1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-24 04:26:16 +02:00

remove some more obsolete files

git-svn-id: svn://svn.openwrt.org/openwrt/trunk@16276 3c298f89-4303-0410-b956-a3cf2f4a3e73
This commit is contained in:
nbd 2009-06-01 18:20:09 +00:00
parent 9f545e245b
commit b1b0b6966c
29 changed files with 0 additions and 7767 deletions

View File

@ -1,201 +0,0 @@
/*
* character device wrapper for generic gpio layer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA02111-1307USA
*
* Feedback, Bugs... blogic@openwrt.org
*
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/atomic.h>
#include <linux/init.h>
#include <linux/genhd.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/gpio_dev.h>
#define DRVNAME "gpiodev"
#define DEVNAME "gpio"
static int dev_major;
static unsigned int gpio_access_mask;
static struct class *gpiodev_class;
/* Counter is 1, if the device is not opened and zero (or less) if opened. */
static atomic_t gpio_open_cnt = ATOMIC_INIT(1);
static int
gpio_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg)
{
int retval = 0;
if (((1 << arg) & gpio_access_mask) != (1 << arg))
{
retval = -EINVAL;
goto out;
}
switch (cmd)
{
case GPIO_GET:
retval = gpio_get_value(arg);
break;
case GPIO_SET:
gpio_set_value(arg, 1);
break;
case GPIO_CLEAR:
gpio_set_value(arg, 0);
break;
case GPIO_DIR_IN:
gpio_direction_input(arg);
break;
case GPIO_DIR_OUT:
gpio_direction_output(arg, 0);
break;
default:
retval = -EINVAL;
break;
}
out:
return retval;
}
static int
gpio_open(struct inode *inode, struct file *file)
{
int result = 0;
unsigned int dev_minor = MINOR(inode->i_rdev);
if (dev_minor != 0)
{
printk(KERN_ERR DRVNAME ": trying to access unknown minor device -> %d\n", dev_minor);
result = -ENODEV;
goto out;
}
/* FIXME: We should really allow multiple applications to open the device
* at the same time, as long as the apps access different IO pins.
* The generic gpio-registration functions can be used for that.
* Two new IOCTLs have to be introduced for that. Need to check userspace
* compatibility first. --mb */
if (!atomic_dec_and_test(&gpio_open_cnt)) {
atomic_inc(&gpio_open_cnt);
printk(KERN_ERR DRVNAME ": Device with minor ID %d already in use\n", dev_minor);
result = -EBUSY;
goto out;
}
out:
return result;
}
static int
gpio_close(struct inode * inode, struct file * file)
{
smp_mb__before_atomic_inc();
atomic_inc(&gpio_open_cnt);
return 0;
}
struct file_operations gpio_fops = {
ioctl: gpio_ioctl,
open: gpio_open,
release: gpio_close
};
static int
gpio_probe(struct platform_device *dev)
{
int result = 0;
dev_major = register_chrdev(0, DEVNAME, &gpio_fops);
if (!dev_major)
{
printk(KERN_ERR DRVNAME ": Error whilst opening %s \n", DEVNAME);
result = -ENODEV;
goto out;
}
gpiodev_class = class_create(THIS_MODULE, DRVNAME);
class_device_create(gpiodev_class, NULL, MKDEV(dev_major, 0), NULL, DEVNAME);
printk(KERN_INFO DRVNAME ": gpio device registered with major %d\n", dev_major);
if (dev->num_resources != 1)
{
printk(KERN_ERR DRVNAME ": device may only have 1 resource\n");
result = -ENODEV;
goto out;
}
gpio_access_mask = dev->resource[0].start;
printk(KERN_INFO DRVNAME ": gpio platform device registered with access mask %08X\n", gpio_access_mask);
out:
return result;
}
static int
gpio_remove(struct platform_device *dev)
{
unregister_chrdev(dev_major, DEVNAME);
return 0;
}
static struct
platform_driver gpio_driver = {
.probe = gpio_probe,
.remove = gpio_remove,
.driver = {
.name = "GPIODEV",
.owner = THIS_MODULE,
},
};
static int __init
gpio_mod_init(void)
{
int ret = platform_driver_register(&gpio_driver);
if (ret)
printk(KERN_INFO DRVNAME ": Error registering platfom driver!");
return ret;
}
static void __exit
gpio_mod_exit(void)
{
platform_driver_unregister(&gpio_driver);
}
module_init (gpio_mod_init);
module_exit (gpio_mod_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin / OpenWrt");
MODULE_DESCRIPTION("Character device for for generic gpio api");

View File

@ -1,209 +0,0 @@
/*
* Driver for buttons on GPIO lines not capable of generating interrupts
*
* Copyright (C) 2007,2008 Gabor Juhos <juhosg at openwrt.org>
*
* This file was based on: /drivers/input/misc/cobalt_btns.c
* Copyright (C) 2007 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
*
* also was based on: /drivers/input/keyboard/gpio_keys.c
* Copyright 2005 Phil Blundell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input-polldev.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/gpio_buttons.h>
#include <asm/gpio.h>
#define DRV_NAME "gpio-buttons"
#define DRV_VERSION "0.1.1"
#define PFX DRV_NAME ": "
struct gpio_buttons_dev {
struct input_polled_dev *poll_dev;
struct gpio_buttons_platform_data *pdata;
};
static void gpio_buttons_poll(struct input_polled_dev *dev)
{
struct gpio_buttons_dev *bdev = dev->private;
struct gpio_buttons_platform_data *pdata = bdev->pdata;
struct input_dev *input = dev->input;
int i;
for (i = 0; i < bdev->pdata->nbuttons; i++) {
struct gpio_button *button = &pdata->buttons[i];
unsigned int type = button->type ?: EV_KEY;
int state;
state = gpio_get_value(button->gpio) ? 1 : 0;
state ^= button->active_low;
if (state) {
button->count++;
} else {
if (button->count >= button->threshold) {
input_event(input, type, button->code, 1);
input_sync(input);
}
button->count = 0;
}
if (button->count == button->threshold) {
input_event(input, type, button->code, 0);
input_sync(input);
}
}
}
static int __devinit gpio_buttons_probe(struct platform_device *pdev)
{
struct gpio_buttons_platform_data *pdata = pdev->dev.platform_data;
struct gpio_buttons_dev *bdev;
struct input_polled_dev *poll_dev;
struct input_dev *input;
int error, i;
if (!pdata)
return -ENXIO;
bdev = kzalloc(sizeof(*bdev), GFP_KERNEL);
if (!bdev) {
printk(KERN_ERR DRV_NAME "no memory for device\n");
return -ENOMEM;
}
poll_dev = input_allocate_polled_device();
if (!poll_dev) {
printk(KERN_ERR DRV_NAME "no memory for polled device\n");
error = -ENOMEM;
goto err_free_bdev;
}
poll_dev->private = bdev;
poll_dev->poll = gpio_buttons_poll;
poll_dev->poll_interval = pdata->poll_interval;
input = poll_dev->input;
input->evbit[0] = BIT(EV_KEY);
input->name = pdev->name;
input->phys = "gpio-buttons/input0";
input->dev.parent = &pdev->dev;
input->id.bustype = BUS_HOST;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = 0x0100;
for (i = 0; i < pdata->nbuttons; i++) {
struct gpio_button *button = &pdata->buttons[i];
unsigned int gpio = button->gpio;
unsigned int type = button->type ?: EV_KEY;
error = gpio_request(gpio, button->desc ?
button->desc : DRV_NAME);
if (error) {
printk(KERN_ERR PFX "unable to claim gpio %u, "
"error %d\n", gpio, error);
goto err_free_gpio;
}
error = gpio_direction_input(gpio);
if (error) {
printk(KERN_ERR PFX "unable to set direction on "
"gpio %u, error %d\n", gpio, error);
goto err_free_gpio;
}
input_set_capability(input, type, button->code);
button->count = 0;
}
bdev->poll_dev = poll_dev;
bdev->pdata = pdata;
platform_set_drvdata(pdev, bdev);
error = input_register_polled_device(poll_dev);
if (error) {
printk(KERN_ERR PFX "unable to register polled device, "
"error %d\n", error);
goto err_free_gpio;
}
return 0;
err_free_gpio:
for (i = i - 1; i >= 0; i--)
gpio_free(pdata->buttons[i].gpio);
input_free_polled_device(poll_dev);
err_free_bdev:
kfree(bdev);
platform_set_drvdata(pdev, NULL);
return error;
}
static int __devexit gpio_buttons_remove(struct platform_device *pdev)
{
struct gpio_buttons_dev *bdev = platform_get_drvdata(pdev);
struct gpio_buttons_platform_data *pdata = bdev->pdata;
int i;
input_unregister_polled_device(bdev->poll_dev);
for (i = 0; i < pdata->nbuttons; i++)
gpio_free(pdata->buttons[i].gpio);
input_free_polled_device(bdev->poll_dev);
kfree(bdev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver gpio_buttons_driver = {
.probe = gpio_buttons_probe,
.remove = __devexit_p(gpio_buttons_remove),
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init gpio_buttons_init(void)
{
printk(KERN_INFO DRV_NAME " driver version " DRV_VERSION "\n");
return platform_driver_register(&gpio_buttons_driver);
}
static void __exit gpio_buttons_exit(void)
{
platform_driver_unregister(&gpio_buttons_driver);
}
module_init(gpio_buttons_init);
module_exit(gpio_buttons_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Gabor Juhos <juhosg at openwrt.org>");
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Polled buttons driver for CPU GPIOs");

View File

@ -1,172 +0,0 @@
/*
* LEDs driver for PCEngines ALIX 2/3 series
*
* Copyright (C) 2007 Petr Liebman
*
* Based on leds-wrap.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/leds.h>
#include <linux/err.h>
#include <asm/io.h>
#define DRVNAME "alix-led"
#define ALIX_LED1_PORT (0x6100)
#define ALIX_LED1_ON (1<<22)
#define ALIX_LED1_OFF (1<<6)
#define ALIX_LED2_PORT (0x6180)
#define ALIX_LED2_ON (1<<25)
#define ALIX_LED2_OFF (1<<9)
#define ALIX_LED3_PORT (0x6180)
#define ALIX_LED3_ON (1<<27)
#define ALIX_LED3_OFF (1<<11)
static struct platform_device *pdev;
static void alix_led_set_1(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED1_ON, ALIX_LED1_PORT);
else
outl(ALIX_LED1_OFF, ALIX_LED1_PORT);
}
static void alix_led_set_2(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED2_ON, ALIX_LED2_PORT);
else
outl(ALIX_LED2_OFF, ALIX_LED2_PORT);
}
static void alix_led_set_3(struct led_classdev *led_cdev,
enum led_brightness value)
{
if (value)
outl(ALIX_LED3_ON, ALIX_LED3_PORT);
else
outl(ALIX_LED3_OFF, ALIX_LED3_PORT);
}
static struct led_classdev alix_led_1 = {
.name = "alix:1",
.brightness_set = alix_led_set_1,
};
static struct led_classdev alix_led_2 = {
.name = "alix:2",
.brightness_set = alix_led_set_2,
};
static struct led_classdev alix_led_3 = {
.name = "alix:3",
.brightness_set = alix_led_set_3,
};
#ifdef CONFIG_PM
static int alix_led_suspend(struct platform_device *dev,
pm_message_t state)
{
led_classdev_suspend(&alix_led_1);
led_classdev_suspend(&alix_led_2);
led_classdev_suspend(&alix_led_3);
return 0;
}
static int alix_led_resume(struct platform_device *dev)
{
led_classdev_resume(&alix_led_1);
led_classdev_resume(&alix_led_2);
led_classdev_resume(&alix_led_3);
return 0;
}
#else
#define alix_led_suspend NULL
#define alix_led_resume NULL
#endif
static int alix_led_probe(struct platform_device *pdev)
{
int ret;
ret = led_classdev_register(&pdev->dev, &alix_led_1);
if (ret >= 0)
{
ret = led_classdev_register(&pdev->dev, &alix_led_2);
if (ret >= 0)
{
ret = led_classdev_register(&pdev->dev, &alix_led_3);
if (ret < 0)
led_classdev_unregister(&alix_led_2);
}
if (ret < 0)
led_classdev_unregister(&alix_led_1);
}
return ret;
}
static int alix_led_remove(struct platform_device *pdev)
{
led_classdev_unregister(&alix_led_1);
led_classdev_unregister(&alix_led_2);
led_classdev_unregister(&alix_led_3);
return 0;
}
static struct platform_driver alix_led_driver = {
.probe = alix_led_probe,
.remove = alix_led_remove,
.suspend = alix_led_suspend,
.resume = alix_led_resume,
.driver = {
.name = DRVNAME,
.owner = THIS_MODULE,
},
};
static int __init alix_led_init(void)
{
int ret;
ret = platform_driver_register(&alix_led_driver);
if (ret < 0)
goto out;
pdev = platform_device_register_simple(DRVNAME, -1, NULL, 0);
if (IS_ERR(pdev)) {
ret = PTR_ERR(pdev);
platform_driver_unregister(&alix_led_driver);
goto out;
}
out:
return ret;
}
static void __exit alix_led_exit(void)
{
platform_device_unregister(pdev);
platform_driver_unregister(&alix_led_driver);
}
module_init(alix_led_init);
module_exit(alix_led_exit);
MODULE_AUTHOR("Petr Liebman");
MODULE_DESCRIPTION("PCEngines ALIX LED driver");
MODULE_LICENSE("GPL");

View File

@ -1,45 +0,0 @@
/*
* LED Kernel Default ON Trigger
*
* Copyright 2008 Nick Forbes <nick.forbes@incepta.com>
*
* Based on Richard Purdie's ledtrig-timer.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/leds.h>
#include "leds.h"
static void defon_trig_activate(struct led_classdev *led_cdev)
{
led_set_brightness(led_cdev, LED_FULL);
}
static struct led_trigger defon_led_trigger = {
.name = "default-on",
.activate = defon_trig_activate,
};
static int __init defon_trig_init(void)
{
return led_trigger_register(&defon_led_trigger);
}
static void __exit defon_trig_exit(void)
{
led_trigger_unregister(&defon_led_trigger);
}
module_init(defon_trig_init);
module_exit(defon_trig_exit);
MODULE_AUTHOR("Nick Forbes <nick.forbes@incepta.com>");
MODULE_DESCRIPTION("Default-ON LED trigger");
MODULE_LICENSE("GPL");

View File

@ -1,365 +0,0 @@
/*
* LED Morse Trigger
*
* Copyright (C) 2007 Gabor Juhos <juhosg at openwrt.org>
*
* This file was based on: drivers/led/ledtrig-timer.c
* Copyright 2005-2006 Openedhand Ltd.
* Author: Richard Purdie <rpurdie@openedhand.com>
*
* also based on the patch '[PATCH] 2.5.59 morse code panics' posted
* in the LKML by Tomas Szepe at Thu, 30 Jan 2003
* Copyright (C) 2002 Andrew Rodland <arodland@noln.com>
* Copyright (C) 2003 Tomas Szepe <szepe@pinerecords.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/leds.h>
#include "leds.h"
#define MORSE_DELAY_BASE (HZ/2)
#define MORSE_STATE_BLINK_START 0
#define MORSE_STATE_BLINK_STOP 1
#define MORSE_DIT_LEN 1
#define MORSE_DAH_LEN 3
#define MORSE_SPACE_LEN 7
struct morse_trig_data {
unsigned long delay;
char *msg;
unsigned char morse;
unsigned char state;
char *msgpos;
struct timer_list timer;
};
const unsigned char morsetable[] = {
0122, 0, 0310, 0, 0, 0163, /* "#$%&' */
055, 0155, 0, 0, 0163, 0141, 0152, 0051, /* ()*+,-./ */
077, 076, 074, 070, 060, 040, 041, 043, 047, 057, /* 0-9 */
0107, 0125, 0, 0061, 0, 0114, 0, /* :;<=>?@ */
006, 021, 025, 011, 002, 024, 013, 020, 004, /* A-I */
036, 015, 022, 007, 005, 017, 026, 033, 012, /* J-R */
010, 003, 014, 030, 016, 031, 035, 023, /* S-Z */
0, 0, 0, 0, 0154 /* [\]^_ */
};
static inline unsigned char tomorse(char c) {
if (c >= 'a' && c <= 'z')
c = c - 'a' + 'A';
if (c >= '"' && c <= '_') {
return morsetable[c - '"'];
} else
return 0;
}
static inline unsigned long dit_len(struct morse_trig_data *morse_data)
{
return MORSE_DIT_LEN*morse_data->delay;
}
static inline unsigned long dah_len(struct morse_trig_data *morse_data)
{
return MORSE_DAH_LEN*morse_data->delay;
}
static inline unsigned long space_len(struct morse_trig_data *morse_data)
{
return MORSE_SPACE_LEN*morse_data->delay;
}
static void morse_timer_function(unsigned long data)
{
struct led_classdev *led_cdev = (struct led_classdev *)data;
struct morse_trig_data *morse_data = led_cdev->trigger_data;
unsigned long brightness = LED_OFF;
unsigned long delay = 0;
if (!morse_data->msg)
goto set_led;
switch (morse_data->state) {
case MORSE_STATE_BLINK_START:
/* Starting a new blink. We have a valid code in morse. */
delay = (morse_data->morse & 001) ? dah_len(morse_data):
dit_len(morse_data);
brightness = LED_FULL;
morse_data->state = MORSE_STATE_BLINK_STOP;
morse_data->morse >>= 1;
break;
case MORSE_STATE_BLINK_STOP:
/* Coming off of a blink. */
morse_data->state = MORSE_STATE_BLINK_START;
if (morse_data->morse > 1) {
/* Not done yet, just a one-dit pause. */
delay = dit_len(morse_data);
break;
}
/* Get a new char, figure out how much space. */
/* First time through */
if (!morse_data->msgpos)
morse_data->msgpos = (char *)morse_data->msg;
if (!*morse_data->msgpos) {
/* Repeating */
morse_data->msgpos = (char *)morse_data->msg;
delay = space_len(morse_data);
} else {
/* Inter-letter space */
delay = dah_len(morse_data);
}
if (!(morse_data->morse = tomorse(*morse_data->msgpos))) {
delay = space_len(morse_data);
/* And get us back here */
morse_data->state = MORSE_STATE_BLINK_STOP;
}
morse_data->msgpos++;
break;
}
mod_timer(&morse_data->timer, jiffies + msecs_to_jiffies(delay));
set_led:
led_set_brightness(led_cdev, brightness);
}
static ssize_t _morse_delay_show(struct led_classdev *led_cdev, char *buf)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
sprintf(buf, "%lu\n", morse_data->delay);
return strlen(buf) + 1;
}
static ssize_t _morse_delay_store(struct led_classdev *led_cdev,
const char *buf, size_t size)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
char *after;
unsigned long state = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
int ret = -EINVAL;
if (*after && isspace(*after))
count++;
if (count == size) {
morse_data->delay = state;
mod_timer(&morse_data->timer, jiffies + 1);
ret = count;
}
return ret;
}
static ssize_t _morse_msg_show(struct led_classdev *led_cdev, char *buf)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
if (!morse_data->msg)
sprintf(buf, "<none>\n");
else
sprintf(buf, "%s\n", morse_data->msg);
return strlen(buf) + 1;
}
static ssize_t _morse_msg_store(struct led_classdev *led_cdev,
const char *buf, size_t size)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
char *m;
m = kmalloc(size, GFP_KERNEL);
if (!m)
return -ENOMEM;
memcpy(m,buf,size);
m[size]='\0';
if (morse_data->msg)
kfree(morse_data->msg);
morse_data->msg = m;
morse_data->msgpos = NULL;
morse_data->state = MORSE_STATE_BLINK_STOP;
mod_timer(&morse_data->timer, jiffies + 1);
return size;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
static ssize_t morse_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_delay_show(led_cdev, buf);
}
static ssize_t morse_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_delay_store(led_cdev, buf, size);
}
static ssize_t morse_msg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_msg_show(led_cdev, buf);
}
static ssize_t morse_msg_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
return _morse_msg_store(led_cdev, buf, size);
}
static DEVICE_ATTR(delay, 0644, morse_delay_show, morse_delay_store);
static DEVICE_ATTR(message, 0644, morse_msg_show, morse_msg_store);
#define led_device_create_file(leddev, attr) \
device_create_file(leddev->dev, &dev_attr_ ## attr)
#define led_device_remove_file(leddev, attr) \
device_remove_file(leddev->dev, &dev_attr_ ## attr)
#else
static ssize_t morse_delay_show(struct class_device *dev, char *buf)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_delay_show(led_cdev, buf);
}
static ssize_t morse_delay_store(struct class_device *dev, const char *buf,
size_t size)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_delay_store(led_cdev, buf, size);
}
static ssize_t morse_msg_show(struct class_device *dev, char *buf)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_msg_show(led_cdev, buf);
}
static ssize_t morse_msg_store(struct class_device *dev, const char *buf,
size_t size)
{
struct led_classdev *led_cdev = class_get_devdata(dev);
return _morse_msg_store(led_cdev, buf, size);
}
static CLASS_DEVICE_ATTR(delay, 0644, morse_delay_show, morse_delay_store);
static CLASS_DEVICE_ATTR(message, 0644, morse_msg_show, morse_msg_store);
#define led_device_create_file(leddev, attr) \
class_device_create_file(leddev->class_dev, &class_device_attr_ ## attr)
#define led_device_remove_file(leddev, attr) \
class_device_remove_file(leddev->class_dev, &class_device_attr_ ## attr)
#endif
static void morse_trig_activate(struct led_classdev *led_cdev)
{
struct morse_trig_data *morse_data;
int rc;
morse_data = kzalloc(sizeof(*morse_data), GFP_KERNEL);
if (!morse_data)
return;
morse_data->delay = MORSE_DELAY_BASE;
init_timer(&morse_data->timer);
morse_data->timer.function = morse_timer_function;
morse_data->timer.data = (unsigned long)led_cdev;
rc = led_device_create_file(led_cdev, delay);
if (rc) goto err;
rc = led_device_create_file(led_cdev, message);
if (rc) goto err_delay;
led_cdev->trigger_data = morse_data;
return;
err_delay:
led_device_remove_file(led_cdev, delay);
err:
kfree(morse_data);
}
static void morse_trig_deactivate(struct led_classdev *led_cdev)
{
struct morse_trig_data *morse_data = led_cdev->trigger_data;
if (!morse_data)
return;
led_device_remove_file(led_cdev, message);
led_device_remove_file(led_cdev, delay);
del_timer_sync(&morse_data->timer);
if (morse_data->msg)
kfree(morse_data->msg);
kfree(morse_data);
}
static struct led_trigger morse_led_trigger = {
.name = "morse",
.activate = morse_trig_activate,
.deactivate = morse_trig_deactivate,
};
static int __init morse_trig_init(void)
{
return led_trigger_register(&morse_led_trigger);
}
static void __exit morse_trig_exit(void)
{
led_trigger_unregister(&morse_led_trigger);
}
module_init(morse_trig_init);
module_exit(morse_trig_exit);
MODULE_AUTHOR("Gabor Juhos <juhosg at openwrt.org>");
MODULE_DESCRIPTION("Morse LED trigger");
MODULE_LICENSE("GPL");

