |
core_specific_flags);
/* flush */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
ssb_write32(dev, SSB_TMSLOW,
SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET |
core_specific_flags);
/* flush */
ssb_read32(dev, SSB_TMSLOW);
udelay(1);
}
EXPORT_SYMBOL(ssb_device_disable);
u32 ssb_dma_translation(struct ssb_device *dev)
{
switch(dev->bus->bustype) {
case SSB_BUSTYPE_SSB:
return 0;
case SSB_BUSTYPE_PCI:
case SSB_BUSTYPE_PCMCIA:
return SSB_PCI_DMA;
}
return 0;
}
EXPORT_SYMBOL(ssb_dma_translation);
int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask)
{
struct device *dev = &ssb_dev->dev;
#ifdef CONFIG_SSB_PCIHOST
if (ssb_dev->bus->bustype == SSB_BUSTYPE_PCI &&
!dma_supported(dev, mask))
return -EIO;
#endif
dev->coherent_dma_mask = mask;
dev->dma_mask = &dev->coherent_dma_mask;
return 0;
}
EXPORT_SYMBOL(ssb_dma_set_mask);
u32 ssb_admatch_base(u32 adm)
{
u32 base = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
base = (adm & SSB_ADM_BASE0);
break;
case SSB_ADM_TYPE1:
assert(!(adm & SSB_ADM_NEG)); /* unsupported */
base = (adm & SSB_ADM_BASE1);
break;
case SSB_ADM_TYPE2:
assert(!(adm & SSB_ADM_NEG)); /* unsupported */
base = (adm & SSB_ADM_BASE2);
break;
default:
assert(0);
}
return base;
}
EXPORT_SYMBOL(ssb_admatch_base);
u32 ssb_admatch_size(u32 adm)
{
u32 size = 0;
switch (adm & SSB_ADM_TYPE) {
case SSB_ADM_TYPE0:
size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
break;
case SSB_ADM_TYPE1:
assert(!(adm & SSB_ADM_NEG)); /* unsupported */
size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
break;
case SSB_ADM_TYPE2:
assert(!(adm & SSB_ADM_NEG)); /* unsupported */
size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
break;
default:
assert(0);
}
size = (1 << (size + 1));
return size;
}
EXPORT_SYMBOL(ssb_admatch_size);
static int __init ssb_modinit(void)
{
int err;
ssb_bustype.name = "ssb";
err = bus_register(&ssb_bustype);
if (err)
return err;
/* Maybe we already registered some buses at early boot.
* Check for this and attach them
*/
ssb_buses_lock();
err = ssb_attach_queued_buses();
ssb_buses_unlock();
return err;
}
subsys_initcall(ssb_modinit);
static void __exit ssb_modexit(void)
{
bus_unregister(&ssb_bustype);
}
module_exit(ssb_modexit)

View File

@ -0,0 +1,403 @@
/*
* Sonics Silicon Backplane
* Broadcom ChipCommon core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include "../ssb_private.h"
/* Clock sources */
enum {
/* PCI clock */
SSB_CHIPCO_CLKSRC_PCI,
/* Crystal slow clock oscillator */
SSB_CHIPCO_CLKSRC_XTALOS,
/* Low power oscillator */
SSB_CHIPCO_CLKSRC_LOPWROS,
};
static inline u32 chipco_read32(struct ssb_chipcommon *cc,
u16 offset)
{
return ssb_read32(cc->dev, offset);
}
static inline void chipco_write32(struct ssb_chipcommon *cc,
u16 offset,
u32 value)
{
ssb_write32(cc->dev, offset, value);
}
void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode)
{
struct ssb_device *ccdev = cc->dev;
struct ssb_bus *bus;
u32 tmp;
if (!ccdev)
return;
bus = ccdev->bus;
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (ccdev->id.revision < 6)
return;
/* chipcommon cores rev10 are a whole new ball game */
if (ccdev->id.revision >= 10)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
switch (mode) {
case SSB_CLKMODE_SLOW:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_FAST:
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_DYNAMIC:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) != SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL)
tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL)
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0);
break;
default:
assert(0);
}
}
EXPORT_SYMBOL(ssb_chipco_set_clockmode);
/* Get the Slow Clock Source */
static int chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 tmp = 0;
if (cc->dev->id.revision < 6) {
if (bus->bustype == SSB_BUSTYPE_SSB /*TODO ||
bus->bustype == SSB_BUSTYPE_PCMCIA*/)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (bus->bustype == SSB_BUSTYPE_PCI) {
pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp);
if (tmp & 0x10)
return SSB_CHIPCO_CLKSRC_PCI;
return SSB_CHIPCO_CLKSRC_XTALOS;
}
}
if (cc->dev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= 0x7;
if (tmp == 0)
return SSB_CHIPCO_CLKSRC_LOPWROS;
if (tmp == 1)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (tmp == 2)
return SSB_CHIPCO_CLKSRC_PCI;
}
return SSB_CHIPCO_CLKSRC_XTALOS;
}
/* Get maximum or minimum (depending on get_max flag) slowclock frequency. */
static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max)
{
int limit;
int clocksrc;
int divisor;
u32 tmp;
clocksrc = chipco_pctl_get_slowclksrc(cc);
if (cc->dev->id.revision < 6) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_PCI:
divisor = 64;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
divisor = 32;
break;
default:
assert(0);
divisor = 1;
}
} else if (cc->dev->id.revision < 10) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
divisor = 1;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
case SSB_CHIPCO_CLKSRC_PCI:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
break;
default:
assert(0);
divisor = 1;
}
} else {
tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
}
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
if (get_max)
limit = 43000;
else
limit = 25000;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
if (get_max)
limit = 20200000;
else
limit = 19800000;
break;
case SSB_CHIPCO_CLKSRC_PCI:
if (get_max)
limit = 34000000;
else
limit = 25000000;
break;
default:
assert(0);
limit = 0;
}
limit /= divisor;
return limit;
}
static void chipco_powercontrol_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (bus->chip_id == 0x4321) {
if (bus->chip_rev == 0)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4);
else if (bus->chip_rev == 1)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4);
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
if (cc->dev->id.revision >= 10) {
/* Set Idle Power clock rate to 1Mhz */
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
0x0000FFFF) | 0x00040000);
} else {
int maxfreq;
maxfreq = chipco_pctl_clockfreqlimit(cc, 1);
chipco_write32(cc, SSB_CHIPCO_PLLONDELAY,
(maxfreq * 150 + 999999) / 1000000);
chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY,
(maxfreq * 15 + 999999) / 1000000);
}
}
static void calc_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
int minfreq;
unsigned int tmp;
u32 pll_on_delay;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
minfreq = chipco_pctl_clockfreqlimit(cc, 0);
pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY);
tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq;
assert((tmp & ~0xFFFF) == 0);
cc->fast_pwrup_delay = tmp;
}
void ssb_chipcommon_init(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return; /* We don't have a ChipCommon */
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
chipco_powercontrol_init(cc);
calc_fast_powerup_delay(cc);
}
void ssb_chipco_suspend(struct ssb_chipcommon *cc, pm_message_t state)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
}
void ssb_chipco_resume(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
chipco_powercontrol_init(cc);
}
void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
if (cc->dev->bus->chip_id != 0x5365) {
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
}
/* Fallthough */
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
}
}
void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns)
{
struct ssb_device *dev = cc->dev;
struct ssb_bus *bus = dev->bus;
u32 tmp;
/* set register for external IO to control LED. */
chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11);
tmp = ceildiv(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= ceildiv(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */
tmp |= ceildiv(240, ns); /* Waitcount-0 = 240ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set timing for the flash */
tmp = ceildiv(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */
tmp |= ceildiv(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */
tmp |= ceildiv(120, ns); /* Waitcount-0 = 120nS */
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9))
chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp);
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9) ||
((bus->chip_id == 0x5350) && (bus->chip_rev == 0)))
chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp);
if (bus->chip_id == 0x5350) {
/* Enable EXTIF */
tmp = ceildiv(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= ceildiv(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */
tmp |= ceildiv(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */
tmp |= ceildiv(120, ns); /* Waitcount-0 = 120ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
}
}
#ifdef CONFIG_SSB_SERIAL
int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports)
{
struct ssb_bus *bus = cc->dev->bus;
int nr_ports = 0;
u32 plltype;
unsigned int irq;
u32 baud_base, div;
u32 i, n;
plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
irq = ssb_mips_irq(cc->dev);
if (plltype == SSB_PLLTYPE_1) {
/* PLL clock */
baud_base = ssb_calc_clock_rate(plltype,
chipco_read32(cc, SSB_CHIPCO_CLOCK_N),
chipco_read32(cc, SSB_CHIPCO_CLOCK_M2));
div = 1;
} else {
if (cc->dev->id.revision >= 11) {
/* Fixed ALP clock */
baud_base = 20000000;
div = 1;
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
SSB_CHIPCO_CORECTL_UARTCLK0);
} else if (cc->dev->id.revision >= 3) {
/* Internal backplane clock */
baud_base = ssb_clockspeed(bus);
div = 2; /* Minimum divisor */
chipco_write32(cc, SSB_CHIPCO_CLKDIV,
(chipco_read32(cc, SSB_CHIPCO_CLKDIV)
& ~SSB_CHIPCO_CLKDIV_UART) | div);
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((cc->dev->id.revision > 0) &&
!(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) {
if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) ==
SSB_CHIPCO_CAP_UARTCLK_INT) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Determine the registers of the UARTs */
n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART);
for (i = 0; i < n; i++) {
void __iomem *cc_mmio;
void __iomem *uart_regs;
cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE);
uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA;
/* Offset changed at after rev 0 */
if (cc->dev->id.revision == 0)
uart_regs += (i * 8);
else
uart_regs += (i * 256);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = irq;
ports[i].baud_base = baud_base;
ports[i].reg_shift = 0;
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */

View File

@ -0,0 +1,279 @@
/*
* Sonics Silicon Backplane
* Broadcom MIPS core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
* Copyright 2006, 2007, Felix Fietkau <nbd@openwrt.org>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <asm/time.h>
#include "../ssb_private.h"
#define mips_read32(mcore, offset) ssb_read32((mcore)->dev, offset)
#define mips_write32(mcore, offset, value) ssb_write32((mcore)->dev, offset, value)
#define extif_read32(extif, offset) ssb_read32((extif)->dev, offset)
#define extif_write32(extif, offset, value) ssb_write32((extif)->dev, offset, value)
static const u32 ipsflag_irq_mask[] = {
0,
SSB_IPSFLAG_IRQ1,
SSB_IPSFLAG_IRQ2,
SSB_IPSFLAG_IRQ3,
SSB_IPSFLAG_IRQ4,
};
static const u32 ipsflag_irq_shift[] = {
0,
SSB_IPSFLAG_IRQ1_SHIFT,
SSB_IPSFLAG_IRQ2_SHIFT,
SSB_IPSFLAG_IRQ3_SHIFT,
SSB_IPSFLAG_IRQ4_SHIFT,
};
static inline u32 ssb_irqflag(struct ssb_device *dev)
{
return ssb_read32(dev, SSB_TPSFLAG) & SSB_TPSFLAG_BPFLAG;
}
/* Get the MIPS IRQ assignment for a specified device.
* If unassigned, 0 is returned.
*/
unsigned int ssb_mips_irq(struct ssb_device *dev)
{
struct ssb_bus *bus = dev->bus;
u32 irqflag;
u32 ipsflag;
u32 tmp;
unsigned int irq;
irqflag = ssb_irqflag(dev);
ipsflag = ssb_read32(bus->mipscore.dev, SSB_IPSFLAG);
for (irq = 1; irq <= 4; irq++) {
tmp = ((ipsflag & ipsflag_irq_mask[irq]) >> ipsflag_irq_shift[irq]);
if (tmp == irqflag)
break;
}
if (irq == 5)
irq = 0;
return irq;
}
static void clear_irq(struct ssb_bus *bus, unsigned int irq)
{
struct ssb_device *dev = bus->mipscore.dev;
/* Clear the IRQ in the MIPScore backplane registers */
if (irq == 0) {
ssb_write32(dev, SSB_INTVEC, 0);
} else {
ssb_write32(dev, SSB_IPSFLAG,
ssb_read32(dev, SSB_IPSFLAG) |
ipsflag_irq_mask[irq]);
}
}
static void set_irq(struct ssb_device *dev, unsigned int irq)
{
unsigned int oldirq = ssb_mips_irq(dev);
struct ssb_bus *bus = dev->bus;
struct ssb_device *mdev = bus->mipscore.dev;
u32 irqflag = ssb_irqflag(dev);
dev->irq = irq + 2;
ssb_dprintk(KERN_INFO PFX
"set_irq: core 0x%04x, irq %d => %d\n",
dev->id.coreid, oldirq, irq);
/* clear the old irq */
if (oldirq == 0)
ssb_write32(mdev, SSB_INTVEC, (~(1 << irqflag) & ssb_read32(mdev, SSB_INTVEC)));
else
clear_irq(bus, oldirq);
/* assign the new one */
if (irq == 0)
ssb_write32(mdev, SSB_INTVEC, ((1 << irqflag) & ssb_read32(mdev, SSB_INTVEC)));
irqflag <<= ipsflag_irq_shift[irq];
irqflag |= (ssb_read32(mdev, SSB_IPSFLAG) & ~ipsflag_irq_mask[irq]);
ssb_write32(mdev, SSB_IPSFLAG, irqflag);
}
static int ssb_extif_serial_init(struct ssb_extif *dev, struct ssb_serial_port *ports)
{
//TODO if (EXTIF available
#if 0
extifregs_t *eir = (extifregs_t *) regs;
sbconfig_t *sb;
/* Determine external UART register base */
sb = (sbconfig_t *)((ulong) eir + SBCONFIGOFF);
base = EXTIF_CFGIF_BASE(sb_base(R_REG(&sb->sbadmatch1)));
/* Determine IRQ */
irq = sb_irq(sbh);
/* Disable GPIO interrupt initially */
W_REG(&eir->gpiointpolarity, 0);
W_REG(&eir->gpiointmask, 0);
/* Search for external UARTs */
n = 2;
for (i = 0; i < 2; i++) {
regs = (void *) REG_MAP(base + (i * 8), 8);
if (BCMINIT(serial_exists)(regs)) {
/* Set GPIO 1 to be the external UART IRQ */
W_REG(&eir->gpiointmask, 2);
if (add)
add(regs, irq, 13500000, 0);
}
}
/* Add internal UART if enabled */
if (R_REG(&eir->corecontrol) & CC_UE)
if (add)
add((void *) &eir->uartdata, irq, sb_clock(sbh), 2);
#endif
}
static void ssb_mips_serial_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
if (bus->extif.dev)
mcore->nr_serial_ports = ssb_extif_serial_init(&bus->extif, mcore->serial_ports);
else if (bus->chipco.dev)
mcore->nr_serial_ports = ssb_chipco_serial_init(&bus->chipco, mcore->serial_ports);
else
mcore->nr_serial_ports = 0;
}
static void ssb_mips_flash_detect(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
if (bus->chipco.dev) {
mcore->flash_window = 0x1c000000;
mcore->flash_window_size = 0x800000;
} else {
mcore->flash_window = 0x1fc00000;
mcore->flash_window_size = 0x400000;
}
}
static void ssb_extif_timing_init(struct ssb_extif *extif, u32 ns)
{
u32 tmp;
/* Initialize extif so we can get to the LEDs and external UART */
extif_write32(extif, SSB_EXTIF_PROG_CFG, SSB_EXTCFG_EN);
/* Set timing for the flash */
tmp = ceildiv(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= ceildiv(40, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= ceildiv(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
/* Set programmable interface timing for external uart */
tmp = ceildiv(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= ceildiv(20, ns) << SSB_PROG_WCNT_2_SHIFT;
tmp |= ceildiv(100, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= ceildiv(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
}
static inline void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *pll_type, u32 *n, u32 *m)
{
*pll_type = SSB_PLLTYPE_1;
*n = extif_read32(extif, SSB_EXTIF_CLOCK_N);
*m = extif_read32(extif, SSB_EXTIF_CLOCK_SB);
}
u32 ssb_cpu_clock(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
u32 pll_type, n, m, rate = 0;
if (bus->extif.dev) {
ssb_extif_get_clockcontrol(&bus->extif, &pll_type, &n, &m);
} else if (bus->chipco.dev) {
if (bus->chip_id == 0x5365)
/* FIXME: is this override really necessary? */
return 200000000;
ssb_chipco_get_clockcontrol(&bus->chipco, &pll_type, &n, &m);
} else
return 0;
rate = ssb_calc_clock_rate(pll_type, n, m);
if (pll_type == SSB_PLLTYPE_6)
rate *= 2;
return rate;
}
void ssb_mipscore_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
struct ssb_device *dev;
unsigned long hz, ns;
unsigned int irq, i;
if (!mcore->dev)
return; /* We don't have a MIPS core */
ssb_dprintk(KERN_INFO PFX "Initializing MIPS core...\n");
hz = ssb_clockspeed(bus);
if (!hz)
hz = 100000000;
ns = 1000000000 / hz;
if (bus->extif.dev)
ssb_extif_timing_init(&bus->extif, ns);
else if (bus->chipco.dev)
ssb_chipco_timing_init(&bus->chipco, ns);
/* Assign IRQs to all cores on the bus, start with irq line 2, because serial usually takes 1 */
for (irq = 2, i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
dev->irq = ssb_mips_irq(dev) + 2;
switch(dev->id.coreid) {
case SSB_DEV_USB11_HOST:
/* shouldn't need a separate irq line for non-4710, most of them have a proper
* external usb controller on the pci */
if ((bus->chip_id == 0x4710) && (irq <= 4)) {
set_irq(dev, irq++);
break;
}
case SSB_DEV_PCI:
case SSB_DEV_ETHERNET:
case SSB_DEV_80211:
case SSB_DEV_USB20_HOST:
/* These devices get their own IRQ line if available, the rest goes on IRQ0 */
if (irq <= 4) {
set_irq(dev, irq++);
break;
}
}
}
ssb_mips_serial_init(mcore);
ssb_mips_flash_detect(mcore);
}
EXPORT_SYMBOL(ssb_mips_irq);

