1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-11-28 21:36:16 +02:00
openwrt-xburst/target/linux/rdc/files/arch/x86/boot/compressed/LzmaDecode.c
florian be01bc2bd6 Put the files created by the lzma decompressor patch in the files/
directory.
Add some early_printk debugging to the lzma decompressor to help
track down problems when upgrading from one kernel version to another


git-svn-id: svn://svn.openwrt.org/openwrt/trunk@11627 3c298f89-4303-0410-b956-a3cf2f4a3e73
2008-07-03 11:09:37 +00:00

587 lines
15 KiB
C

/*
LzmaDecode.c
LZMA Decoder (optimized for Speed version)
LZMA SDK 4.17 Copyright (c) 1999-2005 Igor Pavlov (2005-04-05)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this Code, expressly permits you to
statically or dynamically link your Code (or bind by name) to the
interfaces of this file without subjecting your linked Code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#include "LzmaDecode.h"
#ifndef Byte
#define Byte unsigned char
#endif
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_READ_BYTE (*Buffer++)
#define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
{ int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }}
#ifdef _LZMA_IN_CB
#define RC_TEST { if (Buffer == BufferLim) \
{ UInt32 size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) return result; \
BufferLim = Buffer + size; if (size == 0) return LZMA_RESULT_DATA_ERROR; }}
#define RC_INIT Buffer = BufferLim = 0; RC_INIT2
#else
#define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; }
#define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2
#endif
#define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }
#define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
#define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
#define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;
#define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
{ UpdateBit0(p); mi <<= 1; A0; } else \
{ UpdateBit1(p); mi = (mi + mi) + 1; A1; }
#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
#define RangeDecoderBitTreeDecode(probs, numLevels, res) \
{ int i = numLevels; res = 1; \
do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \
res -= (1 << numLevels); }
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define kNumStates 12
#define kNumLitStates 7
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
#ifdef _LZMA_OUT_READ
typedef struct _LzmaVarState
{
Byte *Buffer;
Byte *BufferLim;
UInt32 Range;
UInt32 Code;
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback;
#endif
Byte *Dictionary;
UInt32 DictionarySize;
UInt32 DictionaryPos;
UInt32 GlobalPos;
UInt32 Reps[4];
int lc;
int lp;
int pb;
int State;
int RemainLen;
Byte TempDictionary[4];
} LzmaVarState;
int LzmaDecoderInit(
unsigned char *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
unsigned char *dictionary, UInt32 dictionarySize,
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback
#else
unsigned char *inStream, UInt32 inSize
#endif
)
{
Byte *Buffer;
Byte *BufferLim;
UInt32 Range;
UInt32 Code;
LzmaVarState *vs = (LzmaVarState *)buffer;
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
UInt32 i;
if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
return LZMA_RESULT_NOT_ENOUGH_MEM;
vs->Dictionary = dictionary;
vs->DictionarySize = dictionarySize;
vs->DictionaryPos = 0;
vs->GlobalPos = 0;
vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
vs->lc = lc;
vs->lp = lp;
vs->pb = pb;
vs->State = 0;
vs->RemainLen = 0;
dictionary[dictionarySize - 1] = 0;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
vs->Buffer = Buffer;
vs->BufferLim = BufferLim;
vs->Range = Range;
vs->Code = Code;
#ifdef _LZMA_IN_CB
vs->InCallback = InCallback;
#endif
return LZMA_RESULT_OK;
}
int LzmaDecode(unsigned char *buffer,
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
LzmaVarState *vs = (LzmaVarState *)buffer;
Byte *Buffer = vs->Buffer;
Byte *BufferLim = vs->BufferLim;
UInt32 Range = vs->Range;
UInt32 Code = vs->Code;
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback = vs->InCallback;
#endif
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
int state = vs->State;
Byte previousByte;
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << (vs->pb)) - 1;
UInt32 literalPosMask = (1 << (vs->lp)) - 1;
int lc = vs->lc;
int len = vs->RemainLen;
UInt32 globalPos = vs->GlobalPos;
Byte *dictionary = vs->Dictionary;
UInt32 dictionarySize = vs->DictionarySize;
UInt32 dictionaryPos = vs->DictionaryPos;
Byte tempDictionary[4];
if (dictionarySize == 0)
{
dictionary = tempDictionary;
dictionarySize = 1;
tempDictionary[0] = vs->TempDictionary[0];
}
if (len == -1)
{
