1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-12 16:40:14 +02:00
openwrt-xburst/package/uboot-xburst/files/cpu/mips/jz4740.c
lars 28dec42aa3 [package] Add uboot for xburst package
git-svn-id: svn://svn.openwrt.org/openwrt/trunk@20832 3c298f89-4303-0410-b956-a3cf2f4a3e73
2010-04-12 18:17:26 +00:00

560 lines
13 KiB
C

/*
* Jz4740 common routines
*
* Copyright (c) 2006
* Ingenic Semiconductor, <jlwei@ingenic.cn>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#ifdef CONFIG_JZ4740
#include <common.h>
#include <command.h>
#include <asm/jz4740.h>
extern void board_early_init(void);
/* PLL output clock = EXTAL * NF / (NR * NO)
*
* NF = FD + 2, NR = RD + 2
* NO = 1 (if OD = 0), NO = 2 (if OD = 1 or 2), NO = 4 (if OD = 3)
*/
void pll_init(void)
{
register unsigned int cfcr, plcr1;
int n2FR[33] = {
0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
9
};
int div[5] = {1, 3, 3, 3, 3}; /* divisors of I:S:P:L:M */
int nf, pllout2;
cfcr = CPM_CPCCR_CLKOEN |
CPM_CPCCR_PCS |
(n2FR[div[0]] << CPM_CPCCR_CDIV_BIT) |
(n2FR[div[1]] << CPM_CPCCR_HDIV_BIT) |
(n2FR[div[2]] << CPM_CPCCR_PDIV_BIT) |
(n2FR[div[3]] << CPM_CPCCR_MDIV_BIT) |
(n2FR[div[4]] << CPM_CPCCR_LDIV_BIT);
pllout2 = (cfcr & CPM_CPCCR_PCS) ? CONFIG_SYS_CPU_SPEED : (CONFIG_SYS_CPU_SPEED / 2);
/* Init USB Host clock, pllout2 must be n*48MHz */
REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
nf = CONFIG_SYS_CPU_SPEED * 2 / CONFIG_SYS_EXTAL;
plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
(0 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
(0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
(0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
CPM_CPPCR_PLLEN; /* enable PLL */
/* init PLL */
REG_CPM_CPCCR = cfcr;
REG_CPM_CPPCR = plcr1;
}
void pll_add_test(int new_freq)
{
register unsigned int cfcr, plcr1;
int n2FR[33] = {
0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
9
};
int div[5] = {1, 4, 4, 4, 4}; /* divisors of I:S:P:M:L */
int nf, pllout2;
cfcr = CPM_CPCCR_CLKOEN |
(n2FR[div[0]] << CPM_CPCCR_CDIV_BIT) |
(n2FR[div[1]] << CPM_CPCCR_HDIV_BIT) |
(n2FR[div[2]] << CPM_CPCCR_PDIV_BIT) |
(n2FR[div[3]] << CPM_CPCCR_MDIV_BIT) |
(n2FR[div[4]] << CPM_CPCCR_LDIV_BIT);
pllout2 = (cfcr & CPM_CPCCR_PCS) ? new_freq : (new_freq / 2);
/* Init UHC clock */
REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
/* nf = new_freq * 2 / CONFIG_SYS_EXTAL; */
nf = new_freq / 1000000; /* step length is 1M */
plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
(10 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
(0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
(0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
CPM_CPPCR_PLLEN; /* enable PLL */
/* init PLL */
REG_CPM_CPCCR = cfcr;
REG_CPM_CPPCR = plcr1;
}
void calc_clocks_add_test(void)
{
DECLARE_GLOBAL_DATA_PTR;
unsigned int pllout;
unsigned int div[10] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
pllout = __cpm_get_pllout();
gd->cpu_clk = pllout / div[__cpm_get_cdiv()];
gd->sys_clk = pllout / div[__cpm_get_hdiv()];
gd->per_clk = pllout / div[__cpm_get_pdiv()];
gd->mem_clk = pllout / div[__cpm_get_mdiv()];
gd->dev_clk = CONFIG_SYS_EXTAL;
}
void sdram_add_test(int new_freq)
{
register unsigned int dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
unsigned int cas_latency_sdmr[2] = {
EMC_SDMR_CAS_2,
EMC_SDMR_CAS_3,
};
unsigned int cas_latency_dmcr[2] = {
1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
};
int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
cpu_clk = new_freq;
mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
REG_EMC_RTCSR = EMC_RTCSR_CKS_DISABLE;
REG_EMC_RTCOR = 0;
REG_EMC_RTCNT = 0;
/* Basic DMCR register value. */
dmcr = ((SDRAM_ROW-11)<<EMC_DMCR_RA_BIT) |
((SDRAM_COL-8)<<EMC_DMCR_CA_BIT) |
(SDRAM_BANK4<<EMC_DMCR_BA_BIT) |
(SDRAM_BW16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* SDRAM timimg parameters */
ns = 1000000000 / mem_clk;
#if 0
tmp = SDRAM_TRAS/ns;
if (tmp < 4) tmp = 4;
if (tmp > 11) tmp = 11;
dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