View File

@ -0,0 +1,549 @@
/*
* Sonics Silicon Backplane
* Broadcom PCI-core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "../ssb_private.h"
static inline
u32 pcicore_read32(struct ssb_pcicore *pc, u16 offset)
{
return ssb_read32(pc->dev, offset);
}
static inline
void pcicore_write32(struct ssb_pcicore *pc, u16 offset, u32 value)
{
ssb_write32(pc->dev, offset, value);
}
/**************************************************
* Code for hostmode operation.
**************************************************/
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
#include <asm/paccess.h>
/* Read the bus and catch bus exceptions. This is MIPS specific. */
#define mips_busprobe(val, addr) get_dbe((val), (addr))
/* Assume one-hot slot wiring */
#define SSB_PCI_SLOT_MAX 16
/* Global lock is OK, as we won't have more than one extpci anyway. */
static DEFINE_SPINLOCK(cfgspace_lock);
/* Core to access the external PCI config space. Can only have one. */
static struct ssb_pcicore *extpci_core;
u32 pci_iobase = 0x100;
u32 pci_membase = SSB_PCI_DMA;
int pcibios_plat_dev_init(struct pci_dev *d)
{
struct resource *res;
int pos, size;
u32 *base;
printk("PCI: Fixing up device %s\n", pci_name(d));
/* Fix up resource bases */
for (pos = 0; pos < 6; pos++) {
res = &d->resource[pos];
base = ((res->flags & IORESOURCE_IO) ? &pci_iobase : &pci_membase);
if (res->end) {
size = res->end - res->start + 1;
if (*base & (size - 1))
*base = (*base + size) & ~(size - 1);
res->start = *base;
res->end = res->start + size - 1;
*base += size;
pci_write_config_dword(d, PCI_BASE_ADDRESS_0 + (pos << 2), res->start);
}
/* Fix up PCI bridge BAR0 only */
if (d->bus->number == 0 && PCI_SLOT(d->devfn) == 0)
break;
}
/* Fix up interrupt lines */
d->irq = ssb_mips_irq(extpci_core->dev) + 2;
pci_write_config_byte(d, PCI_INTERRUPT_LINE, d->irq);
return 0;
}
static void __init ssb_fixup_pcibridge(struct pci_dev *dev)
{
if (dev->bus->number != 0 || PCI_SLOT(dev->devfn) != 0)
return;
printk("PCI: fixing up bridge\n");
/* Enable PCI bridge bus mastering and memory space */
pci_set_master(dev);
pcibios_enable_device(dev, ~0);
/* Enable PCI bridge BAR1 prefetch and burst */
pci_write_config_dword(dev, SSB_BAR1_CONTROL, 3);
}
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, ssb_fixup_pcibridge);
int __init pcibios_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
return ssb_mips_irq(extpci_core->dev) + 2;
}
static u32 get_cfgspace_addr(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off)
{
u32 addr = 0;
u32 tmp;
if (unlikely(pc->cardbusmode && dev > 1))
goto out;
if (bus == 0) {//FIXME busnumber ok?
/* Type 0 transaction */
if (unlikely(dev >= SSB_PCI_SLOT_MAX))
goto out;
/* Slide the window */
tmp = SSB_PCICORE_SBTOPCI_CFG0;
tmp |= ((1 << (dev + 16)) & SSB_PCICORE_SBTOPCI1_MASK);
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1, tmp);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= ((1 << (dev + 16)) & ~SSB_PCICORE_SBTOPCI1_MASK);
addr |= (func << 8);
addr |= (off & ~3);
} else {
/* Type 1 transaction */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG1);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= (bus << 16);
addr |= (dev << 11);
addr |= (func << 8);
addr |= (off & ~3);
}
out:
return addr;
}
static int ssb_extpci_read_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
void *buf, int len)
{
int err = -EINVAL;
u32 addr, val;
void __iomem *mmio;
assert(pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe(val, (u32 *) mmio)) {
val = 0xffffffff;
goto unmap;
}
val = readl(mmio);
val >>= (8 * (off & 3));
switch (len) {
case 1:
*((u8 *)buf) = (u8)val;
break;
case 2:
*((u16 *)buf) = (u16)val;
break;
case 4:
*((u32 *)buf) = (u32)val;
break;
}
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_extpci_write_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
const void *buf, int len)
{
int err = -EINVAL;
u32 addr, val = 0;
void __iomem *mmio;
assert(pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe(val, (u32 *) mmio)) {
val = 0xffffffff;
goto unmap;
}
switch (len) {
case 1:
val = readl(mmio);
val &= ~(0xFF << (8 * (off & 3)));
val |= *((const u8 *)buf) << (8 * (off & 3));
break;
case 2:
val = readl(mmio);
val &= ~(0xFFFF << (8 * (off & 3)));
val |= *((const u16 *)buf) << (8 * (off & 3));
break;
case 4:
val = *((const u32 *)buf);
break;
}
writel(*((const u32 *)buf), mmio);
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_pcicore_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_read_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static int ssb_pcicore_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_write_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, &val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static struct pci_ops ssb_pcicore_pciops = {
.read = ssb_pcicore_read_config,
.write = ssb_pcicore_write_config,
};
static struct resource ssb_pcicore_mem_resource = {
.name = "SSB PCIcore external memory",
.start = SSB_PCI_DMA,
.end = (u32)SSB_PCI_DMA + (u32)SSB_PCI_DMA_SZ - 1,
.flags = IORESOURCE_MEM,
};
static struct resource ssb_pcicore_io_resource = {
.name = "SSB PCIcore external I/O",
.start = 0x100,
.end = 0x7FF,
.flags = IORESOURCE_IO,
};
static struct pci_controller ssb_pcicore_controller = {
.pci_ops = &ssb_pcicore_pciops,
.io_resource = &ssb_pcicore_io_resource,
.mem_resource = &ssb_pcicore_mem_resource,
.mem_offset = 0x24000000,
};
static void ssb_pcicore_init_hostmode(struct ssb_pcicore *pc)
{
u32 val;
assert(!extpci_core);
extpci_core = pc;
ssb_dprintk(KERN_INFO PFX "PCIcore in host mode found\n");
/* Reset devices on the external PCI bus */
val = SSB_PCICORE_CTL_RST_OE;
val |= SSB_PCICORE_CTL_CLK_OE;
pcicore_write32(pc, SSB_PCICORE_CTL, val);
val |= SSB_PCICORE_CTL_CLK; /* Clock on */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
udelay(150);
val |= SSB_PCICORE_CTL_RST; /* Deassert RST# */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
udelay(1);
//TODO cardbus mode
/* 64MB I/O window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI0,
SSB_PCICORE_SBTOPCI_IO);
/* 64MB config space */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG0);
/* 1GB memory window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2,
SSB_PCICORE_SBTOPCI_MEM | SSB_PCI_DMA);
/* Enable PCI bridge BAR0 prefetch and burst */
val = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
ssb_extpci_write_config(pc, 0, 0, 0, PCI_COMMAND, &val, 4);
/* Enable PCI interrupts */
pcicore_write32(pc, SSB_PCICORE_IMASK,
SSB_PCICORE_IMASK_INTA);
/* Ok, ready to run, register it to the system.
* The following needs change, if we want to port hostmode
* to non-MIPS platform. */
set_io_port_base((unsigned long)ioremap_nocache(SSB_PCI_MEM, 0x04000000));
register_pci_controller(&ssb_pcicore_controller);
}
static int pcicore_is_in_hostmode(struct ssb_pcicore *pc)
{
struct ssb_bus *bus = pc->dev->bus;
u16 chipid_top;
u32 tmp;
chipid_top = (bus->chip_id & 0xFF00);
if (chipid_top != 0x4700 &&
chipid_top != 0x5300)
return 0;
if (bus->sprom.r1.boardflags_lo & SSB_PCICORE_BFL_NOPCI)
return 0;
/* The 200-pin BCM4712 package does not bond out PCI. Even when
* PCI is bonded out, some boards may leave the pins floating. */
if (bus->chip_id == 0x4712) {
if (bus->chip_package == SSB_CHIPPACK_BCM4712S)
return 0;
if (bus->chip_package == SSB_CHIPPACK_BCM4712M)
return 0;
}
if (bus->chip_id == 0x5350)
return 0;
return !mips_busprobe(tmp, (u32 *) (bus->mmio + (pc->dev->core_index * SSB_CORE_SIZE)));
}
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
/**************************************************
* Generic and Clientmode operation code.
**************************************************/
static void ssb_pcicore_init_clientmode(struct ssb_pcicore *pc)
{
/* Disable PCI interrupts. */
ssb_write32(pc->dev, SSB_INTVEC, 0);
}
void ssb_pcicore_init(struct ssb_pcicore *pc)
{
struct ssb_device *dev = pc->dev;
struct ssb_bus *bus;
if (!dev)
return;
bus = dev->bus;
if (!ssb_device_is_enabled(dev))
ssb_device_enable(dev, 0);
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
pc->hostmode = pcicore_is_in_hostmode(pc);
if (pc->hostmode)
ssb_pcicore_init_hostmode(pc);
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
if (!pc->hostmode)
ssb_pcicore_init_clientmode(pc);
}
static u32 ssb_pcie_read(struct ssb_pcicore *pc, u32 address)
{
pcicore_write32(pc, 0x130, address);
return pcicore_read32(pc, 0x134);
}
static void ssb_pcie_write(struct ssb_pcicore *pc, u32 address, u32 data)
{
pcicore_write32(pc, 0x130, address);
pcicore_write32(pc, 0x134, data);
}
static void ssb_pcie_mdio_write(struct ssb_pcicore *pc, u8 device,
u8 address, u16 data)
{
const u16 mdio_control = 0x128;
const u16 mdio_data = 0x12C;
u32 v;
int i;
v = 0x80; /* Enable Preamble Sequence */
v |= 0x2; /* MDIO Clock Divisor */
pcicore_write32(pc, mdio_control, v);
v = (1 << 30); /* Start of Transaction */
v |= (1 << 28); /* Write Transaction */
v |= (1 << 17); /* Turnaround */
v |= (u32)device << 22;
v |= (u32)address << 18;
v |= data;
pcicore_write32(pc, mdio_data, v);
udelay(10);
for (i = 0; i < 10; i++) {
v = pcicore_read32(pc, mdio_control);
if (v & 0x100 /* Trans complete */)
break;
msleep(1);
}
pcicore_write32(pc, mdio_control, 0);
}
static void ssb_broadcast_value(struct ssb_device *dev,
u32 address, u32 data)
{
/* This is used for both, PCI and ChipCommon core, so be careful. */
BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
ssb_write32(dev, SSB_PCICORE_BCAST_ADDR, address);
ssb_read32(dev, SSB_PCICORE_BCAST_ADDR); /* flush */
ssb_write32(dev, SSB_PCICORE_BCAST_DATA, data);
ssb_read32(dev, SSB_PCICORE_BCAST_DATA); /* flush */
}
static void ssb_commit_settings(struct ssb_bus *bus)
{
struct ssb_device *dev;
dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
assert(dev);
/* This forces an update of the cached registers. */
ssb_broadcast_value(dev, 0xFD8, 0);
}
int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev)
{
struct ssb_device *pdev = pc->dev;
struct ssb_bus *bus;
int err = 0;
u32 tmp;
might_sleep();
if (!pdev)
goto out;
bus = pdev->bus;
/* Enable interrupts for this device. */
if (bus->host_pci &&
((pdev->id.revision >= 6) || (pdev->id.coreid == SSB_DEV_PCIE))) {
u32 coremask;
/* Calculate the "coremask" for the device. */
coremask = (1 << dev->core_index);
err = pci_read_config_dword(bus->host_pci, SSB_PCI_IRQMASK, &tmp);
if (err)
goto out;
tmp |= coremask << 8;
err = pci_write_config_dword(bus->host_pci, SSB_PCI_IRQMASK, tmp);
if (err)
goto out;
} else {
u32 intvec;
intvec = ssb_read32(pdev, SSB_INTVEC);
tmp = ssb_read32(dev, SSB_TPSFLAG);
tmp &= SSB_TPSFLAG_BPFLAG;
intvec |= tmp;
ssb_write32(pdev, SSB_INTVEC, intvec);
}
/* Setup PCIcore operation. */
if (pc->setup_done)
goto out;
if (pdev->id.coreid == SSB_DEV_PCI) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_PREF;
tmp |= SSB_PCICORE_SBTOPCI_BURST;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
if (pdev->id.revision < 5) {
tmp = ssb_read32(pdev, SSB_IMCFGLO);
tmp &= ~SSB_IMCFGLO_SERTO;
tmp |= 2;
tmp &= ~SSB_IMCFGLO_REQTO;
tmp |= 3 << SSB_IMCFGLO_REQTO_SHIFT;
ssb_write32(pdev, SSB_IMCFGLO, tmp);
ssb_commit_settings(bus);
} else if (pdev->id.revision >= 11) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_MRM;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
}
} else {
assert(pdev->id.coreid == SSB_DEV_PCIE);
//TODO: Better make defines for all these magic PCIE values.
if ((pdev->id.revision == 0) || (pdev->id.revision == 1)) {
/* TLP Workaround register. */
tmp = ssb_pcie_read(pc, 0x4);
tmp |= 0x8;
ssb_pcie_write(pc, 0x4, tmp);
}
if (pdev->id.revision == 0) {
const u8 serdes_rx_device = 0x1F;
ssb_pcie_mdio_write(pc, serdes_rx_device,
2 /* Timer */, 0x8128);
ssb_pcie_mdio_write(pc, serdes_rx_device,
6 /* CDR */, 0x0100);
ssb_pcie_mdio_write(pc, serdes_rx_device,
7 /* CDR BW */, 0x1466);
} else if (pdev->id.revision == 1) {
/* DLLP Link Control register. */
tmp = ssb_pcie_read(pc, 0x100);
tmp |= 0x40;
ssb_pcie_write(pc, 0x100, tmp);
}
}
pc->setup_done = 1;
out:
return err;
}
EXPORT_SYMBOL(ssb_pcicore_dev_irqvecs_enable);

View File

@ -0,0 +1,480 @@
/*
* Sonics Silicon Backplane PCI-Hostbus related functions.
*
* Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
*
* Derived from the Broadcom 4400 device driver.
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
* Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
while (1) {
err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
(coreidx * SSB_CORE_SIZE)
+ SSB_ENUM_BASE);
if (err)
goto error;
err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
&cur_core);
if (err)
goto error;
cur_core = (cur_core - SSB_ENUM_BASE)
/ SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
ssb_dprintk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pci_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
{
int err;
u32 in, out, outenable;
u16 pci_status;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
if (err)
goto err_pci;
outenable |= what;
if (turn_on) {
/* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (!(in & SSB_GPIO_XTAL)) {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal on */
out |= SSB_GPIO_XTAL;
if (what & SSB_GPIO_PLL)
out |= SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
outenable);
if (err)
goto err_pci;
msleep(1);
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL on */
out &= ~SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
msleep(2);
}
}
err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
if (err)
goto err_pci;
pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
if (err)
goto err_pci;
} else {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal off */
out &= ~SSB_GPIO_XTAL;
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL off */
out |= SSB_GPIO_PLL;
}
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
if (err)
goto err_pci;
}
out:
return err;
err_pci:
printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
err = -EBUSY;
goto out;
}
#define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16))
#define SPEX(_outvar, _offset, _mask, _shift) \
out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
static inline u8 ssb_crc8(u8 crc, u8 data)
{
/* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 ssb_sprom_crc(const u16 *sprom)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < SSB_SPROMSIZE_WORDS - 1; word++) {
crc = ssb_crc8(crc, sprom[word] & 0x00FF);
crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = ssb_crc8(crc, sprom[SPOFF(SSB_SPROM_REVISION)] & 0x00FF);
crc ^= 0xFF;
return crc;
}
static int sprom_check_crc(const u16 *sprom)
{
u8 crc;
u8 expected_crc;
u16 tmp;
crc = ssb_sprom_crc(sprom);
tmp = sprom[SPOFF(SSB_SPROM_REVISION)] & SSB_SPROM_REVISION_CRC;
expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
if (crc != expected_crc)
return -EPROTO;
return 0;
}
static void sprom_do_read(struct ssb_bus *bus, u16 *sprom)
{
int i;
for (i = 0; i < SSB_SPROMSIZE_WORDS; i++)
sprom[i] = readw(bus->mmio + SSB_SPROM_BASE + (i * 2));
}
static void sprom_extract_r1(struct ssb_sprom_r1 *out, const u16 *in)
{
int i;
u16 v;
SPEX(pci_spid, SSB_SPROM1_SPID, 0xFFFF, 0);
SPEX(pci_svid, SSB_SPROM1_SVID, 0xFFFF, 0);
SPEX(pci_pid, SSB_SPROM1_PID, 0xFFFF, 0);
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM1_IL0MAC) + i];
*(((u16 *)out->il0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM1_ET0MAC) + i];
*(((u16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM1_ET1MAC) + i];
*(((u16 *)out->et1mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
SSB_SPROM1_ETHPHY_ET1A_SHIFT);
SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
SSB_SPROM1_BINF_CCODE_SHIFT);
SPEX(antenna_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
SSB_SPROM1_BINF_ANTA_SHIFT);
SPEX(antenna_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
SSB_SPROM1_BINF_ANTBG_SHIFT);
SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
SSB_SPROM1_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
SSB_SPROM1_GPIOB_P3_SHIFT);
SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A, 0);
SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG,
SSB_SPROM1_MAXPWR_BG_SHIFT);
SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A, 0);
SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG,
SSB_SPROM1_ITSSI_BG_SHIFT);
SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
SPEX(antenna_gain_a, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_A, 0);
SPEX(antenna_gain_bg, SSB_SPROM1_AGAIN, SSB_SPROM1_AGAIN_BG,
SSB_SPROM1_AGAIN_BG_SHIFT);
for (i = 0; i < 4; i++) {
v = in[SPOFF(SSB_SPROM1_OEM) + i];
*(((u16 *)out->oem) + i) = cpu_to_le16(v);
}
}
static void sprom_extract_r2(struct ssb_sprom_r2 *out, const u16 *in)
{
int i;
u16 v;
SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
SPEX(maxpwr_a_hi, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_HI, 0);
SPEX(maxpwr_a_lo, SSB_SPROM2_MAXP_A, SSB_SPROM2_MAXP_A_LO,
SSB_SPROM2_MAXP_A_LO_SHIFT);
SPEX(pa1lob0, SSB_SPROM2_PA1LOB0, 0xFFFF, 0);
SPEX(pa1lob1, SSB_SPROM2_PA1LOB1, 0xFFFF, 0);
SPEX(pa1lob2, SSB_SPROM2_PA1LOB2, 0xFFFF, 0);
SPEX(pa1hib0, SSB_SPROM2_PA1HIB0, 0xFFFF, 0);
SPEX(pa1hib1, SSB_SPROM2_PA1HIB1, 0xFFFF, 0);
SPEX(pa1hib2, SSB_SPROM2_PA1HIB2, 0xFFFF, 0);
SPEX(ofdm_pwr_off, SSB_SPROM2_OPO, SSB_SPROM2_OPO_VALUE, 0);
for (i = 0; i < 4; i++) {
v = in[SPOFF(SSB_SPROM2_CCODE) + i];
*(((u16 *)out->country_str) + i) = cpu_to_le16(v);
}
}
static void sprom_extract_r3(struct ssb_sprom_r3 *out, const u16 *in)
{
out->ofdmapo = (in[SPOFF(SSB_SPROM3_OFDMAPO) + 0] & 0xFF00) >> 8;
out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 0] & 0x00FF) << 8;
out->ofdmapo <<= 16;
out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 1] & 0xFF00) >> 8;
out->ofdmapo |= (in[SPOFF(SSB_SPROM3_OFDMAPO) + 1] & 0x00FF) << 8;
out->ofdmalpo = (in[SPOFF(SSB_SPROM3_OFDMALPO) + 0] & 0xFF00) >> 8;
out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 0] & 0x00FF) << 8;
out->ofdmalpo <<= 16;
out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 1] & 0xFF00) >> 8;
out->ofdmalpo |= (in[SPOFF(SSB_SPROM3_OFDMALPO) + 1] & 0x00FF) << 8;
out->ofdmahpo = (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 0] & 0xFF00) >> 8;
out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 0] & 0x00FF) << 8;
out->ofdmahpo <<= 16;
out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 1] & 0xFF00) >> 8;
out->ofdmahpo |= (in[SPOFF(SSB_SPROM3_OFDMAHPO) + 1] & 0x00FF) << 8;
SPEX(gpioldc_on_cnt, SSB_SPROM3_GPIOLDC, SSB_SPROM3_GPIOLDC_ON,
SSB_SPROM3_GPIOLDC_ON_SHIFT);
SPEX(gpioldc_off_cnt, SSB_SPROM3_GPIOLDC, SSB_SPROM3_GPIOLDC_OFF,
SSB_SPROM3_GPIOLDC_OFF_SHIFT);
SPEX(cckpo_1M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_1M, 0);
SPEX(cckpo_2M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_2M,
SSB_SPROM3_CCKPO_2M_SHIFT);
SPEX(cckpo_55M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_55M,
SSB_SPROM3_CCKPO_55M_SHIFT);
SPEX(cckpo_11M, SSB_SPROM3_CCKPO, SSB_SPROM3_CCKPO_11M,
SSB_SPROM3_CCKPO_11M_SHIFT);
out->ofdmgpo = (in[SPOFF(SSB_SPROM3_OFDMGPO) + 0] & 0xFF00) >> 8;
out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 0] & 0x00FF) << 8;
out->ofdmgpo <<= 16;
out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 1] & 0xFF00) >> 8;
out->ofdmgpo |= (in[SPOFF(SSB_SPROM3_OFDMGPO) + 1] & 0x00FF) << 8;
}
static int sprom_extract(struct ssb_sprom *out, const u16 *in)
{
memset(out, 0, sizeof(*out));
SPEX(revision, SSB_SPROM_REVISION, SSB_SPROM_REVISION_REV, 0);
SPEX(crc, SSB_SPROM_REVISION, SSB_SPROM_REVISION_CRC,
SSB_SPROM_REVISION_CRC_SHIFT);
if (out->revision == 0)
goto unsupported;
if (out->revision >= 1 && out->revision <= 3)
sprom_extract_r1(&out->r1, in);
if (out->revision >= 2 && out->revision <= 3)
sprom_extract_r2(&out->r2, in);
if (out->revision == 3)
sprom_extract_r3(&out->r3, in);
if (out->revision >= 4)
goto unsupported;
return 0;
unsupported:
ssb_printk(KERN_WARNING PFX "Unsupported SPROM revision %d "
"detected. Will extract v1\n", out->revision);
sprom_extract_r1(&out->r1, in);
return 0;
}
int ssb_pci_sprom_get(struct ssb_bus *bus)
{
int err = -ENOMEM;
u16 *buf;
assert(bus->bustype == SSB_BUSTYPE_PCI);
buf = kcalloc(SSB_SPROMSIZE_WORDS, sizeof(u16), GFP_KERNEL);
if (!buf)
goto out;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf);
if (err) {
ssb_printk(KERN_WARNING PFX
"WARNING: Invalid SPROM CRC (corrupt SPROM)\n");
}
err = sprom_extract(&bus->sprom, buf);
kfree(buf);
out:
return err;
}
void ssb_pci_get_boardtype(struct ssb_bus *bus)
{
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
&bus->board_vendor);
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
&bus->board_type);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bus->board_rev);
}
static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFF;
}
return readw(bus->mmio + offset);
}
static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFFFFFF;
}
return readl(bus->mmio + offset);
}
static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
writew(value, bus->mmio + offset);
}
static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
writel(value, bus->mmio + offset);
}
const struct ssb_bus_ops ssb_pci_ops = {
.read16 = ssb_pci_read16,
.read32 = ssb_pci_read32,
.write16 = ssb_pci_write16,
.write32 = ssb_pci_write32,
};
int ssb_pci_init(struct ssb_bus *bus)
{
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
return ssb_pci_sprom_get(bus);
}