View File

@ -1,451 +0,0 @@
/*
* LED Kernel Netdev Trigger
*
* Toggles the LED to reflect the link and traffic state of a named net device
*
* Copyright 2007 Oliver Jowett <oliver@opencloud.com>
*
* Derived from ledtrig-timer.c which is:
* Copyright 2005-2006 Openedhand Ltd.
* Author: Richard Purdie <rpurdie@openedhand.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/ctype.h>
#include <linux/leds.h>
#include <linux/version.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
#include <net/net_namespace.h>
#endif
#include "leds.h"
/*
* Configurable sysfs attributes:
*
* device_name - network device name to monitor
*
* interval - duration of LED blink, in milliseconds
*
* mode - either "none" (LED is off) or a space separated list of one or more of:
* link: LED's normal state reflects whether the link is up (has carrier) or not
* tx: LED blinks on transmitted data
* rx: LED blinks on receive data
*
* Some suggestions:
*
* Simple link status LED:
* $ echo netdev >someled/trigger
* $ echo eth0 >someled/device_name
* $ echo link >someled/mode
*
* Ethernet-style link/activity LED:
* $ echo netdev >someled/trigger
* $ echo eth0 >someled/device_name
* $ echo "link tx rx" >someled/mode
*
* Modem-style tx/rx LEDs:
* $ echo netdev >led1/trigger
* $ echo ppp0 >led1/device_name
* $ echo tx >led1/mode
* $ echo netdev >led2/trigger
* $ echo ppp0 >led2/device_name
* $ echo rx >led2/mode
*
*/
#define MODE_LINK 1
#define MODE_TX 2
#define MODE_RX 4
struct led_netdev_data {
rwlock_t lock;
struct timer_list timer;
struct notifier_block notifier;
struct led_classdev *led_cdev;
struct net_device *net_dev;
char device_name[IFNAMSIZ];
unsigned interval;
unsigned mode;
unsigned link_up;
unsigned last_activity;
};
static void set_baseline_state(struct led_netdev_data *trigger_data)
{
if ((trigger_data->mode & MODE_LINK) != 0 && trigger_data->link_up)
led_set_brightness(trigger_data->led_cdev, LED_FULL);
else
led_set_brightness(trigger_data->led_cdev, LED_OFF);
if ((trigger_data->mode & (MODE_TX | MODE_RX)) != 0 && trigger_data->link_up)
mod_timer(&trigger_data->timer, jiffies + trigger_data->interval);
else
del_timer(&trigger_data->timer);
}
static ssize_t led_device_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
sprintf(buf, "%s\n", trigger_data->device_name);
read_unlock(&trigger_data->lock);
return strlen(buf) + 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
extern struct net init_net;
#endif
static ssize_t led_device_name_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
if (size < 0 || size >= IFNAMSIZ)
return -EINVAL;
write_lock(&trigger_data->lock);
strcpy(trigger_data->device_name, buf);
if (size > 0 && trigger_data->device_name[size-1] == '\n')
trigger_data->device_name[size-1] = 0;
if (trigger_data->device_name[0] != 0) {
/* check for existing device to update from */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,26)
trigger_data->net_dev = dev_get_by_name(&init_net, trigger_data->device_name);
#else
trigger_data->net_dev = dev_get_by_name(trigger_data->device_name);
#endif
if (trigger_data->net_dev != NULL)
trigger_data->link_up = (dev_get_flags(trigger_data->net_dev) & IFF_LOWER_UP) != 0;
set_baseline_state(trigger_data); /* updates LEDs, may start timers */
}
write_unlock(&trigger_data->lock);
return size;
}
static DEVICE_ATTR(device_name, 0644, led_device_name_show, led_device_name_store);
static ssize_t led_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
if (trigger_data->mode == 0) {
strcpy(buf, "none\n");
} else {
if (trigger_data->mode & MODE_LINK)
strcat(buf, "link ");
if (trigger_data->mode & MODE_TX)
strcat(buf, "tx ");
if (trigger_data->mode & MODE_RX)
strcat(buf, "rx ");
strcat(buf, "\n");
}
read_unlock(&trigger_data->lock);
return strlen(buf)+1;
}
static ssize_t led_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
char copybuf[1024];
int new_mode = -1;
char *p, *token;
/* take a copy since we don't want to trash the inbound buffer when using strsep */
strncpy(copybuf, buf, sizeof(copybuf));
copybuf[1023] = 0;
p = copybuf;
while ((token = strsep(&p, " \t\n")) != NULL) {
if (!*token)
continue;
if (new_mode == -1)
new_mode = 0;
if (!strcmp(token, "none"))
new_mode = 0;
else if (!strcmp(token, "tx"))
new_mode |= MODE_TX;
else if (!strcmp(token, "rx"))
new_mode |= MODE_RX;
else if (!strcmp(token, "link"))
new_mode |= MODE_LINK;
else
return -EINVAL;
}
if (new_mode == -1)
return -EINVAL;
write_lock(&trigger_data->lock);
trigger_data->mode = new_mode;
set_baseline_state(trigger_data);
write_unlock(&trigger_data->lock);
return size;
}
static DEVICE_ATTR(mode, 0644, led_mode_show, led_mode_store);
static ssize_t led_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
read_lock(&trigger_data->lock);
sprintf(buf, "%u\n", jiffies_to_msecs(trigger_data->interval));
read_unlock(&trigger_data->lock);
return strlen(buf) + 1;
}
static ssize_t led_interval_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
int ret = -EINVAL;
char *after;
unsigned long value = simple_strtoul(buf, &after, 10);
size_t count = after - buf;
if (*after && isspace(*after))
count++;
/* impose some basic bounds on the timer interval */
if (count == size && value >= 5 && value <= 10000) {
write_lock(&trigger_data->lock);
trigger_data->interval = msecs_to_jiffies(value);
set_baseline_state(trigger_data); // resets timer
write_unlock(&trigger_data->lock);
ret = count;
}
return ret;
}
static DEVICE_ATTR(interval, 0644, led_interval_show, led_interval_store);
static int netdev_trig_notify(struct notifier_block *nb,
unsigned long evt,
void *dv)
{
struct net_device *dev = dv;
struct led_netdev_data *trigger_data = container_of(nb, struct led_netdev_data, notifier);
if (evt != NETDEV_UP && evt != NETDEV_DOWN && evt != NETDEV_CHANGE && evt != NETDEV_REGISTER && evt != NETDEV_UNREGISTER)
return NOTIFY_DONE;
write_lock(&trigger_data->lock);
if (strcmp(dev->name, trigger_data->device_name))
goto done;
if (evt == NETDEV_REGISTER) {
if (trigger_data->net_dev != NULL)
dev_put(trigger_data->net_dev);
dev_hold(dev);
trigger_data->net_dev = dev;
trigger_data->link_up = 0;
goto done;
}
if (evt == NETDEV_UNREGISTER && trigger_data->net_dev != NULL) {
dev_put(trigger_data->net_dev);
trigger_data->net_dev = NULL;
goto done;
}
/* UP / DOWN / CHANGE */
trigger_data->link_up = (evt != NETDEV_DOWN && netif_carrier_ok(dev));
set_baseline_state(trigger_data);
done:
write_unlock(&trigger_data->lock);
return NOTIFY_DONE;
}
/* here's the real work! */
static void netdev_trig_timer(unsigned long arg)
{
struct led_netdev_data *trigger_data = (struct led_netdev_data *)arg;
struct net_device_stats *dev_stats;
unsigned new_activity;
write_lock(&trigger_data->lock);
if (!trigger_data->link_up || !trigger_data->net_dev || (trigger_data->mode & (MODE_TX | MODE_RX)) == 0) {
/* we don't need to do timer work, just reflect link state. */
led_set_brightness(trigger_data->led_cdev, ((trigger_data->mode & MODE_LINK) != 0 && trigger_data->link_up) ? LED_FULL : LED_OFF);
goto no_restart;
}
dev_stats = trigger_data->net_dev->get_stats(trigger_data->net_dev);
new_activity =
((trigger_data->mode & MODE_TX) ? dev_stats->tx_packets : 0) +
((trigger_data->mode & MODE_RX) ? dev_stats->rx_packets : 0);
if (trigger_data->mode & MODE_LINK) {
/* base state is ON (link present) */
/* if there's no link, we don't get this far and the LED is off */
/* OFF -> ON always */
/* ON -> OFF on activity */
if (trigger_data->led_cdev->brightness == LED_OFF) {
led_set_brightness(trigger_data->led_cdev, LED_FULL);
} else if (trigger_data->last_activity != new_activity) {
led_set_brightness(trigger_data->led_cdev, LED_OFF);
}
} else {
/* base state is OFF */
/* ON -> OFF always */
/* OFF -> ON on activity */
if (trigger_data->led_cdev->brightness == LED_FULL) {
led_set_brightness(trigger_data->led_cdev, LED_OFF);
} else if (trigger_data->last_activity != new_activity) {
led_set_brightness(trigger_data->led_cdev, LED_FULL);
}
}
trigger_data->last_activity = new_activity;
mod_timer(&trigger_data->timer, jiffies + trigger_data->interval);
no_restart:
write_unlock(&trigger_data->lock);
}
static void netdev_trig_activate(struct led_classdev *led_cdev)
{
struct led_netdev_data *trigger_data;
int rc;
trigger_data = kzalloc(sizeof(struct led_netdev_data), GFP_KERNEL);
if (!trigger_data)
return;
rwlock_init(&trigger_data->lock);
trigger_data->notifier.notifier_call = netdev_trig_notify;
trigger_data->notifier.priority = 10;
setup_timer(&trigger_data->timer, netdev_trig_timer, (unsigned long) trigger_data);
trigger_data->led_cdev = led_cdev;
trigger_data->net_dev = NULL;
trigger_data->device_name[0] = 0;
trigger_data->mode = 0;
trigger_data->interval = msecs_to_jiffies(50);
trigger_data->link_up = 0;
trigger_data->last_activity = 0;
led_cdev->trigger_data = trigger_data;
rc = device_create_file(led_cdev->dev, &dev_attr_device_name);
if (rc)
goto err_out;
rc = device_create_file(led_cdev->dev, &dev_attr_mode);
if (rc)
goto err_out_device_name;
rc = device_create_file(led_cdev->dev, &dev_attr_interval);
if (rc)
goto err_out_mode;
register_netdevice_notifier(&trigger_data->notifier);
return;
err_out_mode:
device_remove_file(led_cdev->dev, &dev_attr_mode);
err_out_device_name:
device_remove_file(led_cdev->dev, &dev_attr_device_name);
err_out:
led_cdev->trigger_data = NULL;
kfree(trigger_data);
}
static void netdev_trig_deactivate(struct led_classdev *led_cdev)
{
struct led_netdev_data *trigger_data = led_cdev->trigger_data;
if (trigger_data) {
unregister_netdevice_notifier(&trigger_data->notifier);
device_remove_file(led_cdev->dev, &dev_attr_device_name);
device_remove_file(led_cdev->dev, &dev_attr_mode);
device_remove_file(led_cdev->dev, &dev_attr_interval);
write_lock(&trigger_data->lock);
if (trigger_data->net_dev) {
dev_put(trigger_data->net_dev);
trigger_data->net_dev = NULL;
}
write_unlock(&trigger_data->lock);
del_timer_sync(&trigger_data->timer);
kfree(trigger_data);
}
}
static struct led_trigger netdev_led_trigger = {
.name = "netdev",
.activate = netdev_trig_activate,
.deactivate = netdev_trig_deactivate,
};
static int __init netdev_trig_init(void)
{
return led_trigger_register(&netdev_led_trigger);
}
static void __exit netdev_trig_exit(void)
{
led_trigger_unregister(&netdev_led_trigger);
}
module_init(netdev_trig_init);
module_exit(netdev_trig_exit);
MODULE_AUTHOR("Oliver Jowett <oliver@opencloud.com>");
MODULE_DESCRIPTION("Netdev LED trigger");
MODULE_LICENSE("GPL");

View File

@ -1,242 +0,0 @@
/*
* Bitbanging SPI bus driver using GPIO API
*
* Copyright (c) 2008 Piotr Skamruk
* Copyright (c) 2008 Michael Buesch
*
* based on spi_s3c2410_gpio.c
* Copyright (c) 2006 Ben Dooks
* Copyright (c) 2006 Simtec Electronics
* and on i2c-gpio.c
* Copyright (C) 2007 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include "linux/spi/spi_gpio.h" //XXX
#include <asm/gpio.h>
struct spi_gpio {
struct spi_bitbang bitbang;
struct spi_gpio_platform_data *info;
struct platform_device *pdev;
struct spi_board_info bi;
};
static inline struct spi_gpio *spidev_to_sg(struct spi_device *dev)
{
return dev->controller_data;
}
static inline void setsck(struct spi_device *dev, int val)
{
struct spi_gpio *sp = spidev_to_sg(dev);
gpio_set_value(sp->info->pin_clk, val ? 1 : 0);
}
static inline void setmosi(struct spi_device *dev, int val )
{
struct spi_gpio *sp = spidev_to_sg(dev);
gpio_set_value(sp->info->pin_mosi, val ? 1 : 0);
}
static inline u32 getmiso(struct spi_device *dev)
{
struct spi_gpio *sp = spidev_to_sg(dev);
return gpio_get_value(sp->info->pin_miso) ? 1 : 0;
}
static inline void do_spidelay(struct spi_device *dev, unsigned nsecs)
{
struct spi_gpio *sp = spidev_to_sg(dev);
if (!sp->info->no_spi_delay)
ndelay(nsecs);
}
#define spidelay(nsecs) do { \
/* Steal the spi_device pointer from our caller. \
* The bitbang-API should probably get fixed here... */ \
do_spidelay(spi, nsecs); \
} while (0)
#define EXPAND_BITBANG_TXRX
#include <linux/spi/spi_bitbang.h>
static u32 spi_gpio_txrx_mode0(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha0(spi, nsecs, 0, word, bits);
}
static u32 spi_gpio_txrx_mode1(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha1(spi, nsecs, 0, word, bits);
}
static u32 spi_gpio_txrx_mode2(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha0(spi, nsecs, 1, word, bits);
}
static u32 spi_gpio_txrx_mode3(struct spi_device *spi,
unsigned nsecs, u32 word, u8 bits)
{
return bitbang_txrx_be_cpha1(spi, nsecs, 1, word, bits);
}
static void spi_gpio_chipselect(struct spi_device *dev, int on)
{
struct spi_gpio *sp = spidev_to_sg(dev);
if (sp->info->cs_activelow)
on = !on;
gpio_set_value(sp->info->pin_cs, on ? 1 : 0);
}
static int spi_gpio_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct spi_gpio_platform_data *pdata;
struct spi_gpio *sp;
struct spi_device *spidev;
int err;
pdata = pdev->dev.platform_data;
if (!pdata)
return -ENXIO;
err = -ENOMEM;
master = spi_alloc_master(&pdev->dev, sizeof(struct spi_gpio));
if (!master)
goto err_alloc_master;
sp = spi_master_get_devdata(master);
platform_set_drvdata(pdev, sp);
sp->info = pdata;
err = gpio_request(pdata->pin_clk, "spi_clock");
if (err)
goto err_request_clk;
err = gpio_request(pdata->pin_mosi, "spi_mosi");
if (err)
goto err_request_mosi;
err = gpio_request(pdata->pin_miso, "spi_miso");
if (err)
goto err_request_miso;
err = gpio_request(pdata->pin_cs, "spi_cs");
if (err)
goto err_request_cs;
sp->bitbang.master = spi_master_get(master);
sp->bitbang.master->bus_num = -1;
sp->bitbang.master->num_chipselect = 1;
sp->bitbang.chipselect = spi_gpio_chipselect;
sp->bitbang.txrx_word[SPI_MODE_0] = spi_gpio_txrx_mode0;
sp->bitbang.txrx_word[SPI_MODE_1] = spi_gpio_txrx_mode1;
sp->bitbang.txrx_word[SPI_MODE_2] = spi_gpio_txrx_mode2;
sp->bitbang.txrx_word[SPI_MODE_3] = spi_gpio_txrx_mode3;
gpio_direction_output(pdata->pin_clk, 0);
gpio_direction_output(pdata->pin_mosi, 0);
gpio_direction_output(pdata->pin_cs,
pdata->cs_activelow ? 1 : 0);
gpio_direction_input(pdata->pin_miso);
err = spi_bitbang_start(&sp->bitbang);
if (err)
goto err_no_bitbang;
err = pdata->boardinfo_setup(&sp->bi, master,
pdata->boardinfo_setup_data);
if (err)
goto err_bi_setup;
sp->bi.controller_data = sp;
spidev = spi_new_device(master, &sp->bi);
if (!spidev)
goto err_new_dev;
return 0;
err_new_dev:
err_bi_setup:
spi_bitbang_stop(&sp->bitbang);
err_no_bitbang:
spi_master_put(sp->bitbang.master);
gpio_free(pdata->pin_cs);
err_request_cs:
gpio_free(pdata->pin_miso);
err_request_miso:
gpio_free(pdata->pin_mosi);
err_request_mosi:
gpio_free(pdata->pin_clk);
err_request_clk:
kfree(master);
err_alloc_master:
return err;
}
static int __devexit spi_gpio_remove(struct platform_device *pdev)
{
struct spi_gpio *sp;
struct spi_gpio_platform_data *pdata;
pdata = pdev->dev.platform_data;
sp = platform_get_drvdata(pdev);
gpio_free(pdata->pin_clk);
gpio_free(pdata->pin_mosi);
gpio_free(pdata->pin_miso);
gpio_free(pdata->pin_cs);
spi_bitbang_stop(&sp->bitbang);
spi_master_put(sp->bitbang.master);
return 0;
}
static struct platform_driver spi_gpio_driver = {
.driver = {
.name = "spi-gpio",
.owner = THIS_MODULE,
},
.probe = spi_gpio_probe,
.remove = __devexit_p(spi_gpio_remove),
};
static int __init spi_gpio_init(void)
{
int err;
err = platform_driver_register(&spi_gpio_driver);
if (err)
printk(KERN_ERR "spi-gpio: register failed: %d\n", err);
return err;
}
module_init(spi_gpio_init);
static void __exit spi_gpio_exit(void)
{
platform_driver_unregister(&spi_gpio_driver);
}
module_exit(spi_gpio_exit);
MODULE_AUTHOR("Piot Skamruk <piotr.skamruk at gmail.com>");
MODULE_AUTHOR("Michael Buesch");
MODULE_DESCRIPTION("Platform independent GPIO bitbangling SPI driver");
MODULE_LICENSE("GPL v2");

View File

@ -1,117 +0,0 @@
menu "Sonics Silicon Backplane"
config SSB_POSSIBLE
bool
depends on HAS_IOMEM
default y
config SSB
tristate "Sonics Silicon Backplane support"
depends on SSB_POSSIBLE
help
Support for the Sonics Silicon Backplane bus.
You only need to enable this option, if you are
configuring a kernel for an embedded system with
this bus.
It will be auto-selected if needed in other
environments.
The module will be called ssb.
If unsure, say N.
config SSB_PCIHOST_POSSIBLE
bool
depends on SSB && (PCI = y || PCI = SSB)
default y
config SSB_PCIHOST
bool "Support for SSB on PCI-bus host"
depends on SSB_PCIHOST_POSSIBLE
default y
help
Support for a Sonics Silicon Backplane on top
of a PCI device.
If unsure, say Y
config SSB_PCMCIAHOST_POSSIBLE
bool
depends on SSB && (PCMCIA = y || PCMCIA = SSB) && EXPERIMENTAL
default y
config SSB_PCMCIAHOST
bool "Support for SSB on PCMCIA-bus host (EXPERIMENTAL)"
depends on SSB_PCMCIAHOST_POSSIBLE
help
Support for a Sonics Silicon Backplane on top
of a PCMCIA device.
If unsure, say N
config SSB_SILENT
bool "No SSB kernel messages"
depends on SSB && EMBEDDED
help
This option turns off all Sonics Silicon Backplane printks.
Note that you won't be able to identify problems, once
messages are turned off.
This might only be desired for production kernels on
embedded devices to reduce the kernel size.
Say N
config SSB_DEBUG
bool "SSB debugging"
depends on SSB && !SSB_SILENT
help
This turns on additional runtime checks and debugging
messages. Turn this on for SSB troubleshooting.
If unsure, say N
config SSB_SERIAL
bool
depends on SSB
# ChipCommon and ExtIf serial support routines.
config SSB_DRIVER_PCICORE_POSSIBLE
bool
depends on SSB_PCIHOST
default y
config SSB_DRIVER_PCICORE
bool "SSB PCI core driver"
depends on SSB_DRIVER_PCICORE_POSSIBLE
help
Driver for the Sonics Silicon Backplane attached
Broadcom PCI core.
If unsure, say Y
config SSB_PCICORE_HOSTMODE
bool "Hostmode support for SSB PCI core (EXPERIMENTAL)"
depends on SSB_DRIVER_PCICORE && SSB_DRIVER_MIPS && EXPERIMENTAL
help
PCIcore hostmode operation (external PCI bus).
config SSB_DRIVER_MIPS
bool "SSB Broadcom MIPS core driver (EXPERIMENTAL)"
depends on SSB && MIPS && EXPERIMENTAL
select SSB_SERIAL
help
Driver for the Sonics Silicon Backplane attached
Broadcom MIPS core.
If unsure, say N
config SSB_DRIVER_EXTIF
bool "SSB Broadcom EXTIF core driver (EXPERIMENTAL)"
depends on SSB_DRIVER_MIPS && EXPERIMENTAL
help
Driver for the Sonics Silicon Backplane attached
Broadcom EXTIF core.
If unsure, say N
endmenu

View File

@ -1,18 +0,0 @@
# core
ssb-y += main.o scan.o
# host support
ssb-$(CONFIG_SSB_PCIHOST) += pci.o pcihost_wrapper.o
ssb-$(CONFIG_SSB_PCMCIAHOST) += pcmcia.o
# built-in drivers
ssb-y += driver_chipcommon.o
ssb-$(CONFIG_SSB_DRIVER_MIPS) += driver_mipscore.o
ssb-$(CONFIG_SSB_DRIVER_EXTIF) += driver_extif.o
ssb-$(CONFIG_SSB_DRIVER_PCICORE) += driver_pcicore.o
# b43 pci-ssb-bridge driver
# Not strictly a part of SSB, but kept here for convenience
ssb-$(CONFIG_SSB_PCIHOST) += b43_pci_bridge.o
obj-$(CONFIG_SSB) += ssb.o

View File

@ -1,50 +0,0 @@
/*
* Broadcom 43xx PCI-SSB bridge module
*
* This technically is a separate PCI driver module, but
* because of its small size we include it in the SSB core
* instead of creating a standalone module.
*
* Copyright 2007 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/pci.h>
#include <linux/ssb/ssb.h>
#include "ssb_private.h"
static const struct pci_device_id b43_pci_bridge_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4301) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4307) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4311) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4312) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4318) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4319) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4320) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4321) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4325) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4328) },
{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4329) },
{ 0, },
};
MODULE_DEVICE_TABLE(pci, b43_pci_bridge_tbl);
static struct pci_driver b43_pci_bridge_driver = {
.name = "b43-pci-bridge",
.id_table = b43_pci_bridge_tbl,
};
int __init b43_pci_ssb_bridge_init(void)
{
return ssb_pcihost_register(&b43_pci_bridge_driver);
}
void __exit b43_pci_ssb_bridge_exit(void)
{
ssb_pcihost_unregister(&b43_pci_bridge_driver);
}

View File

@ -1,445 +0,0 @@
/*
* Sonics Silicon Backplane
* Broadcom ChipCommon core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include "ssb_private.h"
/* Clock sources */
enum ssb_clksrc {
/* PCI clock */
SSB_CHIPCO_CLKSRC_PCI,
/* Crystal slow clock oscillator */
SSB_CHIPCO_CLKSRC_XTALOS,
/* Low power oscillator */
SSB_CHIPCO_CLKSRC_LOPWROS,
};
static inline u32 chipco_read32(struct ssb_chipcommon *cc,
u16 offset)
{
return ssb_read32(cc->dev, offset);
}
static inline void chipco_write32(struct ssb_chipcommon *cc,
u16 offset,
u32 value)
{
ssb_write32(cc->dev, offset, value);
}
static inline void chipco_write32_masked(struct ssb_chipcommon *cc, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= chipco_read32(cc, offset) & ~mask;
chipco_write32(cc, offset, value);
}
void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode)
{
struct ssb_device *ccdev = cc->dev;
struct ssb_bus *bus;
u32 tmp;
if (!ccdev)
return;
bus = ccdev->bus;
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (ccdev->id.revision < 6)
return;
/* chipcommon cores rev10 are a whole new ball game */
if (ccdev->id.revision >= 10)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
switch (mode) {
case SSB_CLKMODE_SLOW:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_FAST:
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_DYNAMIC:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) != SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL)
tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL)
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0);
break;
default:
SSB_WARN_ON(1);
}
}
/* Get the Slow Clock Source */
static enum ssb_clksrc chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 uninitialized_var(tmp);
if (cc->dev->id.revision < 6) {
if (bus->bustype == SSB_BUSTYPE_SSB ||
bus->bustype == SSB_BUSTYPE_PCMCIA)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (bus->bustype == SSB_BUSTYPE_PCI) {
pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp);
if (tmp & 0x10)
return SSB_CHIPCO_CLKSRC_PCI;
return SSB_CHIPCO_CLKSRC_XTALOS;
}
}
if (cc->dev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= 0x7;
if (tmp == 0)
return SSB_CHIPCO_CLKSRC_LOPWROS;
if (tmp == 1)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (tmp == 2)
return SSB_CHIPCO_CLKSRC_PCI;
}
return SSB_CHIPCO_CLKSRC_XTALOS;
}
/* Get maximum or minimum (depending on get_max flag) slowclock frequency. */
static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max)
{
int uninitialized_var(limit);
enum ssb_clksrc clocksrc;
int divisor = 1;
u32 tmp;
clocksrc = chipco_pctl_get_slowclksrc(cc);
if (cc->dev->id.revision < 6) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_PCI:
divisor = 64;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
divisor = 32;
break;
default:
SSB_WARN_ON(1);
}
} else if (cc->dev->id.revision < 10) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
case SSB_CHIPCO_CLKSRC_PCI:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
break;
}
} else {
tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
}
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
if (get_max)
limit = 43000;
else
limit = 25000;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
if (get_max)
limit = 20200000;
else
limit = 19800000;
break;
case SSB_CHIPCO_CLKSRC_PCI:
if (get_max)
limit = 34000000;
else
limit = 25000000;
break;
}
limit /= divisor;
return limit;
}
static void chipco_powercontrol_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (bus->chip_id == 0x4321) {
if (bus->chip_rev == 0)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4);
else if (bus->chip_rev == 1)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4);
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
if (cc->dev->id.revision >= 10) {
/* Set Idle Power clock rate to 1Mhz */
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
0x0000FFFF) | 0x00040000);
} else {
int maxfreq;
maxfreq = chipco_pctl_clockfreqlimit(cc, 1);
chipco_write32(cc, SSB_CHIPCO_PLLONDELAY,
(maxfreq * 150 + 999999) / 1000000);
chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY,
(maxfreq * 15 + 999999) / 1000000);
}
}
static void calc_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
int minfreq;
unsigned int tmp;
u32 pll_on_delay;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
minfreq = chipco_pctl_clockfreqlimit(cc, 0);
pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY);
tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq;
SSB_WARN_ON(tmp & ~0xFFFF);
cc->fast_pwrup_delay = tmp;
}
void ssb_chipcommon_init(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return; /* We don't have a ChipCommon */
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
calc_fast_powerup_delay(cc);
}
void ssb_chipco_suspend(struct ssb_chipcommon *cc, pm_message_t state)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
}
void ssb_chipco_resume(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
}
/* Get the processor clock */
void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_2:
case SSB_PLLTYPE_4:
case SSB_PLLTYPE_6:
case SSB_PLLTYPE_7:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3:
/* 5350 uses m2 to control mips */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
break;
}
}
/* Get the bus clock */
void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
if (cc->dev->bus->chip_id != 0x5365) {
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
}
/* Fallthough */
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
}
}
void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns)
{
struct ssb_device *dev = cc->dev;
struct ssb_bus *bus = dev->bus;
u32 tmp;
/* set register for external IO to control LED. */
chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11);
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */
tmp |= DIV_ROUND_UP(240, ns); /* Waitcount-0 = 240ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */
tmp |= DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120nS */
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9))
chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp);
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9) ||
((bus->chip_id == 0x5350) && (bus->chip_rev == 0)))
chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp);
if (bus->chip_id == 0x5350) {
/* Enable EXTIF */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
}
}
/* Set chip watchdog reset timer to fire in 'ticks' backplane cycles */
void ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc, u32 ticks)
{
/* instant NMI */
chipco_write32(cc, SSB_CHIPCO_WATCHDOG, ticks);
}
u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_GPIOIN) & mask;
}
void ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUT, mask, value);
}
void ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUTEN, mask, value);
}
#ifdef CONFIG_SSB_SERIAL
int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports)
{
struct ssb_bus *bus = cc->dev->bus;
int nr_ports = 0;
u32 plltype;
unsigned int irq;
u32 baud_base, div;
u32 i, n;
plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
irq = ssb_mips_irq(cc->dev);
if (plltype == SSB_PLLTYPE_1) {
/* PLL clock */
baud_base = ssb_calc_clock_rate(plltype,
chipco_read32(cc, SSB_CHIPCO_CLOCK_N),
chipco_read32(cc, SSB_CHIPCO_CLOCK_M2));
div = 1;
} else {
if (cc->dev->id.revision >= 11) {
/* Fixed ALP clock */
baud_base = 20000000;
div = 1;
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
SSB_CHIPCO_CORECTL_UARTCLK0);
} else if (cc->dev->id.revision >= 3) {
/* Internal backplane clock */
baud_base = ssb_clockspeed(bus);
div = chipco_read32(cc, SSB_CHIPCO_CLKDIV)
& SSB_CHIPCO_CLKDIV_UART;
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((cc->dev->id.revision > 0) &&
!(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) {
if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) ==
SSB_CHIPCO_CAP_UARTCLK_INT) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Determine the registers of the UARTs */
n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART);
for (i = 0; i < n; i++) {
void __iomem *cc_mmio;
void __iomem *uart_regs;
cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE);
uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA;
/* Offset changed at after rev 0 */
if (cc->dev->id.revision == 0)
uart_regs += (i * 8);
else
uart_regs += (i * 256);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = irq;
ports[i].baud_base = baud_base;
ports[i].reg_shift = 0;
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */

View File

@ -1,129 +0,0 @@
/*
* Sonics Silicon Backplane
* Broadcom EXTIF core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
* Copyright 2006, 2007, Felix Fietkau <nbd@openwrt.org>
* Copyright 2007, Aurelien Jarno <aurelien@aurel32.net>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include "ssb_private.h"
static inline u32 extif_read32(struct ssb_extif *extif, u16 offset)
{
return ssb_read32(extif->dev, offset);
}
static inline void extif_write32(struct ssb_extif *extif, u16 offset, u32 value)
{
ssb_write32(extif->dev, offset, value);
}
static inline void extif_write32_masked(struct ssb_extif *extif, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= extif_read32(extif, offset) & ~mask;
extif_write32(extif, offset, value);
}
#ifdef CONFIG_SSB_SERIAL
static bool serial_exists(u8 *regs)
{
u8 save_mcr, msr = 0;
if (regs) {
save_mcr = regs[UART_MCR];
regs[UART_MCR] = (UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_RTS);
msr = regs[UART_MSR] & (UART_MSR_DCD | UART_MSR_RI
| UART_MSR_CTS | UART_MSR_DSR);
regs[UART_MCR] = save_mcr;
}
return (msr == (UART_MSR_DCD | UART_MSR_CTS));
}
int ssb_extif_serial_init(struct ssb_extif *extif, struct ssb_serial_port *ports)
{
u32 i, nr_ports = 0;
/* Disable GPIO interrupt initially */
extif_write32(extif, SSB_EXTIF_GPIO_INTPOL, 0);
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 0);
for (i = 0; i < 2; i++) {
void __iomem *uart_regs;
uart_regs = ioremap_nocache(SSB_EUART, 16);
if (uart_regs) {
uart_regs += (i * 8);
if (serial_exists(uart_regs) && ports) {
extif_write32(extif, SSB_EXTIF_GPIO_INTMASK, 2);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = 2;
ports[i].baud_base = 13500000;
ports[i].reg_shift = 0;
}
iounmap(uart_regs);
}
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */
void ssb_extif_timing_init(struct ssb_extif *extif, unsigned long ns)
{
u32 tmp;
/* Initialize extif so we can get to the LEDs and external UART */
extif_write32(extif, SSB_EXTIF_PROG_CFG, SSB_EXTCFG_EN);
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
/* Set programmable interface timing for external uart */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT;
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT;
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT;
tmp |= DIV_ROUND_UP(120, ns);
extif_write32(extif, SSB_EXTIF_PROG_WAITCNT, tmp);
}
void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *pll_type, u32 *n, u32 *m)
{
*pll_type = SSB_PLLTYPE_1;
*n = extif_read32(extif, SSB_EXTIF_CLOCK_N);
*m = extif_read32(extif, SSB_EXTIF_CLOCK_SB);
}
u32 ssb_extif_gpio_in(struct ssb_extif *extif, u32 mask)
{
return extif_read32(extif, SSB_EXTIF_GPIO_IN) & mask;
}
void ssb_extif_gpio_out(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUT(0),
mask, value);
}
void ssb_extif_gpio_outen(struct ssb_extif *extif, u32 mask, u32 value)
{
return extif_write32_masked(extif, SSB_EXTIF_GPIO_OUTEN(0),
mask, value);
}

View File

@ -1,225 +0,0 @@
/*
* Sonics Silicon Backplane
* Broadcom MIPS core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/serial.h>
#include <linux/serial_core.h>
#include <linux/serial_reg.h>
#include <linux/time.h>
#include "ssb_private.h"
static inline u32 mips_read32(struct ssb_mipscore *mcore,
u16 offset)
{
return ssb_read32(mcore->dev, offset);
}
static inline void mips_write32(struct ssb_mipscore *mcore,
u16 offset,
u32 value)
{
ssb_write32(mcore->dev, offset, value);
}
static const u32 ipsflag_irq_mask[] = {
0,
SSB_IPSFLAG_IRQ1,
SSB_IPSFLAG_IRQ2,
SSB_IPSFLAG_IRQ3,
SSB_IPSFLAG_IRQ4,
};
static const u32 ipsflag_irq_shift[] = {
0,
SSB_IPSFLAG_IRQ1_SHIFT,
SSB_IPSFLAG_IRQ2_SHIFT,
SSB_IPSFLAG_IRQ3_SHIFT,
SSB_IPSFLAG_IRQ4_SHIFT,
};
static inline u32 ssb_irqflag(struct ssb_device *dev)
{
return ssb_read32(dev, SSB_TPSFLAG) & SSB_TPSFLAG_BPFLAG;
}
/* Get the MIPS IRQ assignment for a specified device.
* If unassigned, 0 is returned.
*/
unsigned int ssb_mips_irq(struct ssb_device *dev)
{
struct ssb_bus *bus = dev->bus;
u32 irqflag;
u32 ipsflag;
u32 tmp;
unsigned int irq;
irqflag = ssb_irqflag(dev);
ipsflag = ssb_read32(bus->mipscore.dev, SSB_IPSFLAG);
for (irq = 1; irq <= 4; irq++) {
tmp = ((ipsflag & ipsflag_irq_mask[irq]) >> ipsflag_irq_shift[irq]);
if (tmp == irqflag)
break;
}
if (irq == 5)
irq = 0;
return irq;
}
static void clear_irq(struct ssb_bus *bus, unsigned int irq)
{
struct ssb_device *dev = bus->mipscore.dev;
/* Clear the IRQ in the MIPScore backplane registers */
if (irq == 0) {
ssb_write32(dev, SSB_INTVEC, 0);
} else {
ssb_write32(dev, SSB_IPSFLAG,
ssb_read32(dev, SSB_IPSFLAG) |
ipsflag_irq_mask[irq]);
}
}
static void set_irq(struct ssb_device *dev, unsigned int irq)
{
unsigned int oldirq = ssb_mips_irq(dev);
struct ssb_bus *bus = dev->bus;
struct ssb_device *mdev = bus->mipscore.dev;
u32 irqflag = ssb_irqflag(dev);
dev->irq = irq + 2;
ssb_dprintk(KERN_INFO PFX
"set_irq: core 0x%04x, irq %d => %d\n",
dev->id.coreid, oldirq, irq);
/* clear the old irq */
if (oldirq == 0)
ssb_write32(mdev, SSB_INTVEC, (~(1 << irqflag) & ssb_read32(mdev, SSB_INTVEC)));
else
clear_irq(bus, oldirq);
/* assign the new one */
if (irq == 0) {
ssb_write32(mdev, SSB_INTVEC, ((1 << irqflag) | ssb_read32(mdev, SSB_INTVEC)));
} else {
irqflag <<= ipsflag_irq_shift[irq];
irqflag |= (ssb_read32(mdev, SSB_IPSFLAG) & ~ipsflag_irq_mask[irq]);
ssb_write32(mdev, SSB_IPSFLAG, irqflag);
}
}
static void ssb_mips_serial_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
if (bus->extif.dev)
mcore->nr_serial_ports = ssb_extif_serial_init(&bus->extif, mcore->serial_ports);
else if (bus->chipco.dev)
mcore->nr_serial_ports = ssb_chipco_serial_init(&bus->chipco, mcore->serial_ports);
else
mcore->nr_serial_ports = 0;
}
static void ssb_mips_flash_detect(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
mcore->flash_buswidth = 2;
if (bus->chipco.dev) {
mcore->flash_window = 0x1c000000;
mcore->flash_window_size = 0x02000000;
if ((ssb_read32(bus->chipco.dev, SSB_CHIPCO_FLASH_CFG)
& SSB_CHIPCO_CFG_DS16) == 0)
mcore->flash_buswidth = 1;
} else {
mcore->flash_window = 0x1fc00000;
mcore->flash_window_size = 0x00400000;
}
}
u32 ssb_cpu_clock(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus = mcore->dev->bus;
u32 pll_type, n, m, rate = 0;
if (bus->extif.dev) {
ssb_extif_get_clockcontrol(&bus->extif, &pll_type, &n, &m);
} else if (bus->chipco.dev) {
ssb_chipco_get_clockcpu(&bus->chipco, &pll_type, &n, &m);
} else
return 0;
if ((pll_type == SSB_PLLTYPE_5) || (bus->chip_id == 0x5365)) {
rate = 200000000;
} else {
rate = ssb_calc_clock_rate(pll_type, n, m);
}
if (pll_type == SSB_PLLTYPE_6) {
rate *= 2;
}
return rate;
}
void ssb_mipscore_init(struct ssb_mipscore *mcore)
{
struct ssb_bus *bus;
struct ssb_device *dev;
unsigned long hz, ns;
unsigned int irq, i;
if (!mcore->dev)
return; /* We don't have a MIPS core */
ssb_dprintk(KERN_INFO PFX "Initializing MIPS core...\n");
bus = mcore->dev->bus;
hz = ssb_clockspeed(bus);
if (!hz)
hz = 100000000;
ns = 1000000000 / hz;
if (bus->extif.dev)
ssb_extif_timing_init(&bus->extif, ns);
else if (bus->chipco.dev)
ssb_chipco_timing_init(&bus->chipco, ns);
/* Assign IRQs to all cores on the bus, start with irq line 2, because serial usually takes 1 */
for (irq = 2, i = 0; i < bus->nr_devices; i++) {
dev = &(bus->devices[i]);
dev->irq = ssb_mips_irq(dev) + 2;
switch (dev->id.coreid) {
case SSB_DEV_USB11_HOST:
/* shouldn't need a separate irq line for non-4710, most of them have a proper
* external usb controller on the pci */
if ((bus->chip_id == 0x4710) && (irq <= 4)) {
set_irq(dev, irq++);
break;
}
/* fallthrough */
case SSB_DEV_PCI:
case SSB_DEV_ETHERNET:
case SSB_DEV_80211:
case SSB_DEV_USB20_HOST:
/* These devices get their own IRQ line if available, the rest goes on IRQ0 */
if (irq <= 4) {
set_irq(dev, irq++);
break;
}
}
}
ssb_mips_serial_init(mcore);
ssb_mips_flash_detect(mcore);
}

View File

@ -1,576 +0,0 @@
/*
* Sonics Silicon Backplane
* Broadcom PCI-core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
static inline
u32 pcicore_read32(struct ssb_pcicore *pc, u16 offset)
{
return ssb_read32(pc->dev, offset);
}
static inline
void pcicore_write32(struct ssb_pcicore *pc, u16 offset, u32 value)
{
ssb_write32(pc->dev, offset, value);
}
/**************************************************
* Code for hostmode operation.
**************************************************/
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
#include <asm/paccess.h>
/* Probe a 32bit value on the bus and catch bus exceptions.
* Returns nonzero on a bus exception.
* This is MIPS specific */
#define mips_busprobe32(val, addr) get_dbe((val), ((u32 *)(addr)))
/* Assume one-hot slot wiring */
#define SSB_PCI_SLOT_MAX 16
/* Global lock is OK, as we won't have more than one extpci anyway. */
static DEFINE_SPINLOCK(cfgspace_lock);
/* Core to access the external PCI config space. Can only have one. */
static struct ssb_pcicore *extpci_core;
static u32 ssb_pcicore_pcibus_iobase = 0x100;
static u32 ssb_pcicore_pcibus_membase = SSB_PCI_DMA;
int pcibios_plat_dev_init(struct pci_dev *d)
{
struct resource *res;
int pos, size;
u32 *base;
ssb_printk(KERN_INFO "PCI: Fixing up device %s\n",
pci_name(d));
/* Fix up resource bases */
for (pos = 0; pos < 6; pos++) {
res = &d->resource[pos];
if (res->flags & IORESOURCE_IO)
base = &ssb_pcicore_pcibus_iobase;
else
base = &ssb_pcicore_pcibus_membase;
if (res->end) {
size = res->end - res->start + 1;
if (*base & (size - 1))
*base = (*base + size) & ~(size - 1);
res->start = *base;
res->end = res->start + size - 1;
*base += size;
pci_write_config_dword(d, PCI_BASE_ADDRESS_0 + (pos << 2), res->start);
}
/* Fix up PCI bridge BAR0 only */
if (d->bus->number == 0 && PCI_SLOT(d->devfn) == 0)
break;
}
/* Fix up interrupt lines */
d->irq = ssb_mips_irq(extpci_core->dev) + 2;
pci_write_config_byte(d, PCI_INTERRUPT_LINE, d->irq);
return 0;
}
static void __init ssb_fixup_pcibridge(struct pci_dev *dev)
{
if (dev->bus->number != 0 || PCI_SLOT(dev->devfn) != 0)
return;
ssb_printk(KERN_INFO "PCI: fixing up bridge\n");
/* Enable PCI bridge bus mastering and memory space */
pci_set_master(dev);
pcibios_enable_device(dev, ~0);
/* Enable PCI bridge BAR1 prefetch and burst */
pci_write_config_dword(dev, SSB_BAR1_CONTROL, 3);
/* Make sure our latency is high enough to handle the devices behind us */
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xa8);
}
DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, ssb_fixup_pcibridge);
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
return ssb_mips_irq(extpci_core->dev) + 2;
}
static u32 get_cfgspace_addr(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off)
{
u32 addr = 0;
u32 tmp;
if (unlikely(pc->cardbusmode && dev > 1))
goto out;
if (bus == 0) {
/* Type 0 transaction */
if (unlikely(dev >= SSB_PCI_SLOT_MAX))
goto out;
/* Slide the window */
tmp = SSB_PCICORE_SBTOPCI_CFG0;
tmp |= ((1 << (dev + 16)) & SSB_PCICORE_SBTOPCI1_MASK);
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1, tmp);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= ((1 << (dev + 16)) & ~SSB_PCICORE_SBTOPCI1_MASK);
addr |= (func << 8);
addr |= (off & ~3);
} else {
/* Type 1 transaction */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG1);
/* Calculate the address */
addr = SSB_PCI_CFG;
addr |= (bus << 16);
addr |= (dev << 11);
addr |= (func << 8);
addr |= (off & ~3);
}
out:
return addr;
}
static int ssb_extpci_read_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
void *buf, int len)
{
int err = -EINVAL;
u32 addr, val;
void __iomem *mmio;
SSB_WARN_ON(!pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
goto unmap;
}
val = readl(mmio);
val >>= (8 * (off & 3));
switch (len) {
case 1:
*((u8 *)buf) = (u8)val;
break;
case 2:
*((u16 *)buf) = (u16)val;
break;
case 4:
*((u32 *)buf) = (u32)val;
break;
}
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_extpci_write_config(struct ssb_pcicore *pc,
unsigned int bus, unsigned int dev,
unsigned int func, unsigned int off,
const void *buf, int len)
{
int err = -EINVAL;
u32 addr, val = 0;
void __iomem *mmio;
SSB_WARN_ON(!pc->hostmode);
if (unlikely(len != 1 && len != 2 && len != 4))
goto out;
addr = get_cfgspace_addr(pc, bus, dev, func, off);
if (unlikely(!addr))
goto out;
err = -ENOMEM;
mmio = ioremap_nocache(addr, len);
if (!mmio)
goto out;
if (mips_busprobe32(val, mmio)) {
val = 0xffffffff;
goto unmap;
}
switch (len) {
case 1:
val = readl(mmio);
val &= ~(0xFF << (8 * (off & 3)));
val |= *((const u8 *)buf) << (8 * (off & 3));
break;
case 2:
val = readl(mmio);
val &= ~(0xFFFF << (8 * (off & 3)));
val |= *((const u16 *)buf) << (8 * (off & 3));
break;
case 4:
val = *((const u32 *)buf);
break;
}
writel(val, mmio);
err = 0;
unmap:
iounmap(mmio);
out:
return err;
}
static int ssb_pcicore_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_read_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static int ssb_pcicore_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
unsigned long flags;
int err;
spin_lock_irqsave(&cfgspace_lock, flags);
err = ssb_extpci_write_config(extpci_core, bus->number, PCI_SLOT(devfn),
PCI_FUNC(devfn), reg, &val, size);
spin_unlock_irqrestore(&cfgspace_lock, flags);
return err ? PCIBIOS_DEVICE_NOT_FOUND : PCIBIOS_SUCCESSFUL;
}
static struct pci_ops ssb_pcicore_pciops = {
.read = ssb_pcicore_read_config,
.write = ssb_pcicore_write_config,
};
static struct resource ssb_pcicore_mem_resource = {
.name = "SSB PCIcore external memory",
.start = SSB_PCI_DMA,
.end = SSB_PCI_DMA + SSB_PCI_DMA_SZ - 1,
.flags = IORESOURCE_MEM,
};
static struct resource ssb_pcicore_io_resource = {
.name = "SSB PCIcore external I/O",
.start = 0x100,
.end = 0x7FF,
.flags = IORESOURCE_IO,
};
static struct pci_controller ssb_pcicore_controller = {
.pci_ops = &ssb_pcicore_pciops,
.io_resource = &ssb_pcicore_io_resource,
.mem_resource = &ssb_pcicore_mem_resource,
.mem_offset = 0x24000000,
};
static void ssb_pcicore_init_hostmode(struct ssb_pcicore *pc)
{
u32 val;
if (WARN_ON(extpci_core))
return;
extpci_core = pc;
ssb_dprintk(KERN_INFO PFX "PCIcore in host mode found\n");
/* Reset devices on the external PCI bus */
val = SSB_PCICORE_CTL_RST_OE;
val |= SSB_PCICORE_CTL_CLK_OE;
pcicore_write32(pc, SSB_PCICORE_CTL, val);
val |= SSB_PCICORE_CTL_CLK; /* Clock on */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
udelay(150); /* Assertion time demanded by the PCI standard */
val |= SSB_PCICORE_CTL_RST; /* Deassert RST# */
pcicore_write32(pc, SSB_PCICORE_CTL, val);
val = SSB_PCICORE_ARBCTL_INTERN;
pcicore_write32(pc, SSB_PCICORE_ARBCTL, val);
udelay(1); /* Assertion time demanded by the PCI standard */
/*TODO cardbus mode */
/* 64MB I/O window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI0,
SSB_PCICORE_SBTOPCI_IO);
/* 64MB config space */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI1,
SSB_PCICORE_SBTOPCI_CFG0);
/* 1GB memory window */
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2,
SSB_PCICORE_SBTOPCI_MEM | SSB_PCI_DMA);
/* Enable PCI bridge BAR0 prefetch and burst */
val = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
ssb_extpci_write_config(pc, 0, 0, 0, PCI_COMMAND, &val, 2);
/* Clear error conditions */
val = 0;
ssb_extpci_write_config(pc, 0, 0, 0, PCI_STATUS, &val, 2);
/* Enable PCI interrupts */
pcicore_write32(pc, SSB_PCICORE_IMASK,
SSB_PCICORE_IMASK_INTA);
/* Ok, ready to run, register it to the system.
* The following needs change, if we want to port hostmode
* to non-MIPS platform. */
set_io_port_base((unsigned long)ioremap_nocache(SSB_PCI_MEM, 0x04000000));
/* Give some time to the PCI controller to configure itself with the new
* values. Not waiting at this point causes crashes of the machine. */
mdelay(10);
register_pci_controller(&ssb_pcicore_controller);
}
static int pcicore_is_in_hostmode(struct ssb_pcicore *pc)
{
struct ssb_bus *bus = pc->dev->bus;
u16 chipid_top;
u32 tmp;
chipid_top = (bus->chip_id & 0xFF00);
if (chipid_top != 0x4700 &&
chipid_top != 0x5300)
return 0;
if (bus->sprom.r1.boardflags_lo & SSB_PCICORE_BFL_NOPCI)
return 0;
/* The 200-pin BCM4712 package does not bond out PCI. Even when
* PCI is bonded out, some boards may leave the pins floating. */
if (bus->chip_id == 0x4712) {
if (bus->chip_package == SSB_CHIPPACK_BCM4712S)
return 0;
if (bus->chip_package == SSB_CHIPPACK_BCM4712M)
return 0;
}
if (bus->chip_id == 0x5350)
return 0;
return !mips_busprobe32(tmp, (bus->mmio + (pc->dev->core_index * SSB_CORE_SIZE)));
}
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
/**************************************************
* Generic and Clientmode operation code.
**************************************************/
static void ssb_pcicore_init_clientmode(struct ssb_pcicore *pc)
{
/* Disable PCI interrupts. */
ssb_write32(pc->dev, SSB_INTVEC, 0);
}
void ssb_pcicore_init(struct ssb_pcicore *pc)
{
struct ssb_device *dev = pc->dev;
struct ssb_bus *bus;
if (!dev)
return;
bus = dev->bus;
if (!ssb_device_is_enabled(dev))
ssb_device_enable(dev, 0);
#ifdef CONFIG_SSB_PCICORE_HOSTMODE
pc->hostmode = pcicore_is_in_hostmode(pc);
if (pc->hostmode)
ssb_pcicore_init_hostmode(pc);
#endif /* CONFIG_SSB_PCICORE_HOSTMODE */
if (!pc->hostmode)
ssb_pcicore_init_clientmode(pc);
}
static u32 ssb_pcie_read(struct ssb_pcicore *pc, u32 address)
{
pcicore_write32(pc, 0x130, address);
return pcicore_read32(pc, 0x134);
}
static void ssb_pcie_write(struct ssb_pcicore *pc, u32 address, u32 data)
{
pcicore_write32(pc, 0x130, address);
pcicore_write32(pc, 0x134, data);
}
static void ssb_pcie_mdio_write(struct ssb_pcicore *pc, u8 device,
u8 address, u16 data)
{
const u16 mdio_control = 0x128;
const u16 mdio_data = 0x12C;
u32 v;
int i;
v = 0x80; /* Enable Preamble Sequence */
v |= 0x2; /* MDIO Clock Divisor */
pcicore_write32(pc, mdio_control, v);
v = (1 << 30); /* Start of Transaction */
v |= (1 << 28); /* Write Transaction */
v |= (1 << 17); /* Turnaround */
v |= (u32)device << 22;
v |= (u32)address << 18;
v |= data;
pcicore_write32(pc, mdio_data, v);
/* Wait for the device to complete the transaction */
udelay(10);
for (i = 0; i < 10; i++) {
v = pcicore_read32(pc, mdio_control);
if (v & 0x100 /* Trans complete */)
break;
msleep(1);
}
pcicore_write32(pc, mdio_control, 0);
}
static void ssb_broadcast_value(struct ssb_device *dev,
u32 address, u32 data)
{
/* This is used for both, PCI and ChipCommon core, so be careful. */
BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
ssb_write32(dev, SSB_PCICORE_BCAST_ADDR, address);
ssb_read32(dev, SSB_PCICORE_BCAST_ADDR); /* flush */
ssb_write32(dev, SSB_PCICORE_BCAST_DATA, data);
ssb_read32(dev, SSB_PCICORE_BCAST_DATA); /* flush */
}
static void ssb_commit_settings(struct ssb_bus *bus)
{
struct ssb_device *dev;
dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
if (WARN_ON(!dev))
return;
/* This forces an update of the cached registers. */
ssb_broadcast_value(dev, 0xFD8, 0);
}
int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev)
{
struct ssb_device *pdev = pc->dev;
struct ssb_bus *bus;
int err = 0;
u32 tmp;
might_sleep();
if (!pdev)
goto out;
bus = pdev->bus;
/* Enable interrupts for this device. */
if (bus->host_pci &&
((pdev->id.revision >= 6) || (pdev->id.coreid == SSB_DEV_PCIE))) {
u32 coremask;
/* Calculate the "coremask" for the device. */
coremask = (1 << dev->core_index);
err = pci_read_config_dword(bus->host_pci, SSB_PCI_IRQMASK, &tmp);
if (err)
goto out;
tmp |= coremask << 8;
err = pci_write_config_dword(bus->host_pci, SSB_PCI_IRQMASK, tmp);
if (err)
goto out;
} else {
u32 intvec;
intvec = ssb_read32(pdev, SSB_INTVEC);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: On the BCM44XX the BPFLAG routing
* bit is wrong. Use a hardcoded constant. */
intvec |= 0x00000002;
} else {
tmp = ssb_read32(dev, SSB_TPSFLAG);
tmp &= SSB_TPSFLAG_BPFLAG;
intvec |= tmp;
}
ssb_write32(pdev, SSB_INTVEC, intvec);
}
/* Setup PCIcore operation. */
if (pc->setup_done)
goto out;
if (pdev->id.coreid == SSB_DEV_PCI) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_PREF;
tmp |= SSB_PCICORE_SBTOPCI_BURST;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
if (pdev->id.revision < 5) {
tmp = ssb_read32(pdev, SSB_IMCFGLO);
tmp &= ~SSB_IMCFGLO_SERTO;
tmp |= 2;
tmp &= ~SSB_IMCFGLO_REQTO;
tmp |= 3 << SSB_IMCFGLO_REQTO_SHIFT;
ssb_write32(pdev, SSB_IMCFGLO, tmp);
ssb_commit_settings(bus);
} else if (pdev->id.revision >= 11) {
tmp = pcicore_read32(pc, SSB_PCICORE_SBTOPCI2);
tmp |= SSB_PCICORE_SBTOPCI_MRM;
pcicore_write32(pc, SSB_PCICORE_SBTOPCI2, tmp);
}
} else {
WARN_ON(pdev->id.coreid != SSB_DEV_PCIE);
//TODO: Better make defines for all these magic PCIE values.
if ((pdev->id.revision == 0) || (pdev->id.revision == 1)) {
/* TLP Workaround register. */
tmp = ssb_pcie_read(pc, 0x4);
tmp |= 0x8;
ssb_pcie_write(pc, 0x4, tmp);
}
if (pdev->id.revision == 0) {
const u8 serdes_rx_device = 0x1F;
ssb_pcie_mdio_write(pc, serdes_rx_device,
2 /* Timer */, 0x8128);
ssb_pcie_mdio_write(pc, serdes_rx_device,
6 /* CDR */, 0x0100);
ssb_pcie_mdio_write(pc, serdes_rx_device,
7 /* CDR BW */, 0x1466);
} else if (pdev->id.revision == 1) {
/* DLLP Link Control register. */
tmp = ssb_pcie_read(pc, 0x100);
tmp |= 0x40;
ssb_pcie_write(pc, 0x100, tmp);
}
}
pc->setup_done = 1;
out:
return err;
}
EXPORT_SYMBOL(ssb_pcicore_dev_irqvecs_enable);