*outSizeProcessed = 0;
return LZMA_RESULT_OK;
}
while(len != 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
#else
int LzmaDecode(
Byte *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback,
#else
unsigned char *inStream, UInt32 inSize,
#endif
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
CProb *p = (CProb *)buffer;
UInt32 i;
int state = 0;
Byte previousByte = 0;
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << pb) - 1;
UInt32 literalPosMask = (1 << lp) - 1;
int len = 0;
Byte *Buffer;
Byte *BufferLim;
UInt32 Range;
UInt32 Code;
if (bufferSize < numProbs * sizeof(CProb))
return LZMA_RESULT_NOT_ENOUGH_MEM;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
#endif
*outSizeProcessed = 0;
while(nowPos < outSize)
{
CProb *prob;
UInt32 bound;
int posState = (int)(
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& posStateMask);
prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
int symbol = 1;
UpdateBit0(prob)
prob = p + Literal + (LZMA_LIT_SIZE *
(((
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state >= kNumLitStates)
{
int matchByte;
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
#else
matchByte = outStream[nowPos - rep0];
#endif
do
{
int bit;
CProb *probLit;
matchByte <<= 1;
bit = (matchByte & 0x100);
probLit = prob + 0x100 + bit + symbol;
RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break)
}
while (symbol < 0x100);
}
while (symbol < 0x100)
{
CProb *probLit = prob + symbol;
RC_GET_BIT(probLit, symbol)
}
previousByte = (Byte)symbol;
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#endif
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
}
else
{
UpdateBit1(prob);
prob = p + IsRep + state;
IfBit0(prob)
{
UpdateBit0(prob);
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < kNumLitStates ? 0 : 3;
prob = p + LenCoder;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG0 + state;
IfBit0(prob)
{
UpdateBit0(prob);
prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
#ifdef _LZMA_OUT_READ
UInt32 pos;
#endif
UpdateBit0(prob);
if (nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
== 0)
return LZMA_RESULT_DATA_ERROR;
state = state < kNumLitStates ? 9 : 11;
#ifdef _LZMA_OUT_READ
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
continue;
}
else
{
UpdateBit1(prob);
}
}
else
{
UInt32 distance;
UpdateBit1(prob);
prob = p + IsRepG1 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep1;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG2 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep2;
}
else
{
UpdateBit1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = p + RepLenCoder;
}
{
int numBits, offset;
CProb *probLen = prob + LenChoice;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenLow + (posState << kLenNumLowBits);
offset = 0;
numBits = kLenNumLowBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenChoice2;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenMid + (posState << kLenNumMidBits);
offset = kLenNumLowSymbols;
numBits = kLenNumMidBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenHigh;
offset = kLenNumLowSymbols + kLenNumMidSymbols;
numBits = kLenNumHighBits;
}
}
RangeDecoderBitTreeDecode(probLen, numBits, len);
len += offset;
}
if (state < 4)
{
int posSlot;
state += kNumLitStates;
prob = p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = (2 | ((UInt32)posSlot & 1));
if (posSlot < kEndPosModelIndex)
{
rep0 <<= numDirectBits;
prob = p + SpecPos + rep0 - posSlot - 1;
}
else
{
numDirectBits -= kNumAlignBits;
do
{
RC_NORMALIZE
Range >>= 1;
rep0 <<= 1;
if (Code >= Range)
{
Code -= Range;
rep0 |= 1;
}
}
while (--numDirectBits != 0);
prob = p + Align;
rep0 <<= kNumAlignBits;
numDirectBits = kNumAlignBits;
}
{
int i = 1;
int mi = 1;
do
{
CProb *prob3 = prob + mi;
RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
i <<= 1;
}
while(--numDirectBits != 0);
}
}
else
rep0 = posSlot;
if (++rep0 == (UInt32)(0))
{
/* it's for stream version */
len = -1;
break;
}
}
len += kMatchMinLen;
if (rep0 > nowPos
#ifdef _LZMA_OUT_READ
+ globalPos || rep0 > dictionarySize
#endif
)
return LZMA_RESULT_DATA_ERROR;
do
{
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
len--;
outStream[nowPos++] = previousByte;
}
while(len != 0 && nowPos < outSize);
}
}
RC_NORMALIZE;
#ifdef _LZMA_OUT_READ
vs->Buffer = Buffer;
vs->BufferLim = BufferLim;
vs->Range = Range;
vs->Code = Code;
vs->DictionaryPos = dictionaryPos;
vs->GlobalPos = globalPos + nowPos;
vs->Reps[0] = rep0;
vs->Reps[1] = rep1;
vs->Reps[2] = rep2;
vs->Reps[3] = rep3;
vs->State = state;
vs->RemainLen = len;
vs->TempDictionary[0] = tempDictionary[0];
#endif
*outSizeProcessed = nowPos;
return LZMA_RESULT_OK;
}