View File

@ -0,0 +1,256 @@
/*
* Sonics Silicon Backplane
* PCMCIA-Hostbus related functions
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2007 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/delay.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <pcmcia/cisreg.h>
#include "ssb_private.h"
int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
struct pcmcia_device *pdev = bus->host_pcmcia;
int err;
int attempts = 0;
u32 cur_core;
conf_reg_t reg;
u32 addr;
u32 read_addr;
addr = (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE;
while (1) {
reg.Action = CS_WRITE;
reg.Offset = 0x2E;
reg.Value = (addr & 0x0000F000) >> 12;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x30;
reg.Value = (addr & 0x00FF0000) >> 16;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x32;
reg.Value = (addr & 0xFF000000) >> 24;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr = 0;
reg.Action = CS_READ;
reg.Offset = 0x2E;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= (reg.Value & 0xF) << 12;
reg.Offset = 0x30;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= reg.Value << 16;
reg.Offset = 0x32;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= reg.Value << 24;
cur_core = (read_addr - SSB_ENUM_BASE) / SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
ssb_dprintk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pcmcia_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
int ssb_pcmcia_switch_segment(struct ssb_bus *bus, u8 seg)
{
int attempts = 0;
unsigned long flags;
conf_reg_t reg;
int res, err = 0;
assert(seg == 0 || seg == 1);
reg.Offset = 0x34;
reg.Function = 0;
spin_lock_irqsave(&bus->bar_lock, flags);
while (1) {
reg.Action = CS_WRITE;
reg.Value = seg;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
reg.Value = 0xFF;
reg.Action = CS_READ;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
if (reg.Value == seg)
break;
if (unlikely(attempts++ > SSB_BAR0_MAX_RETRIES))
goto error;
udelay(10);
}
bus->mapped_pcmcia_seg = seg;
out_unlock:
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
error:
ssb_printk(KERN_ERR PFX "Failed to switch pcmcia segment\n");
err = -ENODEV;
goto out_unlock;
}
static inline int do_select_core(struct ssb_bus *bus,
struct ssb_device *dev,
u16 *offset)
{
int err;
u8 need_seg = (*offset >= 0x800) ? 1 : 0;
if (unlikely(dev != bus->mapped_device)) {
err = ssb_pcmcia_switch_core(bus, dev);
if (unlikely(err))
return err;
}
if (unlikely(need_seg != bus->mapped_pcmcia_seg)) {
err = ssb_pcmcia_switch_segment(bus, need_seg);
if (unlikely(err))
return err;
}
if (need_seg == 1)
*offset -= 0x800;
return 0;
}
static u16 ssb_pcmcia_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
u16 x;
if (unlikely(do_select_core(bus, dev, &offset)))
return 0xFFFF;
x = readw(bus->mmio + offset);
//printk("R16 0x%04X, 0x%04X\n", offset, x);
return x;
}
static u32 ssb_pcmcia_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
u32 x;
if (unlikely(do_select_core(bus, dev, &offset)))
return 0xFFFFFFFF;
x = readl(bus->mmio + offset);
//printk("R32 0x%04X, 0x%08X\n", offset, x);
return x;
}
static void ssb_pcmcia_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(do_select_core(bus, dev, &offset)))
return;
//printk("W16 0x%04X, 0x%04X\n", offset, value);
writew(value, bus->mmio + offset);
}
static void ssb_pcmcia_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(do_select_core(bus, dev, &offset)))
return;
//printk("W32 0x%04X, 0x%08X\n", offset, value);
readw(bus->mmio + offset);
writew(value >> 16, bus->mmio + offset + 2);
readw(bus->mmio + offset);
writew(value, bus->mmio + offset);
}
const struct ssb_bus_ops ssb_pcmcia_ops = {
.read16 = ssb_pcmcia_read16,
.read32 = ssb_pcmcia_read32,
.write16 = ssb_pcmcia_write16,
.write32 = ssb_pcmcia_write32,
};
int ssb_pcmcia_init(struct ssb_bus *bus)
{
conf_reg_t reg;
int err;
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return 0;
/* Switch segment to a known state and sync
* bus->mapped_pcmcia_seg with hardware state. */
ssb_pcmcia_switch_segment(bus, 0);
/* Init IRQ routing */
reg.Action = CS_READ;
reg.Function = 0;
if (bus->chip_id == 0x4306)
reg.Offset = 0x00;
else
reg.Offset = 0x80;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Action = CS_WRITE;
reg.Value |= 0x04 | 0x01;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
return 0;
error:
return -ENODEV;
}

View File

@ -0,0 +1,373 @@
/*
* Sonics Silicon Backplane
* Bus scanning
*
* Copyright (C) 2005-2007 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <asm/io.h>
#include "ssb_private.h"
const char * ssb_core_name(u16 coreid)
{
switch (coreid) {
case SSB_DEV_CHIPCOMMON:
return "ChipCommon";
case SSB_DEV_ILINE20:
return "ILine 20";
case SSB_DEV_SDRAM:
return "SDRAM";
case SSB_DEV_PCI:
return "PCI";
case SSB_DEV_MIPS:
return "MIPS";
case SSB_DEV_ETHERNET:
return "Fast Ethernet";
case SSB_DEV_V90:
return "V90";
case SSB_DEV_USB11_HOSTDEV:
return "USB 1.1 Hostdev";
case SSB_DEV_ADSL:
return "ADSL";
case SSB_DEV_ILINE100:
return "ILine 100";
case SSB_DEV_IPSEC:
return "IPSEC";
case SSB_DEV_PCMCIA:
return "PCMCIA";
case SSB_DEV_INTERNAL_MEM:
return "Internal Memory";
case SSB_DEV_MEMC_SDRAM:
return "MEMC SDRAM";
case SSB_DEV_EXTIF:
return "EXTIF";
case SSB_DEV_80211:
return "IEEE 802.11";
case SSB_DEV_MIPS_3302:
return "MIPS 3302";
case SSB_DEV_USB11_HOST:
return "USB 1.1 Host";
case SSB_DEV_USB11_DEV:
return "USB 1.1 Device";
case SSB_DEV_USB20_HOST:
return "USB 2.0 Host";
case SSB_DEV_USB20_DEV:
return "USB 2.0 Device";
case SSB_DEV_SDIO_HOST:
return "SDIO Host";
case SSB_DEV_ROBOSWITCH:
return "Roboswitch";
case SSB_DEV_PARA_ATA:
return "PATA";
case SSB_DEV_SATA_XORDMA:
return "SATA XOR-DMA";
case SSB_DEV_ETHERNET_GBIT:
return "GBit Ethernet";
case SSB_DEV_PCIE:
return "PCI-E";
case SSB_DEV_MIMO_PHY:
return "MIMO PHY";
case SSB_DEV_SRAM_CTRLR:
return "SRAM Controller";
case SSB_DEV_MINI_MACPHY:
return "Mini MACPHY";
case SSB_DEV_ARM_1176:
return "ARM 1176";
case SSB_DEV_ARM_7TDMI:
return "ARM 7TDMI";
}
return "UNKNOWN";
}
static u16 pcidev_to_chipid(struct pci_dev *pci_dev)
{
u16 chipid_fallback = 0;
switch (pci_dev->device) {
case 0x4301:
chipid_fallback = 0x4301;
break;
case 0x4305 ... 0x4307:
chipid_fallback = 0x4307;
break;
case 0x4403:
chipid_fallback = 0x4402;
break;
case 0x4610 ... 0x4615:
chipid_fallback = 0x4610;
break;
case 0x4710 ... 0x4715:
chipid_fallback = 0x4710;
break;
case 0x4320 ... 0x4325:
chipid_fallback = 0x4309;
break;
case PCI_DEVICE_ID_BCM4401:
case PCI_DEVICE_ID_BCM4401B0:
case PCI_DEVICE_ID_BCM4401B1:
chipid_fallback = 0x4401;
break;
default:
ssb_printk(KERN_ERR PFX
"PCI-ID not in fallback list\n");
}
return chipid_fallback;
}
static u8 chipid_to_nrcores(u16 chipid)
{
switch (chipid) {
case 0x5365:
return 7;
case 0x4306:
return 6;
case 0x4310:
return 8;
case 0x4307:
case 0x4301:
return 5;
case 0x4401:
case 0x4402:
return 3;
case 0x4710:
case 0x4610:
case 0x4704:
return 9;
default:
ssb_printk(KERN_ERR PFX
"CHIPID not in nrcores fallback list\n");
}
return 1;
}
static u32 scan_read32(struct ssb_bus *bus, u8 current_coreidx,
u16 offset)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
offset += current_coreidx * SSB_CORE_SIZE;
break;
case SSB_BUSTYPE_PCI:
break;
case SSB_BUSTYPE_PCMCIA:
if (offset >= 0x800) {
ssb_pcmcia_switch_segment(bus, 1);
offset -= 0x800;
} else
ssb_pcmcia_switch_segment(bus, 0);
break;
}
return readl(bus->mmio + offset);
}
static int scan_switchcore(struct ssb_bus *bus, u8 coreidx)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
break;
case SSB_BUSTYPE_PCI:
return ssb_pci_switch_coreidx(bus, coreidx);
case SSB_BUSTYPE_PCMCIA:
return ssb_pcmcia_switch_coreidx(bus, coreidx);
}
return 0;
}
void ssb_iounmap(struct ssb_bus *bus)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
case SSB_BUSTYPE_PCMCIA:
iounmap(bus->mmio);
break;
case SSB_BUSTYPE_PCI:
pci_iounmap(bus->host_pci, bus->mmio);
break;
}
bus->mmio = NULL;
bus->mapped_device = NULL;
}
static void __iomem * ssb_ioremap(struct ssb_bus *bus,
unsigned long baseaddr)
{
void __iomem *mmio = NULL;
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
/* Only map the first core for now. */
/* fallthrough... */
case SSB_BUSTYPE_PCMCIA:
mmio = ioremap(baseaddr, SSB_CORE_SIZE);
break;
case SSB_BUSTYPE_PCI:
mmio = pci_iomap(bus->host_pci, 0, ~0UL);
break;
}
return mmio;
}
int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr)
{
int err = -ENOMEM;
void __iomem *mmio;
u32 idhi, cc, rev, tmp;
int i;
struct ssb_device *dev;
mmio = ssb_ioremap(bus, baseaddr);
if (!mmio)
goto out;
bus->mmio = mmio;
err = scan_switchcore(bus, 0); /* Switch to first core */
if (err)
goto err_unmap;
idhi = scan_read32(bus, 0, SSB_IDHIGH);
cc = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
rev = (idhi & SSB_IDHIGH_RCLO);
rev |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
bus->nr_devices = 0;
if (cc == SSB_DEV_CHIPCOMMON) {
tmp = scan_read32(bus, 0, SSB_CHIPCO_CHIPID);
bus->chip_id = (tmp & SSB_CHIPCO_IDMASK);
bus->chip_rev = (tmp & SSB_CHIPCO_REVMASK) >>
SSB_CHIPCO_REVSHIFT;
bus->chip_package = (tmp & SSB_CHIPCO_PACKMASK) >>
SSB_CHIPCO_PACKSHIFT;
if (rev >= 4) {
bus->nr_devices = (tmp & SSB_CHIPCO_NRCORESMASK) >>
SSB_CHIPCO_NRCORESSHIFT;
}
tmp = scan_read32(bus, 0, SSB_CHIPCO_CAP);
bus->chipco.capabilities = tmp;
} else {
if (bus->bustype == SSB_BUSTYPE_PCI) {
bus->chip_id = pcidev_to_chipid(bus->host_pci);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bus->chip_rev);
bus->chip_package = 0;
} else {
bus->chip_id = 0x4710;
bus->chip_rev = 0;
bus->chip_package = 0;
}
}
if (!bus->nr_devices)
bus->nr_devices = chipid_to_nrcores(bus->chip_id);
if (bus->nr_devices > ARRAY_SIZE(bus->devices)) {
ssb_printk(KERN_ERR PFX
"More than %d ssb cores found (%d)\n",
SSB_MAX_NR_CORES, bus->nr_devices);
goto err_unmap;
}
if (bus->bustype == SSB_BUSTYPE_SSB) {
/* Now that we know the number of cores,
* remap the whole IO space for all cores.
*/
err = -ENOMEM;
iounmap(mmio);
mmio = ioremap(baseaddr, SSB_CORE_SIZE * bus->nr_devices);
if (!mmio)
goto out;
bus->mmio = mmio;
}
/* Fetch basic information about each core/device */
for (i = 0; i < bus->nr_devices; i++) {
err = scan_switchcore(bus, i);
if (err)
goto err_unmap;
dev = &(bus->devices[i]);
idhi = scan_read32(bus, i, SSB_IDHIGH);
dev->id.coreid = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
dev->id.revision = (idhi & SSB_IDHIGH_RCLO);
dev->id.revision |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
dev->id.vendor = (idhi & SSB_IDHIGH_VC) >> SSB_IDHIGH_VC_SHIFT;
dev->core_index = i;
dev->bus = bus;
if ((dev->bus->bustype == SSB_BUSTYPE_PCI) && (bus->host_pci))
dev->irq = bus->host_pci->irq;
ssb_dprintk(KERN_INFO PFX
"Core %d found: %s "
"(cc 0x%03X, rev 0x%02X, vendor 0x%04X)\n",
i, ssb_core_name(dev->id.coreid),
dev->id.coreid, dev->id.revision, dev->id.vendor);
dev->dev.bus = &ssb_bustype;
snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
"ssb%02x:%02x", bus->busnumber, i);
switch (dev->id.coreid) {
case SSB_DEV_EXTIF:
#ifdef CONFIG_BCM947XX
if (bus->extif.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple EXTIFs found\n");
break;
}
bus->extif.dev = dev;
#endif /* CONFIG_SSB_DRIVER_EXTIF */
break;
case SSB_DEV_CHIPCOMMON:
if (bus->chipco.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple ChipCommon found\n");
break;
}
bus->chipco.dev = dev;
break;
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
#ifdef CONFIG_BCM947XX
if (bus->mipscore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple MIPS cores found\n");
break;
}
bus->mipscore.dev = dev;
#endif /* CONFIG_BCM947XX */
break;
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
#ifdef CONFIG_SSB_DRIVER_PCICORE
if (bus->pcicore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple PCI(E) cores found\n");
break;
}
bus->pcicore.dev = dev;
#endif /* CONFIG_SSB_DRIVER_PCICORE */
break;
default:
break;
}
}
err = 0;
out:
return err;
err_unmap:
ssb_iounmap(bus);
goto out;
}

View File

@ -0,0 +1,143 @@
#ifndef LINUX_SSB_PRIVATE_H_
#define LINUX_SSB_PRIVATE_H_
#include <linux/ssb/ssb.h>
#include <linux/types.h>
#include <asm/io.h>
#define PFX "ssb: "
#ifdef CONFIG_SSB_SILENT
# define ssb_printk(fmt, x...) do { /* nothing */ } while (0)
#else
# define ssb_printk printk
#endif /* CONFIG_SSB_SILENT */
/* dprintk: Debugging printk; vanishes for non-debug compilation */
#ifdef CONFIG_SSB_DEBUG
# define ssb_dprintk(fmt, x...) ssb_printk(fmt ,##x)
#else
# define ssb_dprintk(fmt, x...) do { /* nothing */ } while (0)
#endif
/* printkl: Rate limited printk */
#define ssb_printkl(fmt, x...) do { \
if (printk_ratelimit()) \
ssb_printk(fmt ,##x); \
} while (0)
/* dprintkl: Rate limited debugging printk */
#ifdef CONFIG_SSB_DEBUG
# define ssb_dprintkl ssb_printkl
#else
# define ssb_dprintkl(fmt, x...) do { /* nothing */ } while (0)
#endif
#define assert(cond) do { \
if (unlikely(!(cond))) { \
ssb_dprintk(KERN_ERR PFX "BUG: Assertion failed (%s) " \
"at: %s:%d:%s()\n", \
#cond, __FILE__, __LINE__, __func__); \
} \
} while (0)
/* pci.c */
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on);
extern int ssb_pci_sprom_get(struct ssb_bus *bus);
extern void ssb_pci_get_boardtype(struct ssb_bus *bus);
extern int ssb_pci_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pci_ops;
#else /* CONFIG_SSB_PCIHOST */
static inline int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on)
{
return 0;
}
static inline int ssb_pci_sprom_get(struct ssb_bus *bus)
{
return 0;
}
static inline void ssb_pci_get_boardtype(struct ssb_bus *bus)
{
}
static inline int ssb_pci_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCIHOST */
/* pcmcia.c */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg);
extern int ssb_pcmcia_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pcmcia_ops;
#else /* CONFIG_SSB_PCMCIAHOST */
static inline int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg)
{
return 0;
}
static inline int ssb_pcmcia_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCMCIAHOST */
/* scan.c */
extern const char * ssb_core_name(u16 coreid);
extern int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr);
extern void ssb_iounmap(struct ssb_bus *ssb);
/* core.c */
extern struct bus_type ssb_bustype;
extern u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m);
/* Ceiling division helper. Divides x by y. */
static inline
unsigned long ceildiv(unsigned long x, unsigned long y)
{
return ((x + (y - 1)) / y);
}
#endif /* LINUX_SSB_PRIVATE_H_ */

View File

@ -0,0 +1,25 @@
#ifndef _ASM_GENERIC_GPIO_H
#define _ASM_GENERIC_GPIO_H
/* platforms that don't directly support access to GPIOs through I2C, SPI,
* or other blocking infrastructure can use these wrappers.
*/
static inline int gpio_cansleep(unsigned gpio)
{
return 0;
}
static inline int gpio_get_value_cansleep(unsigned gpio)
{
might_sleep();
return gpio_get_value(gpio);
}
static inline void gpio_set_value_cansleep(unsigned gpio, int value)
{
might_sleep();
gpio_set_value(gpio, value);
}
#endif /* _ASM_GENERIC_GPIO_H */