File diff suppressed because it is too large Load Diff

View File

@ -1,790 +0,0 @@
/*
* Sonics Silicon Backplane PCI-Hostbus related functions.
*
* Copyright (C) 2005-2006 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
*
* Derived from the Broadcom 4400 device driver.
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
* Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
/* Lowlevel coreswitching */
int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
{
int err;
int attempts = 0;
u32 cur_core;
while (1) {
err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
(coreidx * SSB_CORE_SIZE)
+ SSB_ENUM_BASE);
if (err)
goto error;
err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
&cur_core);
if (err)
goto error;
cur_core = (cur_core - SSB_ENUM_BASE)
/ SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
unsigned long flags;
#if SSB_VERBOSE_PCICORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
spin_lock_irqsave(&bus->bar_lock, flags);
err = ssb_pci_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
spin_unlock_irqrestore(&bus->bar_lock, flags);
return err;
}
/* Enable/disable the on board crystal oscillator and/or PLL. */
int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
{
int err;
u32 in, out, outenable;
u16 pci_status;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
if (err)
goto err_pci;
err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
if (err)
goto err_pci;
outenable |= what;
if (turn_on) {
/* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (!(in & SSB_GPIO_XTAL)) {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal on */
out |= SSB_GPIO_XTAL;
if (what & SSB_GPIO_PLL)
out |= SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
outenable);
if (err)
goto err_pci;
msleep(1);
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL on */
out &= ~SSB_GPIO_PLL;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
msleep(5);
}
}
err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
if (err)
goto err_pci;
pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
if (err)
goto err_pci;
} else {
if (what & SSB_GPIO_XTAL) {
/* Turn the crystal off */
out &= ~SSB_GPIO_XTAL;
}
if (what & SSB_GPIO_PLL) {
/* Turn the PLL off */
out |= SSB_GPIO_PLL;
}
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
if (err)
goto err_pci;
err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
if (err)
goto err_pci;
}
out:
return err;
err_pci:
printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
err = -EBUSY;
goto out;
}
/* Get the word-offset for a SSB_SPROM_XXX define. */
#define SPOFF(offset) (((offset) - SSB_SPROM_BASE) / sizeof(u16))
/* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
#define SPEX(_outvar, _offset, _mask, _shift) \
out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
static inline u8 ssb_crc8(u8 crc, u8 data)
{
/* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
static const u8 t[] = {
0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
};
return t[crc ^ data];
}
static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
{
int word;
u8 crc = 0xFF;
for (word = 0; word < size - 1; word++) {
crc = ssb_crc8(crc, sprom[word] & 0x00FF);
crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
}
crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
crc ^= 0xFF;
return crc;
}
static int sprom_check_crc(const u16 *sprom, u16 size)
{
u8 crc;
u8 expected_crc;
u16 tmp;
crc = ssb_sprom_crc(sprom, size);
tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
if (crc != expected_crc)
return -EPROTO;
return 0;
}
static void sprom_do_read(struct ssb_bus *bus, u16 *sprom)
{
int i;
for (i = 0; i < bus->sprom_size; i++)
sprom[i] = ioread16(bus->mmio + SSB_SPROM_BASE + (i * 2));
}
static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
{
struct pci_dev *pdev = bus->host_pci;
int i, err;
u32 spromctl;
u16 size = bus->sprom_size;
ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl |= SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
ssb_printk(KERN_NOTICE PFX "[ 0%%");
msleep(500);
for (i = 0; i < size; i++) {
if (i == size / 4)
ssb_printk("25%%");
else if (i == size / 2)
ssb_printk("50%%");
else if (i == (size * 3) / 4)
ssb_printk("75%%");
else if (i % 2)
ssb_printk(".");
writew(sprom[i], bus->mmio + SSB_SPROM_BASE + (i * 2));
mmiowb();
msleep(20);
}
err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
if (err)
goto err_ctlreg;
spromctl &= ~SSB_SPROMCTL_WE;
err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
if (err)
goto err_ctlreg;
msleep(500);
ssb_printk("100%% ]\n");
ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
return 0;
err_ctlreg:
ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
return err;
}
static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
u16 mask, u16 shift)
{
u16 v;
u8 gain;
v = in[SPOFF(SSB_SPROM1_AGAIN)];
gain = (v & mask) >> shift;
if (gain == 0xFF)
gain = 2; /* If unset use 2dBm */
if (sprom_revision == 1) {
/* Convert to Q5.2 */
gain <<= 2;
} else {
/* Q5.2 Fractional part is stored in 0xC0 */
gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
}
return (s8)gain;
}
static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
s8 gain;
u16 loc[3];
if (out->revision == 3) { /* rev 3 moved MAC */
loc[0] = SSB_SPROM3_IL0MAC;
loc[1] = SSB_SPROM3_ET0MAC;
loc[2] = SSB_SPROM3_ET1MAC;
} else {
loc[0] = SSB_SPROM1_IL0MAC;
loc[1] = SSB_SPROM1_ET0MAC;
loc[2] = SSB_SPROM1_ET1MAC;
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[0]) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[1]) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(loc[2]) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
SSB_SPROM1_ETHPHY_ET1A_SHIFT);
SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
SSB_SPROM1_BINF_CCODE_SHIFT);
SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
SSB_SPROM1_BINF_ANTA_SHIFT);
SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
SSB_SPROM1_BINF_ANTBG_SHIFT);
SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
SSB_SPROM1_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
SSB_SPROM1_GPIOB_P3_SHIFT);
SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
SSB_SPROM1_MAXPWR_A_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
SSB_SPROM1_ITSSI_A_SHIFT);
SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
if (out->revision >= 2)
SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
/* Extract the antenna gain values. */
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_BG,
SSB_SPROM1_AGAIN_BG_SHIFT);
out->antenna_gain.ghz24.a0 = gain;
out->antenna_gain.ghz24.a1 = gain;
out->antenna_gain.ghz24.a2 = gain;
out->antenna_gain.ghz24.a3 = gain;
gain = r123_extract_antgain(out->revision, in,
SSB_SPROM1_AGAIN_A,
SSB_SPROM1_AGAIN_A_SHIFT);
out->antenna_gain.ghz5.a0 = gain;
out->antenna_gain.ghz5.a1 = gain;
out->antenna_gain.ghz5.a2 = gain;
out->antenna_gain.ghz5.a3 = gain;
}
static void sprom_extract_r4(struct ssb_sprom *out, const u16 *in)
{
int i;
u16 v;
/* extract the equivalent of the r1 variables */
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_IL0MAC) + i];
*(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_ET0MAC) + i];
*(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
}
for (i = 0; i < 3; i++) {
v = in[SPOFF(SSB_SPROM4_ET1MAC) + i];
*(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
}
SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
SSB_SPROM4_ETHPHY_ET1A_SHIFT);
SPEX(country_code, SSB_SPROM4_CCODE, 0xFFFF, 0);
SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
SSB_SPROM4_ANTAVAIL_A_SHIFT);
SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
SSB_SPROM4_ANTAVAIL_BG_SHIFT);
SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
SSB_SPROM4_ITSSI_BG_SHIFT);
SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
SSB_SPROM4_ITSSI_A_SHIFT);
SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
SSB_SPROM4_GPIOA_P1_SHIFT);
SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
SSB_SPROM4_GPIOB_P3_SHIFT);
/* Extract the antenna gain values. */
SPEX(antenna_gain.ghz24.a0, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
SPEX(antenna_gain.ghz24.a1, SSB_SPROM4_AGAIN01,
SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
SPEX(antenna_gain.ghz24.a2, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
SPEX(antenna_gain.ghz24.a3, SSB_SPROM4_AGAIN23,
SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
memcpy(&out->antenna_gain.ghz5, &out->antenna_gain.ghz24,
sizeof(out->antenna_gain.ghz5));
/* TODO - get remaining rev 4 stuff needed */
}
static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
const u16 *in, u16 size)
{
memset(out, 0, sizeof(*out));
out->revision = in[size - 1] & 0x00FF;
ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
if ((bus->chip_id & 0xFF00) == 0x4400) {
/* Workaround: The BCM44XX chip has a stupid revision
* number stored in the SPROM.
* Always extract r1. */
out->revision = 1;
sprom_extract_r123(out, in);
} else if (bus->chip_id == 0x4321) {
/* the BCM4328 has a chipid == 0x4321 and a rev 4 SPROM */
out->revision = 4;
sprom_extract_r4(out, in);
} else {
if (out->revision == 0)
goto unsupported;
if (out->revision >= 1 && out->revision <= 3) {
sprom_extract_r123(out, in);
}
if (out->revision == 4)
sprom_extract_r4(out, in);
if (out->revision >= 5)
goto unsupported;
}
return 0;
unsupported:
ssb_printk(KERN_WARNING PFX "Unsupported SPROM revision %d "
"detected. Will extract v1\n", out->revision);
sprom_extract_r123(out, in);
return 0;
}
static int ssb_pci_sprom_get(struct ssb_bus *bus,
struct ssb_sprom *sprom)
{
int err = -ENOMEM;
u16 *buf;
buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
if (err) {
/* check for rev 4 sprom - has special signature */
if (buf[32] == 0x5372) {
kfree(buf);
buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
GFP_KERNEL);
if (!buf)
goto out;
bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
sprom_do_read(bus, buf);
err = sprom_check_crc(buf, bus->sprom_size);
}
if (err)
ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
" SPROM CRC (corrupt SPROM)\n");
}
err = sprom_extract(bus, sprom, buf, bus->sprom_size);
kfree(buf);
out:
return err;
}
static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
struct ssb_boardinfo *bi)
{
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_VENDOR_ID,
&bi->vendor);
pci_read_config_word(bus->host_pci, PCI_SUBSYSTEM_ID,
&bi->type);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bi->rev);
}
int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
int err;
err = ssb_pci_sprom_get(bus, &iv->sprom);
if (err)
goto out;
ssb_pci_get_boardinfo(bus, &iv->boardinfo);
out:
return err;
}
#ifdef CONFIG_SSB_DEBUG
static int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
if (likely(bus->powered_up))
return 0;
printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
"while accessing PCI MMIO space\n");
if (bus->power_warn_count <= 10) {
bus->power_warn_count++;
dump_stack();
}
return -ENODEV;
}
#else /* DEBUG */
static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
{
return 0;
}
#endif /* DEBUG */
static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFF;
}
return ioread16(bus->mmio + offset);
}
static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return 0xFFFFFFFF;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return 0xFFFFFFFF;
}
return ioread32(bus->mmio + offset);
}
static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite16(value, bus->mmio + offset);
}
static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
if (unlikely(ssb_pci_assert_buspower(bus)))
return;
if (unlikely(bus->mapped_device != dev)) {
if (unlikely(ssb_pci_switch_core(bus, dev)))
return;
}
iowrite32(value, bus->mmio + offset);
}
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pci_ops = {
.read16 = ssb_pci_read16,
.read32 = ssb_pci_read32,
.write16 = ssb_pci_write16,
.write32 = ssb_pci_write32,
};
static int sprom2hex(const u16 *sprom, char *buf, size_t buf_len, u16 size)
{
int i, pos = 0;
for (i = 0; i < size; i++)
pos += snprintf(buf + pos, buf_len - pos - 1,
"%04X", swab16(sprom[i]) & 0xFFFF);
pos += snprintf(buf + pos, buf_len - pos - 1, "\n");
return pos + 1;
}
static int hex2sprom(u16 *sprom, const char *dump, size_t len, u16 size)
{
char tmp[5] = { 0 };
int cnt = 0;
unsigned long parsed;
if (len < size * 2)
return -EINVAL;
while (cnt < size) {
memcpy(tmp, dump, 4);
dump += 4;
parsed = simple_strtoul(tmp, NULL, 16);
sprom[cnt++] = swab16((u16)parsed);
}
return 0;
}
static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
u16 *sprom;
int err = -ENODEV;
ssize_t count = 0;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
goto out;
err = -ENOMEM;
sprom = kcalloc(bus->sprom_size, sizeof(u16), GFP_KERNEL);
if (!sprom)
goto out;
/* Use interruptible locking, as the SPROM write might
* be holding the lock for several seconds. So allow userspace
* to cancel operation. */
err = -ERESTARTSYS;
if (mutex_lock_interruptible(&bus->pci_sprom_mutex))
goto out_kfree;
sprom_do_read(bus, sprom);
mutex_unlock(&bus->pci_sprom_mutex);
count = sprom2hex(sprom, buf, PAGE_SIZE, bus->sprom_size);
err = 0;
out_kfree:
kfree(sprom);
out:
return err ? err : count;
}
static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
struct ssb_bus *bus;
u16 *sprom;
int res = 0, err = -ENODEV;
bus = ssb_pci_dev_to_bus(pdev);
if (!bus)
goto out;
err = -ENOMEM;
sprom = kcalloc(bus->sprom_size, sizeof(u16), GFP_KERNEL);
if (!sprom)
goto out;
err = hex2sprom(sprom, buf, count, bus->sprom_size);
if (err) {
err = -EINVAL;
goto out_kfree;
}
err = sprom_check_crc(sprom, bus->sprom_size);
if (err) {
err = -EINVAL;
goto out_kfree;
}
/* Use interruptible locking, as the SPROM write might
* be holding the lock for several seconds. So allow userspace
* to cancel operation. */
err = -ERESTARTSYS;
if (mutex_lock_interruptible(&bus->pci_sprom_mutex))
goto out_kfree;
err = ssb_devices_freeze(bus);
if (err == -EOPNOTSUPP) {
ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze devices. "
"No suspend support. Is CONFIG_PM enabled?\n");
goto out_unlock;
}
if (err) {
ssb_printk(KERN_ERR PFX "SPROM write: Could not freeze all devices\n");
goto out_unlock;
}
res = sprom_do_write(bus, sprom);
err = ssb_devices_thaw(bus);
if (err)
ssb_printk(KERN_ERR PFX "SPROM write: Could not thaw all devices\n");
out_unlock:
mutex_unlock(&bus->pci_sprom_mutex);
out_kfree:
kfree(sprom);
out:
if (res)
return res;
return err ? err : count;
}
static DEVICE_ATTR(ssb_sprom, 0600,
ssb_pci_attr_sprom_show,
ssb_pci_attr_sprom_store);
void ssb_pci_exit(struct ssb_bus *bus)
{
struct pci_dev *pdev;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
pdev = bus->host_pci;
device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
}
int ssb_pci_init(struct ssb_bus *bus)
{
struct pci_dev *pdev;
int err;
if (bus->bustype != SSB_BUSTYPE_PCI)
return 0;
pdev = bus->host_pci;
mutex_init(&bus->pci_sprom_mutex);
err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
if (err)
goto out;
out:
return err;
}

View File

@ -1,104 +0,0 @@
/*
* Sonics Silicon Backplane
* PCI Hostdevice wrapper
*
* Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (c) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (c) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (c) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
* Copyright (c) 2005-2007 Michael Buesch <mbuesch@freenet.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/pci.h>
#include <linux/ssb/ssb.h>
#ifdef CONFIG_PM
static int ssb_pcihost_suspend(struct pci_dev *dev, pm_message_t state)
{
pci_save_state(dev);
pci_disable_device(dev);
pci_set_power_state(dev, pci_choose_state(dev, state));
return 0;
}
static int ssb_pcihost_resume(struct pci_dev *dev)
{
int err;
pci_set_power_state(dev, 0);
err = pci_enable_device(dev);
if (err)
return err;
pci_restore_state(dev);
return 0;
}
#else /* CONFIG_PM */
# define ssb_pcihost_suspend NULL
# define ssb_pcihost_resume NULL
#endif /* CONFIG_PM */
static int ssb_pcihost_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
struct ssb_bus *ssb;
int err = -ENOMEM;
const char *name;
ssb = kzalloc(sizeof(*ssb), GFP_KERNEL);
if (!ssb)
goto out;
err = pci_enable_device(dev);
if (err)
goto err_kfree_ssb;
name = dev->dev.bus_id;
if (dev->driver && dev->driver->name)
name = dev->driver->name;
err = pci_request_regions(dev, name);
if (err)
goto err_pci_disable;
pci_set_master(dev);
err = ssb_bus_pcibus_register(ssb, dev);
if (err)
goto err_pci_release_regions;
pci_set_drvdata(dev, ssb);
out:
return err;
err_pci_release_regions:
pci_release_regions(dev);
err_pci_disable:
pci_disable_device(dev);
err_kfree_ssb:
kfree(ssb);
return err;
}
static void ssb_pcihost_remove(struct pci_dev *dev)
{
struct ssb_bus *ssb = pci_get_drvdata(dev);
ssb_bus_unregister(ssb);
pci_release_regions(dev);
pci_disable_device(dev);
kfree(ssb);
pci_set_drvdata(dev, NULL);
}
int ssb_pcihost_register(struct pci_driver *driver)
{
driver->probe = ssb_pcihost_probe;
driver->remove = ssb_pcihost_remove;
driver->suspend = ssb_pcihost_suspend;
driver->resume = ssb_pcihost_resume;
return pci_register_driver(driver);
}
EXPORT_SYMBOL(ssb_pcihost_register);

View File

@ -1,287 +0,0 @@
/*
* Sonics Silicon Backplane
* PCMCIA-Hostbus related functions
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2007 Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <pcmcia/cisreg.h>
#include "ssb_private.h"
/* Define the following to 1 to enable a printk on each coreswitch. */
#define SSB_VERBOSE_PCMCIACORESWITCH_DEBUG 0
int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
struct pcmcia_device *pdev = bus->host_pcmcia;
int err;
int attempts = 0;
u32 cur_core;
conf_reg_t reg;
u32 addr;
u32 read_addr;
addr = (coreidx * SSB_CORE_SIZE) + SSB_ENUM_BASE;
while (1) {
reg.Action = CS_WRITE;
reg.Offset = 0x2E;
reg.Value = (addr & 0x0000F000) >> 12;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x30;
reg.Value = (addr & 0x00FF0000) >> 16;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Offset = 0x32;
reg.Value = (addr & 0xFF000000) >> 24;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr = 0;
reg.Action = CS_READ;
reg.Offset = 0x2E;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)(reg.Value & 0x0F)) << 12;
reg.Offset = 0x30;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)reg.Value) << 16;
reg.Offset = 0x32;
err = pcmcia_access_configuration_register(pdev, &reg);
if (err != CS_SUCCESS)
goto error;
read_addr |= ((u32)reg.Value) << 24;
cur_core = (read_addr - SSB_ENUM_BASE) / SSB_CORE_SIZE;
if (cur_core == coreidx)
break;
if (attempts++ > SSB_BAR0_MAX_RETRIES)
goto error;
udelay(10);
}
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
return -ENODEV;
}
int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
int err;
#if SSB_VERBOSE_PCMCIACORESWITCH_DEBUG
ssb_printk(KERN_INFO PFX
"Switching to %s core, index %d\n",
ssb_core_name(dev->id.coreid),
dev->core_index);
#endif
err = ssb_pcmcia_switch_coreidx(bus, dev->core_index);
if (!err)
bus->mapped_device = dev;
return err;
}
int ssb_pcmcia_switch_segment(struct ssb_bus *bus, u8 seg)
{
int attempts = 0;
conf_reg_t reg;
int res;
SSB_WARN_ON((seg != 0) && (seg != 1));
reg.Offset = 0x34;
reg.Function = 0;
while (1) {
reg.Action = CS_WRITE;
reg.Value = seg;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
reg.Value = 0xFF;
reg.Action = CS_READ;
res = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (unlikely(res != CS_SUCCESS))
goto error;
if (reg.Value == seg)
break;
if (unlikely(attempts++ > SSB_BAR0_MAX_RETRIES))
goto error;
udelay(10);
}
bus->mapped_pcmcia_seg = seg;
return 0;
error:
ssb_printk(KERN_ERR PFX "Failed to switch pcmcia segment\n");
return -ENODEV;
}
static int select_core_and_segment(struct ssb_device *dev,
u16 *offset)
{
struct ssb_bus *bus = dev->bus;
int err;
u8 need_segment;
if (*offset >= 0x800) {
*offset -= 0x800;
need_segment = 1;
} else
need_segment = 0;
if (unlikely(dev != bus->mapped_device)) {
err = ssb_pcmcia_switch_core(bus, dev);
if (unlikely(err))
return err;
}
if (unlikely(need_segment != bus->mapped_pcmcia_seg)) {
err = ssb_pcmcia_switch_segment(bus, need_segment);
if (unlikely(err))
return err;
}
return 0;
}
static u16 ssb_pcmcia_read16(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u16 value = 0xFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
value = readw(bus->mmio + offset);
spin_unlock_irqrestore(&bus->bar_lock, flags);
return value;
}
static u32 ssb_pcmcia_read32(struct ssb_device *dev, u16 offset)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
u32 lo = 0xFFFFFFFF, hi = 0xFFFFFFFF;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
lo = readw(bus->mmio + offset);
hi = readw(bus->mmio + offset + 2);
}
spin_unlock_irqrestore(&bus->bar_lock, flags);
return (lo | (hi << 16));
}
static void ssb_pcmcia_write16(struct ssb_device *dev, u16 offset, u16 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err))
writew(value, bus->mmio + offset);
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
static void ssb_pcmcia_write32(struct ssb_device *dev, u16 offset, u32 value)
{
struct ssb_bus *bus = dev->bus;
unsigned long flags;
int err;
spin_lock_irqsave(&bus->bar_lock, flags);
err = select_core_and_segment(dev, &offset);
if (likely(!err)) {
writew((value & 0x0000FFFF), bus->mmio + offset);
writew(((value & 0xFFFF0000) >> 16), bus->mmio + offset + 2);
}
mmiowb();
spin_unlock_irqrestore(&bus->bar_lock, flags);
}
/* Not "static", as it's used in main.c */
const struct ssb_bus_ops ssb_pcmcia_ops = {
.read16 = ssb_pcmcia_read16,
.read32 = ssb_pcmcia_read32,
.write16 = ssb_pcmcia_write16,
.write32 = ssb_pcmcia_write32,
};
#include <linux/etherdevice.h>
int ssb_pcmcia_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv)
{
//TODO
random_ether_addr(iv->sprom.il0mac);
return 0;
}
int ssb_pcmcia_init(struct ssb_bus *bus)
{
conf_reg_t reg;
int err;
if (bus->bustype != SSB_BUSTYPE_PCMCIA)
return 0;
/* Switch segment to a known state and sync
* bus->mapped_pcmcia_seg with hardware state. */
ssb_pcmcia_switch_segment(bus, 0);
/* Init IRQ routing */
reg.Action = CS_READ;
reg.Function = 0;
if (bus->chip_id == 0x4306)
reg.Offset = 0x00;
else
reg.Offset = 0x80;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
reg.Action = CS_WRITE;
reg.Value |= 0x04 | 0x01;
err = pcmcia_access_configuration_register(bus->host_pcmcia, &reg);
if (err != CS_SUCCESS)
goto error;
return 0;
error:
return -ENODEV;
}