View File

@ -0,0 +1,189 @@
/*
* Broadcom Common Firmware Environment (CFE) support
*
* Copyright 2000, 2001, 2002
* Broadcom Corporation. All rights reserved.
*
* Copyright (C) 2006 Michael Buesch
*
* Original Authors: Mitch Lichtenberg, Chris Demetriou
*
* This software is furnished under license and may be used and copied only
* in accordance with the following terms and conditions. Subject to these
* conditions, you may download, copy, install, use, modify and distribute
* modified or unmodified copies of this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce and
* retain this copyright notice and list of conditions as they appear in
* the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Broadcom Corporation. The "Broadcom Corporation" name may not be
* used to endorse or promote products derived from this software
* without the prior written permission of Broadcom Corporation.
*
* 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
* FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
* LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LINUX_CFE_API_H_
#define LINUX_CFE_API_H_
#include <linux/types.h>
#define CFE_MI_RESERVED 0 /* memory is reserved, do not use */
#define CFE_MI_AVAILABLE 1 /* memory is available */
#define CFE_FLG_WARMSTART 0x00000001
#define CFE_FLG_FULL_ARENA 0x00000001
#define CFE_FLG_ENV_PERMANENT 0x00000001
#define CFE_CPU_CMD_START 1
#define CFE_CPU_CMD_STOP 0
#define CFE_STDHANDLE_CONSOLE 0
#define CFE_DEV_NETWORK 1
#define CFE_DEV_DISK 2
#define CFE_DEV_FLASH 3
#define CFE_DEV_SERIAL 4
#define CFE_DEV_CPU 5
#define CFE_DEV_NVRAM 6
#define CFE_DEV_CLOCK 7
#define CFE_DEV_OTHER 8
#define CFE_DEV_MASK 0x0F
#define CFE_CACHE_FLUSH_D 1
#define CFE_CACHE_INVAL_I 2
#define CFE_CACHE_INVAL_D 4
#define CFE_CACHE_INVAL_L2 8
#define CFE_FWI_64BIT 0x00000001
#define CFE_FWI_32BIT 0x00000002
#define CFE_FWI_RELOC 0x00000004
#define CFE_FWI_UNCACHED 0x00000008
#define CFE_FWI_MULTICPU 0x00000010
#define CFE_FWI_FUNCSIM 0x00000020
#define CFE_FWI_RTLSIM 0x00000040
struct cfe_fwinfo {
s64 version; /* major, minor, eco version */
s64 totalmem; /* total installed mem */
s64 flags; /* various flags */
s64 boardid; /* board ID */
s64 bootarea_va; /* VA of boot area */
s64 bootarea_pa; /* PA of boot area */
s64 bootarea_size; /* size of boot area */
};
/* The public CFE API */
int cfe_present(void); /* Check if we booted from CFE. Returns bool */
int cfe_getticks(s64 *ticks);
int cfe_close(int handle);
int cfe_cpu_start(int cpu, void (*fn)(void), long sp, long gp, long a1);
int cfe_cpu_stop(int cpu);
int cfe_enumenv(int idx, char *name, int namelen, char *val, int vallen);
int cfe_enumdev(int idx, char *name, int namelen);
int cfe_enummem(int idx, int flags, u64 *start, u64 *length,
u64 *type);
int cfe_exit(int warm, int status);
int cfe_flushcache(int flags);
int cfe_getdevinfo(char *name);
int cfe_getenv(char *name, char *dest, int destlen);
int cfe_getfwinfo(struct cfe_fwinfo *info);
int cfe_getstdhandle(int handletype);
int cfe_inpstat(int handle);
int cfe_ioctl(int handle, unsigned int ioctlnum, unsigned char *buffer,
int length, int *retlen, u64 offset);
int cfe_open(char *name);
int cfe_read(int handle, unsigned char *buffer, int length);
int cfe_readblk(int handle, s64 offset, unsigned char *buffer, int length);
int cfe_setenv(char *name, char *val);
int cfe_write(int handle, unsigned char *buffer, int length);
int cfe_writeblk(int handle, s64 offset, unsigned char *buffer,
int length);
/* High level API */
/* Print some information to CFE's console (most likely serial line) */
int cfe_printk(const char *fmt, ...) __attribute__((format(printf, 1, 2)));
int cfe_vprintk(const char *fmt, va_list args);
/* Error codes returned by the low API functions */
#define CFE_ISERR(errcode) (errcode < 0)
#define CFE_OK 0
#define CFE_ERR -1 /* generic error */
#define CFE_ERR_INV_COMMAND -2
#define CFE_ERR_EOF -3
#define CFE_ERR_IOERR -4
#define CFE_ERR_NOMEM -5
#define CFE_ERR_DEVNOTFOUND -6
#define CFE_ERR_DEVOPEN -7
#define CFE_ERR_INV_PARAM -8
#define CFE_ERR_ENVNOTFOUND -9
#define CFE_ERR_ENVREADONLY -10
#define CFE_ERR_NOTELF -11
#define CFE_ERR_NOT32BIT -12
#define CFE_ERR_WRONGENDIAN -13
#define CFE_ERR_BADELFVERS -14
#define CFE_ERR_NOTMIPS -15
#define CFE_ERR_BADELFFMT -16
#define CFE_ERR_BADADDR -17
#define CFE_ERR_FILENOTFOUND -18
#define CFE_ERR_UNSUPPORTED -19
#define CFE_ERR_HOSTUNKNOWN -20
#define CFE_ERR_TIMEOUT -21
#define CFE_ERR_PROTOCOLERR -22
#define CFE_ERR_NETDOWN -23
#define CFE_ERR_NONAMESERVER -24
#define CFE_ERR_NOHANDLES -25
#define CFE_ERR_ALREADYBOUND -26
#define CFE_ERR_CANNOTSET -27
#define CFE_ERR_NOMORE -28
#define CFE_ERR_BADFILESYS -29
#define CFE_ERR_FSNOTAVAIL -30
#define CFE_ERR_INVBOOTBLOCK -31
#define CFE_ERR_WRONGDEVTYPE -32
#define CFE_ERR_BBCHECKSUM -33
#define CFE_ERR_BOOTPROGCHKSUM -34
#define CFE_ERR_LDRNOTAVAIL -35
#define CFE_ERR_NOTREADY -36
#define CFE_ERR_GETMEM -37
#define CFE_ERR_SETMEM -38
#define CFE_ERR_NOTCONN -39
#define CFE_ERR_ADDRINUSE -40
#endif /* LINUX_CFE_API_H_ */

View File

@ -0,0 +1,88 @@
#ifndef __BCM947XX_GPIO_H
#define __BCM947XX_GPIO_H
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/ssb/ssb_driver_extif.h>
extern struct ssb_bus ssb;
static inline int gpio_request(unsigned gpio, const char *label)
{
return 0;
}
static inline void gpio_free(unsigned gpio)
{
}
static inline int gpio_direction_input(unsigned gpio)
{
if (ssb.chipco->dev)
ssb_chipco_gpioouten(&ssb.chipco, 1 << gpio, 0);
else if (ssb.extif->dev)
ssb_extif_gpioouten(&ssb.extif, 1 << gpio, 0);
else
return -EINVAL;
return 0;
}
static inline int gpio_direction_output(unsigned gpio)
{
if (ssb.chipco->dev)
ssb_chipco_gpioouten(&ssb.chipco, 1 << gpio, 1 << gpio);
else if (ssb.extif->dev)
ssb_extif_gpioouten(&ssb.extif, 1 << gpio, 1 << gpio);
else
return -EINVAL;
return 0;
}
static inline int gpio_to_irq(unsigned gpio)
{
struct ssb_device *dev;
dev = ssb.chipco->dev;
if (!dev)
dev = ssb.extif->dev;
if (!dev)
return -EINVAL;
return ssb_mips_irq(dev) + 2;
}
static inline int irq_to_gpio(unsigned gpio)
{
return -EINVAL;
}
static inline int gpio_get_value(unsigned gpio)
{
if (ssb.chipco->dev)
return ssb_chipco_gpioin(&ssb.chipco, 1 << gpio) ? 1 : 0;
else if (ssb.extif->dev)
return ssb_extif_gpioin(&ssb.extif, 1 << gpio) ? 1 : 0;
else
return 0;
}
static inline int gpio_set_value(unsigned gpio, int value)
{
if (ssb.chipco->dev)
ssb_chipco_gpioout(&ssb.chipco, 1 << gpio, (value ? 1 << gpio : 0));
else if (ssb.extif->dev)
ssb_extif_gpioout(&ssb.extif, 1 << gpio, (value ? 1 << gpio : 0));
return 0;
}
/* cansleep wrappers */
#include <asm-generic/gpio.h>
#endif /* __BCM947XX_GPIO_H */

View File

@ -0,0 +1,26 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005 Embedded Alley Solutions, Inc
* Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2006 Michael Buesch
*/
#ifndef __ASM_MACH_GENERIC_KERNEL_ENTRY_H
#define __ASM_MACH_GENERIC_KERNEL_ENTRY_H
/* Intentionally empty macro, used in head.S. Override in
* arch/mips/mach-xxx/kernel-entry-init.h when necessary.
*/
.macro kernel_entry_setup
.endm
/*
* Do SMP slave processor setup necessary before we can savely execute C code.
*/
.macro smp_slave_setup
.endm
#endif /* __ASM_MACH_GENERIC_KERNEL_ENTRY_H */

View File

@ -0,0 +1,375 @@
#ifndef LINUX_SSB_H_
#define LINUX_SSB_H_
#ifdef __KERNEL__
#include <linux/device.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/ssb/ssb_regs.h>
struct pcmcia_device;
struct ssb_bus;
struct ssb_driver;
struct ssb_sprom_r1 {
u16 pci_spid; /* Subsystem Product ID for PCI */
u16 pci_svid; /* Subsystem Vendor ID for PCI */
u16 pci_pid; /* Product ID for PCI */
u8 il0mac[6]; /* MAC address for 802.11b/g */
u8 et0mac[6]; /* MAC address for Ethernet */
u8 et1mac[6]; /* MAC address for 802.11a */
u8 et0phyaddr:5; /* MII address for enet0 */
u8 et1phyaddr:5; /* MII address for enet1 */
u8 et0mdcport:1; /* MDIO for enet0 */
u8 et1mdcport:1; /* MDIO for enet1 */
u8 board_rev; /* Board revision */
u8 country_code:4; /* Country Code */
u8 antenna_a:2; /* Antenna 0/1 available for A-PHY */
u8 antenna_bg:2; /* Antenna 0/1 available for B-PHY and G-PHY */
u16 pa0b0;
u16 pa0b1;
u16 pa0b2;
u16 pa1b0;
u16 pa1b1;
u16 pa1b2;
u8 gpio0; /* GPIO pin 0 */
u8 gpio1; /* GPIO pin 1 */
u8 gpio2; /* GPIO pin 2 */
u8 gpio3; /* GPIO pin 3 */
u16 maxpwr_a; /* A-PHY Power Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_bg; /* B/G-PHY Power Amplifier Max Power (in dBm Q5.2) */
u8 itssi_a; /* Idle TSSI Target for A-PHY */
u8 itssi_bg; /* Idle TSSI Target for B/G-PHY */
u16 boardflags_lo; /* Boardflags (low 16 bits) */
u8 antenna_gain_a; /* A-PHY Antenna gain (in dBm Q5.2) */
u8 antenna_gain_bg; /* B/G-PHY Antenna gain (in dBm Q5.2) */
u8 oem[8]; /* OEM string (rev 1 only) */
};
struct ssb_sprom_r2 {
u16 boardflags_hi; /* Boardflags (high 16 bits) */
u8 maxpwr_a_lo; /* A-PHY Max Power Low */
u8 maxpwr_a_hi; /* A-PHY Max Power High */
u16 pa1lob0; /* A-PHY PA Low Settings */
u16 pa1lob1; /* A-PHY PA Low Settings */
u16 pa1lob2; /* A-PHY PA Low Settings */
u16 pa1hib0; /* A-PHY PA High Settings */
u16 pa1hib1; /* A-PHY PA High Settings */
u16 pa1hib2; /* A-PHY PA High Settings */
u8 ofdm_pwr_off; /* OFDM Power Offset from CCK Level */
u8 country_str[2]; /* Two char Country Code */
};
struct ssb_sprom_r3 {
u32 ofdmapo; /* A-PHY OFDM Mid Power Offset */
u32 ofdmalpo; /* A-PHY OFDM Low Power Offset */
u32 ofdmahpo; /* A-PHY OFDM High Power Offset */
u8 gpioldc_on_cnt; /* GPIO LED Powersave Duty Cycle ON count */
u8 gpioldc_off_cnt; /* GPIO LED Powersave Duty Cycle OFF count */
u8 cckpo_1M:4; /* CCK Power Offset for Rate 1M */
u8 cckpo_2M:4; /* CCK Power Offset for Rate 2M */
u8 cckpo_55M:4; /* CCK Power Offset for Rate 5.5M */
u8 cckpo_11M:4; /* CCK Power Offset for Rate 11M */
u32 ofdmgpo; /* G-PHY OFDM Power Offset */
};
struct ssb_sprom_r4 {
/* TODO */
};
struct ssb_sprom {
u8 revision;
u8 crc;
/* The valid r# fields are selected by the "revision".
* Revision 3 and lower inherit from lower revisions.
*/
union {
struct {
struct ssb_sprom_r1 r1;
struct ssb_sprom_r2 r2;
struct ssb_sprom_r3 r3;
};
struct ssb_sprom_r4 r4;
};
};
/* Core-ID values. */
#define SSB_DEV_CHIPCOMMON 0x800
#define SSB_DEV_ILINE20 0x801
#define SSB_DEV_SDRAM 0x803
#define SSB_DEV_PCI 0x804
#define SSB_DEV_MIPS 0x805
#define SSB_DEV_ETHERNET 0x806
#define SSB_DEV_V90 0x807
#define SSB_DEV_USB11_HOSTDEV 0x808
#define SSB_DEV_ADSL 0x809
#define SSB_DEV_ILINE100 0x80A
#define SSB_DEV_IPSEC 0x80B
#define SSB_DEV_PCMCIA 0x80D
#define SSB_DEV_INTERNAL_MEM 0x80E
#define SSB_DEV_MEMC_SDRAM 0x80F
#define SSB_DEV_EXTIF 0x811
#define SSB_DEV_80211 0x812
#define SSB_DEV_MIPS_3302 0x816
#define SSB_DEV_USB11_HOST 0x817
#define SSB_DEV_USB11_DEV 0x818
#define SSB_DEV_USB20_HOST 0x819
#define SSB_DEV_USB20_DEV 0x81A
#define SSB_DEV_SDIO_HOST 0x81B
#define SSB_DEV_ROBOSWITCH 0x81C
#define SSB_DEV_PARA_ATA 0x81D
#define SSB_DEV_SATA_XORDMA 0x81E
#define SSB_DEV_ETHERNET_GBIT 0x81F
#define SSB_DEV_PCIE 0x820
#define SSB_DEV_MIMO_PHY 0x821
#define SSB_DEV_SRAM_CTRLR 0x822
#define SSB_DEV_MINI_MACPHY 0x823
#define SSB_DEV_ARM_1176 0x824
#define SSB_DEV_ARM_7TDMI 0x825
/* Vendor-ID values */
#define SSB_VENDOR_BROADCOM 0x4243
struct ssb_device_id {
u16 vendor;
u16 coreid;
u8 revision;
};
#define SSB_DEVICE(_vendor, _coreid, _revision) \
{ .vendor = _vendor, .coreid = _coreid, .revision = _revision, }
#define SSB_DEVTABLE_END \
{ 0, },
#define SSB_ANY_VENDOR 0xFFFF
#define SSB_ANY_ID 0xFFFF
#define SSB_ANY_REV 0xFF
struct ssb_device {
struct device dev;
struct ssb_bus *bus;
struct ssb_device_id id;
u8 core_index;
unsigned int irq;
void *drvdata; /* Per-device data */
void *devtypedata; /* Per-devicetype (eg 802.11) data */
};
#define dev_to_ssb_dev(_dev) container_of(_dev, struct ssb_device, dev)
/* Device specific user data */
static inline
void ssb_set_drvdata(struct ssb_device *dev, void *data)
{
dev->drvdata = data;
}
static inline
void * ssb_get_drvdata(struct ssb_device *dev)
{
return dev->drvdata;
}
/* Devicetype specific user data. This is per device-type (not per device) */
void ssb_set_devtypedata(struct ssb_device *dev, void *data);
static inline
void * ssb_get_devtypedata(struct ssb_device *dev)
{
return dev->devtypedata;
}
struct ssb_bus_ops {
u16 (*read16)(struct ssb_device *dev, u16 offset);
u32 (*read32)(struct ssb_device *dev, u16 offset);
void (*write16)(struct ssb_device *dev, u16 offset, u16 value);
void (*write32)(struct ssb_device *dev, u16 offset, u32 value);
};
struct ssb_driver {
const char *name;
const struct ssb_device_id *id_table;
int (*probe)(struct ssb_device *dev, const struct ssb_device_id *id);
void (*remove)(struct ssb_device *dev);
int (*suspend)(struct ssb_device *dev, pm_message_t state);
int (*resume)(struct ssb_device *dev);
void (*shutdown)(struct ssb_device *dev);
struct device_driver drv;
};
#define drv_to_ssb_drv(_drv) container_of(_drv, struct ssb_driver, drv)
extern int __ssb_driver_register(struct ssb_driver *drv, struct module *owner);
static inline int ssb_driver_register(struct ssb_driver *drv)
{
return __ssb_driver_register(drv, THIS_MODULE);
}
extern void ssb_driver_unregister(struct ssb_driver *drv);
enum ssb_bustype {
SSB_BUSTYPE_SSB, /* This SSB bus is the system bus */
SSB_BUSTYPE_PCI, /* SSB is connected to PCI bus */
SSB_BUSTYPE_PCMCIA, /* SSB is connected to PCMCIA bus */
//TODO SSB_BUSTYPE_JTAG,
};
/* board_vendor */
#define SSB_BOARDVENDOR_BCM 0x14E4 /* Broadcom */
#define SSB_BOARDVENDOR_DELL 0x1028 /* Dell */
#define SSB_BOARDVENDOR_HP 0x0E11 /* HP */
/* board_type */
#define SSB_BOARD_BCM94306MP 0x0418
#define SSB_BOARD_BCM4309G 0x0421
#define SSB_BOARD_BCM4306CB 0x0417
#define SSB_BOARD_BCM4309MP 0x040C
#define SSB_BOARD_MP4318 0x044A
#define SSB_BOARD_BU4306 0x0416
#define SSB_BOARD_BU4309 0x040A
/* chip_package */
#define SSB_CHIPPACK_BCM4712S 1 /* Small 200pin 4712 */
#define SSB_CHIPPACK_BCM4712M 2 /* Medium 225pin 4712 */
#define SSB_CHIPPACK_BCM4712L 0 /* Large 340pin 4712 */
static inline u16 ssb_read16(struct ssb_device *dev, u16 offset);
static inline u32 ssb_read32(struct ssb_device *dev, u16 offset);
static inline void ssb_write16(struct ssb_device *dev, u16 offset, u16 value);
static inline void ssb_write32(struct ssb_device *dev, u16 offset, u32 value);
static inline u32 ssb_write32_masked(struct ssb_device *dev, u16 offset, u32 mask, u32 value);
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/ssb/ssb_driver_mips.h>
#include <linux/ssb/ssb_driver_extif.h>
#include <linux/ssb/ssb_driver_pci.h>
struct ssb_bus {
/* The MMIO area. */
void __iomem *mmio;
const struct ssb_bus_ops *ops;
/* The core in the basic address register window. (PCI bus only) */
struct ssb_device *mapped_device;
/* Currently mapped PCMCIA segment. (bustype == SSB_BUSTYPE_PCMCIA only) */
u8 mapped_pcmcia_seg;
/* Lock for core and segment switching. */
spinlock_t bar_lock;
/* The bus this backplane is running on. */
enum ssb_bustype bustype;
/* Pointer to the PCI bus (only valid if bustype == SSB_BUSTYPE_PCI). */
struct pci_dev *host_pci;
/* Pointer to the PCMCIA device (only if bustype == SSB_BUSTYPE_PCMCIA). */
struct pcmcia_device *host_pcmcia;
/* ID information about the PCB. */
u16 board_vendor;
u16 board_type;
u16 board_rev;
/* ID information about the Chip. */
u16 chip_id;
u16 chip_rev;
u8 chip_package;
/* Contents of the SPROM.
* If there is no sprom (not on PCI-bus), this is emulated. */
struct ssb_sprom sprom;
/* List of devices (cores) on the backplane. */
struct ssb_device devices[SSB_MAX_NR_CORES];
u8 nr_devices;
/* Reference count. Number of suspended devices. */
u8 suspend_cnt;
/* Software ID number for this bus. */
int busnumber;
/* The ChipCommon device (if available). */
struct ssb_chipcommon chipco;
/* The PCI-core device (if available). */
struct ssb_pcicore pcicore;
/* The MIPS-core device (if available). */
struct ssb_mipscore mipscore;
/* The EXTif-core device (if available). */
struct ssb_extif extif;
/* Internal. */
struct list_head list;
};
extern int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
void (*fill_sprom)(struct ssb_sprom *sprom));
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr,
void (*fill_sprom)(struct ssb_sprom *sprom));
#endif /* CONFIG_SSB_PCMCIAHOST */
extern void ssb_bus_unregister(struct ssb_bus *bus);
extern u32 ssb_clockspeed(struct ssb_bus *bus);
int ssb_device_is_enabled(struct ssb_device *dev);
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags);
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags);
static inline u16 ssb_read16(struct ssb_device *dev, u16 offset)
{
return dev->bus->ops->read16(dev, offset);
}
static inline u32 ssb_read32(struct ssb_device *dev, u16 offset)
{
return dev->bus->ops->read32(dev, offset);
}
static inline void ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
dev->bus->ops->write16(dev, offset, value);
}
static inline void ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
dev->bus->ops->write32(dev, offset, value);
}
static inline u32 ssb_write32_masked(struct ssb_device *dev,
u16 offset,
u32 mask,
u32 value)
{
value &= mask;
value |= ssb_read32(dev, offset) & ~mask;
ssb_write32(dev, offset, value);
return value;
}
/* Translation (routing) bits that need to be ORed to DMA
* addresses before they are given to a device. */
extern u32 ssb_dma_translation(struct ssb_device *dev);
#define SSB_DMA_TRANSLATION_MASK 0xC0000000
#define SSB_DMA_TRANSLATION_SHIFT 30
extern int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask);
/* Various helper functions */
extern u32 ssb_admatch_base(u32 adm);
extern u32 ssb_admatch_size(u32 adm);
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_H_ */

View File

@ -0,0 +1,427 @@
#ifndef LINUX_SSB_CHIPCO_H_
#define LINUX_SSB_CHIPCO_H_
/* SonicsSiliconBackplane CHIPCOMMON core hardware definitions
*
* The chipcommon core provides chip identification, SB control,
* jtag, 0/1/2 uarts, clock frequency control, a watchdog interrupt timer,
* gpio interface, extbus, and support for serial and parallel flashes.
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GPL version 2. See COPYING for details.
*/
#ifdef __KERNEL__
/** ChipCommon core registers. **/
#define SSB_CHIPCO_CHIPID 0x0000
#define SSB_CHIPCO_IDMASK 0x0000FFFF
#define SSB_CHIPCO_REVMASK 0x000F0000
#define SSB_CHIPCO_REVSHIFT 16
#define SSB_CHIPCO_PACKMASK 0x00F00000
#define SSB_CHIPCO_PACKSHIFT 20
#define SSB_CHIPCO_NRCORESMASK 0x0F000000
#define SSB_CHIPCO_NRCORESSHIFT 24
#define SSB_CHIPCO_CAP 0x0004 /* Capabilities */
#define SSB_CHIPCO_CAP_NRUART 0x00000003 /* # of UARTs */
#define SSB_CHIPCO_CAP_MIPSEB 0x00000004 /* MIPS in BigEndian Mode */
#define SSB_CHIPCO_CAP_UARTCLK 0x00000018 /* UART clock select */
#define SSB_CHIPCO_CAP_UARTCLK_INT 0x00000008 /* UARTs are driven by internal divided clock */
#define SSB_CHIPCO_CAP_UARTGPIO 0x00000020 /* UARTs on GPIO 15-12 */
#define SSB_CHIPCO_CAP_EXTBUS 0x000000C0 /* External buses present */
#define SSB_CHIPCO_CAP_FLASHT 0x00000700 /* Flash Type */
#define SSB_CHIPCO_FLASHT_NONE 0x00000000 /* No flash */
#define SSB_CHIPCO_FLASHT_STSER 0x00000100 /* ST serial flash */
#define SSB_CHIPCO_FLASHT_ATSER 0x00000200 /* Atmel serial flash */
#define SSB_CHIPCO_FLASHT_PARA 0x00000700 /* Parallel flash */
#define SSB_CHIPCO_CAP_PLLT 0x00038000 /* PLL Type */
#define SSB_PLLTYPE_NONE 0x00000000
#define SSB_PLLTYPE_1 0x00010000 /* 48Mhz base, 3 dividers */
#define SSB_PLLTYPE_2 0x00020000 /* 48Mhz, 4 dividers */
#define SSB_PLLTYPE_3 0x00030000 /* 25Mhz, 2 dividers */
#define SSB_PLLTYPE_4 0x00008000 /* 48Mhz, 4 dividers */
#define SSB_PLLTYPE_5 0x00018000 /* 25Mhz, 4 dividers */
#define SSB_PLLTYPE_6 0x00028000 /* 100/200 or 120/240 only */
#define SSB_PLLTYPE_7 0x00038000 /* 25Mhz, 4 dividers */
#define SSB_CHIPCO_CAP_PCTL 0x00040000 /* Power Control */
#define SSB_CHIPCO_CAP_OTPS 0x00380000 /* OTP size */
#define SSB_CHIPCO_CAP_OTPS_SHIFT 19
#define SSB_CHIPCO_CAP_OTPS_BASE 5
#define SSB_CHIPCO_CAP_JTAGM 0x00400000 /* JTAG master present */
#define SSB_CHIPCO_CAP_BROM 0x00800000 /* Internal boot ROM active */
#define SSB_CHIPCO_CAP_64BIT 0x08000000 /* 64-bit Backplane */
#define SSB_CHIPCO_CORECTL 0x0008
#define SSB_CHIPCO_CORECTL_UARTCLK0 0x00000001 /* Drive UART with internal clock */
#define SSB_CHIPCO_CORECTL_SE 0x00000002 /* sync clk out enable (corerev >= 3) */
#define SSB_CHIPCO_BIST 0x000C
#define SSB_CHIPCO_OTPS 0x0010 /* OTP status */
#define SSB_CHIPCO_OTPS_PROGFAIL 0x80000000
#define SSB_CHIPCO_OTPS_PROTECT 0x00000007
#define SSB_CHIPCO_OTPS_HW_PROTECT 0x00000001
#define SSB_CHIPCO_OTPS_SW_PROTECT 0x00000002
#define SSB_CHIPCO_OTPS_CID_PROTECT 0x00000004
#define SSB_CHIPCO_OTPC 0x0014 /* OTP control */
#define SSB_CHIPCO_OTPC_RECWAIT 0xFF000000
#define SSB_CHIPCO_OTPC_PROGWAIT 0x00FFFF00
#define SSB_CHIPCO_OTPC_PRW_SHIFT 8
#define SSB_CHIPCO_OTPC_MAXFAIL 0x00000038
#define SSB_CHIPCO_OTPC_VSEL 0x00000006
#define SSB_CHIPCO_OTPC_SELVL 0x00000001
#define SSB_CHIPCO_OTPP 0x0018 /* OTP prog */
#define SSB_CHIPCO_OTPP_COL 0x000000FF
#define SSB_CHIPCO_OTPP_ROW 0x0000FF00
#define SSB_CHIPCO_OTPP_ROW_SHIFT 8
#define SSB_CHIPCO_OTPP_READERR 0x10000000
#define SSB_CHIPCO_OTPP_VALUE 0x20000000
#define SSB_CHIPCO_OTPP_READ 0x40000000
#define SSB_CHIPCO_OTPP_START 0x80000000
#define SSB_CHIPCO_OTPP_BUSY 0x80000000
#define SSB_CHIPCO_IRQSTAT 0x0020
#define SSB_CHIPCO_IRQMASK 0x0024
#define SSB_CHIPCO_IRQ_GPIO 0x00000001 /* gpio intr */
#define SSB_CHIPCO_IRQ_EXT 0x00000002 /* ro: ext intr pin (corerev >= 3) */
#define SSB_CHIPCO_IRQ_WDRESET 0x80000000 /* watchdog reset occurred */
#define SSB_CHIPCO_CHIPCTL 0x0028 /* Rev >= 11 only */
#define SSB_CHIPCO_CHIPSTAT 0x002C /* Rev >= 11 only */
#define SSB_CHIPCO_JCMD 0x0030 /* Rev >= 10 only */
#define SSB_CHIPCO_JCMD_START 0x80000000
#define SSB_CHIPCO_JCMD_BUSY 0x80000000
#define SSB_CHIPCO_JCMD_PAUSE 0x40000000
#define SSB_CHIPCO_JCMD0_ACC_MASK 0x0000F000
#define SSB_CHIPCO_JCMD0_ACC_IRDR 0x00000000
#define SSB_CHIPCO_JCMD0_ACC_DR 0x00001000
#define SSB_CHIPCO_JCMD0_ACC_IR 0x00002000
#define SSB_CHIPCO_JCMD0_ACC_RESET 0x00003000
#define SSB_CHIPCO_JCMD0_ACC_IRPDR 0x00004000
#define SSB_CHIPCO_JCMD0_ACC_PDR 0x00005000
#define SSB_CHIPCO_JCMD0_IRW_MASK 0x00000F00
#define SSB_CHIPCO_JCMD_ACC_MASK 0x000F0000 /* Changes for corerev 11 */
#define SSB_CHIPCO_JCMD_ACC_IRDR 0x00000000
#define SSB_CHIPCO_JCMD_ACC_DR 0x00010000
#define SSB_CHIPCO_JCMD_ACC_IR 0x00020000
#define SSB_CHIPCO_JCMD_ACC_RESET 0x00030000
#define SSB_CHIPCO_JCMD_ACC_IRPDR 0x00040000
#define SSB_CHIPCO_JCMD_ACC_PDR 0x00050000
#define SSB_CHIPCO_JCMD_IRW_MASK 0x00001F00
#define SSB_CHIPCO_JCMD_IRW_SHIFT 8
#define SSB_CHIPCO_JCMD_DRW_MASK 0x0000003F
#define SSB_CHIPCO_JIR 0x0034 /* Rev >= 10 only */
#define SSB_CHIPCO_JDR 0x0038 /* Rev >= 10 only */
#define SSB_CHIPCO_JCTL 0x003C /* Rev >= 10 only */
#define SSB_CHIPCO_JCTL_FORCE_CLK 4 /* Force clock */
#define SSB_CHIPCO_JCTL_EXT_EN 2 /* Enable external targets */
#define SSB_CHIPCO_JCTL_EN 1 /* Enable Jtag master */
#define SSB_CHIPCO_FLASHCTL 0x0040
#define SSB_CHIPCO_FLASHCTL_START 0x80000000
#define SSB_CHIPCO_FLASHCTL_BUSY SSB_CHIPCO_FLASHCTL_START
#define SSB_CHIPCO_FLASHADDR 0x0044
#define SSB_CHIPCO_FLASHDATA 0x0048
#define SSB_CHIPCO_BCAST_ADDR 0x0050
#define SSB_CHIPCO_BCAST_DATA 0x0054
#define SSB_CHIPCO_GPIOIN 0x0060
#define SSB_CHIPCO_GPIOOUT 0x0064
#define SSB_CHIPCO_GPIOOUTEN 0x0068
#define SSB_CHIPCO_GPIOCTL 0x006C
#define SSB_CHIPCO_GPIOINTPOL 0x0070
#define SSB_CHIPCO_GPIOINTMASK 0x0074
#define SSB_CHIPCO_WATCHDOG 0x0080
#define SSB_CHIPCO_GPIOTIMER 0x0088 /* LED powersave (corerev >= 16) */
#define SSB_CHIPCO_GPIOTIMER_ONTIME_SHIFT 16
#define SSB_CHIPCO_GPIOTOUTM 0x008C /* LED powersave (corerev >= 16) */
#define SSB_CHIPCO_CLOCK_N 0x0090
#define SSB_CHIPCO_CLOCK_SB 0x0094
#define SSB_CHIPCO_CLOCK_PCI 0x0098
#define SSB_CHIPCO_CLOCK_M2 0x009C
#define SSB_CHIPCO_CLOCK_MIPS 0x00A0
#define SSB_CHIPCO_CLKDIV 0x00A4 /* Rev >= 3 only */
#define SSB_CHIPCO_CLKDIV_SFLASH 0x0F000000
#define SSB_CHIPCO_CLKDIV_SFLASH_SHIFT 24
#define SSB_CHIPCO_CLKDIV_OTP 0x000F0000
#define SSB_CHIPCO_CLKDIV_OTP_SHIFT 16
#define SSB_CHIPCO_CLKDIV_JTAG 0x00000F00
#define SSB_CHIPCO_CLKDIV_JTAG_SHIFT 8
#define SSB_CHIPCO_CLKDIV_UART 0x000000FF
#define SSB_CHIPCO_PLLONDELAY 0x00B0 /* Rev >= 4 only */
#define SSB_CHIPCO_FREFSELDELAY 0x00B4 /* Rev >= 4 only */
#define SSB_CHIPCO_SLOWCLKCTL 0x00B8 /* 6 <= Rev <= 9 only */
#define SSB_CHIPCO_SLOWCLKCTL_SRC 0x00000007 /* slow clock source mask */
#define SSB_CHIPCO_SLOWCLKCTL_SRC_LPO 0x00000000 /* source of slow clock is LPO */
#define SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL 0x00000001 /* source of slow clock is crystal */
#define SSB_CHIPCO_SLOECLKCTL_SRC_PCI 0x00000002 /* source of slow clock is PCI */
#define SSB_CHIPCO_SLOWCLKCTL_LPOFREQ 0x00000200 /* LPOFreqSel, 1: 160Khz, 0: 32KHz */
#define SSB_CHIPCO_SLOWCLKCTL_LPOPD 0x00000400 /* LPOPowerDown, 1: LPO is disabled, 0: LPO is enabled */
#define SSB_CHIPCO_SLOWCLKCTL_FSLOW 0x00000800 /* ForceSlowClk, 1: sb/cores running on slow clock, 0: power logic control */
#define SSB_CHIPCO_SLOWCLKCTL_IPLL 0x00001000 /* IgnorePllOffReq, 1/0: power logic ignores/honors PLL clock disable requests from core */
#define SSB_CHIPCO_SLOWCLKCTL_ENXTAL 0x00002000 /* XtalControlEn, 1/0: power logic does/doesn't disable crystal when appropriate */
#define SSB_CHIPCO_SLOWCLKCTL_XTALPU 0x00004000 /* XtalPU (RO), 1/0: crystal running/disabled */
#define SSB_CHIPCO_SLOWCLKCTL_CLKDIV 0xFFFF0000 /* ClockDivider (SlowClk = 1/(4+divisor)) */
#define SSB_CHIPCO_SLOWCLKCTL_CLKDIV_SHIFT 16
#define SSB_CHIPCO_SYSCLKCTL 0x00C0 /* Rev >= 3 only */
#define SSB_CHIPCO_SYSCLKCTL_IDLPEN 0x00000001 /* ILPen: Enable Idle Low Power */
#define SSB_CHIPCO_SYSCLKCTL_ALPEN 0x00000002 /* ALPen: Enable Active Low Power */
#define SSB_CHIPCO_SYSCLKCTL_PLLEN 0x00000004 /* ForcePLLOn */
#define SSB_CHIPCO_SYSCLKCTL_FORCEALP 0x00000008 /* Force ALP (or HT if ALPen is not set */
#define SSB_CHIPCO_SYSCLKCTL_FORCEHT 0x00000010 /* Force HT */
#define SSB_CHIPCO_SYSCLKCTL_CLKDIV 0xFFFF0000 /* ClkDiv (ILP = 1/(4+divisor)) */
#define SSB_CHIPCO_SYSCLKCTL_CLKDIV_SHIFT 16
#define SSB_CHIPCO_CLKSTSTR 0x00C4 /* Rev >= 3 only */
#define SSB_CHIPCO_PCMCIA_CFG 0x0100
#define SSB_CHIPCO_PCMCIA_MEMWAIT 0x0104
#define SSB_CHIPCO_PCMCIA_ATTRWAIT 0x0108
#define SSB_CHIPCO_PCMCIA_IOWAIT 0x010C
#define SSB_CHIPCO_IDE_CFG 0x0110
#define SSB_CHIPCO_IDE_MEMWAIT 0x0114
#define SSB_CHIPCO_IDE_ATTRWAIT 0x0118
#define SSB_CHIPCO_IDE_IOWAIT 0x011C
#define SSB_CHIPCO_PROG_CFG 0x0120
#define SSB_CHIPCO_PROG_WAITCNT 0x0124
#define SSB_CHIPCO_FLASH_CFG 0x0128
#define SSB_CHIPCO_FLASH_WAITCNT 0x012C
#define SSB_CHIPCO_UART0_DATA 0x0300
#define SSB_CHIPCO_UART0_IMR 0x0304
#define SSB_CHIPCO_UART0_FCR 0x0308
#define SSB_CHIPCO_UART0_LCR 0x030C
#define SSB_CHIPCO_UART0_MCR 0x0310
#define SSB_CHIPCO_UART0_LSR 0x0314
#define SSB_CHIPCO_UART0_MSR 0x0318
#define SSB_CHIPCO_UART0_SCRATCH 0x031C
#define SSB_CHIPCO_UART1_DATA 0x0400
#define SSB_CHIPCO_UART1_IMR 0x0404
#define SSB_CHIPCO_UART1_FCR 0x0408
#define SSB_CHIPCO_UART1_LCR 0x040C
#define SSB_CHIPCO_UART1_MCR 0x0410
#define SSB_CHIPCO_UART1_LSR 0x0414
#define SSB_CHIPCO_UART1_MSR 0x0418
#define SSB_CHIPCO_UART1_SCRATCH 0x041C
/** Clockcontrol masks and values **/
/* SSB_CHIPCO_CLOCK_N */
#define SSB_CHIPCO_CLK_N1 0x0000003F /* n1 control */
#define SSB_CHIPCO_CLK_N2 0x00003F00 /* n2 control */
#define SSB_CHIPCO_CLK_N2_SHIFT 8
#define SSB_CHIPCO_CLK_PLLC 0x000F0000 /* pll control */
#define SSB_CHIPCO_CLK_PLLC_SHIFT 16
/* SSB_CHIPCO_CLOCK_SB/PCI/UART */
#define SSB_CHIPCO_CLK_M1 0x0000003F /* m1 control */
#define SSB_CHIPCO_CLK_M2 0x00003F00 /* m2 control */
#define SSB_CHIPCO_CLK_M2_SHIFT 8
#define SSB_CHIPCO_CLK_M3 0x003F0000 /* m3 control */
#define SSB_CHIPCO_CLK_M3_SHIFT 16
#define SSB_CHIPCO_CLK_MC 0x1F000000 /* mux control */
#define SSB_CHIPCO_CLK_MC_SHIFT 24
/* N3M Clock control magic field values */
#define SSB_CHIPCO_CLK_F6_2 0x02 /* A factor of 2 in */
#define SSB_CHIPCO_CLK_F6_3 0x03 /* 6-bit fields like */
#define SSB_CHIPCO_CLK_F6_4 0x05 /* N1, M1 or M3 */
#define SSB_CHIPCO_CLK_F6_5 0x09
#define SSB_CHIPCO_CLK_F6_6 0x11
#define SSB_CHIPCO_CLK_F6_7 0x21
#define SSB_CHIPCO_CLK_F5_BIAS 5 /* 5-bit fields get this added */
#define SSB_CHIPCO_CLK_MC_BYPASS 0x08
#define SSB_CHIPCO_CLK_MC_M1 0x04
#define SSB_CHIPCO_CLK_MC_M1M2 0x02
#define SSB_CHIPCO_CLK_MC_M1M2M3 0x01
#define SSB_CHIPCO_CLK_MC_M1M3 0x11
/* Type 2 Clock control magic field values */
#define SSB_CHIPCO_CLK_T2_BIAS 2 /* n1, n2, m1 & m3 bias */
#define SSB_CHIPCO_CLK_T2M2_BIAS 3 /* m2 bias */
#define SSB_CHIPCO_CLK_T2MC_M1BYP 1
#define SSB_CHIPCO_CLK_T2MC_M2BYP 2
#define SSB_CHIPCO_CLK_T2MC_M3BYP 4
/* Type 6 Clock control magic field values */
#define SSB_CHIPCO_CLK_T6_MMASK 1 /* bits of interest in m */
#define SSB_CHIPCO_CLK_T6_M0 120000000 /* sb clock for m = 0 */
#define SSB_CHIPCO_CLK_T6_M1 100000000 /* sb clock for m = 1 */
#define SSB_CHIPCO_CLK_SB2MIPS_T6(sb) (2 * (sb))
/* Common clock base */
#define SSB_CHIPCO_CLK_BASE1 24000000 /* Half the clock freq */
#define SSB_CHIPCO_CLK_BASE2 12500000 /* Alternate crystal on some PLL's */
/* Clock control values for 200Mhz in 5350 */
#define SSB_CHIPCO_CLK_5350_N 0x0311
#define SSB_CHIPCO_CLK_5350_M 0x04020009
/** Bits in the config registers **/
#define SSB_CHIPCO_CFG_EN 0x0001 /* Enable */
#define SSB_CHIPCO_CFG_EXTM 0x000E /* Extif Mode */
#define SSB_CHIPCO_CFG_EXTM_ASYNC 0x0002 /* Async/Parallel flash */
#define SSB_CHIPCO_CFG_EXTM_SYNC 0x0004 /* Synchronous */
#define SSB_CHIPCO_CFG_EXTM_PCMCIA 0x0008 /* PCMCIA */
#define SSB_CHIPCO_CFG_EXTM_IDE 0x000A /* IDE */
#define SSB_CHIPCO_CFG_DS16 0x0010 /* Data size, 0=8bit, 1=16bit */
#define SSB_CHIPCO_CFG_CLKDIV 0x0060 /* Sync: Clock divisor */
#define SSB_CHIPCO_CFG_CLKEN 0x0080 /* Sync: Clock enable */
#define SSB_CHIPCO_CFG_BSTRO 0x0100 /* Sync: Size/Bytestrobe */
/** Flash-specific control/status values */
/* flashcontrol opcodes for ST flashes */
#define SSB_CHIPCO_FLASHCTL_ST_WREN 0x0006 /* Write Enable */
#define SSB_CHIPCO_FLASHCTL_ST_WRDIS 0x0004 /* Write Disable */
#define SSB_CHIPCO_FLASHCTL_ST_RDSR 0x0105 /* Read Status Register */
#define SSB_CHIPCO_FLASHCTL_ST_WRSR 0x0101 /* Write Status Register */
#define SSB_CHIPCO_FLASHCTL_ST_READ 0x0303 /* Read Data Bytes */
#define SSB_CHIPCO_FLASHCTL_ST_PP 0x0302 /* Page Program */
#define SSB_CHIPCO_FLASHCTL_ST_SE 0x02D8 /* Sector Erase */
#define SSB_CHIPCO_FLASHCTL_ST_BE 0x00C7 /* Bulk Erase */
#define SSB_CHIPCO_FLASHCTL_ST_DP 0x00B9 /* Deep Power-down */
#define SSB_CHIPCO_FLASHCTL_ST_RSIG 0x03AB /* Read Electronic Signature */
/* Status register bits for ST flashes */
#define SSB_CHIPCO_FLASHSTA_ST_WIP 0x01 /* Write In Progress */
#define SSB_CHIPCO_FLASHSTA_ST_WEL 0x02 /* Write Enable Latch */
#define SSB_CHIPCO_FLASHSTA_ST_BP 0x1C /* Block Protect */
#define SSB_CHIPCO_FLASHSTA_ST_BP_SHIFT 2
#define SSB_CHIPCO_FLASHSTA_ST_SRWD 0x80 /* Status Register Write Disable */
/* flashcontrol opcodes for Atmel flashes */
#define SSB_CHIPCO_FLASHCTL_AT_READ 0x07E8
#define SSB_CHIPCO_FLASHCTL_AT_PAGE_READ 0x07D2
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_READ /* FIXME */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_READ /* FIXME */
#define SSB_CHIPCO_FLASHCTL_AT_STATUS 0x01D7
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_WRITE 0x0384
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_WRITE 0x0387
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_ERASE_PRGM 0x0283 /* Erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_ERASE_PRGM 0x0286 /* Erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_PROGRAM 0x0288
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_PROGRAM 0x0289
#define SSB_CHIPCO_FLASHCTL_AT_PAGE_ERASE 0x0281
#define SSB_CHIPCO_FLASHCTL_AT_BLOCK_ERASE 0x0250
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_WRER_PRGM 0x0382 /* Write erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_WRER_PRGM 0x0385 /* Write erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_LOAD 0x0253
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_LOAD 0x0255
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_COMPARE 0x0260
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_COMPARE 0x0261
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_REPROGRAM 0x0258
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_REPROGRAM 0x0259
/* Status register bits for Atmel flashes */
#define SSB_CHIPCO_FLASHSTA_AT_READY 0x80
#define SSB_CHIPCO_FLASHSTA_AT_MISMATCH 0x40
#define SSB_CHIPCO_FLASHSTA_AT_ID 0x38
#define SSB_CHIPCO_FLASHSTA_AT_ID_SHIFT 3
/** OTP **/
/* OTP regions */
#define SSB_CHIPCO_OTP_HW_REGION SSB_CHIPCO_OTPS_HW_PROTECT
#define SSB_CHIPCO_OTP_SW_REGION SSB_CHIPCO_OTPS_SW_PROTECT
#define SSB_CHIPCO_OTP_CID_REGION SSB_CHIPCO_OTPS_CID_PROTECT
/* OTP regions (Byte offsets from otp size) */
#define SSB_CHIPCO_OTP_SWLIM_OFF (-8)
#define SSB_CHIPCO_OTP_CIDBASE_OFF 0
#define SSB_CHIPCO_OTP_CIDLIM_OFF 8
/* Predefined OTP words (Word offset from otp size) */
#define SSB_CHIPCO_OTP_BOUNDARY_OFF (-4)
#define SSB_CHIPCO_OTP_HWSIGN_OFF (-3)
#define SSB_CHIPCO_OTP_SWSIGN_OFF (-2)
#define SSB_CHIPCO_OTP_CIDSIGN_OFF (-1)
#define SSB_CHIPCO_OTP_CID_OFF 0
#define SSB_CHIPCO_OTP_PKG_OFF 1
#define SSB_CHIPCO_OTP_FID_OFF 2
#define SSB_CHIPCO_OTP_RSV_OFF 3
#define SSB_CHIPCO_OTP_LIM_OFF 4
#define SSB_CHIPCO_OTP_SIGNATURE 0x578A
#define SSB_CHIPCO_OTP_MAGIC 0x4E56
struct ssb_device;
struct ssb_serial_port;
struct ssb_chipcommon {
struct ssb_device *dev;
u32 capabilities;
/* Fast Powerup Delay constant */
u16 fast_pwrup_delay;
};
extern void ssb_chipcommon_init(struct ssb_chipcommon *cc);
#include <linux/pm.h>
extern void ssb_chipco_suspend(struct ssb_chipcommon *cc, pm_message_t state);
extern void ssb_chipco_resume(struct ssb_chipcommon *cc);
extern void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m);
extern void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns_per_cycle);
enum ssb_clkmode {
SSB_CLKMODE_SLOW,
SSB_CLKMODE_FAST,
SSB_CLKMODE_DYNAMIC,
};
extern void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode);
/* GPIO functions */
static inline u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc,
u32 mask)
{
return ssb_read32(cc->dev, SSB_CHIPCO_GPIOIN) & mask;
}
static inline u32 ssb_chipco_gpio_out(struct ssb_chipcommon *cc,
u32 mask, u32 value)
{
return ssb_write32_masked(cc->dev, SSB_CHIPCO_GPIOOUT, mask, value);
}
static inline u32 ssb_chipco_gpio_outen(struct ssb_chipcommon *cc,
u32 mask, u32 value)
{
return ssb_write32_masked(cc->dev, SSB_CHIPCO_GPIOOUTEN, mask, value);
}
static inline u32 ssb_chipco_gpio_control(struct ssb_chipcommon *cc,
u32 mask, u32 value)
{
return ssb_write32_masked(cc->dev, SSB_CHIPCO_GPIOCTL, mask, value);
}
static inline u32 ssb_chipco_gpio_intmask(struct ssb_chipcommon *cc,
u32 mask, u32 value)
{
return ssb_write32_masked(cc->dev, SSB_CHIPCO_GPIOINTMASK, mask, value);
}
static inline u32 ssb_chipco_gpio_polarity(struct ssb_chipcommon *cc,
u32 mask, u32 value)
{
return ssb_write32_masked(cc->dev, SSB_CHIPCO_GPIOINTPOL, mask, value);
}
/* TODO: GPIO reservation */
#ifdef CONFIG_SSB_SERIAL
extern int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports);
#endif /* CONFIG_SSB_SERIAL */
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_CHIPCO_H_ */