View File

@ -1,424 +0,0 @@
/*
* Sonics Silicon Backplane
* Bus scanning
*
* Copyright (C) 2005-2007 Michael Buesch <mb@bu3sch.de>
* Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
* Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
* Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
* Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
* Copyright (C) 2006 Broadcom Corporation.
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
#include "ssb_private.h"
const char *ssb_core_name(u16 coreid)
{
switch (coreid) {
case SSB_DEV_CHIPCOMMON:
return "ChipCommon";
case SSB_DEV_ILINE20:
return "ILine 20";
case SSB_DEV_SDRAM:
return "SDRAM";
case SSB_DEV_PCI:
return "PCI";
case SSB_DEV_MIPS:
return "MIPS";
case SSB_DEV_ETHERNET:
return "Fast Ethernet";
case SSB_DEV_V90:
return "V90";
case SSB_DEV_USB11_HOSTDEV:
return "USB 1.1 Hostdev";
case SSB_DEV_ADSL:
return "ADSL";
case SSB_DEV_ILINE100:
return "ILine 100";
case SSB_DEV_IPSEC:
return "IPSEC";
case SSB_DEV_PCMCIA:
return "PCMCIA";
case SSB_DEV_INTERNAL_MEM:
return "Internal Memory";
case SSB_DEV_MEMC_SDRAM:
return "MEMC SDRAM";
case SSB_DEV_EXTIF:
return "EXTIF";
case SSB_DEV_80211:
return "IEEE 802.11";
case SSB_DEV_MIPS_3302:
return "MIPS 3302";
case SSB_DEV_USB11_HOST:
return "USB 1.1 Host";
case SSB_DEV_USB11_DEV:
return "USB 1.1 Device";
case SSB_DEV_USB20_HOST:
return "USB 2.0 Host";
case SSB_DEV_USB20_DEV:
return "USB 2.0 Device";
case SSB_DEV_SDIO_HOST:
return "SDIO Host";
case SSB_DEV_ROBOSWITCH:
return "Roboswitch";
case SSB_DEV_PARA_ATA:
return "PATA";
case SSB_DEV_SATA_XORDMA:
return "SATA XOR-DMA";
case SSB_DEV_ETHERNET_GBIT:
return "GBit Ethernet";
case SSB_DEV_PCIE:
return "PCI-E";
case SSB_DEV_MIMO_PHY:
return "MIMO PHY";
case SSB_DEV_SRAM_CTRLR:
return "SRAM Controller";
case SSB_DEV_MINI_MACPHY:
return "Mini MACPHY";
case SSB_DEV_ARM_1176:
return "ARM 1176";
case SSB_DEV_ARM_7TDMI:
return "ARM 7TDMI";
}
return "UNKNOWN";
}
static u16 pcidev_to_chipid(struct pci_dev *pci_dev)
{
u16 chipid_fallback = 0;
switch (pci_dev->device) {
case 0x4301:
chipid_fallback = 0x4301;
break;
case 0x4305 ... 0x4307:
chipid_fallback = 0x4307;
break;
case 0x4403:
chipid_fallback = 0x4402;
break;
case 0x4610 ... 0x4615:
chipid_fallback = 0x4610;
break;
case 0x4710 ... 0x4715:
chipid_fallback = 0x4710;
break;
case 0x4320 ... 0x4325:
chipid_fallback = 0x4309;
break;
case PCI_DEVICE_ID_BCM4401:
case PCI_DEVICE_ID_BCM4401B0:
case PCI_DEVICE_ID_BCM4401B1:
chipid_fallback = 0x4401;
break;
default:
ssb_printk(KERN_ERR PFX
"PCI-ID not in fallback list\n");
}
return chipid_fallback;
}
static u8 chipid_to_nrcores(u16 chipid)
{
switch (chipid) {
case 0x5365:
return 7;
case 0x4306:
return 6;
case 0x4310:
return 8;
case 0x4307:
case 0x4301:
return 5;
case 0x4401:
case 0x4402:
return 3;
case 0x4710:
case 0x4610:
case 0x4704:
return 9;
default:
ssb_printk(KERN_ERR PFX
"CHIPID not in nrcores fallback list\n");
}
return 1;
}
static u32 scan_read32(struct ssb_bus *bus, u8 current_coreidx,
u16 offset)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
offset += current_coreidx * SSB_CORE_SIZE;
break;
case SSB_BUSTYPE_PCI:
break;
case SSB_BUSTYPE_PCMCIA:
if (offset >= 0x800) {
ssb_pcmcia_switch_segment(bus, 1);
offset -= 0x800;
} else
ssb_pcmcia_switch_segment(bus, 0);
break;
}
return readl(bus->mmio + offset);
}
static int scan_switchcore(struct ssb_bus *bus, u8 coreidx)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
break;
case SSB_BUSTYPE_PCI:
return ssb_pci_switch_coreidx(bus, coreidx);
case SSB_BUSTYPE_PCMCIA:
return ssb_pcmcia_switch_coreidx(bus, coreidx);
}
return 0;
}
void ssb_iounmap(struct ssb_bus *bus)
{
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
case SSB_BUSTYPE_PCMCIA:
iounmap(bus->mmio);
break;
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
pci_iounmap(bus->host_pci, bus->mmio);
#else
SSB_BUG_ON(1); /* Can't reach this code. */
#endif
break;
}
bus->mmio = NULL;
bus->mapped_device = NULL;
}
static void __iomem *ssb_ioremap(struct ssb_bus *bus,
unsigned long baseaddr)
{
void __iomem *mmio = NULL;
switch (bus->bustype) {
case SSB_BUSTYPE_SSB:
/* Only map the first core for now. */
/* fallthrough... */
case SSB_BUSTYPE_PCMCIA:
mmio = ioremap(baseaddr, SSB_CORE_SIZE);
break;
case SSB_BUSTYPE_PCI:
#ifdef CONFIG_SSB_PCIHOST
mmio = pci_iomap(bus->host_pci, 0, ~0UL);
#else
SSB_BUG_ON(1); /* Can't reach this code. */
#endif
break;
}
return mmio;
}
static int we_support_multiple_80211_cores(struct ssb_bus *bus)
{
/* More than one 802.11 core is only supported by special chips.
* There are chips with two 802.11 cores, but with dangling
* pins on the second core. Be careful and reject them here.
*/
#ifdef CONFIG_SSB_PCIHOST
if (bus->bustype == SSB_BUSTYPE_PCI) {
if (bus->host_pci->vendor == PCI_VENDOR_ID_BROADCOM &&
bus->host_pci->device == 0x4324)
return 1;
}
#endif /* CONFIG_SSB_PCIHOST */
return 0;
}
int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr)
{
int err = -ENOMEM;
void __iomem *mmio;
u32 idhi, cc, rev, tmp;
int dev_i, i;
struct ssb_device *dev;
int nr_80211_cores = 0;
mmio = ssb_ioremap(bus, baseaddr);
if (!mmio)
goto out;
bus->mmio = mmio;
err = scan_switchcore(bus, 0); /* Switch to first core */
if (err)
goto err_unmap;
idhi = scan_read32(bus, 0, SSB_IDHIGH);
cc = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
rev = (idhi & SSB_IDHIGH_RCLO);
rev |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
bus->nr_devices = 0;
if (cc == SSB_DEV_CHIPCOMMON) {
tmp = scan_read32(bus, 0, SSB_CHIPCO_CHIPID);
bus->chip_id = (tmp & SSB_CHIPCO_IDMASK);
bus->chip_rev = (tmp & SSB_CHIPCO_REVMASK) >>
SSB_CHIPCO_REVSHIFT;
bus->chip_package = (tmp & SSB_CHIPCO_PACKMASK) >>
SSB_CHIPCO_PACKSHIFT;
if (rev >= 4) {
bus->nr_devices = (tmp & SSB_CHIPCO_NRCORESMASK) >>
SSB_CHIPCO_NRCORESSHIFT;
}
tmp = scan_read32(bus, 0, SSB_CHIPCO_CAP);
bus->chipco.capabilities = tmp;
} else {
if (bus->bustype == SSB_BUSTYPE_PCI) {
bus->chip_id = pcidev_to_chipid(bus->host_pci);
pci_read_config_word(bus->host_pci, PCI_REVISION_ID,
&bus->chip_rev);
bus->chip_package = 0;
} else {
bus->chip_id = 0x4710;
bus->chip_rev = 0;
bus->chip_package = 0;
}
}
if (!bus->nr_devices)
bus->nr_devices = chipid_to_nrcores(bus->chip_id);
if (bus->nr_devices > ARRAY_SIZE(bus->devices)) {
ssb_printk(KERN_ERR PFX
"More than %d ssb cores found (%d)\n",
SSB_MAX_NR_CORES, bus->nr_devices);
goto err_unmap;
}
if (bus->bustype == SSB_BUSTYPE_SSB) {
/* Now that we know the number of cores,
* remap the whole IO space for all cores.
*/
err = -ENOMEM;
iounmap(mmio);
mmio = ioremap(baseaddr, SSB_CORE_SIZE * bus->nr_devices);
if (!mmio)
goto out;
bus->mmio = mmio;
}
/* Fetch basic information about each core/device */
for (i = 0, dev_i = 0; i < bus->nr_devices; i++) {
err = scan_switchcore(bus, i);
if (err)
goto err_unmap;
dev = &(bus->devices[dev_i]);
idhi = scan_read32(bus, i, SSB_IDHIGH);
dev->id.coreid = (idhi & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
dev->id.revision = (idhi & SSB_IDHIGH_RCLO);
dev->id.revision |= (idhi & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT;
dev->id.vendor = (idhi & SSB_IDHIGH_VC) >> SSB_IDHIGH_VC_SHIFT;
dev->core_index = i;
dev->bus = bus;
dev->ops = bus->ops;
ssb_dprintk(KERN_INFO PFX
"Core %d found: %s "
"(cc 0x%03X, rev 0x%02X, vendor 0x%04X)\n",
i, ssb_core_name(dev->id.coreid),
dev->id.coreid, dev->id.revision, dev->id.vendor);
switch (dev->id.coreid) {
case SSB_DEV_80211:
nr_80211_cores++;
if (nr_80211_cores > 1) {
if (!we_support_multiple_80211_cores(bus)) {
ssb_dprintk(KERN_INFO PFX "Ignoring additional "
"802.11 core\n");
continue;
}
}
break;
case SSB_DEV_EXTIF:
#ifdef CONFIG_SSB_DRIVER_EXTIF
if (bus->extif.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple EXTIFs found\n");
break;
}
bus->extif.dev = dev;
#endif /* CONFIG_SSB_DRIVER_EXTIF */
break;
case SSB_DEV_CHIPCOMMON:
if (bus->chipco.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple ChipCommon found\n");
break;
}
bus->chipco.dev = dev;
break;
case SSB_DEV_MIPS:
case SSB_DEV_MIPS_3302:
#ifdef CONFIG_SSB_DRIVER_MIPS
if (bus->mipscore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple MIPS cores found\n");
break;
}
bus->mipscore.dev = dev;
#endif /* CONFIG_SSB_DRIVER_MIPS */
break;
case SSB_DEV_PCI:
case SSB_DEV_PCIE:
#ifdef CONFIG_SSB_DRIVER_PCICORE
if (bus->bustype == SSB_BUSTYPE_PCI) {
/* Ignore PCI cores on PCI-E cards.
* Ignore PCI-E cores on PCI cards. */
if (dev->id.coreid == SSB_DEV_PCI) {
if (bus->host_pci->is_pcie)
continue;
} else {
if (!bus->host_pci->is_pcie)
continue;
}
}
if (bus->pcicore.dev) {
ssb_printk(KERN_WARNING PFX
"WARNING: Multiple PCI(E) cores found\n");
break;
}
bus->pcicore.dev = dev;
#endif /* CONFIG_SSB_DRIVER_PCICORE */
break;
default:
break;
}
dev_i++;
}
bus->nr_devices = dev_i;
err = 0;
out:
return err;
err_unmap:
ssb_iounmap(bus);
goto out;
}

View File

@ -1,136 +0,0 @@
#ifndef LINUX_SSB_PRIVATE_H_
#define LINUX_SSB_PRIVATE_H_
#include <linux/ssb/ssb.h>
#include <linux/types.h>
#define PFX "ssb: "
#ifdef CONFIG_SSB_SILENT
# define ssb_printk(fmt, x...) do { /* nothing */ } while (0)
#else
# define ssb_printk printk
#endif /* CONFIG_SSB_SILENT */
/* dprintk: Debugging printk; vanishes for non-debug compilation */
#ifdef CONFIG_SSB_DEBUG
# define ssb_dprintk(fmt, x...) ssb_printk(fmt , ##x)
#else
# define ssb_dprintk(fmt, x...) do { /* nothing */ } while (0)
#endif
#ifdef CONFIG_SSB_DEBUG
# define SSB_WARN_ON(x) WARN_ON(x)
# define SSB_BUG_ON(x) BUG_ON(x)
#else
static inline int __ssb_do_nothing(int x) { return x; }
# define SSB_WARN_ON(x) __ssb_do_nothing(unlikely(!!(x)))
# define SSB_BUG_ON(x) __ssb_do_nothing(unlikely(!!(x)))
#endif
/* pci.c */
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on);
extern int ssb_pci_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
extern void ssb_pci_exit(struct ssb_bus *bus);
extern int ssb_pci_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pci_ops;
#else /* CONFIG_SSB_PCIHOST */
static inline int ssb_pci_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pci_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pci_xtal(struct ssb_bus *bus, u32 what,
int turn_on)
{
return 0;
}
static inline void ssb_pci_exit(struct ssb_bus *bus)
{
}
static inline int ssb_pci_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCIHOST */
/* pcmcia.c */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev);
extern int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx);
extern int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg);
extern int ssb_pcmcia_get_invariants(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
extern int ssb_pcmcia_init(struct ssb_bus *bus);
extern const struct ssb_bus_ops ssb_pcmcia_ops;
#else /* CONFIG_SSB_PCMCIAHOST */
static inline int ssb_pcmcia_switch_core(struct ssb_bus *bus,
struct ssb_device *dev)
{
return 0;
}
static inline int ssb_pcmcia_switch_coreidx(struct ssb_bus *bus,
u8 coreidx)
{
return 0;
}
static inline int ssb_pcmcia_switch_segment(struct ssb_bus *bus,
u8 seg)
{
return 0;
}
static inline int ssb_pcmcia_init(struct ssb_bus *bus)
{
return 0;
}
#endif /* CONFIG_SSB_PCMCIAHOST */
/* scan.c */
extern const char *ssb_core_name(u16 coreid);
extern int ssb_bus_scan(struct ssb_bus *bus,
unsigned long baseaddr);
extern void ssb_iounmap(struct ssb_bus *ssb);
/* core.c */
extern u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m);
extern int ssb_devices_freeze(struct ssb_bus *bus);
extern int ssb_devices_thaw(struct ssb_bus *bus);
extern struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev);
/* b43_pci_bridge.c */
#ifdef CONFIG_SSB_PCIHOST
extern int __init b43_pci_ssb_bridge_init(void);
extern void __exit b43_pci_ssb_bridge_exit(void);
#else /* CONFIG_SSB_PCIHOST */
static inline int b43_pci_ssb_bridge_init(void)
{
return 0;
}
static inline void b43_pci_ssb_bridge_exit(void)
{
}
#endif /* CONFIG_SSB_PCIHOST */
#endif /* LINUX_SSB_PRIVATE_H_ */

View File

@ -1,35 +0,0 @@
/*
* Definitions for the GPIO buttons interface driver
*
* Copyright (C) 2007,2008 Gabor Juhos <juhosg at openwrt.org>
*
* This file was based on: /include/linux/gpio_keys.h
* The original gpio_keys.h seems not to have a license.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#ifndef _GPIO_BUTTONS_H_
#define _GPIO_BUTTONS_H_
struct gpio_button {
int gpio; /* GPIO line number */
int active_low;
char *desc; /* button description */
int type; /* input event type (EV_KEY, EV_SW) */
int code; /* input event code (KEY_*, SW_*) */
int count;
int threshold; /* count threshold */
};
struct gpio_buttons_platform_data {
struct gpio_button *buttons;
int nbuttons; /* number of buttons */
int poll_interval; /* polling interval */
};
#endif /* _GPIO_BUTTONS_H_ */

View File

@ -1,11 +0,0 @@
#ifndef _GPIODEV_H__
#define _GPIODEV_H__
#define IOC_GPIODEV_MAGIC 'B'
#define GPIO_GET _IO(IOC_GPIODEV_MAGIC, 10)
#define GPIO_SET _IO(IOC_GPIODEV_MAGIC, 11)
#define GPIO_CLEAR _IO(IOC_GPIODEV_MAGIC, 12)
#define GPIO_DIR_IN _IO(IOC_GPIODEV_MAGIC, 13)
#define GPIO_DIR_OUT _IO(IOC_GPIODEV_MAGIC, 14)
#endif

View File

@ -1,53 +0,0 @@
/*
* spi_gpio interface to platform code
*
* Copyright (c) 2008 Piotr Skamruk
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _LINUX_SPI_SPI_GPIO
#define _LINUX_SPI_SPI_GPIO
#include <linux/types.h>
#include <linux/spi/spi.h>
/** struct spi_gpio_platform_data - Data definitions for a SPI-GPIO device.
* This structure holds information about a GPIO-based SPI device.
*
* @pin_clk: The GPIO pin number of the CLOCK pin.
*
* @pin_miso: The GPIO pin number of the MISO pin.
*
* @pin_mosi: The GPIO pin number of the MOSI pin.
*
* @pin_cs: The GPIO pin number of the CHIPSELECT pin.
*
* @cs_activelow: If true, the chip is selected when the CS line is low.
*
* @no_spi_delay: If true, no delay is done in the lowlevel bitbanging.
* Note that doing no delay is not standards compliant,
* but it might be needed to speed up transfers on some
* slow embedded machines.
*
* @boardinfo_setup: This callback is called after the
* SPI master device was registered, but before the
* device is registered.
* @boardinfo_setup_data: Data argument passed to boardinfo_setup().
*/
struct spi_gpio_platform_data {
unsigned int pin_clk;
unsigned int pin_miso;
unsigned int pin_mosi;
unsigned int pin_cs;
bool cs_activelow;
bool no_spi_delay;
int (*boardinfo_setup)(struct spi_board_info *bi,
struct spi_master *master,
void *data);
void *boardinfo_setup_data;
};
#endif /* _LINUX_SPI_SPI_GPIO */