View File

@ -0,0 +1,195 @@
/*
* Hardware-specific External Interface I/O core definitions
* for the BCM47xx family of SiliconBackplane-based chips.
*
* The External Interface core supports a total of three external chip selects
* supporting external interfaces. One of the external chip selects is
* used for Flash, one is used for PCMCIA, and the other may be
* programmed to support either a synchronous interface or an
* asynchronous interface. The asynchronous interface can be used to
* support external devices such as UARTs and the BCM2019 Bluetooth
* baseband processor.
* The external interface core also contains 2 on-chip 16550 UARTs, clock
* frequency control, a watchdog interrupt timer, and a GPIO interface.
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, Michael Buesch
*
* Licensed under the GPL version 2. See COPYING for details.
*/
#ifndef LINUX_SSB_EXTIFCORE_H_
#define LINUX_SSB_EXTIFCORE_H_
#ifdef __KERNEL__
struct ssb_extif {
struct ssb_device *dev;
};
/* external interface address space */
#define SSB_EXTIF_PCMCIA_MEMBASE(x) (x)
#define SSB_EXTIF_PCMCIA_IOBASE(x) ((x) + 0x100000)
#define SSB_EXTIF_PCMCIA_CFGBASE(x) ((x) + 0x200000)
#define SSB_EXTIF_CFGIF_BASE(x) ((x) + 0x800000)
#define SSB_EXTIF_FLASH_BASE(x) ((x) + 0xc00000)
#define SSB_EXTIF_NR_GPIOOUT 5
/* GPIO NOTE:
* The multiple instances of output and output enable registers
* are present to allow driver software for multiple cores to control
* gpio outputs without needing to share a single register pair.
* Use the following helper macro to get a register offset value.
*/
#define SSB_EXTIF_GPIO_OUT(index) ({ \
BUILD_BUG_ON(index >= SSB_EXTIF_NR_GPIOOUT); \
SSB_EXTIF_GPIO_OUT_BASE + ((index) * 8); \
})
#define SSB_EXTIF_GPIO_OUTEN(index) ({ \
BUILD_BUG_ON(index >= SSB_EXTIF_NR_GPIOOUT); \
SSB_EXTIF_GPIO_OUTEN_BASE + ((index) * 8); \
})
/** EXTIF core registers **/
#define SSB_EXTIF_CTL 0x0000
#define SSB_EXTIF_CTL_UARTEN (1 << 0) /* UART enable */
#define SSB_EXTIF_EXTSTAT 0x0004
#define SSB_EXTIF_EXTSTAT_EMODE (1 << 0) /* Endian mode (ro) */
#define SSB_EXTIF_EXTSTAT_EIRQPIN (1 << 1) /* External interrupt pin (ro) */
#define SSB_EXTIF_EXTSTAT_GPIOIRQPIN (1 << 2) /* GPIO interrupt pin (ro) */
#define SSB_EXTIF_PCMCIA_CFG 0x0010
#define SSB_EXTIF_PCMCIA_MEMWAIT 0x0014
#define SSB_EXTIF_PCMCIA_ATTRWAIT 0x0018
#define SSB_EXTIF_PCMCIA_IOWAIT 0x001C
#define SSB_EXTIF_PROG_CFG 0x0020
#define SSB_EXTIF_PROG_WAITCNT 0x0024
#define SSB_EXTIF_FLASH_CFG 0x0028
#define SSB_EXTIF_FLASH_WAITCNT 0x002C
#define SSB_EXTIF_WATCHDOG 0x0040
#define SSB_EXTIF_CLOCK_N 0x0044
#define SSB_EXTIF_CLOCK_SB 0x0048
#define SSB_EXTIF_CLOCK_PCI 0x004C
#define SSB_EXTIF_CLOCK_MII 0x0050
#define SSB_EXTIF_GPIO_IN 0x0060
#define SSB_EXTIF_GPIO_OUT_BASE 0x0064
#define SSB_EXTIF_GPIO_OUTEN_BASE 0x0068
#define SSB_EXTIF_EJTAG_OUTEN 0x0090
#define SSB_EXTIF_GPIO_INTPOL 0x0094
#define SSB_EXTIF_GPIO_INTMASK 0x0098
#define SSB_EXTIF_UART_DATA 0x0300
#define SSB_EXTIF_UART_TIMER 0x0310
#define SSB_EXTIF_UART_FCR 0x0320
#define SSB_EXTIF_UART_LCR 0x0330
#define SSB_EXTIF_UART_MCR 0x0340
#define SSB_EXTIF_UART_LSR 0x0350
#define SSB_EXTIF_UART_MSR 0x0360
#define SSB_EXTIF_UART_SCRATCH 0x0370
/* pcmcia/prog/flash_config */
#define SSB_EXTCFG_EN (1 << 0) /* enable */
#define SSB_EXTCFG_MODE 0xE /* mode */
#define SSB_EXTCFG_MODE_SHIFT 1
#define SSB_EXTCFG_MODE_FLASH 0x0 /* flash/asynchronous mode */
#define SSB_EXTCFG_MODE_SYNC 0x2 /* synchronous mode */
#define SSB_EXTCFG_MODE_PCMCIA 0x4 /* pcmcia mode */
#define SSB_EXTCFG_DS16 (1 << 4) /* destsize: 0=8bit, 1=16bit */
#define SSB_EXTCFG_BSWAP (1 << 5) /* byteswap */
#define SSB_EXTCFG_CLKDIV 0xC0 /* clock divider */
#define SSB_EXTCFG_CLKDIV_SHIFT 6
#define SSB_EXTCFG_CLKDIV_2 0x0 /* backplane/2 */
#define SSB_EXTCFG_CLKDIV_3 0x40 /* backplane/3 */
#define SSB_EXTCFG_CLKDIV_4 0x80 /* backplane/4 */
#define SSB_EXTCFG_CLKEN (1 << 8) /* clock enable */
#define SSB_EXTCFG_STROBE (1 << 9) /* size/bytestrobe (synch only) */
/* pcmcia_memwait */
#define SSB_PCMCIA_MEMW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_MEMW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_MEMW_1_SHIFT 8
#define SSB_PCMCIA_MEMW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_MEMW_2_SHIFT 16
#define SSB_PCMCIA_MEMW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_MEMW_3_SHIFT 24
/* pcmcia_attrwait */
#define SSB_PCMCIA_ATTW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_ATTW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_ATTW_1_SHIFT 8
#define SSB_PCMCIA_ATTW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_ATTW_2_SHIFT 16
#define SSB_PCMCIA_ATTW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_ATTW_3_SHIFT 24
/* pcmcia_iowait */
#define SSB_PCMCIA_IOW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_IOW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_IOW_1_SHIFT 8
#define SSB_PCMCIA_IOW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_IOW_2_SHIFT 16
#define SSB_PCMCIA_IOW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_IOW_3_SHIFT 24
/* prog_waitcount */
#define SSB_PROG_WCNT_0 0x0000001F /* waitcount0 */
#define SSB_PROG_WCNT_1 0x00001F00 /* waitcount1 */
#define SSB_PROG_WCNT_1_SHIFT 8
#define SSB_PROG_WCNT_2 0x001F0000 /* waitcount2 */
#define SSB_PROG_WCNT_2_SHIFT 16
#define SSB_PROG_WCNT_3 0x1F000000 /* waitcount3 */
#define SSB_PROG_WCNT_3_SHIFT 24
#define SSB_PROG_W0 0x0000000C
#define SSB_PROG_W1 0x00000A00
#define SSB_PROG_W2 0x00020000
#define SSB_PROG_W3 0x01000000
/* flash_waitcount */
#define SSB_FLASH_WCNT_0 0x0000001F /* waitcount0 */
#define SSB_FLASH_WCNT_1 0x00001F00 /* waitcount1 */
#define SSB_FLASH_WCNT_1_SHIFT 8
#define SSB_FLASH_WCNT_2 0x001F0000 /* waitcount2 */
#define SSB_FLASH_WCNT_2_SHIFT 16
#define SSB_FLASH_WCNT_3 0x1F000000 /* waitcount3 */
#define SSB_FLASH_WCNT_3_SHIFT 24
/* watchdog */
#define SSB_EXTIF_WATCHDOG_CLK 48000000 /* Hz */
/* GPIO functions */
static inline u32 ssb_extif_gpio_in(struct ssb_extif *extif,
u32 mask)
{
return ssb_read32(extif->dev, SSB_EXTIF_GPIO_IN) & mask;
}
static inline u32 ssb_extif_gpio_out(struct ssb_extif *extif,
u32 mask, u32 value)
{
return ssb_write32_masked(extif->dev, SSB_EXTIF_GPIO_OUT(0), mask, value);
}
static inline u32 ssb_extif_gpio_outen(struct ssb_extif *extif,
u32 mask, u32 value)
{
return ssb_write32_masked(extif->dev, SSB_EXTIF_GPIO_OUTEN(0), mask, value);
}
static inline u32 ssb_extif_gpio_polarity(struct ssb_extif *extif,
u32 mask, u32 value)
{
return ssb_write32_masked(extif->dev, SSB_EXTIF_GPIO_INTPOL, mask, value);
}
static inline u32 ssb_extif_gpio_intmask(struct ssb_extif *extif,
u32 mask, u32 value)
{
return ssb_write32_masked(extif->dev, SSB_EXTIF_GPIO_INTMASK, mask, value);
}
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_EXTIFCORE_H_ */

View File

@ -0,0 +1,47 @@
#ifndef LINUX_SSB_MIPSCORE_H_
#define LINUX_SSB_MIPSCORE_H_
#ifdef __KERNEL__
#ifdef CONFIG_BCM947XX
struct ssb_device;
struct ssb_serial_port {
void *regs;
unsigned long clockspeed;
unsigned int irq;
unsigned int baud_base;
unsigned int reg_shift;
};
struct ssb_mipscore {
struct ssb_device *dev;
int nr_serial_ports;
struct ssb_serial_port serial_ports[4];
u32 flash_window;
u32 flash_window_size;
};
extern void ssb_mipscore_init(struct ssb_mipscore *mcore);
extern u32 ssb_cpu_clock(struct ssb_mipscore *mcore);
extern unsigned int ssb_mips_irq(struct ssb_device *dev);
#else /* CONFIG_BCM947XX */
struct ssb_mipscore {
};
static inline
void ssb_mipscore_init(struct ssb_mipscore *mcore)
{
}
#endif /* CONFIG_BCM947XX */
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_MIPSCORE_H_ */

View File

@ -0,0 +1,108 @@
#ifndef LINUX_SSB_PCICORE_H_
#define LINUX_SSB_PCICORE_H_
#ifdef __KERNEL__
#ifdef CONFIG_SSB_DRIVER_PCICORE
/* PCI core registers. */
#define SSB_PCICORE_CTL 0x0000 /* PCI Control */
#define SSB_PCICORE_CTL_RST_OE 0x00000001 /* PCI_RESET Output Enable */
#define SSB_PCICORE_CTL_RST 0x00000002 /* PCI_RESET driven out to pin */
#define SSB_PCICORE_CTL_CLK_OE 0x00000004 /* Clock gate Output Enable */
#define SSB_PCICORE_CTL_CLK 0x00000008 /* Gate for clock driven out to pin */
#define SSB_PCICORE_ARBCTL 0x0010 /* PCI Arbiter Control */
#define SSB_PCICORE_ARBCTL_INTERN 0x00000001 /* Use internal arbiter */
#define SSB_PCICORE_ARBCTL_EXTERN 0x00000002 /* Use external arbiter */
#define SSB_PCICORE_ARBCTL_PARKID 0x00000006 /* Mask, selects which agent is parked on an idle bus */
#define SSB_PCICORE_ARBCTL_PARKID_LAST 0x00000000 /* Last requestor */
#define SSB_PCICORE_ARBCTL_PARKID_4710 0x00000002 /* 4710 */
#define SSB_PCICORE_ARBCTL_PARKID_EXT0 0x00000004 /* External requestor 0 */
#define SSB_PCICORE_ARBCTL_PARKID_EXT1 0x00000006 /* External requestor 1 */
#define SSB_PCICORE_ISTAT 0x0020 /* Interrupt status */
#define SSB_PCICORE_ISTAT_INTA 0x00000001 /* PCI INTA# */
#define SSB_PCICORE_ISTAT_INTB 0x00000002 /* PCI INTB# */
#define SSB_PCICORE_ISTAT_SERR 0x00000004 /* PCI SERR# (write to clear) */
#define SSB_PCICORE_ISTAT_PERR 0x00000008 /* PCI PERR# (write to clear) */
#define SSB_PCICORE_ISTAT_PME 0x00000010 /* PCI PME# */
#define SSB_PCICORE_IMASK 0x0024 /* Interrupt mask */
#define SSB_PCICORE_IMASK_INTA 0x00000001 /* PCI INTA# */
#define SSB_PCICORE_IMASK_INTB 0x00000002 /* PCI INTB# */
#define SSB_PCICORE_IMASK_SERR 0x00000004 /* PCI SERR# */
#define SSB_PCICORE_IMASK_PERR 0x00000008 /* PCI PERR# */
#define SSB_PCICORE_IMASK_PME 0x00000010 /* PCI PME# */
#define SSB_PCICORE_MBOX 0x0028 /* Backplane to PCI Mailbox */
#define SSB_PCICORE_MBOX_F0_0 0x00000100 /* PCI function 0, INT 0 */
#define SSB_PCICORE_MBOX_F0_1 0x00000200 /* PCI function 0, INT 1 */
#define SSB_PCICORE_MBOX_F1_0 0x00000400 /* PCI function 1, INT 0 */
#define SSB_PCICORE_MBOX_F1_1 0x00000800 /* PCI function 1, INT 1 */
#define SSB_PCICORE_MBOX_F2_0 0x00001000 /* PCI function 2, INT 0 */
#define SSB_PCICORE_MBOX_F2_1 0x00002000 /* PCI function 2, INT 1 */
#define SSB_PCICORE_MBOX_F3_0 0x00004000 /* PCI function 3, INT 0 */
#define SSB_PCICORE_MBOX_F3_1 0x00008000 /* PCI function 3, INT 1 */
#define SSB_PCICORE_BCAST_ADDR 0x0050 /* Backplane Broadcast Address */
#define SSB_PCICORE_BCAST_ADDR_MASK 0x000000FF
#define SSB_PCICORE_BCAST_DATA 0x0054 /* Backplane Broadcast Data */
#define SSB_PCICORE_GPIO_IN 0x0060 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_OUT 0x0064 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_ENABLE 0x0068 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_CTL 0x006C /* rev >= 2 only */
#define SSB_PCICORE_SBTOPCI0 0x0100 /* Backplane to PCI translation 0 (sbtopci0) */
#define SSB_PCICORE_SBTOPCI0_MASK 0xFC000000
#define SSB_PCICORE_SBTOPCI1 0x0104 /* Backplane to PCI translation 1 (sbtopci1) */
#define SSB_PCICORE_SBTOPCI1_MASK 0xFC000000
#define SSB_PCICORE_SBTOPCI2 0x0108 /* Backplane to PCI translation 2 (sbtopci2) */
#define SSB_PCICORE_SBTOPCI2_MASK 0xC0000000
/* SBtoPCIx */
#define SSB_PCICORE_SBTOPCI_MEM 0x00000000
#define SSB_PCICORE_SBTOPCI_IO 0x00000001
#define SSB_PCICORE_SBTOPCI_CFG0 0x00000002
#define SSB_PCICORE_SBTOPCI_CFG1 0x00000003
#define SSB_PCICORE_SBTOPCI_PREF 0x00000004 /* Prefetch enable */
#define SSB_PCICORE_SBTOPCI_BURST 0x00000008 /* Burst enable */
#define SSB_PCICORE_SBTOPCI_MRM 0x00000020 /* Memory Read Multiple */
#define SSB_PCICORE_SBTOPCI_RC 0x00000030 /* Read Command mask (rev >= 11) */
#define SSB_PCICORE_SBTOPCI_RC_READ 0x00000000 /* Memory read */
#define SSB_PCICORE_SBTOPCI_RC_READL 0x00000010 /* Memory read line */
#define SSB_PCICORE_SBTOPCI_RC_READM 0x00000020 /* Memory read multiple */
/* PCIcore specific boardflags */
#define SSB_PCICORE_BFL_NOPCI 0x00000400 /* Board leaves PCI floating */
struct ssb_pcicore {
struct ssb_device *dev;
u8 setup_done:1;
u8 hostmode:1;
u8 cardbusmode:1;
};
extern void ssb_pcicore_init(struct ssb_pcicore *pc);
/* Enable IRQ routing for a specific device */
extern int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev);
#else /* CONFIG_SSB_DRIVER_PCICORE */
struct ssb_pcicore {
};
static inline
void ssb_pcicore_init(struct ssb_pcicore *pc)
{
}
static inline
int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev)
{
return 0;
}
#endif /* CONFIG_SSB_DRIVER_PCICORE */
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_PCICORE_H_ */