View File

@ -1,404 +0,0 @@
#ifndef LINUX_SSB_H_
#define LINUX_SSB_H_
#include <linux/device.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/mod_devicetable.h>
#include <linux/ssb/ssb_regs.h>
struct pcmcia_device;
struct ssb_bus;
struct ssb_driver;
struct ssb_sprom {
u8 revision;
u8 il0mac[6]; /* MAC address for 802.11b/g */
u8 et0mac[6]; /* MAC address for Ethernet */
u8 et1mac[6]; /* MAC address for 802.11a */
u8 et0phyaddr; /* MII address for enet0 */
u8 et1phyaddr; /* MII address for enet1 */
u8 et0mdcport; /* MDIO for enet0 */
u8 et1mdcport; /* MDIO for enet1 */
u8 board_rev; /* Board revision number from SPROM. */
u8 country_code; /* Country Code */
u8 ant_available_a; /* A-PHY antenna available bits (up to 4) */
u8 ant_available_bg; /* B/G-PHY antenna available bits (up to 4) */
u16 pa0b0;
u16 pa0b1;
u16 pa0b2;
u16 pa1b0;
u16 pa1b1;
u16 pa1b2;
u8 gpio0; /* GPIO pin 0 */
u8 gpio1; /* GPIO pin 1 */
u8 gpio2; /* GPIO pin 2 */
u8 gpio3; /* GPIO pin 3 */
u16 maxpwr_a; /* A-PHY Amplifier Max Power (in dBm Q5.2) */
u16 maxpwr_bg; /* B/G-PHY Amplifier Max Power (in dBm Q5.2) */
u8 itssi_a; /* Idle TSSI Target for A-PHY */
u8 itssi_bg; /* Idle TSSI Target for B/G-PHY */
u16 boardflags_lo; /* Boardflags (low 16 bits) */
u16 boardflags_hi; /* Boardflags (high 16 bits) */
/* Antenna gain values for up to 4 antennas
* on each band. Values in dBm/4 (Q5.2). Negative gain means the
* loss in the connectors is bigger than the gain. */
struct {
struct {
s8 a0, a1, a2, a3;
} ghz24; /* 2.4GHz band */
struct {
s8 a0, a1, a2, a3;
} ghz5; /* 5GHz band */
} antenna_gain;
/* TODO - add any parameters needed from rev 2, 3, or 4 SPROMs */
};
/* Information about the PCB the circuitry is soldered on. */
struct ssb_boardinfo {
u16 vendor;
u16 type;
u16 rev;
};
struct ssb_device;
/* Lowlevel read/write operations on the device MMIO.
* Internal, don't use that outside of ssb. */
struct ssb_bus_ops {
u16 (*read16)(struct ssb_device *dev, u16 offset);
u32 (*read32)(struct ssb_device *dev, u16 offset);
void (*write16)(struct ssb_device *dev, u16 offset, u16 value);
void (*write32)(struct ssb_device *dev, u16 offset, u32 value);
};
/* Core-ID values. */
#define SSB_DEV_CHIPCOMMON 0x800
#define SSB_DEV_ILINE20 0x801
#define SSB_DEV_SDRAM 0x803
#define SSB_DEV_PCI 0x804
#define SSB_DEV_MIPS 0x805
#define SSB_DEV_ETHERNET 0x806
#define SSB_DEV_V90 0x807
#define SSB_DEV_USB11_HOSTDEV 0x808
#define SSB_DEV_ADSL 0x809
#define SSB_DEV_ILINE100 0x80A
#define SSB_DEV_IPSEC 0x80B
#define SSB_DEV_PCMCIA 0x80D
#define SSB_DEV_INTERNAL_MEM 0x80E
#define SSB_DEV_MEMC_SDRAM 0x80F
#define SSB_DEV_EXTIF 0x811
#define SSB_DEV_80211 0x812
#define SSB_DEV_MIPS_3302 0x816
#define SSB_DEV_USB11_HOST 0x817
#define SSB_DEV_USB11_DEV 0x818
#define SSB_DEV_USB20_HOST 0x819
#define SSB_DEV_USB20_DEV 0x81A
#define SSB_DEV_SDIO_HOST 0x81B
#define SSB_DEV_ROBOSWITCH 0x81C
#define SSB_DEV_PARA_ATA 0x81D
#define SSB_DEV_SATA_XORDMA 0x81E
#define SSB_DEV_ETHERNET_GBIT 0x81F
#define SSB_DEV_PCIE 0x820
#define SSB_DEV_MIMO_PHY 0x821
#define SSB_DEV_SRAM_CTRLR 0x822
#define SSB_DEV_MINI_MACPHY 0x823
#define SSB_DEV_ARM_1176 0x824
#define SSB_DEV_ARM_7TDMI 0x825
/* Vendor-ID values */
#define SSB_VENDOR_BROADCOM 0x4243
/* Some kernel subsystems poke with dev->drvdata, so we must use the
* following ugly workaround to get from struct device to struct ssb_device */
struct __ssb_dev_wrapper {
struct device dev;
struct ssb_device *sdev;
};
struct ssb_device {
/* Having a copy of the ops pointer in each dev struct
* is an optimization. */
const struct ssb_bus_ops *ops;
struct device *dev;
struct ssb_bus *bus;
struct ssb_device_id id;
u8 core_index;
unsigned int irq;
/* Internal-only stuff follows. */
void *drvdata; /* Per-device data */
void *devtypedata; /* Per-devicetype (eg 802.11) data */
};
/* Go from struct device to struct ssb_device. */
static inline
struct ssb_device * dev_to_ssb_dev(struct device *dev)
{
struct __ssb_dev_wrapper *wrap;
wrap = container_of(dev, struct __ssb_dev_wrapper, dev);
return wrap->sdev;
}
/* Device specific user data */
static inline
void ssb_set_drvdata(struct ssb_device *dev, void *data)
{
dev->drvdata = data;
}
static inline
void * ssb_get_drvdata(struct ssb_device *dev)
{
return dev->drvdata;
}
/* Devicetype specific user data. This is per device-type (not per device) */
void ssb_set_devtypedata(struct ssb_device *dev, void *data);
static inline
void * ssb_get_devtypedata(struct ssb_device *dev)
{
return dev->devtypedata;
}
struct ssb_driver {
const char *name;
const struct ssb_device_id *id_table;
int (*probe)(struct ssb_device *dev, const struct ssb_device_id *id);
void (*remove)(struct ssb_device *dev);
int (*suspend)(struct ssb_device *dev, pm_message_t state);
int (*resume)(struct ssb_device *dev);
void (*shutdown)(struct ssb_device *dev);
struct device_driver drv;
};
#define drv_to_ssb_drv(_drv) container_of(_drv, struct ssb_driver, drv)
extern int __ssb_driver_register(struct ssb_driver *drv, struct module *owner);
static inline int ssb_driver_register(struct ssb_driver *drv)
{
return __ssb_driver_register(drv, THIS_MODULE);
}
extern void ssb_driver_unregister(struct ssb_driver *drv);
enum ssb_bustype {
SSB_BUSTYPE_SSB, /* This SSB bus is the system bus */
SSB_BUSTYPE_PCI, /* SSB is connected to PCI bus */
SSB_BUSTYPE_PCMCIA, /* SSB is connected to PCMCIA bus */
};
/* board_vendor */
#define SSB_BOARDVENDOR_BCM 0x14E4 /* Broadcom */
#define SSB_BOARDVENDOR_DELL 0x1028 /* Dell */
#define SSB_BOARDVENDOR_HP 0x0E11 /* HP */
/* board_type */
#define SSB_BOARD_BCM94306MP 0x0418
#define SSB_BOARD_BCM4309G 0x0421
#define SSB_BOARD_BCM4306CB 0x0417
#define SSB_BOARD_BCM4309MP 0x040C
#define SSB_BOARD_MP4318 0x044A
#define SSB_BOARD_BU4306 0x0416
#define SSB_BOARD_BU4309 0x040A
/* chip_package */
#define SSB_CHIPPACK_BCM4712S 1 /* Small 200pin 4712 */
#define SSB_CHIPPACK_BCM4712M 2 /* Medium 225pin 4712 */
#define SSB_CHIPPACK_BCM4712L 0 /* Large 340pin 4712 */
#include <linux/ssb/ssb_driver_chipcommon.h>
#include <linux/ssb/ssb_driver_mips.h>
#include <linux/ssb/ssb_driver_extif.h>
#include <linux/ssb/ssb_driver_pci.h>
struct ssb_bus {
/* The MMIO area. */
void __iomem *mmio;
const struct ssb_bus_ops *ops;
/* The core in the basic address register window. (PCI bus only) */
struct ssb_device *mapped_device;
/* Currently mapped PCMCIA segment. (bustype == SSB_BUSTYPE_PCMCIA only) */
u8 mapped_pcmcia_seg;
/* Lock for core and segment switching.
* On PCMCIA-host busses this is used to protect the whole MMIO access. */
spinlock_t bar_lock;
/* The bus this backplane is running on. */
enum ssb_bustype bustype;
/* Pointer to the PCI bus (only valid if bustype == SSB_BUSTYPE_PCI). */
struct pci_dev *host_pci;
/* Pointer to the PCMCIA device (only if bustype == SSB_BUSTYPE_PCMCIA). */
struct pcmcia_device *host_pcmcia;
#ifdef CONFIG_SSB_PCIHOST
/* Mutex to protect the SPROM writing. */
struct mutex pci_sprom_mutex;
#endif
/* ID information about the Chip. */
u16 chip_id;
u16 chip_rev;
u16 sprom_size; /* number of words in sprom */
u8 chip_package;
/* List of devices (cores) on the backplane. */
struct ssb_device devices[SSB_MAX_NR_CORES];
u8 nr_devices;
/* Reference count. Number of suspended devices. */
u8 suspend_cnt;
/* Software ID number for this bus. */
unsigned int busnumber;
/* The ChipCommon device (if available). */
struct ssb_chipcommon chipco;
/* The PCI-core device (if available). */
struct ssb_pcicore pcicore;
/* The MIPS-core device (if available). */
struct ssb_mipscore mipscore;
/* The EXTif-core device (if available). */
struct ssb_extif extif;
/* The following structure elements are not available in early
* SSB initialization. Though, they are available for regular
* registered drivers at any stage. So be careful when
* using them in the ssb core code. */
/* ID information about the PCB. */
struct ssb_boardinfo boardinfo;
/* Contents of the SPROM. */
struct ssb_sprom sprom;
/* Internal-only stuff follows. Do not touch. */
struct list_head list;
#ifdef CONFIG_SSB_DEBUG
/* Is the bus already powered up? */
bool powered_up;
int power_warn_count;
#endif /* DEBUG */
};
/* The initialization-invariants. */
struct ssb_init_invariants {
struct ssb_boardinfo boardinfo;
struct ssb_sprom sprom;
};
/* Type of function to fetch the invariants. */
typedef int (*ssb_invariants_func_t)(struct ssb_bus *bus,
struct ssb_init_invariants *iv);
/* Register a SSB system bus. get_invariants() is called after the
* basic system devices are initialized.
* The invariants are usually fetched from some NVRAM.
* Put the invariants into the struct pointed to by iv. */
extern int ssb_bus_ssbbus_register(struct ssb_bus *bus,
unsigned long baseaddr,
ssb_invariants_func_t get_invariants);
#ifdef CONFIG_SSB_PCIHOST
extern int ssb_bus_pcibus_register(struct ssb_bus *bus,
struct pci_dev *host_pci);
#endif /* CONFIG_SSB_PCIHOST */
#ifdef CONFIG_SSB_PCMCIAHOST
extern int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
struct pcmcia_device *pcmcia_dev,
unsigned long baseaddr);
#endif /* CONFIG_SSB_PCMCIAHOST */
extern void ssb_bus_unregister(struct ssb_bus *bus);
extern u32 ssb_clockspeed(struct ssb_bus *bus);
/* Is the device enabled in hardware? */
int ssb_device_is_enabled(struct ssb_device *dev);
/* Enable a device and pass device-specific SSB_TMSLOW flags.
* If no device-specific flags are available, use 0. */
void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags);
/* Disable a device in hardware and pass SSB_TMSLOW flags (if any). */
void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags);
/* Device MMIO register read/write functions. */
static inline u16 ssb_read16(struct ssb_device *dev, u16 offset)
{
return dev->ops->read16(dev, offset);
}
static inline u32 ssb_read32(struct ssb_device *dev, u16 offset)
{
return dev->ops->read32(dev, offset);
}
static inline void ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
{
dev->ops->write16(dev, offset, value);
}
static inline void ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
{
dev->ops->write32(dev, offset, value);
}
/* Translation (routing) bits that need to be ORed to DMA
* addresses before they are given to a device. */
extern u32 ssb_dma_translation(struct ssb_device *dev);
#define SSB_DMA_TRANSLATION_MASK 0xC0000000
#define SSB_DMA_TRANSLATION_SHIFT 30
extern int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask);
#ifdef CONFIG_SSB_PCIHOST
/* PCI-host wrapper driver */
extern int ssb_pcihost_register(struct pci_driver *driver);
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
pci_unregister_driver(driver);
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
if (sdev->bus->bustype == SSB_BUSTYPE_PCI)
pci_set_power_state(sdev->bus->host_pci, state);
}
#else
static inline void ssb_pcihost_unregister(struct pci_driver *driver)
{
}
static inline
void ssb_pcihost_set_power_state(struct ssb_device *sdev, pci_power_t state)
{
}
#endif /* CONFIG_SSB_PCIHOST */
/* If a driver is shutdown or suspended, call this to signal
* that the bus may be completely powered down. SSB will decide,
* if it's really time to power down the bus, based on if there
* are other devices that want to run. */
extern int ssb_bus_may_powerdown(struct ssb_bus *bus);
/* Before initializing and enabling a device, call this to power-up the bus.
* If you want to allow use of dynamic-power-control, pass the flag.
* Otherwise static always-on powercontrol will be used. */
extern int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl);
/* Various helper functions */
extern u32 ssb_admatch_base(u32 adm);
extern u32 ssb_admatch_size(u32 adm);
#endif /* LINUX_SSB_H_ */

View File

@ -1,396 +0,0 @@
#ifndef LINUX_SSB_CHIPCO_H_
#define LINUX_SSB_CHIPCO_H_
/* SonicsSiliconBackplane CHIPCOMMON core hardware definitions
*
* The chipcommon core provides chip identification, SB control,
* jtag, 0/1/2 uarts, clock frequency control, a watchdog interrupt timer,
* gpio interface, extbus, and support for serial and parallel flashes.
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GPL version 2. See COPYING for details.
*/
/** ChipCommon core registers. **/
#define SSB_CHIPCO_CHIPID 0x0000
#define SSB_CHIPCO_IDMASK 0x0000FFFF
#define SSB_CHIPCO_REVMASK 0x000F0000
#define SSB_CHIPCO_REVSHIFT 16
#define SSB_CHIPCO_PACKMASK 0x00F00000
#define SSB_CHIPCO_PACKSHIFT 20
#define SSB_CHIPCO_NRCORESMASK 0x0F000000
#define SSB_CHIPCO_NRCORESSHIFT 24
#define SSB_CHIPCO_CAP 0x0004 /* Capabilities */
#define SSB_CHIPCO_CAP_NRUART 0x00000003 /* # of UARTs */
#define SSB_CHIPCO_CAP_MIPSEB 0x00000004 /* MIPS in BigEndian Mode */
#define SSB_CHIPCO_CAP_UARTCLK 0x00000018 /* UART clock select */
#define SSB_CHIPCO_CAP_UARTCLK_INT 0x00000008 /* UARTs are driven by internal divided clock */
#define SSB_CHIPCO_CAP_UARTGPIO 0x00000020 /* UARTs on GPIO 15-12 */
#define SSB_CHIPCO_CAP_EXTBUS 0x000000C0 /* External buses present */
#define SSB_CHIPCO_CAP_FLASHT 0x00000700 /* Flash Type */
#define SSB_CHIPCO_FLASHT_NONE 0x00000000 /* No flash */
#define SSB_CHIPCO_FLASHT_STSER 0x00000100 /* ST serial flash */
#define SSB_CHIPCO_FLASHT_ATSER 0x00000200 /* Atmel serial flash */
#define SSB_CHIPCO_FLASHT_PARA 0x00000700 /* Parallel flash */
#define SSB_CHIPCO_CAP_PLLT 0x00038000 /* PLL Type */
#define SSB_PLLTYPE_NONE 0x00000000
#define SSB_PLLTYPE_1 0x00010000 /* 48Mhz base, 3 dividers */
#define SSB_PLLTYPE_2 0x00020000 /* 48Mhz, 4 dividers */
#define SSB_PLLTYPE_3 0x00030000 /* 25Mhz, 2 dividers */
#define SSB_PLLTYPE_4 0x00008000 /* 48Mhz, 4 dividers */
#define SSB_PLLTYPE_5 0x00018000 /* 25Mhz, 4 dividers */
#define SSB_PLLTYPE_6 0x00028000 /* 100/200 or 120/240 only */
#define SSB_PLLTYPE_7 0x00038000 /* 25Mhz, 4 dividers */
#define SSB_CHIPCO_CAP_PCTL 0x00040000 /* Power Control */
#define SSB_CHIPCO_CAP_OTPS 0x00380000 /* OTP size */
#define SSB_CHIPCO_CAP_OTPS_SHIFT 19
#define SSB_CHIPCO_CAP_OTPS_BASE 5
#define SSB_CHIPCO_CAP_JTAGM 0x00400000 /* JTAG master present */
#define SSB_CHIPCO_CAP_BROM 0x00800000 /* Internal boot ROM active */
#define SSB_CHIPCO_CAP_64BIT 0x08000000 /* 64-bit Backplane */
#define SSB_CHIPCO_CORECTL 0x0008
#define SSB_CHIPCO_CORECTL_UARTCLK0 0x00000001 /* Drive UART with internal clock */
#define SSB_CHIPCO_CORECTL_SE 0x00000002 /* sync clk out enable (corerev >= 3) */
#define SSB_CHIPCO_BIST 0x000C
#define SSB_CHIPCO_OTPS 0x0010 /* OTP status */
#define SSB_CHIPCO_OTPS_PROGFAIL 0x80000000
#define SSB_CHIPCO_OTPS_PROTECT 0x00000007
#define SSB_CHIPCO_OTPS_HW_PROTECT 0x00000001
#define SSB_CHIPCO_OTPS_SW_PROTECT 0x00000002
#define SSB_CHIPCO_OTPS_CID_PROTECT 0x00000004
#define SSB_CHIPCO_OTPC 0x0014 /* OTP control */
#define SSB_CHIPCO_OTPC_RECWAIT 0xFF000000
#define SSB_CHIPCO_OTPC_PROGWAIT 0x00FFFF00
#define SSB_CHIPCO_OTPC_PRW_SHIFT 8
#define SSB_CHIPCO_OTPC_MAXFAIL 0x00000038
#define SSB_CHIPCO_OTPC_VSEL 0x00000006
#define SSB_CHIPCO_OTPC_SELVL 0x00000001
#define SSB_CHIPCO_OTPP 0x0018 /* OTP prog */
#define SSB_CHIPCO_OTPP_COL 0x000000FF
#define SSB_CHIPCO_OTPP_ROW 0x0000FF00
#define SSB_CHIPCO_OTPP_ROW_SHIFT 8
#define SSB_CHIPCO_OTPP_READERR 0x10000000
#define SSB_CHIPCO_OTPP_VALUE 0x20000000
#define SSB_CHIPCO_OTPP_READ 0x40000000
#define SSB_CHIPCO_OTPP_START 0x80000000
#define SSB_CHIPCO_OTPP_BUSY 0x80000000
#define SSB_CHIPCO_IRQSTAT 0x0020
#define SSB_CHIPCO_IRQMASK 0x0024
#define SSB_CHIPCO_IRQ_GPIO 0x00000001 /* gpio intr */
#define SSB_CHIPCO_IRQ_EXT 0x00000002 /* ro: ext intr pin (corerev >= 3) */
#define SSB_CHIPCO_IRQ_WDRESET 0x80000000 /* watchdog reset occurred */
#define SSB_CHIPCO_CHIPCTL 0x0028 /* Rev >= 11 only */
#define SSB_CHIPCO_CHIPSTAT 0x002C /* Rev >= 11 only */
#define SSB_CHIPCO_JCMD 0x0030 /* Rev >= 10 only */
#define SSB_CHIPCO_JCMD_START 0x80000000
#define SSB_CHIPCO_JCMD_BUSY 0x80000000
#define SSB_CHIPCO_JCMD_PAUSE 0x40000000
#define SSB_CHIPCO_JCMD0_ACC_MASK 0x0000F000
#define SSB_CHIPCO_JCMD0_ACC_IRDR 0x00000000
#define SSB_CHIPCO_JCMD0_ACC_DR 0x00001000
#define SSB_CHIPCO_JCMD0_ACC_IR 0x00002000
#define SSB_CHIPCO_JCMD0_ACC_RESET 0x00003000
#define SSB_CHIPCO_JCMD0_ACC_IRPDR 0x00004000
#define SSB_CHIPCO_JCMD0_ACC_PDR 0x00005000
#define SSB_CHIPCO_JCMD0_IRW_MASK 0x00000F00
#define SSB_CHIPCO_JCMD_ACC_MASK 0x000F0000 /* Changes for corerev 11 */
#define SSB_CHIPCO_JCMD_ACC_IRDR 0x00000000
#define SSB_CHIPCO_JCMD_ACC_DR 0x00010000
#define SSB_CHIPCO_JCMD_ACC_IR 0x00020000
#define SSB_CHIPCO_JCMD_ACC_RESET 0x00030000
#define SSB_CHIPCO_JCMD_ACC_IRPDR 0x00040000
#define SSB_CHIPCO_JCMD_ACC_PDR 0x00050000
#define SSB_CHIPCO_JCMD_IRW_MASK 0x00001F00
#define SSB_CHIPCO_JCMD_IRW_SHIFT 8
#define SSB_CHIPCO_JCMD_DRW_MASK 0x0000003F
#define SSB_CHIPCO_JIR 0x0034 /* Rev >= 10 only */
#define SSB_CHIPCO_JDR 0x0038 /* Rev >= 10 only */
#define SSB_CHIPCO_JCTL 0x003C /* Rev >= 10 only */
#define SSB_CHIPCO_JCTL_FORCE_CLK 4 /* Force clock */
#define SSB_CHIPCO_JCTL_EXT_EN 2 /* Enable external targets */
#define SSB_CHIPCO_JCTL_EN 1 /* Enable Jtag master */
#define SSB_CHIPCO_FLASHCTL 0x0040
#define SSB_CHIPCO_FLASHCTL_START 0x80000000
#define SSB_CHIPCO_FLASHCTL_BUSY SSB_CHIPCO_FLASHCTL_START
#define SSB_CHIPCO_FLASHADDR 0x0044
#define SSB_CHIPCO_FLASHDATA 0x0048
#define SSB_CHIPCO_BCAST_ADDR 0x0050
#define SSB_CHIPCO_BCAST_DATA 0x0054
#define SSB_CHIPCO_GPIOIN 0x0060
#define SSB_CHIPCO_GPIOOUT 0x0064
#define SSB_CHIPCO_GPIOOUTEN 0x0068
#define SSB_CHIPCO_GPIOCTL 0x006C
#define SSB_CHIPCO_GPIOPOL 0x0070
#define SSB_CHIPCO_GPIOIRQ 0x0074
#define SSB_CHIPCO_WATCHDOG 0x0080
#define SSB_CHIPCO_GPIOTIMER 0x0088 /* LED powersave (corerev >= 16) */
#define SSB_CHIPCO_GPIOTIMER_ONTIME_SHIFT 16
#define SSB_CHIPCO_GPIOTOUTM 0x008C /* LED powersave (corerev >= 16) */
#define SSB_CHIPCO_CLOCK_N 0x0090
#define SSB_CHIPCO_CLOCK_SB 0x0094
#define SSB_CHIPCO_CLOCK_PCI 0x0098
#define SSB_CHIPCO_CLOCK_M2 0x009C
#define SSB_CHIPCO_CLOCK_MIPS 0x00A0
#define SSB_CHIPCO_CLKDIV 0x00A4 /* Rev >= 3 only */
#define SSB_CHIPCO_CLKDIV_SFLASH 0x0F000000
#define SSB_CHIPCO_CLKDIV_SFLASH_SHIFT 24
#define SSB_CHIPCO_CLKDIV_OTP 0x000F0000
#define SSB_CHIPCO_CLKDIV_OTP_SHIFT 16
#define SSB_CHIPCO_CLKDIV_JTAG 0x00000F00
#define SSB_CHIPCO_CLKDIV_JTAG_SHIFT 8
#define SSB_CHIPCO_CLKDIV_UART 0x000000FF
#define SSB_CHIPCO_PLLONDELAY 0x00B0 /* Rev >= 4 only */
#define SSB_CHIPCO_FREFSELDELAY 0x00B4 /* Rev >= 4 only */
#define SSB_CHIPCO_SLOWCLKCTL 0x00B8 /* 6 <= Rev <= 9 only */
#define SSB_CHIPCO_SLOWCLKCTL_SRC 0x00000007 /* slow clock source mask */
#define SSB_CHIPCO_SLOWCLKCTL_SRC_LPO 0x00000000 /* source of slow clock is LPO */
#define SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL 0x00000001 /* source of slow clock is crystal */
#define SSB_CHIPCO_SLOECLKCTL_SRC_PCI 0x00000002 /* source of slow clock is PCI */
#define SSB_CHIPCO_SLOWCLKCTL_LPOFREQ 0x00000200 /* LPOFreqSel, 1: 160Khz, 0: 32KHz */
#define SSB_CHIPCO_SLOWCLKCTL_LPOPD 0x00000400 /* LPOPowerDown, 1: LPO is disabled, 0: LPO is enabled */
#define SSB_CHIPCO_SLOWCLKCTL_FSLOW 0x00000800 /* ForceSlowClk, 1: sb/cores running on slow clock, 0: power logic control */
#define SSB_CHIPCO_SLOWCLKCTL_IPLL 0x00001000 /* IgnorePllOffReq, 1/0: power logic ignores/honors PLL clock disable requests from core */
#define SSB_CHIPCO_SLOWCLKCTL_ENXTAL 0x00002000 /* XtalControlEn, 1/0: power logic does/doesn't disable crystal when appropriate */
#define SSB_CHIPCO_SLOWCLKCTL_XTALPU 0x00004000 /* XtalPU (RO), 1/0: crystal running/disabled */
#define SSB_CHIPCO_SLOWCLKCTL_CLKDIV 0xFFFF0000 /* ClockDivider (SlowClk = 1/(4+divisor)) */
#define SSB_CHIPCO_SLOWCLKCTL_CLKDIV_SHIFT 16
#define SSB_CHIPCO_SYSCLKCTL 0x00C0 /* Rev >= 3 only */
#define SSB_CHIPCO_SYSCLKCTL_IDLPEN 0x00000001 /* ILPen: Enable Idle Low Power */
#define SSB_CHIPCO_SYSCLKCTL_ALPEN 0x00000002 /* ALPen: Enable Active Low Power */
#define SSB_CHIPCO_SYSCLKCTL_PLLEN 0x00000004 /* ForcePLLOn */
#define SSB_CHIPCO_SYSCLKCTL_FORCEALP 0x00000008 /* Force ALP (or HT if ALPen is not set */
#define SSB_CHIPCO_SYSCLKCTL_FORCEHT 0x00000010 /* Force HT */
#define SSB_CHIPCO_SYSCLKCTL_CLKDIV 0xFFFF0000 /* ClkDiv (ILP = 1/(4+divisor)) */
#define SSB_CHIPCO_SYSCLKCTL_CLKDIV_SHIFT 16
#define SSB_CHIPCO_CLKSTSTR 0x00C4 /* Rev >= 3 only */
#define SSB_CHIPCO_PCMCIA_CFG 0x0100
#define SSB_CHIPCO_PCMCIA_MEMWAIT 0x0104
#define SSB_CHIPCO_PCMCIA_ATTRWAIT 0x0108
#define SSB_CHIPCO_PCMCIA_IOWAIT 0x010C
#define SSB_CHIPCO_IDE_CFG 0x0110
#define SSB_CHIPCO_IDE_MEMWAIT 0x0114
#define SSB_CHIPCO_IDE_ATTRWAIT 0x0118
#define SSB_CHIPCO_IDE_IOWAIT 0x011C
#define SSB_CHIPCO_PROG_CFG 0x0120
#define SSB_CHIPCO_PROG_WAITCNT 0x0124
#define SSB_CHIPCO_FLASH_CFG 0x0128
#define SSB_CHIPCO_FLASH_WAITCNT 0x012C
#define SSB_CHIPCO_UART0_DATA 0x0300
#define SSB_CHIPCO_UART0_IMR 0x0304
#define SSB_CHIPCO_UART0_FCR 0x0308
#define SSB_CHIPCO_UART0_LCR 0x030C
#define SSB_CHIPCO_UART0_MCR 0x0310
#define SSB_CHIPCO_UART0_LSR 0x0314
#define SSB_CHIPCO_UART0_MSR 0x0318
#define SSB_CHIPCO_UART0_SCRATCH 0x031C
#define SSB_CHIPCO_UART1_DATA 0x0400
#define SSB_CHIPCO_UART1_IMR 0x0404
#define SSB_CHIPCO_UART1_FCR 0x0408
#define SSB_CHIPCO_UART1_LCR 0x040C
#define SSB_CHIPCO_UART1_MCR 0x0410
#define SSB_CHIPCO_UART1_LSR 0x0414
#define SSB_CHIPCO_UART1_MSR 0x0418
#define SSB_CHIPCO_UART1_SCRATCH 0x041C
/** Clockcontrol masks and values **/
/* SSB_CHIPCO_CLOCK_N */
#define SSB_CHIPCO_CLK_N1 0x0000003F /* n1 control */
#define SSB_CHIPCO_CLK_N2 0x00003F00 /* n2 control */
#define SSB_CHIPCO_CLK_N2_SHIFT 8
#define SSB_CHIPCO_CLK_PLLC 0x000F0000 /* pll control */
#define SSB_CHIPCO_CLK_PLLC_SHIFT 16
/* SSB_CHIPCO_CLOCK_SB/PCI/UART */
#define SSB_CHIPCO_CLK_M1 0x0000003F /* m1 control */
#define SSB_CHIPCO_CLK_M2 0x00003F00 /* m2 control */
#define SSB_CHIPCO_CLK_M2_SHIFT 8
#define SSB_CHIPCO_CLK_M3 0x003F0000 /* m3 control */
#define SSB_CHIPCO_CLK_M3_SHIFT 16
#define SSB_CHIPCO_CLK_MC 0x1F000000 /* mux control */
#define SSB_CHIPCO_CLK_MC_SHIFT 24
/* N3M Clock control magic field values */
#define SSB_CHIPCO_CLK_F6_2 0x02 /* A factor of 2 in */
#define SSB_CHIPCO_CLK_F6_3 0x03 /* 6-bit fields like */
#define SSB_CHIPCO_CLK_F6_4 0x05 /* N1, M1 or M3 */
#define SSB_CHIPCO_CLK_F6_5 0x09
#define SSB_CHIPCO_CLK_F6_6 0x11
#define SSB_CHIPCO_CLK_F6_7 0x21
#define SSB_CHIPCO_CLK_F5_BIAS 5 /* 5-bit fields get this added */
#define SSB_CHIPCO_CLK_MC_BYPASS 0x08
#define SSB_CHIPCO_CLK_MC_M1 0x04
#define SSB_CHIPCO_CLK_MC_M1M2 0x02
#define SSB_CHIPCO_CLK_MC_M1M2M3 0x01
#define SSB_CHIPCO_CLK_MC_M1M3 0x11
/* Type 2 Clock control magic field values */
#define SSB_CHIPCO_CLK_T2_BIAS 2 /* n1, n2, m1 & m3 bias */
#define SSB_CHIPCO_CLK_T2M2_BIAS 3 /* m2 bias */
#define SSB_CHIPCO_CLK_T2MC_M1BYP 1
#define SSB_CHIPCO_CLK_T2MC_M2BYP 2
#define SSB_CHIPCO_CLK_T2MC_M3BYP 4
/* Type 6 Clock control magic field values */
#define SSB_CHIPCO_CLK_T6_MMASK 1 /* bits of interest in m */
#define SSB_CHIPCO_CLK_T6_M0 120000000 /* sb clock for m = 0 */
#define SSB_CHIPCO_CLK_T6_M1 100000000 /* sb clock for m = 1 */
#define SSB_CHIPCO_CLK_SB2MIPS_T6(sb) (2 * (sb))
/* Common clock base */
#define SSB_CHIPCO_CLK_BASE1 24000000 /* Half the clock freq */
#define SSB_CHIPCO_CLK_BASE2 12500000 /* Alternate crystal on some PLL's */
/* Clock control values for 200Mhz in 5350 */
#define SSB_CHIPCO_CLK_5350_N 0x0311
#define SSB_CHIPCO_CLK_5350_M 0x04020009
/** Bits in the config registers **/
#define SSB_CHIPCO_CFG_EN 0x0001 /* Enable */
#define SSB_CHIPCO_CFG_EXTM 0x000E /* Extif Mode */
#define SSB_CHIPCO_CFG_EXTM_ASYNC 0x0002 /* Async/Parallel flash */
#define SSB_CHIPCO_CFG_EXTM_SYNC 0x0004 /* Synchronous */
#define SSB_CHIPCO_CFG_EXTM_PCMCIA 0x0008 /* PCMCIA */
#define SSB_CHIPCO_CFG_EXTM_IDE 0x000A /* IDE */
#define SSB_CHIPCO_CFG_DS16 0x0010 /* Data size, 0=8bit, 1=16bit */
#define SSB_CHIPCO_CFG_CLKDIV 0x0060 /* Sync: Clock divisor */
#define SSB_CHIPCO_CFG_CLKEN 0x0080 /* Sync: Clock enable */
#define SSB_CHIPCO_CFG_BSTRO 0x0100 /* Sync: Size/Bytestrobe */
/** Flash-specific control/status values */
/* flashcontrol opcodes for ST flashes */
#define SSB_CHIPCO_FLASHCTL_ST_WREN 0x0006 /* Write Enable */
#define SSB_CHIPCO_FLASHCTL_ST_WRDIS 0x0004 /* Write Disable */
#define SSB_CHIPCO_FLASHCTL_ST_RDSR 0x0105 /* Read Status Register */
#define SSB_CHIPCO_FLASHCTL_ST_WRSR 0x0101 /* Write Status Register */
#define SSB_CHIPCO_FLASHCTL_ST_READ 0x0303 /* Read Data Bytes */
#define SSB_CHIPCO_FLASHCTL_ST_PP 0x0302 /* Page Program */
#define SSB_CHIPCO_FLASHCTL_ST_SE 0x02D8 /* Sector Erase */
#define SSB_CHIPCO_FLASHCTL_ST_BE 0x00C7 /* Bulk Erase */
#define SSB_CHIPCO_FLASHCTL_ST_DP 0x00B9 /* Deep Power-down */
#define SSB_CHIPCO_FLASHCTL_ST_RSIG 0x03AB /* Read Electronic Signature */
/* Status register bits for ST flashes */
#define SSB_CHIPCO_FLASHSTA_ST_WIP 0x01 /* Write In Progress */
#define SSB_CHIPCO_FLASHSTA_ST_WEL 0x02 /* Write Enable Latch */
#define SSB_CHIPCO_FLASHSTA_ST_BP 0x1C /* Block Protect */
#define SSB_CHIPCO_FLASHSTA_ST_BP_SHIFT 2
#define SSB_CHIPCO_FLASHSTA_ST_SRWD 0x80 /* Status Register Write Disable */
/* flashcontrol opcodes for Atmel flashes */
#define SSB_CHIPCO_FLASHCTL_AT_READ 0x07E8
#define SSB_CHIPCO_FLASHCTL_AT_PAGE_READ 0x07D2
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_READ /* FIXME */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_READ /* FIXME */
#define SSB_CHIPCO_FLASHCTL_AT_STATUS 0x01D7
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_WRITE 0x0384
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_WRITE 0x0387
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_ERASE_PRGM 0x0283 /* Erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_ERASE_PRGM 0x0286 /* Erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_PROGRAM 0x0288
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_PROGRAM 0x0289
#define SSB_CHIPCO_FLASHCTL_AT_PAGE_ERASE 0x0281
#define SSB_CHIPCO_FLASHCTL_AT_BLOCK_ERASE 0x0250
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_WRER_PRGM 0x0382 /* Write erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_WRER_PRGM 0x0385 /* Write erase program */
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_LOAD 0x0253
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_LOAD 0x0255
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_COMPARE 0x0260
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_COMPARE 0x0261
#define SSB_CHIPCO_FLASHCTL_AT_BUF1_REPROGRAM 0x0258
#define SSB_CHIPCO_FLASHCTL_AT_BUF2_REPROGRAM 0x0259
/* Status register bits for Atmel flashes */
#define SSB_CHIPCO_FLASHSTA_AT_READY 0x80
#define SSB_CHIPCO_FLASHSTA_AT_MISMATCH 0x40
#define SSB_CHIPCO_FLASHSTA_AT_ID 0x38
#define SSB_CHIPCO_FLASHSTA_AT_ID_SHIFT 3
/** OTP **/
/* OTP regions */
#define SSB_CHIPCO_OTP_HW_REGION SSB_CHIPCO_OTPS_HW_PROTECT
#define SSB_CHIPCO_OTP_SW_REGION SSB_CHIPCO_OTPS_SW_PROTECT
#define SSB_CHIPCO_OTP_CID_REGION SSB_CHIPCO_OTPS_CID_PROTECT
/* OTP regions (Byte offsets from otp size) */
#define SSB_CHIPCO_OTP_SWLIM_OFF (-8)
#define SSB_CHIPCO_OTP_CIDBASE_OFF 0
#define SSB_CHIPCO_OTP_CIDLIM_OFF 8
/* Predefined OTP words (Word offset from otp size) */
#define SSB_CHIPCO_OTP_BOUNDARY_OFF (-4)
#define SSB_CHIPCO_OTP_HWSIGN_OFF (-3)
#define SSB_CHIPCO_OTP_SWSIGN_OFF (-2)
#define SSB_CHIPCO_OTP_CIDSIGN_OFF (-1)
#define SSB_CHIPCO_OTP_CID_OFF 0
#define SSB_CHIPCO_OTP_PKG_OFF 1
#define SSB_CHIPCO_OTP_FID_OFF 2
#define SSB_CHIPCO_OTP_RSV_OFF 3
#define SSB_CHIPCO_OTP_LIM_OFF 4
#define SSB_CHIPCO_OTP_SIGNATURE 0x578A
#define SSB_CHIPCO_OTP_MAGIC 0x4E56
struct ssb_device;
struct ssb_serial_port;
struct ssb_chipcommon {
struct ssb_device *dev;
u32 capabilities;
/* Fast Powerup Delay constant */
u16 fast_pwrup_delay;
};
extern void ssb_chipcommon_init(struct ssb_chipcommon *cc);
#include <linux/pm.h>
extern void ssb_chipco_suspend(struct ssb_chipcommon *cc, pm_message_t state);
extern void ssb_chipco_resume(struct ssb_chipcommon *cc);
extern void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m);
extern void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m);
extern void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns_per_cycle);
enum ssb_clkmode {
SSB_CLKMODE_SLOW,
SSB_CLKMODE_FAST,
SSB_CLKMODE_DYNAMIC,
};
extern void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode);
extern void ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc,
u32 ticks);
u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask);
void ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value);
void ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value);
#ifdef CONFIG_SSB_SERIAL
extern int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports);
#endif /* CONFIG_SSB_SERIAL */
#endif /* LINUX_SSB_CHIPCO_H_ */