View File

@ -0,0 +1,293 @@
#ifndef LINUX_SSB_REGS_H_
#define LINUX_SSB_REGS_H_
#ifdef __KERNEL__
/* SiliconBackplane Address Map.
* All regions may not exist on all chips.
*/
#define SSB_SDRAM_BASE 0x00000000 /* Physical SDRAM */
#define SSB_PCI_MEM 0x08000000 /* Host Mode sb2pcitranslation0 (64 MB) */
#define SSB_PCI_CFG 0x0c000000 /* Host Mode sb2pcitranslation1 (64 MB) */
#define SSB_SDRAM_SWAPPED 0x10000000 /* Byteswapped Physical SDRAM */
#define SSB_ENUM_BASE 0x18000000 /* Enumeration space base */
#define SSB_ENUM_LIMIT 0x18010000 /* Enumeration space limit */
#define SSB_FLASH2 0x1c000000 /* Flash Region 2 (region 1 shadowed here) */
#define SSB_FLASH2_SZ 0x02000000 /* Size of Flash Region 2 */
#define SSB_EXTIF_BASE 0x1f000000 /* External Interface region base address */
#define SSB_FLASH1 0x1fc00000 /* Flash Region 1 */
#define SSB_FLASH1_SZ 0x00400000 /* Size of Flash Region 1 */
#define SSB_PCI_DMA 0x40000000 /* Client Mode sb2pcitranslation2 (1 GB) */
#define SSB_PCI_DMA_SZ 0x40000000 /* Client Mode sb2pcitranslation2 size in bytes */
#define SSB_PCIE_DMA_L32 0x00000000 /* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), low 32 bits */
#define SSB_PCIE_DMA_H32 0x80000000 /* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), high 32 bits */
#define SSB_EUART (SB_EXTIF_BASE + 0x00800000)
#define SSB_LED (SB_EXTIF_BASE + 0x00900000)
/* Enumeration space constants */
#define SSB_CORE_SIZE 0x1000 /* Size of a core MMIO area */
#define SSB_MAX_NR_CORES ((SSB_ENUM_LIMIT - SSB_ENUM_BASE) / SSB_CORE_SIZE)
/* mips address */
#define SSB_EJTAG 0xff200000 /* MIPS EJTAG space (2M) */
/* SSB PCI config space registers. */
#define SSB_PMCSR 0x44
#define SSB_PE 0x100
#define SSB_BAR0_WIN 0x80 /* Backplane address space 0 */
#define SSB_BAR1_WIN 0x84 /* Backplane address space 1 */
#define SSB_SPROMCTL 0x88 /* SPROM control */
#define SSB_SPROMCTL_WE 0x10 /* SPROM write enable */
#define SSB_BAR1_CONTROL 0x8c /* Address space 1 burst control */
#define SSB_PCI_IRQS 0x90 /* PCI interrupts */
#define SSB_PCI_IRQMASK 0x94 /* PCI IRQ control and mask (pcirev >= 6 only) */
#define SSB_BACKPLANE_IRQS 0x98 /* Backplane Interrupts */
#define SSB_GPIO_IN 0xB0 /* GPIO Input (pcirev >= 3 only) */
#define SSB_GPIO_OUT 0xB4 /* GPIO Output (pcirev >= 3 only) */
#define SSB_GPIO_OUT_ENABLE 0xB8 /* GPIO Output Enable/Disable (pcirev >= 3 only) */
#define SSB_GPIO_SCS 0x10 /* PCI config space bit 4 for 4306c0 slow clock source */
#define SSB_GPIO_HWRAD 0x20 /* PCI config space GPIO 13 for hw radio disable */
#define SSB_GPIO_XTAL 0x40 /* PCI config space GPIO 14 for Xtal powerup */
#define SSB_GPIO_PLL 0x80 /* PCI config space GPIO 15 for PLL powerdown */
#define SSB_BAR0_MAX_RETRIES 50
/* Silicon backplane configuration register definitions */
#define SSB_IPSFLAG 0x0F08
#define SSB_IPSFLAG_IRQ1 0x0000003F /* which sbflags get routed to mips interrupt 1 */
#define SSB_IPSFLAG_IRQ1_SHIFT 0
#define SSB_IPSFLAG_IRQ2 0x00003F00 /* which sbflags get routed to mips interrupt 2 */
#define SSB_IPSFLAG_IRQ2_SHIFT 8
#define SSB_IPSFLAG_IRQ3 0x003F0000 /* which sbflags get routed to mips interrupt 3 */
#define SSB_IPSFLAG_IRQ3_SHIFT 16
#define SSB_IPSFLAG_IRQ4 0x3F000000 /* which sbflags get routed to mips interrupt 4 */
#define SSB_IPSFLAG_IRQ4_SHIFT 24
#define SSB_TPSFLAG 0x0F18
#define SSB_TPSFLAG_BPFLAG 0x0000003F /* Backplane flag # */
#define SSB_TPSFLAG_ALWAYSIRQ 0x00000040 /* IRQ is always sent on the Backplane */
#define SSB_TMERRLOGA 0x0F48
#define SSB_TMERRLOG 0x0F50
#define SSB_ADMATCH3 0x0F60
#define SSB_ADMATCH2 0x0F68
#define SSB_ADMATCH1 0x0F70
#define SSB_IMSTATE 0x0F90 /* SB Initiator Agent State */
#define SSB_IMSTATE_PC 0x0000000f /* Pipe Count */
#define SSB_IMSTATE_AP_MASK 0x00000030 /* Arbitration Priority */
#define SSB_IMSTATE_AP_BOTH 0x00000000 /* Use both timeslices and token */
#define SSB_IMSTATE_AP_TS 0x00000010 /* Use timeslices only */
#define SSB_IMSTATE_AP_TK 0x00000020 /* Use token only */
#define SSB_IMSTATE_AP_RSV 0x00000030 /* Reserved */
#define SSB_IMSTATE_IBE 0x00020000 /* In Band Error */
#define SSB_IMSTATE_TO 0x00040000 /* Timeout */
#define SSB_INTVEC 0x0F94 /* SB Interrupt Mask */
#define SSB_INTVEC_PCI 0x00000001 /* Enable interrupts for PCI */
#define SSB_INTVEC_ENET0 0x00000002 /* Enable interrupts for enet 0 */
#define SSB_INTVEC_ILINE20 0x00000004 /* Enable interrupts for iline20 */
#define SSB_INTVEC_CODEC 0x00000008 /* Enable interrupts for v90 codec */
#define SSB_INTVEC_USB 0x00000010 /* Enable interrupts for usb */
#define SSB_INTVEC_EXTIF 0x00000020 /* Enable interrupts for external i/f */
#define SSB_INTVEC_ENET1 0x00000040 /* Enable interrupts for enet 1 */
#define SSB_TMSLOW 0x0F98 /* SB Target State Low */
#define SSB_TMSLOW_RESET 0x00000001 /* Reset */
#define SSB_TMSLOW_REJECT 0x00000002 /* Reject */
#define SSB_TMSLOW_CLOCK 0x00010000 /* Clock Enable */
#define SSB_TMSLOW_FGC 0x00020000 /* Force Gated Clocks On */
#define SSB_TMSLOW_PE 0x40000000 /* Power Management Enable */
#define SSB_TMSLOW_BE 0x80000000 /* BIST Enable */
#define SSB_TMSHIGH 0x0F9C /* SB Target State High */
#define SSB_TMSHIGH_SERR 0x00000001 /* S-error */
#define SSB_TMSHIGH_INT 0x00000002 /* Interrupt */
#define SSB_TMSHIGH_BUSY 0x00000004 /* Busy */
#define SSB_TMSHIGH_TO 0x00000020 /* Timeout. Backplane rev >= 2.3 only */
#define SSB_TMSHIGH_COREFL 0x1FFF0000 /* Core specific flags */
#define SSB_TMSHIGH_COREFL_SHIFT 16
#define SSB_TMSHIGH_DMA64 0x10000000 /* 64bit DMA supported */
#define SSB_TMSHIGH_GCR 0x20000000 /* Gated Clock Request */
#define SSB_TMSHIGH_BISTF 0x40000000 /* BIST Failed */
#define SSB_TMSHIGH_BISTD 0x80000000 /* BIST Done */
#define SSB_BWA0 0x0FA0
#define SSB_IMCFGLO 0x0FA8
#define SSB_IMCFGLO_SERTO 0x00000007 /* Service timeout */
#define SSB_IMCFGLO_REQTO 0x00000070 /* Request timeout */
#define SSB_IMCFGLO_REQTO_SHIFT 4
#define SSB_IMCFGLO_CONNID 0x00FF0000 /* Connection ID */
#define SSB_IMCFGLO_CONNID_SHIFT 16
#define SSB_IMCFGHI 0x0FAC
#define SSB_ADMATCH0 0x0FB0
#define SSB_TMCFGLO 0x0FB8
#define SSB_TMCFGHI 0x0FBC
#define SSB_BCONFIG 0x0FC0
#define SSB_BSTATE 0x0FC8
#define SSB_ACTCFG 0x0FD8
#define SSB_FLAGST 0x0FE8
#define SSB_IDLOW 0x0FF8
#define SSB_IDLOW_CFGSP 0x00000003 /* Config Space */
#define SSB_IDLOW_ADDRNGE 0x00000038 /* Address Ranges supported */
#define SSB_IDLOW_ADDRNGE_SHIFT 3
#define SSB_IDLOW_SYNC 0x00000040
#define SSB_IDLOW_INITIATOR 0x00000080
#define SSB_IDLOW_MIBL 0x00000F00 /* Minimum Backplane latency */
#define SSB_IDLOW_MIBL_SHIFT 8
#define SSB_IDLOW_MABL 0x0000F000 /* Maximum Backplane latency */
#define SSB_IDLOW_MABL_SHIFT 12
#define SSB_IDLOW_TIF 0x00010000 /* This Initiator is first */
#define SSB_IDLOW_CCW 0x000C0000 /* Cycle counter width */
#define SSB_IDLOW_CCW_SHIFT 18
#define SSB_IDLOW_TPT 0x00F00000 /* Target ports */
#define SSB_IDLOW_TPT_SHIFT 20
#define SSB_IDLOW_INITP 0x0F000000 /* Initiator ports */
#define SSB_IDLOW_INITP_SHIFT 24
#define SSB_IDLOW_SSBREV 0xF0000000 /* Sonics Backplane Revision code */
#define SSB_IDLOW_SSBREV_22 0x00000000 /* <= 2.2 */
#define SSB_IDLOW_SSBREV_23 0x10000000 /* 2.3 */
#define SSB_IDHIGH 0x0FFC /* SB Identification High */
#define SSB_IDHIGH_RCLO 0x0000000F /* Revision Code (low part) */
#define SSB_IDHIGH_CC 0x00008FF0 /* Core Code */
#define SSB_IDHIGH_CC_SHIFT 4
#define SSB_IDHIGH_RCHI 0x00007000 /* Revision Code (high part) */
#define SSB_IDHIGH_RCHI_SHIFT 8 /* yes, shift 8 is right */
#define SSB_IDHIGH_VC 0xFFFF0000 /* Vendor Code */
#define SSB_IDHIGH_VC_SHIFT 16
/* SPROM shadow area. If not otherwise noted, fields are
* two bytes wide. Note that the SPROM can _only_ be read
* in two-byte quantinies.
*/
#define SSB_SPROMSIZE_WORDS 64
#define SSB_SPROMSIZE_BYTES (SSB_SPROMSIZE_WORDS * sizeof(u16))
#define SSB_SPROM_BASE 0x1000
#define SSB_SPROM_REVISION 0x107E
#define SSB_SPROM_REVISION_REV 0x00FF /* SPROM Revision number */
#define SSB_SPROM_REVISION_CRC 0xFF00 /* SPROM CRC8 value */
#define SSB_SPROM_REVISION_CRC_SHIFT 8
/* SPROM Revision 1 */
#define SSB_SPROM1_SPID 0x1004 /* Subsystem Product ID for PCI */
#define SSB_SPROM1_SVID 0x1006 /* Subsystem Vendor ID for PCI */
#define SSB_SPROM1_PID 0x1008 /* Product ID for PCI */
#define SSB_SPROM1_IL0MAC 0x1048 /* 6 bytes MAC address for 802.11b/g */
#define SSB_SPROM1_ET0MAC 0x104E /* 6 bytes MAC address for Ethernet */
#define SSB_SPROM1_ET1MAC 0x1054 /* 6 bytes MAC address for 802.11a */
#define SSB_SPROM1_ETHPHY 0x105A /* Ethernet PHY settings */
#define SSB_SPROM1_ETHPHY_ET0A 0x001F /* MII Address for enet0 */
#define SSB_SPROM1_ETHPHY_ET1A 0x03E0 /* MII Address for enet1 */
#define SSB_SPROM1_ETHPHY_ET1A_SHIFT 5
#define SSB_SPROM1_ETHPHY_ET0M (1<<14) /* MDIO for enet0 */
#define SSB_SPROM1_ETHPHY_ET1M (1<<15) /* MDIO for enet1 */
#define SSB_SPROM1_BINF 0x105C /* Board info */
#define SSB_SPROM1_BINF_BREV 0x00FF /* Board Revision */
#define SSB_SPROM1_BINF_CCODE 0x0F00 /* Country Code */
#define SSB_SPROM1_BINF_CCODE_SHIFT 8
#define SSB_SPROM1_BINF_ANTA 0x3000 /* Available A-PHY antennas */
#define SSB_SPROM1_BINF_ANTA_SHIFT 12
#define SSB_SPROM1_BINF_ANTBG 0xC000 /* Available B-PHY antennas */
#define SSB_SPROM1_BINF_ANTBG_SHIFT 14
#define SSB_SPROM1_PA0B0 0x105E
#define SSB_SPROM1_PA0B1 0x1060
#define SSB_SPROM1_PA0B2 0x1062
#define SSB_SPROM1_GPIOA 0x1064 /* General Purpose IO pins 0 and 1 */
#define SSB_SPROM1_GPIOA_P0 0x00FF /* Pin 0 */
#define SSB_SPROM1_GPIOA_P1 0xFF00 /* Pin 1 */
#define SSB_SPROM1_GPIOA_P1_SHIFT 8
#define SSB_SPROM1_GPIOB 0x1066 /* General Purpuse IO pins 2 and 3 */
#define SSB_SPROM1_GPIOB_P2 0x00FF /* Pin 2 */
#define SSB_SPROM1_GPIOB_P3 0xFF00 /* Pin 3 */
#define SSB_SPROM1_GPIOB_P3_SHIFT 8
#define SSB_SPROM1_MAXPWR 0x1068 /* Power Amplifier Max Power */
#define SSB_SPROM1_MAXPWR_A 0x00FF /* A-PHY (in dBm Q5.2) */
#define SSB_SPROM1_MAXPWR_BG 0xFF00 /* B-PHY and G-PHY (in dBm Q5.2) */
#define SSB_SPROM1_MAXPWR_BG_SHIFT 8
#define SSB_SPROM1_PA1B0 0x106A
#define SSB_SPROM1_PA1B1 0x106C
#define SSB_SPROM1_PA1B2 0x106E
#define SSB_SPROM1_ITSSI 0x1070 /* Idle TSSI Target */
#define SSB_SPROM1_ITSSI_A 0x00FF /* A-PHY */
#define SSB_SPROM1_ITSSI_BG 0xFF00 /* B-PHY and G-PHY */
#define SSB_SPROM1_ITSSI_BG_SHIFT 8
#define SSB_SPROM1_BFLLO 0x1072 /* Boardflags (low 16 bits) */
#define SSB_SPROM1_AGAIN 0x1074 /* Antenna Gain (in dBm Q5.2) */
#define SSB_SPROM1_AGAIN_A 0x00FF /* A-PHY */
#define SSB_SPROM1_AGAIN_BG 0xFF00 /* B-PHY and G-PHY */
#define SSB_SPROM1_AGAIN_BG_SHIFT 8
#define SSB_SPROM1_OEM 0x1076 /* 8 bytes OEM string (rev 1 only) */
/* SPROM Revision 2 (inherits from rev 1) */
#define SSB_SPROM2_BFLHI 0x1038 /* Boardflags (high 16 bits) */
#define SSB_SPROM2_MAXP_A 0x103A /* A-PHY Max Power */
#define SSB_SPROM2_MAXP_A_HI 0x00FF /* Max Power High */
#define SSB_SPROM2_MAXP_A_LO 0xFF00 /* Max Power Low */
#define SSB_SPROM2_MAXP_A_LO_SHIFT 8
#define SSB_SPROM2_PA1LOB0 0x103C /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1LOB1 0x103E /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1LOB2 0x1040 /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1HIB0 0x1042 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_PA1HIB1 0x1044 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_PA1HIB2 0x1046 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_OPO 0x1078 /* OFDM Power Offset from CCK Level */
#define SSB_SPROM2_OPO_VALUE 0x00FF
#define SSB_SPROM2_OPO_UNUSED 0xFF00
#define SSB_SPROM2_CCODE 0x107C /* Two char Country Code */
/* SPROM Revision 3 (inherits from rev 2) */
#define SSB_SPROM3_OFDMAPO 0x102C /* A-PHY OFDM Mid Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_OFDMALPO 0x1030 /* A-PHY OFDM Low Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_OFDMAHPO 0x1034 /* A-PHY OFDM High Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_GPIOLDC 0x1042 /* GPIO LED Powersave Duty Cycle (4 bytes, BigEndian) */
#define SSB_SPROM3_GPIOLDC_OFF 0x0000FF00 /* Off Count */
#define SSB_SPROM3_GPIOLDC_OFF_SHIFT 8
#define SSB_SPROM3_GPIOLDC_ON 0x00FF0000 /* On Count */
#define SSB_SPROM3_GPIOLDC_ON_SHIFT 16
#define SSB_SPROM3_CCKPO 0x1078 /* CCK Power Offset */
#define SSB_SPROM3_CCKPO_1M 0x000F /* 1M Rate PO */
#define SSB_SPROM3_CCKPO_2M 0x00F0 /* 2M Rate PO */
#define SSB_SPROM3_CCKPO_2M_SHIFT 4
#define SSB_SPROM3_CCKPO_55M 0x0F00 /* 5.5M Rate PO */
#define SSB_SPROM3_CCKPO_55M_SHIFT 8
#define SSB_SPROM3_CCKPO_11M 0xF000 /* 11M Rate PO */
#define SSB_SPROM3_CCKPO_11M_SHIFT 12
#define SSB_SPROM3_OFDMGPO 0x107A /* G-PHY OFDM Power Offset (4 bytes, BigEndian) */
/* Values for SSB_SPROM1_BINF_CCODE */
enum {
SSB_SPROM1CCODE_WORLD = 0,
SSB_SPROM1CCODE_THAILAND,
SSB_SPROM1CCODE_ISRAEL,
SSB_SPROM1CCODE_JORDAN,
SSB_SPROM1CCODE_CHINA,
SSB_SPROM1CCODE_JAPAN,
SSB_SPROM1CCODE_USA_CANADA_ANZ,
SSB_SPROM1CCODE_EUROPE,
SSB_SPROM1CCODE_USA_LOW,
SSB_SPROM1CCODE_JAPAN_HIGH,
SSB_SPROM1CCODE_ALL,
SSB_SPROM1CCODE_NONE,
};
/* Address-Match values and masks (SSB_ADMATCH?) */
#define SSB_ADM_TYPE 0x00000003 /* Address type */
#define SSB_ADM_TYPE0 0
#define SSB_ADM_TYPE1 1
#define SSB_ADM_TYPE2 2
#define SSB_ADM_AD64 0x00000004
#define SSB_ADM_SZ0 0x000000F8 /* Type0 size */
#define SSB_ADM_SZ0_SHIFT 3
#define SSB_ADM_SZ1 0x000001F8 /* Type1 size */
#define SSB_ADM_SZ1_SHIFT 3
#define SSB_ADM_SZ2 0x000001F8 /* Type2 size */
#define SSB_ADM_SZ2_SHIFT 3
#define SSB_ADM_EN 0x00000400 /* Enable */
#define SSB_ADM_NEG 0x00000800 /* Negative decode */
#define SSB_ADM_BASE0 0xFFFFFF00 /* Type0 base address */
#define SSB_ADM_BASE0_SHIFT 8
#define SSB_ADM_BASE1 0xFFFFF000 /* Type1 base address for the core */
#define SSB_ADM_BASE1_SHIFT 12
#define SSB_ADM_BASE2 0xFFFF0000 /* Type2 base address for the core */
#define SSB_ADM_BASE2_SHIFT 16
#endif /* __KERNEL__ */
#endif /* LINUX_SSB_REGS_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -1,478 +1,3 @@
diff -urN linux.old/drivers/mtd/maps/bcm47xx-flash.c linux.dev/drivers/mtd/maps/bcm47xx-flash.c
--- linux.old/drivers/mtd/maps/bcm47xx-flash.c 1970-01-01 01:00:00.000000000 +0100
+++ linux.dev/drivers/mtd/maps/bcm47xx-flash.c 2007-01-03 02:26:02.000000000 +0100
@@ -0,0 +1,471 @@
+/*
+ * Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
+ * Copyright (C) 2005 Waldemar Brodkorb <wbx@openwrt.org>
+ * Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org)
+ *
+ * original functions for finding root filesystem from Mike Baker
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+ * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
+ * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Copyright 2001-2003, Broadcom Corporation
+ * All Rights Reserved.
+ *
+ * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
+ * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
+ * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
+ *
+ * Flash mapping for BCM947XX boards
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/wait.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+#include <linux/squashfs_fs.h>
+#include <linux/jffs2.h>
+#include <linux/crc32.h>
+#include <linux/ssb/ssb.h>
+#include <asm/io.h>
+
+
+#define TRX_MAGIC 0x30524448 /* "HDR0" */
+#define TRX_VERSION 1
+#define TRX_MAX_LEN 0x3A0000
+#define TRX_NO_HEADER 1 /* Do not write TRX header */
+#define TRX_GZ_FILES 0x2 /* Contains up to TRX_MAX_OFFSET individual gzip files */
+#define TRX_MAX_OFFSET 3
+
+struct trx_header {
+ u32 magic; /* "HDR0" */
+ u32 len; /* Length of file including header */
+ u32 crc32; /* 32-bit CRC from flag_version to end of file */
+ u32 flag_version; /* 0:15 flags, 16:31 version */
+ u32 offsets[TRX_MAX_OFFSET]; /* Offsets of partitions from start of header */
+};
+
+#define ROUNDUP(x, y) ((((x)+((y)-1))/(y))*(y))
+#define NVRAM_SPACE 0x8000
+#define WINDOW_ADDR 0x1fc00000
+#define WINDOW_SIZE 0x400000
+#define BUSWIDTH 2
+
+extern struct ssb_bus ssb;
+static struct mtd_info *bcm947xx_mtd;
+
+static void bcm947xx_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
+{
+#define MIPS_MEMCPY_ALIGN 4
+ map_word ret;
+ ssize_t transfer;
+ ssize_t done = 0;
+ if ((len >= MIPS_MEMCPY_ALIGN) && (!(from & (MIPS_MEMCPY_ALIGN - 1))) && (!(((unsigned int)to & (MIPS_MEMCPY_ALIGN - 1))))) {
+ done = len & ~(MIPS_MEMCPY_ALIGN - 1);
+ memcpy_fromio(to, map->virt + from, done);
+ }
+ while (done < len) {
+ ret = map->read(map, from + done);
+ transfer = len - done;
+ if (transfer > map->bankwidth)
+ transfer = map->bankwidth;
+ memcpy((void *)((unsigned long)to + done), &ret.x[0], transfer);
+ done += transfer;
+ }
+}
+
+static struct map_info bcm947xx_map = {
+ name: "Physically mapped flash",
+ size: WINDOW_SIZE,
+ bankwidth: BUSWIDTH,
+ phys: WINDOW_ADDR,
+};
+
+#ifdef CONFIG_MTD_PARTITIONS
+
+static struct mtd_partition bcm947xx_parts[] = {
+ { name: "cfe", offset: 0, size: 0, mask_flags: MTD_WRITEABLE, },
+ { name: "linux", offset: 0, size: 0, },
+ { name: "rootfs", offset: 0, size: 0, },
+ { name: "nvram", offset: 0, size: 0, },
+ { name: "OpenWrt", offset: 0, size: 0, },
+ { name: NULL, },
+};
+
+static int __init
+find_cfe_size(struct mtd_info *mtd, size_t size)
+{
+ struct trx_header *trx;
+ unsigned char buf[512];
+ int off;
+ size_t len;
+ int blocksize;
+
+ trx = (struct trx_header *) buf;
+
+ blocksize = mtd->erasesize;
+ if (blocksize < 0x10000)
+ blocksize = 0x10000;
+
+ for (off = (128*1024); off < size; off += blocksize) {
+ memset(buf, 0xe5, sizeof(buf));
+
+ /*
+ * Read into buffer
+ */
+ if (mtd->read(mtd, off, sizeof(buf), &len, buf) ||
+ len != sizeof(buf))
+ continue;
+
+ /* found a TRX header */
+ if (le32_to_cpu(trx->magic) == TRX_MAGIC) {
+ goto found;
+ }
+ }
+
+ printk(KERN_NOTICE
+ "%s: Couldn't find bootloader size\n",
+ mtd->name);
+ return -1;
+
+ found:
+ printk(KERN_NOTICE "bootloader size: %d\n", off);
+ return off;
+
+}
+
+/*
+ * Copied from mtdblock.c
+ *
+ * Cache stuff...
+ *
+ * Since typical flash erasable sectors are much larger than what Linux's
+ * buffer cache can handle, we must implement read-modify-write on flash
+ * sectors for each block write requests. To avoid over-erasing flash sectors
+ * and to speed things up, we locally cache a whole flash sector while it is
+ * being written to until a different sector is required.
+ */
+
+static void erase_callback(struct erase_info *done)
+{
+ wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
+ wake_up(wait_q);
+}
+
+static int erase_write (struct mtd_info *mtd, unsigned long pos,
+ int len, const char *buf)
+{
+ struct erase_info erase;
+ DECLARE_WAITQUEUE(wait, current);
+ wait_queue_head_t wait_q;
+ size_t retlen;
+ int ret;
+
+ /*
+ * First, let's erase the flash block.
+ */
+
+ init_waitqueue_head(&wait_q);
+ erase.mtd = mtd;
+ erase.callback = erase_callback;
+ erase.addr = pos;
+ erase.len = len;
+ erase.priv = (u_long)&wait_q;
+
+ set_current_state(TASK_INTERRUPTIBLE);
+ add_wait_queue(&wait_q, &wait);
+
+ ret = mtd->erase(mtd, &erase);
+ if (ret) {
+ set_current_state(TASK_RUNNING);
+ remove_wait_queue(&wait_q, &wait);
+ printk (KERN_WARNING "erase of region [0x%lx, 0x%x] "
+ "on \"%s\" failed\n",
+ pos, len, mtd->name);
+ return ret;
+ }
+
+ schedule(); /* Wait for erase to finish. */
+ remove_wait_queue(&wait_q, &wait);
+
+ /*
+ * Next, writhe data to flash.
+ */
+
+ ret = mtd->write (mtd, pos, len, &retlen, buf);
+ if (ret)
+ return ret;
+ if (retlen != len)
+ return -EIO;
+ return 0;
+}
+
+
+
+
+static int __init
+find_root(struct mtd_info *mtd, size_t size, struct mtd_partition *part)
+{
+ struct trx_header trx, *trx2;
+ unsigned char buf[512], *block;
+ int off, blocksize;
+ u32 i, crc = ~0;
+ size_t len;
+ struct squashfs_super_block *sb = (struct squashfs_super_block *) buf;
+
+ blocksize = mtd->erasesize;
+ if (blocksize < 0x10000)
+ blocksize = 0x10000;
+
+ for (off = (128*1024); off < size; off += blocksize) {
+ memset(&trx, 0xe5, sizeof(trx));
+
+ /*
+ * Read into buffer
+ */
+ if (mtd->read(mtd, off, sizeof(trx), &len, (char *) &trx) ||
+ len != sizeof(trx))
+ continue;
+
+ /* found a TRX header */
+ if (le32_to_cpu(trx.magic) == TRX_MAGIC) {
+ part->offset = le32_to_cpu(trx.offsets[2]) ? :
+ le32_to_cpu(trx.offsets[1]);
+ part->size = le32_to_cpu(trx.len);
+
+ part->size -= part->offset;
+ part->offset += off;
+
+ goto found;
+ }
+ }
+
+ printk(KERN_NOTICE
+ "%s: Couldn't find root filesystem\n",
+ mtd->name);
+ return -1;
+
+ found:
+ if (part->size == 0)
+ return 0;
+
+ if (mtd->read(mtd, part->offset, sizeof(buf), &len, buf) || len != sizeof(buf))
+ return 0;
+
+ if (*((__u32 *) buf) == SQUASHFS_MAGIC) {
+ printk(KERN_INFO "%s: Filesystem type: squashfs, size=0x%x\n", mtd->name, (u32) sb->bytes_used);
+
+ /* Update the squashfs partition size based on the superblock info */
+ part->size = sb->bytes_used;
+ len = part->offset + part->size;
+ len += (mtd->erasesize - 1);
+ len &= ~(mtd->erasesize - 1);
+ part->size = len - part->offset;
+ } else if (*((__u16 *) buf) == JFFS2_MAGIC_BITMASK) {
+ printk(KERN_INFO "%s: Filesystem type: jffs2\n", mtd->name);
+
+ /* Move the squashfs outside of the trx */
+ part->size = 0;
+ } else {
+ printk(KERN_INFO "%s: Filesystem type: unknown\n", mtd->name);
+ return 0;
+ }
+
+ if (trx.len != part->offset + part->size - off) {
+ /* Update the trx offsets and length */
+ trx.len = part->offset + part->size - off;
+
+ /* Update the trx crc32 */
+ for (i = (u32) &(((struct trx_header *)NULL)->flag_version); i <= trx.len; i += sizeof(buf)) {
+ if (mtd->read(mtd, off + i, sizeof(buf), &len, buf) || len != sizeof(buf))
+ return 0;
+ crc = crc32_le(crc, buf, min(sizeof(buf), trx.len - i));
+ }
+ trx.crc32 = crc;
+
+ /* read first eraseblock from the trx */
+ block = kmalloc(mtd->erasesize, GFP_KERNEL);
+ trx2 = (struct trx_header *) block;
+ if (mtd->read(mtd, off, mtd->erasesize, &len, block) || len != mtd->erasesize) {
+ printk("Error accessing the first trx eraseblock\n");
+ return 0;
+ }
+
+ printk("Updating TRX offsets and length:\n");
+ printk("old trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx2->offsets[0], trx2->offsets[1], trx2->offsets[2], trx2->len, trx2->crc32);
+ printk("new trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx.offsets[0], trx.offsets[1], trx.offsets[2], trx.len, trx.crc32);
+
+ /* Write updated trx header to the flash */
+ memcpy(block, &trx, sizeof(trx));
+ if (mtd->unlock)
+ mtd->unlock(mtd, off, mtd->erasesize);
+ erase_write(mtd, off, mtd->erasesize, block);
+ if (mtd->sync)
+ mtd->sync(mtd);
+ kfree(block);
+ printk("Done\n");
+ }
+
+ return part->size;
+}
+
+struct mtd_partition * __init
+init_mtd_partitions(struct mtd_info *mtd, size_t size)
+{
+ int cfe_size;
+
+ if ((cfe_size = find_cfe_size(mtd,size)) < 0)
+ return NULL;
+
+ /* boot loader */
+ bcm947xx_parts[0].offset = 0;
+ bcm947xx_parts[0].size = cfe_size;
+
+ /* nvram */
+ if (cfe_size != 384 * 1024) {
+ bcm947xx_parts[3].offset = size - ROUNDUP(NVRAM_SPACE, mtd->erasesize);
+ bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize);
+ } else {
+ /* nvram (old 128kb config partition on netgear wgt634u) */
+ bcm947xx_parts[3].offset = bcm947xx_parts[0].size;
+ bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize);
+ }
+
+ /* linux (kernel and rootfs) */
+ if (cfe_size != 384 * 1024) {
+ bcm947xx_parts[1].offset = bcm947xx_parts[0].size;
+ bcm947xx_parts[1].size = bcm947xx_parts[3].offset -
+ bcm947xx_parts[1].offset;
+ } else {
+ /* do not count the elf loader, which is on one block */
+ bcm947xx_parts[1].offset = bcm947xx_parts[0].size +
+ bcm947xx_parts[3].size + mtd->erasesize;
+ bcm947xx_parts[1].size = size -
+ bcm947xx_parts[0].size -
+ (2*bcm947xx_parts[3].size) -
+ mtd->erasesize;
+ }
+
+ /* find and size rootfs */
+ if (find_root(mtd,size,&bcm947xx_parts[2])==0) {
+ /* entirely jffs2 */
+ bcm947xx_parts[4].name = NULL;
+ bcm947xx_parts[2].size = size - bcm947xx_parts[2].offset -
+ bcm947xx_parts[3].size;
+ } else {
+ /* legacy setup */
+ /* calculate leftover flash, and assign it to the jffs2 partition */
+ if (cfe_size != 384 * 1024) {
+ bcm947xx_parts[4].offset = bcm947xx_parts[2].offset +
+ bcm947xx_parts[2].size;
+ if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) {
+ bcm947xx_parts[4].offset += mtd->erasesize -
+ (bcm947xx_parts[4].offset % mtd->erasesize);
+ }
+ bcm947xx_parts[4].size = bcm947xx_parts[3].offset -
+ bcm947xx_parts[4].offset;
+ } else {
+ bcm947xx_parts[4].offset = bcm947xx_parts[2].offset +
+ bcm947xx_parts[2].size;
+ if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) {
+ bcm947xx_parts[4].offset += mtd->erasesize -
+ (bcm947xx_parts[4].offset % mtd->erasesize);
+ }
+ bcm947xx_parts[4].size = size - bcm947xx_parts[3].size -
+ bcm947xx_parts[4].offset;
+ }
+ }
+
+ return bcm947xx_parts;
+}
+#endif
+
+int __init init_bcm947xx_map(void)
+{
+ struct ssb_mipscore *mcore = &ssb.mipscore;
+ size_t size;
+ int ret = 0;
+#ifdef CONFIG_MTD_PARTITIONS
+ struct mtd_partition *parts;
+ int i;
+#endif
+ u32 window = mcore->flash_window;
+ u32 window_size = mcore->flash_window_size;
+
+ printk("flash init: 0x%08x 0x%08x\n", window, window_size);
+ bcm947xx_map.virt = ioremap(window, window_size);
+
+ if (!bcm947xx_map.virt) {
+ printk("Failed to ioremap\n");
+ return -EIO;
+ }
+ simple_map_init(&bcm947xx_map);
+
+ bcm947xx_map.copy_from = bcm947xx_map_copy_from;
+
+ if (!(bcm947xx_mtd = do_map_probe("cfi_probe", &bcm947xx_map))) {
+ printk("Failed to do_map_probe\n");
+ iounmap((void *)bcm947xx_map.virt);
+ return -ENXIO;
+ }
+
+ bcm947xx_mtd->owner = THIS_MODULE;
+
+ size = bcm947xx_mtd->size;
+
+ printk(KERN_NOTICE "Flash device: 0x%x at 0x%x\n", size, WINDOW_ADDR);
+
+#ifdef CONFIG_MTD_PARTITIONS
+ parts = init_mtd_partitions(bcm947xx_mtd, size);
+ for (i = 0; parts[i].name; i++);
+ ret = add_mtd_partitions(bcm947xx_mtd, parts, i);
+ if (ret) {
+ printk(KERN_ERR "Flash: add_mtd_partitions failed\n");
+ goto fail;
+ }
+#endif
+ return 0;
+
+ fail:
+ if (bcm947xx_mtd)
+ map_destroy(bcm947xx_mtd);
+ if (bcm947xx_map.virt)
+ iounmap((void *)bcm947xx_map.virt);
+ bcm947xx_map.virt = 0;
+ return ret;
+}
+
+void __exit cleanup_bcm947xx_map(void)
+{
+#ifdef CONFIG_MTD_PARTITIONS
+ del_mtd_partitions(bcm947xx_mtd);
+#endif
+ map_destroy(bcm947xx_mtd);
+ iounmap((void *)bcm947xx_map.virt);
+}
+
+module_init(init_bcm947xx_map);
+module_exit(cleanup_bcm947xx_map);
diff -urN linux.old/drivers/mtd/maps/Kconfig linux.dev/drivers/mtd/maps/Kconfig
--- linux.old/drivers/mtd/maps/Kconfig 2006-12-11 20:32:53.000000000 +0100
+++ linux.dev/drivers/mtd/maps/Kconfig 2007-01-03 02:26:02.000000000 +0100

View File

@ -0,0 +1,11 @@
diff -urN linux-2.6.19.ref/lib/kobject_uevent.c linux-2.6.19/lib/kobject_uevent.c
--- linux-2.6.19.ref/lib/kobject_uevent.c 2006-11-29 22:57:37.000000000 +0100
+++ linux-2.6.19/lib/kobject_uevent.c 2006-12-04 21:33:48.000000000 +0100
@@ -29,6 +29,7 @@
u64 uevent_seqnum;
char uevent_helper[UEVENT_HELPER_PATH_LEN] = "/sbin/hotplug";
static DEFINE_SPINLOCK(sequence_lock);
+EXPORT_SYMBOL(uevent_helper);
#if defined(CONFIG_NET)
static struct sock *uevent_sock;
#endif