View File

@ -1,204 +0,0 @@
/*
* Hardware-specific External Interface I/O core definitions
* for the BCM47xx family of SiliconBackplane-based chips.
*
* The External Interface core supports a total of three external chip selects
* supporting external interfaces. One of the external chip selects is
* used for Flash, one is used for PCMCIA, and the other may be
* programmed to support either a synchronous interface or an
* asynchronous interface. The asynchronous interface can be used to
* support external devices such as UARTs and the BCM2019 Bluetooth
* baseband processor.
* The external interface core also contains 2 on-chip 16550 UARTs, clock
* frequency control, a watchdog interrupt timer, and a GPIO interface.
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, Michael Buesch
*
* Licensed under the GPL version 2. See COPYING for details.
*/
#ifndef LINUX_SSB_EXTIFCORE_H_
#define LINUX_SSB_EXTIFCORE_H_
/* external interface address space */
#define SSB_EXTIF_PCMCIA_MEMBASE(x) (x)
#define SSB_EXTIF_PCMCIA_IOBASE(x) ((x) + 0x100000)
#define SSB_EXTIF_PCMCIA_CFGBASE(x) ((x) + 0x200000)
#define SSB_EXTIF_CFGIF_BASE(x) ((x) + 0x800000)
#define SSB_EXTIF_FLASH_BASE(x) ((x) + 0xc00000)
#define SSB_EXTIF_NR_GPIOOUT 5
/* GPIO NOTE:
* The multiple instances of output and output enable registers
* are present to allow driver software for multiple cores to control
* gpio outputs without needing to share a single register pair.
* Use the following helper macro to get a register offset value.
*/
#define SSB_EXTIF_GPIO_OUT(index) ({ \
BUILD_BUG_ON(index >= SSB_EXTIF_NR_GPIOOUT); \
SSB_EXTIF_GPIO_OUT_BASE + ((index) * 8); \
})
#define SSB_EXTIF_GPIO_OUTEN(index) ({ \
BUILD_BUG_ON(index >= SSB_EXTIF_NR_GPIOOUT); \
SSB_EXTIF_GPIO_OUTEN_BASE + ((index) * 8); \
})
/** EXTIF core registers **/
#define SSB_EXTIF_CTL 0x0000
#define SSB_EXTIF_CTL_UARTEN (1 << 0) /* UART enable */
#define SSB_EXTIF_EXTSTAT 0x0004
#define SSB_EXTIF_EXTSTAT_EMODE (1 << 0) /* Endian mode (ro) */
#define SSB_EXTIF_EXTSTAT_EIRQPIN (1 << 1) /* External interrupt pin (ro) */
#define SSB_EXTIF_EXTSTAT_GPIOIRQPIN (1 << 2) /* GPIO interrupt pin (ro) */
#define SSB_EXTIF_PCMCIA_CFG 0x0010
#define SSB_EXTIF_PCMCIA_MEMWAIT 0x0014
#define SSB_EXTIF_PCMCIA_ATTRWAIT 0x0018
#define SSB_EXTIF_PCMCIA_IOWAIT 0x001C
#define SSB_EXTIF_PROG_CFG 0x0020
#define SSB_EXTIF_PROG_WAITCNT 0x0024
#define SSB_EXTIF_FLASH_CFG 0x0028
#define SSB_EXTIF_FLASH_WAITCNT 0x002C
#define SSB_EXTIF_WATCHDOG 0x0040
#define SSB_EXTIF_CLOCK_N 0x0044
#define SSB_EXTIF_CLOCK_SB 0x0048
#define SSB_EXTIF_CLOCK_PCI 0x004C
#define SSB_EXTIF_CLOCK_MII 0x0050
#define SSB_EXTIF_GPIO_IN 0x0060
#define SSB_EXTIF_GPIO_OUT_BASE 0x0064
#define SSB_EXTIF_GPIO_OUTEN_BASE 0x0068
#define SSB_EXTIF_EJTAG_OUTEN 0x0090
#define SSB_EXTIF_GPIO_INTPOL 0x0094
#define SSB_EXTIF_GPIO_INTMASK 0x0098
#define SSB_EXTIF_UART_DATA 0x0300
#define SSB_EXTIF_UART_TIMER 0x0310
#define SSB_EXTIF_UART_FCR 0x0320
#define SSB_EXTIF_UART_LCR 0x0330
#define SSB_EXTIF_UART_MCR 0x0340
#define SSB_EXTIF_UART_LSR 0x0350
#define SSB_EXTIF_UART_MSR 0x0360
#define SSB_EXTIF_UART_SCRATCH 0x0370
/* pcmcia/prog/flash_config */
#define SSB_EXTCFG_EN (1 << 0) /* enable */
#define SSB_EXTCFG_MODE 0xE /* mode */
#define SSB_EXTCFG_MODE_SHIFT 1
#define SSB_EXTCFG_MODE_FLASH 0x0 /* flash/asynchronous mode */
#define SSB_EXTCFG_MODE_SYNC 0x2 /* synchronous mode */
#define SSB_EXTCFG_MODE_PCMCIA 0x4 /* pcmcia mode */
#define SSB_EXTCFG_DS16 (1 << 4) /* destsize: 0=8bit, 1=16bit */
#define SSB_EXTCFG_BSWAP (1 << 5) /* byteswap */
#define SSB_EXTCFG_CLKDIV 0xC0 /* clock divider */
#define SSB_EXTCFG_CLKDIV_SHIFT 6
#define SSB_EXTCFG_CLKDIV_2 0x0 /* backplane/2 */
#define SSB_EXTCFG_CLKDIV_3 0x40 /* backplane/3 */
#define SSB_EXTCFG_CLKDIV_4 0x80 /* backplane/4 */
#define SSB_EXTCFG_CLKEN (1 << 8) /* clock enable */
#define SSB_EXTCFG_STROBE (1 << 9) /* size/bytestrobe (synch only) */
/* pcmcia_memwait */
#define SSB_PCMCIA_MEMW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_MEMW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_MEMW_1_SHIFT 8
#define SSB_PCMCIA_MEMW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_MEMW_2_SHIFT 16
#define SSB_PCMCIA_MEMW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_MEMW_3_SHIFT 24
/* pcmcia_attrwait */
#define SSB_PCMCIA_ATTW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_ATTW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_ATTW_1_SHIFT 8
#define SSB_PCMCIA_ATTW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_ATTW_2_SHIFT 16
#define SSB_PCMCIA_ATTW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_ATTW_3_SHIFT 24
/* pcmcia_iowait */
#define SSB_PCMCIA_IOW_0 0x0000003F /* waitcount0 */
#define SSB_PCMCIA_IOW_1 0x00001F00 /* waitcount1 */
#define SSB_PCMCIA_IOW_1_SHIFT 8
#define SSB_PCMCIA_IOW_2 0x001F0000 /* waitcount2 */
#define SSB_PCMCIA_IOW_2_SHIFT 16
#define SSB_PCMCIA_IOW_3 0x1F000000 /* waitcount3 */
#define SSB_PCMCIA_IOW_3_SHIFT 24
/* prog_waitcount */
#define SSB_PROG_WCNT_0 0x0000001F /* waitcount0 */
#define SSB_PROG_WCNT_1 0x00001F00 /* waitcount1 */
#define SSB_PROG_WCNT_1_SHIFT 8
#define SSB_PROG_WCNT_2 0x001F0000 /* waitcount2 */
#define SSB_PROG_WCNT_2_SHIFT 16
#define SSB_PROG_WCNT_3 0x1F000000 /* waitcount3 */
#define SSB_PROG_WCNT_3_SHIFT 24
#define SSB_PROG_W0 0x0000000C
#define SSB_PROG_W1 0x00000A00
#define SSB_PROG_W2 0x00020000
#define SSB_PROG_W3 0x01000000
/* flash_waitcount */
#define SSB_FLASH_WCNT_0 0x0000001F /* waitcount0 */
#define SSB_FLASH_WCNT_1 0x00001F00 /* waitcount1 */
#define SSB_FLASH_WCNT_1_SHIFT 8
#define SSB_FLASH_WCNT_2 0x001F0000 /* waitcount2 */
#define SSB_FLASH_WCNT_2_SHIFT 16
#define SSB_FLASH_WCNT_3 0x1F000000 /* waitcount3 */
#define SSB_FLASH_WCNT_3_SHIFT 24
/* watchdog */
#define SSB_EXTIF_WATCHDOG_CLK 48000000 /* Hz */
#ifdef CONFIG_SSB_DRIVER_EXTIF
struct ssb_extif {
struct ssb_device *dev;
};
static inline bool ssb_extif_available(struct ssb_extif *extif)
{
return (extif->dev != NULL);
}
extern void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *plltype, u32 *n, u32 *m);
extern void ssb_extif_timing_init(struct ssb_extif *extif,
unsigned long ns);
u32 ssb_extif_gpio_in(struct ssb_extif *extif, u32 mask);
void ssb_extif_gpio_out(struct ssb_extif *extif, u32 mask, u32 value);
void ssb_extif_gpio_outen(struct ssb_extif *extif, u32 mask, u32 value);
#ifdef CONFIG_SSB_SERIAL
extern int ssb_extif_serial_init(struct ssb_extif *extif,
struct ssb_serial_port *ports);
#endif /* CONFIG_SSB_SERIAL */
#else /* CONFIG_SSB_DRIVER_EXTIF */
/* extif disabled */
struct ssb_extif {
};
static inline bool ssb_extif_available(struct ssb_extif *extif)
{
return 0;
}
static inline
void ssb_extif_get_clockcontrol(struct ssb_extif *extif,
u32 *plltype, u32 *n, u32 *m)
{
}
#endif /* CONFIG_SSB_DRIVER_EXTIF */
#endif /* LINUX_SSB_EXTIFCORE_H_ */

View File

@ -1,46 +0,0 @@
#ifndef LINUX_SSB_MIPSCORE_H_
#define LINUX_SSB_MIPSCORE_H_
#ifdef CONFIG_SSB_DRIVER_MIPS
struct ssb_device;
struct ssb_serial_port {
void *regs;
unsigned long clockspeed;
unsigned int irq;
unsigned int baud_base;
unsigned int reg_shift;
};
struct ssb_mipscore {
struct ssb_device *dev;
int nr_serial_ports;
struct ssb_serial_port serial_ports[4];
u8 flash_buswidth;
u32 flash_window;
u32 flash_window_size;
};
extern void ssb_mipscore_init(struct ssb_mipscore *mcore);
extern u32 ssb_cpu_clock(struct ssb_mipscore *mcore);
extern unsigned int ssb_mips_irq(struct ssb_device *dev);
#else /* CONFIG_SSB_DRIVER_MIPS */
struct ssb_mipscore {
};
static inline
void ssb_mipscore_init(struct ssb_mipscore *mcore)
{
}
#endif /* CONFIG_SSB_DRIVER_MIPS */
#endif /* LINUX_SSB_MIPSCORE_H_ */

View File

@ -1,106 +0,0 @@
#ifndef LINUX_SSB_PCICORE_H_
#define LINUX_SSB_PCICORE_H_
#ifdef CONFIG_SSB_DRIVER_PCICORE
/* PCI core registers. */
#define SSB_PCICORE_CTL 0x0000 /* PCI Control */
#define SSB_PCICORE_CTL_RST_OE 0x00000001 /* PCI_RESET Output Enable */
#define SSB_PCICORE_CTL_RST 0x00000002 /* PCI_RESET driven out to pin */
#define SSB_PCICORE_CTL_CLK_OE 0x00000004 /* Clock gate Output Enable */
#define SSB_PCICORE_CTL_CLK 0x00000008 /* Gate for clock driven out to pin */
#define SSB_PCICORE_ARBCTL 0x0010 /* PCI Arbiter Control */
#define SSB_PCICORE_ARBCTL_INTERN 0x00000001 /* Use internal arbiter */
#define SSB_PCICORE_ARBCTL_EXTERN 0x00000002 /* Use external arbiter */
#define SSB_PCICORE_ARBCTL_PARKID 0x00000006 /* Mask, selects which agent is parked on an idle bus */
#define SSB_PCICORE_ARBCTL_PARKID_LAST 0x00000000 /* Last requestor */
#define SSB_PCICORE_ARBCTL_PARKID_4710 0x00000002 /* 4710 */
#define SSB_PCICORE_ARBCTL_PARKID_EXT0 0x00000004 /* External requestor 0 */
#define SSB_PCICORE_ARBCTL_PARKID_EXT1 0x00000006 /* External requestor 1 */
#define SSB_PCICORE_ISTAT 0x0020 /* Interrupt status */
#define SSB_PCICORE_ISTAT_INTA 0x00000001 /* PCI INTA# */
#define SSB_PCICORE_ISTAT_INTB 0x00000002 /* PCI INTB# */
#define SSB_PCICORE_ISTAT_SERR 0x00000004 /* PCI SERR# (write to clear) */
#define SSB_PCICORE_ISTAT_PERR 0x00000008 /* PCI PERR# (write to clear) */
#define SSB_PCICORE_ISTAT_PME 0x00000010 /* PCI PME# */
#define SSB_PCICORE_IMASK 0x0024 /* Interrupt mask */
#define SSB_PCICORE_IMASK_INTA 0x00000001 /* PCI INTA# */
#define SSB_PCICORE_IMASK_INTB 0x00000002 /* PCI INTB# */
#define SSB_PCICORE_IMASK_SERR 0x00000004 /* PCI SERR# */
#define SSB_PCICORE_IMASK_PERR 0x00000008 /* PCI PERR# */
#define SSB_PCICORE_IMASK_PME 0x00000010 /* PCI PME# */
#define SSB_PCICORE_MBOX 0x0028 /* Backplane to PCI Mailbox */
#define SSB_PCICORE_MBOX_F0_0 0x00000100 /* PCI function 0, INT 0 */
#define SSB_PCICORE_MBOX_F0_1 0x00000200 /* PCI function 0, INT 1 */
#define SSB_PCICORE_MBOX_F1_0 0x00000400 /* PCI function 1, INT 0 */
#define SSB_PCICORE_MBOX_F1_1 0x00000800 /* PCI function 1, INT 1 */
#define SSB_PCICORE_MBOX_F2_0 0x00001000 /* PCI function 2, INT 0 */
#define SSB_PCICORE_MBOX_F2_1 0x00002000 /* PCI function 2, INT 1 */
#define SSB_PCICORE_MBOX_F3_0 0x00004000 /* PCI function 3, INT 0 */
#define SSB_PCICORE_MBOX_F3_1 0x00008000 /* PCI function 3, INT 1 */
#define SSB_PCICORE_BCAST_ADDR 0x0050 /* Backplane Broadcast Address */
#define SSB_PCICORE_BCAST_ADDR_MASK 0x000000FF
#define SSB_PCICORE_BCAST_DATA 0x0054 /* Backplane Broadcast Data */
#define SSB_PCICORE_GPIO_IN 0x0060 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_OUT 0x0064 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_ENABLE 0x0068 /* rev >= 2 only */
#define SSB_PCICORE_GPIO_CTL 0x006C /* rev >= 2 only */
#define SSB_PCICORE_SBTOPCI0 0x0100 /* Backplane to PCI translation 0 (sbtopci0) */
#define SSB_PCICORE_SBTOPCI0_MASK 0xFC000000
#define SSB_PCICORE_SBTOPCI1 0x0104 /* Backplane to PCI translation 1 (sbtopci1) */
#define SSB_PCICORE_SBTOPCI1_MASK 0xFC000000
#define SSB_PCICORE_SBTOPCI2 0x0108 /* Backplane to PCI translation 2 (sbtopci2) */
#define SSB_PCICORE_SBTOPCI2_MASK 0xC0000000
/* SBtoPCIx */
#define SSB_PCICORE_SBTOPCI_MEM 0x00000000
#define SSB_PCICORE_SBTOPCI_IO 0x00000001
#define SSB_PCICORE_SBTOPCI_CFG0 0x00000002
#define SSB_PCICORE_SBTOPCI_CFG1 0x00000003
#define SSB_PCICORE_SBTOPCI_PREF 0x00000004 /* Prefetch enable */
#define SSB_PCICORE_SBTOPCI_BURST 0x00000008 /* Burst enable */
#define SSB_PCICORE_SBTOPCI_MRM 0x00000020 /* Memory Read Multiple */
#define SSB_PCICORE_SBTOPCI_RC 0x00000030 /* Read Command mask (rev >= 11) */
#define SSB_PCICORE_SBTOPCI_RC_READ 0x00000000 /* Memory read */
#define SSB_PCICORE_SBTOPCI_RC_READL 0x00000010 /* Memory read line */
#define SSB_PCICORE_SBTOPCI_RC_READM 0x00000020 /* Memory read multiple */
/* PCIcore specific boardflags */
#define SSB_PCICORE_BFL_NOPCI 0x00000400 /* Board leaves PCI floating */
struct ssb_pcicore {
struct ssb_device *dev;
u8 setup_done:1;
u8 hostmode:1;
u8 cardbusmode:1;
};
extern void ssb_pcicore_init(struct ssb_pcicore *pc);
/* Enable IRQ routing for a specific device */
extern int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev);
#else /* CONFIG_SSB_DRIVER_PCICORE */
struct ssb_pcicore {
};
static inline
void ssb_pcicore_init(struct ssb_pcicore *pc)
{
}
static inline
int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore *pc,
struct ssb_device *dev)
{
return 0;
}
#endif /* CONFIG_SSB_DRIVER_PCICORE */
#endif /* LINUX_SSB_PCICORE_H_ */

View File

@ -1,357 +0,0 @@
#ifndef LINUX_SSB_REGS_H_
#define LINUX_SSB_REGS_H_
/* SiliconBackplane Address Map.
* All regions may not exist on all chips.
*/
#define SSB_SDRAM_BASE 0x00000000U /* Physical SDRAM */
#define SSB_PCI_MEM 0x08000000U /* Host Mode sb2pcitranslation0 (64 MB) */
#define SSB_PCI_CFG 0x0c000000U /* Host Mode sb2pcitranslation1 (64 MB) */
#define SSB_SDRAM_SWAPPED 0x10000000U /* Byteswapped Physical SDRAM */
#define SSB_ENUM_BASE 0x18000000U /* Enumeration space base */
#define SSB_ENUM_LIMIT 0x18010000U /* Enumeration space limit */
#define SSB_FLASH2 0x1c000000U /* Flash Region 2 (region 1 shadowed here) */
#define SSB_FLASH2_SZ 0x02000000U /* Size of Flash Region 2 */
#define SSB_EXTIF_BASE 0x1f000000U /* External Interface region base address */
#define SSB_FLASH1 0x1fc00000U /* Flash Region 1 */
#define SSB_FLASH1_SZ 0x00400000U /* Size of Flash Region 1 */
#define SSB_PCI_DMA 0x40000000U /* Client Mode sb2pcitranslation2 (1 GB) */
#define SSB_PCI_DMA_SZ 0x40000000U /* Client Mode sb2pcitranslation2 size in bytes */
#define SSB_PCIE_DMA_L32 0x00000000U /* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), low 32 bits */
#define SSB_PCIE_DMA_H32 0x80000000U /* PCIE Client Mode sb2pcitranslation2 (2 ZettaBytes), high 32 bits */
#define SSB_EUART (SSB_EXTIF_BASE + 0x00800000)
#define SSB_LED (SSB_EXTIF_BASE + 0x00900000)
/* Enumeration space constants */
#define SSB_CORE_SIZE 0x1000 /* Size of a core MMIO area */
#define SSB_MAX_NR_CORES ((SSB_ENUM_LIMIT - SSB_ENUM_BASE) / SSB_CORE_SIZE)
/* mips address */
#define SSB_EJTAG 0xff200000 /* MIPS EJTAG space (2M) */
/* SSB PCI config space registers. */
#define SSB_PMCSR 0x44
#define SSB_PE 0x100
#define SSB_BAR0_WIN 0x80 /* Backplane address space 0 */
#define SSB_BAR1_WIN 0x84 /* Backplane address space 1 */
#define SSB_SPROMCTL 0x88 /* SPROM control */
#define SSB_SPROMCTL_WE 0x10 /* SPROM write enable */
#define SSB_BAR1_CONTROL 0x8c /* Address space 1 burst control */
#define SSB_PCI_IRQS 0x90 /* PCI interrupts */
#define SSB_PCI_IRQMASK 0x94 /* PCI IRQ control and mask (pcirev >= 6 only) */
#define SSB_BACKPLANE_IRQS 0x98 /* Backplane Interrupts */
#define SSB_GPIO_IN 0xB0 /* GPIO Input (pcirev >= 3 only) */
#define SSB_GPIO_OUT 0xB4 /* GPIO Output (pcirev >= 3 only) */
#define SSB_GPIO_OUT_ENABLE 0xB8 /* GPIO Output Enable/Disable (pcirev >= 3 only) */
#define SSB_GPIO_SCS 0x10 /* PCI config space bit 4 for 4306c0 slow clock source */
#define SSB_GPIO_HWRAD 0x20 /* PCI config space GPIO 13 for hw radio disable */
#define SSB_GPIO_XTAL 0x40 /* PCI config space GPIO 14 for Xtal powerup */
#define SSB_GPIO_PLL 0x80 /* PCI config space GPIO 15 for PLL powerdown */
#define SSB_BAR0_MAX_RETRIES 50
/* Silicon backplane configuration register definitions */
#define SSB_IPSFLAG 0x0F08
#define SSB_IPSFLAG_IRQ1 0x0000003F /* which sbflags get routed to mips interrupt 1 */
#define SSB_IPSFLAG_IRQ1_SHIFT 0
#define SSB_IPSFLAG_IRQ2 0x00003F00 /* which sbflags get routed to mips interrupt 2 */
#define SSB_IPSFLAG_IRQ2_SHIFT 8
#define SSB_IPSFLAG_IRQ3 0x003F0000 /* which sbflags get routed to mips interrupt 3 */
#define SSB_IPSFLAG_IRQ3_SHIFT 16
#define SSB_IPSFLAG_IRQ4 0x3F000000 /* which sbflags get routed to mips interrupt 4 */
#define SSB_IPSFLAG_IRQ4_SHIFT 24
#define SSB_TPSFLAG 0x0F18
#define SSB_TPSFLAG_BPFLAG 0x0000003F /* Backplane flag # */
#define SSB_TPSFLAG_ALWAYSIRQ 0x00000040 /* IRQ is always sent on the Backplane */
#define SSB_TMERRLOGA 0x0F48
#define SSB_TMERRLOG 0x0F50
#define SSB_ADMATCH3 0x0F60
#define SSB_ADMATCH2 0x0F68
#define SSB_ADMATCH1 0x0F70
#define SSB_IMSTATE 0x0F90 /* SB Initiator Agent State */
#define SSB_IMSTATE_PC 0x0000000f /* Pipe Count */
#define SSB_IMSTATE_AP_MASK 0x00000030 /* Arbitration Priority */
#define SSB_IMSTATE_AP_BOTH 0x00000000 /* Use both timeslices and token */
#define SSB_IMSTATE_AP_TS 0x00000010 /* Use timeslices only */
#define SSB_IMSTATE_AP_TK 0x00000020 /* Use token only */
#define SSB_IMSTATE_AP_RSV 0x00000030 /* Reserved */
#define SSB_IMSTATE_IBE 0x00020000 /* In Band Error */
#define SSB_IMSTATE_TO 0x00040000 /* Timeout */
#define SSB_INTVEC 0x0F94 /* SB Interrupt Mask */
#define SSB_INTVEC_PCI 0x00000001 /* Enable interrupts for PCI */
#define SSB_INTVEC_ENET0 0x00000002 /* Enable interrupts for enet 0 */
#define SSB_INTVEC_ILINE20 0x00000004 /* Enable interrupts for iline20 */
#define SSB_INTVEC_CODEC 0x00000008 /* Enable interrupts for v90 codec */
#define SSB_INTVEC_USB 0x00000010 /* Enable interrupts for usb */
#define SSB_INTVEC_EXTIF 0x00000020 /* Enable interrupts for external i/f */
#define SSB_INTVEC_ENET1 0x00000040 /* Enable interrupts for enet 1 */
#define SSB_TMSLOW 0x0F98 /* SB Target State Low */
#define SSB_TMSLOW_RESET 0x00000001 /* Reset */
#define SSB_TMSLOW_REJECT_22 0x00000002 /* Reject (Backplane rev 2.2) */
#define SSB_TMSLOW_REJECT_23 0x00000004 /* Reject (Backplane rev 2.3) */
#define SSB_TMSLOW_CLOCK 0x00010000 /* Clock Enable */
#define SSB_TMSLOW_FGC 0x00020000 /* Force Gated Clocks On */
#define SSB_TMSLOW_PE 0x40000000 /* Power Management Enable */
#define SSB_TMSLOW_BE 0x80000000 /* BIST Enable */
#define SSB_TMSHIGH 0x0F9C /* SB Target State High */
#define SSB_TMSHIGH_SERR 0x00000001 /* S-error */
#define SSB_TMSHIGH_INT 0x00000002 /* Interrupt */
#define SSB_TMSHIGH_BUSY 0x00000004 /* Busy */
#define SSB_TMSHIGH_TO 0x00000020 /* Timeout. Backplane rev >= 2.3 only */
#define SSB_TMSHIGH_COREFL 0x1FFF0000 /* Core specific flags */
#define SSB_TMSHIGH_COREFL_SHIFT 16
#define SSB_TMSHIGH_DMA64 0x10000000 /* 64bit DMA supported */
#define SSB_TMSHIGH_GCR 0x20000000 /* Gated Clock Request */
#define SSB_TMSHIGH_BISTF 0x40000000 /* BIST Failed */
#define SSB_TMSHIGH_BISTD 0x80000000 /* BIST Done */
#define SSB_BWA0 0x0FA0
#define SSB_IMCFGLO 0x0FA8
#define SSB_IMCFGLO_SERTO 0x00000007 /* Service timeout */
#define SSB_IMCFGLO_REQTO 0x00000070 /* Request timeout */
#define SSB_IMCFGLO_REQTO_SHIFT 4
#define SSB_IMCFGLO_CONNID 0x00FF0000 /* Connection ID */
#define SSB_IMCFGLO_CONNID_SHIFT 16
#define SSB_IMCFGHI 0x0FAC
#define SSB_ADMATCH0 0x0FB0
#define SSB_TMCFGLO 0x0FB8
#define SSB_TMCFGHI 0x0FBC
#define SSB_BCONFIG 0x0FC0
#define SSB_BSTATE 0x0FC8
#define SSB_ACTCFG 0x0FD8
#define SSB_FLAGST 0x0FE8
#define SSB_IDLOW 0x0FF8
#define SSB_IDLOW_CFGSP 0x00000003 /* Config Space */
#define SSB_IDLOW_ADDRNGE 0x00000038 /* Address Ranges supported */
#define SSB_IDLOW_ADDRNGE_SHIFT 3
#define SSB_IDLOW_SYNC 0x00000040
#define SSB_IDLOW_INITIATOR 0x00000080
#define SSB_IDLOW_MIBL 0x00000F00 /* Minimum Backplane latency */
#define SSB_IDLOW_MIBL_SHIFT 8
#define SSB_IDLOW_MABL 0x0000F000 /* Maximum Backplane latency */
#define SSB_IDLOW_MABL_SHIFT 12
#define SSB_IDLOW_TIF 0x00010000 /* This Initiator is first */
#define SSB_IDLOW_CCW 0x000C0000 /* Cycle counter width */
#define SSB_IDLOW_CCW_SHIFT 18
#define SSB_IDLOW_TPT 0x00F00000 /* Target ports */
#define SSB_IDLOW_TPT_SHIFT 20
#define SSB_IDLOW_INITP 0x0F000000 /* Initiator ports */
#define SSB_IDLOW_INITP_SHIFT 24
#define SSB_IDLOW_SSBREV 0xF0000000 /* Sonics Backplane Revision code */
#define SSB_IDLOW_SSBREV_22 0x00000000 /* <= 2.2 */
#define SSB_IDLOW_SSBREV_23 0x10000000 /* 2.3 */
#define SSB_IDLOW_SSBREV_24 0x40000000 /* ?? Found in BCM4328 */
#define SSB_IDLOW_SSBREV_25 0x50000000 /* ?? Not Found yet */
#define SSB_IDLOW_SSBREV_26 0x60000000 /* ?? Found in some BCM4311/2 */
#define SSB_IDLOW_SSBREV_27 0x70000000 /* ?? Found in some BCM4311/2 */
#define SSB_IDHIGH 0x0FFC /* SB Identification High */
#define SSB_IDHIGH_RCLO 0x0000000F /* Revision Code (low part) */
#define SSB_IDHIGH_CC 0x00008FF0 /* Core Code */
#define SSB_IDHIGH_CC_SHIFT 4
#define SSB_IDHIGH_RCHI 0x00007000 /* Revision Code (high part) */
#define SSB_IDHIGH_RCHI_SHIFT 8 /* yes, shift 8 is right */
#define SSB_IDHIGH_VC 0xFFFF0000 /* Vendor Code */
#define SSB_IDHIGH_VC_SHIFT 16
/* SPROM shadow area. If not otherwise noted, fields are
* two bytes wide. Note that the SPROM can _only_ be read
* in two-byte quantinies.
*/
#define SSB_SPROMSIZE_WORDS 64
#define SSB_SPROMSIZE_BYTES (SSB_SPROMSIZE_WORDS * sizeof(u16))
#define SSB_SPROMSIZE_WORDS_R123 64
#define SSB_SPROMSIZE_WORDS_R4 220
#define SSB_SPROMSIZE_BYTES_R123 (SSB_SPROMSIZE_WORDS_R123 * sizeof(u16))
#define SSB_SPROMSIZE_BYTES_R4 (SSB_SPROMSIZE_WORDS_R4 * sizeof(u16))
#define SSB_SPROM_BASE 0x1000
#define SSB_SPROM_REVISION 0x107E
#define SSB_SPROM_REVISION_REV 0x00FF /* SPROM Revision number */
#define SSB_SPROM_REVISION_CRC 0xFF00 /* SPROM CRC8 value */
#define SSB_SPROM_REVISION_CRC_SHIFT 8
/* SPROM Revision 1 */
#define SSB_SPROM1_SPID 0x1004 /* Subsystem Product ID for PCI */
#define SSB_SPROM1_SVID 0x1006 /* Subsystem Vendor ID for PCI */
#define SSB_SPROM1_PID 0x1008 /* Product ID for PCI */
#define SSB_SPROM1_IL0MAC 0x1048 /* 6 bytes MAC address for 802.11b/g */
#define SSB_SPROM1_ET0MAC 0x104E /* 6 bytes MAC address for Ethernet */
#define SSB_SPROM1_ET1MAC 0x1054 /* 6 bytes MAC address for 802.11a */
#define SSB_SPROM1_ETHPHY 0x105A /* Ethernet PHY settings */
#define SSB_SPROM1_ETHPHY_ET0A 0x001F /* MII Address for enet0 */
#define SSB_SPROM1_ETHPHY_ET1A 0x03E0 /* MII Address for enet1 */
#define SSB_SPROM1_ETHPHY_ET1A_SHIFT 5
#define SSB_SPROM1_ETHPHY_ET0M (1<<14) /* MDIO for enet0 */
#define SSB_SPROM1_ETHPHY_ET1M (1<<15) /* MDIO for enet1 */
#define SSB_SPROM1_BINF 0x105C /* Board info */
#define SSB_SPROM1_BINF_BREV 0x00FF /* Board Revision */
#define SSB_SPROM1_BINF_CCODE 0x0F00 /* Country Code */
#define SSB_SPROM1_BINF_CCODE_SHIFT 8
#define SSB_SPROM1_BINF_ANTBG 0x3000 /* Available B-PHY and G-PHY antennas */
#define SSB_SPROM1_BINF_ANTBG_SHIFT 12
#define SSB_SPROM1_BINF_ANTA 0xC000 /* Available A-PHY antennas */
#define SSB_SPROM1_BINF_ANTA_SHIFT 14
#define SSB_SPROM1_PA0B0 0x105E
#define SSB_SPROM1_PA0B1 0x1060
#define SSB_SPROM1_PA0B2 0x1062
#define SSB_SPROM1_GPIOA 0x1064 /* General Purpose IO pins 0 and 1 */
#define SSB_SPROM1_GPIOA_P0 0x00FF /* Pin 0 */
#define SSB_SPROM1_GPIOA_P1 0xFF00 /* Pin 1 */
#define SSB_SPROM1_GPIOA_P1_SHIFT 8
#define SSB_SPROM1_GPIOB 0x1066 /* General Purpuse IO pins 2 and 3 */
#define SSB_SPROM1_GPIOB_P2 0x00FF /* Pin 2 */
#define SSB_SPROM1_GPIOB_P3 0xFF00 /* Pin 3 */
#define SSB_SPROM1_GPIOB_P3_SHIFT 8
#define SSB_SPROM1_MAXPWR 0x1068 /* Power Amplifier Max Power */
#define SSB_SPROM1_MAXPWR_BG 0x00FF /* B-PHY and G-PHY (in dBm Q5.2) */
#define SSB_SPROM1_MAXPWR_A 0xFF00 /* A-PHY (in dBm Q5.2) */
#define SSB_SPROM1_MAXPWR_A_SHIFT 8
#define SSB_SPROM1_PA1B0 0x106A
#define SSB_SPROM1_PA1B1 0x106C
#define SSB_SPROM1_PA1B2 0x106E
#define SSB_SPROM1_ITSSI 0x1070 /* Idle TSSI Target */
#define SSB_SPROM1_ITSSI_BG 0x00FF /* B-PHY and G-PHY*/
#define SSB_SPROM1_ITSSI_A 0xFF00 /* A-PHY */
#define SSB_SPROM1_ITSSI_A_SHIFT 8
#define SSB_SPROM1_BFLLO 0x1072 /* Boardflags (low 16 bits) */
#define SSB_SPROM1_AGAIN 0x1074 /* Antenna Gain (in dBm Q5.2) */
#define SSB_SPROM1_AGAIN_BG 0x00FF /* B-PHY and G-PHY */
#define SSB_SPROM1_AGAIN_BG_SHIFT 0
#define SSB_SPROM1_AGAIN_A 0xFF00 /* A-PHY */
#define SSB_SPROM1_AGAIN_A_SHIFT 8
/* SPROM Revision 2 (inherits from rev 1) */
#define SSB_SPROM2_BFLHI 0x1038 /* Boardflags (high 16 bits) */
#define SSB_SPROM2_MAXP_A 0x103A /* A-PHY Max Power */
#define SSB_SPROM2_MAXP_A_HI 0x00FF /* Max Power High */
#define SSB_SPROM2_MAXP_A_LO 0xFF00 /* Max Power Low */
#define SSB_SPROM2_MAXP_A_LO_SHIFT 8
#define SSB_SPROM2_PA1LOB0 0x103C /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1LOB1 0x103E /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1LOB2 0x1040 /* A-PHY PowerAmplifier Low Settings */
#define SSB_SPROM2_PA1HIB0 0x1042 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_PA1HIB1 0x1044 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_PA1HIB2 0x1046 /* A-PHY PowerAmplifier High Settings */
#define SSB_SPROM2_OPO 0x1078 /* OFDM Power Offset from CCK Level */
#define SSB_SPROM2_OPO_VALUE 0x00FF
#define SSB_SPROM2_OPO_UNUSED 0xFF00
#define SSB_SPROM2_CCODE 0x107C /* Two char Country Code */
/* SPROM Revision 3 (inherits most data from rev 2) */
#define SSB_SPROM3_IL0MAC 0x104A /* 6 bytes MAC address for 802.11b/g */
#define SSB_SPROM3_ET0MAC 0x1050 /* 6 bytes MAC address for Ethernet ?? */
#define SSB_SPROM3_ET1MAC 0x1050 /* 6 bytes MAC address for 802.11a ?? */
#define SSB_SPROM3_OFDMAPO 0x102C /* A-PHY OFDM Mid Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_OFDMALPO 0x1030 /* A-PHY OFDM Low Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_OFDMAHPO 0x1034 /* A-PHY OFDM High Power Offset (4 bytes, BigEndian) */
#define SSB_SPROM3_GPIOLDC 0x1042 /* GPIO LED Powersave Duty Cycle (4 bytes, BigEndian) */
#define SSB_SPROM3_GPIOLDC_OFF 0x0000FF00 /* Off Count */
#define SSB_SPROM3_GPIOLDC_OFF_SHIFT 8
#define SSB_SPROM3_GPIOLDC_ON 0x00FF0000 /* On Count */
#define SSB_SPROM3_GPIOLDC_ON_SHIFT 16
#define SSB_SPROM3_CCKPO 0x1078 /* CCK Power Offset */
#define SSB_SPROM3_CCKPO_1M 0x000F /* 1M Rate PO */
#define SSB_SPROM3_CCKPO_2M 0x00F0 /* 2M Rate PO */
#define SSB_SPROM3_CCKPO_2M_SHIFT 4
#define SSB_SPROM3_CCKPO_55M 0x0F00 /* 5.5M Rate PO */
#define SSB_SPROM3_CCKPO_55M_SHIFT 8
#define SSB_SPROM3_CCKPO_11M 0xF000 /* 11M Rate PO */
#define SSB_SPROM3_CCKPO_11M_SHIFT 12
#define SSB_SPROM3_OFDMGPO 0x107A /* G-PHY OFDM Power Offset (4 bytes, BigEndian) */
/* SPROM Revision 4 */
#define SSB_SPROM4_IL0MAC 0x104C /* 6 byte MAC address for a/b/g/n */
#define SSB_SPROM4_ET0MAC 0x1018 /* 6 bytes MAC address for Ethernet ?? */
#define SSB_SPROM4_ET1MAC 0x1018 /* 6 bytes MAC address for 802.11a ?? */
#define SSB_SPROM4_ETHPHY 0x105A /* Ethernet PHY settings ?? */
#define SSB_SPROM4_ETHPHY_ET0A 0x001F /* MII Address for enet0 */
#define SSB_SPROM4_ETHPHY_ET1A 0x03E0 /* MII Address for enet1 */
#define SSB_SPROM4_ETHPHY_ET1A_SHIFT 5
#define SSB_SPROM4_ETHPHY_ET0M (1<<14) /* MDIO for enet0 */
#define SSB_SPROM4_ETHPHY_ET1M (1<<15) /* MDIO for enet1 */
#define SSB_SPROM4_CCODE 0x1052 /* Country Code (2 bytes) */
#define SSB_SPROM4_ANTAVAIL 0x105D /* Antenna available bitfields */
#define SSB_SPROM4_ANTAVAIL_A 0x00FF /* A-PHY bitfield */
#define SSB_SPROM4_ANTAVAIL_A_SHIFT 0
#define SSB_SPROM4_ANTAVAIL_BG 0xFF00 /* B-PHY and G-PHY bitfield */
#define SSB_SPROM4_ANTAVAIL_BG_SHIFT 8
#define SSB_SPROM4_BFLLO 0x1044 /* Boardflags (low 16 bits) */
#define SSB_SPROM4_AGAIN01 0x105E /* Antenna Gain (in dBm Q5.2) */
#define SSB_SPROM4_AGAIN0 0x00FF /* Antenna 0 */
#define SSB_SPROM4_AGAIN0_SHIFT 0
#define SSB_SPROM4_AGAIN1 0xFF00 /* Antenna 1 */
#define SSB_SPROM4_AGAIN1_SHIFT 8
#define SSB_SPROM4_AGAIN23 0x1060
#define SSB_SPROM4_AGAIN2 0x00FF /* Antenna 2 */
#define SSB_SPROM4_AGAIN2_SHIFT 0
#define SSB_SPROM4_AGAIN3 0xFF00 /* Antenna 3 */
#define SSB_SPROM4_AGAIN3_SHIFT 8
#define SSB_SPROM4_BFLHI 0x1046 /* Board Flags Hi */
#define SSB_SPROM4_MAXP_BG 0x1080 /* Max Power BG in path 1 */
#define SSB_SPROM4_MAXP_BG_MASK 0x00FF /* Mask for Max Power BG */
#define SSB_SPROM4_ITSSI_BG 0xFF00 /* Mask for path 1 itssi_bg */
#define SSB_SPROM4_ITSSI_BG_SHIFT 8
#define SSB_SPROM4_MAXP_A 0x108A /* Max Power A in path 1 */
#define SSB_SPROM4_MAXP_A_MASK 0x00FF /* Mask for Max Power A */
#define SSB_SPROM4_ITSSI_A 0xFF00 /* Mask for path 1 itssi_a */
#define SSB_SPROM4_ITSSI_A_SHIFT 8
#define SSB_SPROM4_GPIOA 0x1056 /* Gen. Purpose IO # 0 and 1 */
#define SSB_SPROM4_GPIOA_P0 0x00FF /* Pin 0 */
#define SSB_SPROM4_GPIOA_P1 0xFF00 /* Pin 1 */
#define SSB_SPROM4_GPIOA_P1_SHIFT 8
#define SSB_SPROM4_GPIOB 0x1058 /* Gen. Purpose IO # 2 and 3 */
#define SSB_SPROM4_GPIOB_P2 0x00FF /* Pin 2 */
#define SSB_SPROM4_GPIOB_P3 0xFF00 /* Pin 3 */
#define SSB_SPROM4_GPIOB_P3_SHIFT 8
#define SSB_SPROM4_PA0B0 0x1082 /* The paXbY locations are */
#define SSB_SPROM4_PA0B1 0x1084 /* only guesses */
#define SSB_SPROM4_PA0B2 0x1086
#define SSB_SPROM4_PA1B0 0x108E
#define SSB_SPROM4_PA1B1 0x1090
#define SSB_SPROM4_PA1B2 0x1092
/* Values for SSB_SPROM1_BINF_CCODE */
enum {
SSB_SPROM1CCODE_WORLD = 0,
SSB_SPROM1CCODE_THAILAND,
SSB_SPROM1CCODE_ISRAEL,
SSB_SPROM1CCODE_JORDAN,
SSB_SPROM1CCODE_CHINA,
SSB_SPROM1CCODE_JAPAN,
SSB_SPROM1CCODE_USA_CANADA_ANZ,
SSB_SPROM1CCODE_EUROPE,
SSB_SPROM1CCODE_USA_LOW,
SSB_SPROM1CCODE_JAPAN_HIGH,
SSB_SPROM1CCODE_ALL,
SSB_SPROM1CCODE_NONE,
};
/* Address-Match values and masks (SSB_ADMATCHxxx) */
#define SSB_ADM_TYPE 0x00000003 /* Address type */
#define SSB_ADM_TYPE0 0
#define SSB_ADM_TYPE1 1
#define SSB_ADM_TYPE2 2
#define SSB_ADM_AD64 0x00000004
#define SSB_ADM_SZ0 0x000000F8 /* Type0 size */
#define SSB_ADM_SZ0_SHIFT 3
#define SSB_ADM_SZ1 0x000001F8 /* Type1 size */
#define SSB_ADM_SZ1_SHIFT 3
#define SSB_ADM_SZ2 0x000001F8 /* Type2 size */
#define SSB_ADM_SZ2_SHIFT 3
#define SSB_ADM_EN 0x00000400 /* Enable */
#define SSB_ADM_NEG 0x00000800 /* Negative decode */
#define SSB_ADM_BASE0 0xFFFFFF00 /* Type0 base address */
#define SSB_ADM_BASE0_SHIFT 8
#define SSB_ADM_BASE1 0xFFFFF000 /* Type1 base address for the core */
#define SSB_ADM_BASE1_SHIFT 12
#define SSB_ADM_BASE2 0xFFFF0000 /* Type2 base address for the core */
#define SSB_ADM_BASE2_SHIFT 16
#endif /* LINUX_SSB_REGS_H_ */