tmp = SDRAM_RCD/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_RCD_BIT);
tmp = SDRAM_TPC/ns;
if (tmp > 7) tmp = 7;
dmcr |= (tmp << EMC_DMCR_TPC_BIT);
tmp = SDRAM_TRWL/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
if (tmp > 14) tmp = 14;
dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
#else
dmcr |= 0xfffc;
#endif
/* First, precharge phase */
REG_EMC_DMCR = dmcr;
/* Set refresh registers */
tmp = SDRAM_TREF/ns;
tmp = tmp/64 + 1;
if (tmp > 0xff) tmp = 0xff;
REG_EMC_RTCOR = tmp;
REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
/* SDRAM mode values */
sdmode = EMC_SDMR_BT_SEQ |
EMC_SDMR_OM_NORMAL |
EMC_SDMR_BL_4 |
cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
/* precharge all chip-selects */
REG8(EMC_SDMR0|sdmode) = 0;
/* wait for precharge, > 200us */
tmp = (cpu_clk / 1000000) * 200;
while (tmp--);
/* enable refresh and set SDRAM mode */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
/* write sdram mode register for each chip-select */
REG8(EMC_SDMR0|sdmode) = 0;
/* everything is ok now */
}
void sdram_init(void)
{
register unsigned int dmcr0, dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
unsigned int cas_latency_sdmr[2] = {
EMC_SDMR_CAS_2,
EMC_SDMR_CAS_3,
};
unsigned int cas_latency_dmcr[2] = {
1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
};
int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
cpu_clk = CONFIG_SYS_CPU_SPEED;
mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
REG_EMC_BCR = 0; /* Disable bus release */
REG_EMC_RTCSR = 0; /* Disable clock for counting */
/* Fault DMCR value for mode register setting*/
#define SDRAM_ROW0 11
#define SDRAM_COL0 8
#define SDRAM_BANK40 0
dmcr0 = ((SDRAM_ROW0-11)<<EMC_DMCR_RA_BIT) |
((SDRAM_COL0-8)<<EMC_DMCR_CA_BIT) |
(SDRAM_BANK40<<EMC_DMCR_BA_BIT) |
(SDRAM_BW16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Basic DMCR value */
dmcr = ((SDRAM_ROW-11)<<EMC_DMCR_RA_BIT) |
((SDRAM_COL-8)<<EMC_DMCR_CA_BIT) |
(SDRAM_BANK4<<EMC_DMCR_BA_BIT) |
(SDRAM_BW16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* SDRAM timimg */
ns = 1000000000 / mem_clk;
tmp = SDRAM_TRAS/ns;
if (tmp < 4) tmp = 4;
if (tmp > 11) tmp = 11;
dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
tmp = SDRAM_RCD/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_RCD_BIT);
tmp = SDRAM_TPC/ns;
if (tmp > 7) tmp = 7;
dmcr |= (tmp << EMC_DMCR_TPC_BIT);
tmp = SDRAM_TRWL/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
if (tmp > 14) tmp = 14;
dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
/* SDRAM mode value */
sdmode = EMC_SDMR_BT_SEQ |
EMC_SDMR_OM_NORMAL |
EMC_SDMR_BL_4 |
cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Stage 1. Precharge all banks by writing SDMR with DMCR.MRSET=0 */
REG_EMC_DMCR = dmcr;
REG8(EMC_SDMR0|sdmode) = 0;
/* Wait for precharge, > 200us */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 2. Enable auto-refresh */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH;
tmp = SDRAM_TREF/ns;
tmp = tmp/64 + 1;
if (tmp > 0xff) tmp = 0xff;
REG_EMC_RTCOR = tmp;
REG_EMC_RTCNT = 0;
REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
/* Wait for number of auto-refresh cycles */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 3. Mode Register Set */
REG_EMC_DMCR = dmcr0 | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
REG8(EMC_SDMR0|sdmode) = 0;
/* Set back to basic DMCR value */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
/* everything is ok now */
}
#ifndef CONFIG_NAND_SPL
static void calc_clocks(void)
{
DECLARE_GLOBAL_DATA_PTR;
unsigned int pllout;
unsigned int div[10] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
pllout = __cpm_get_pllout();
gd->cpu_clk = pllout / div[__cpm_get_cdiv()];
gd->sys_clk = pllout / div[__cpm_get_hdiv()];
gd->per_clk = pllout / div[__cpm_get_pdiv()];
gd->mem_clk = pllout / div[__cpm_get_mdiv()];
gd->dev_clk = CONFIG_SYS_EXTAL;
}
static void rtc_init(void)
{
unsigned long rtcsta;
while ( !__rtc_write_ready()) ;
__rtc_enable_alarm(); /* enable alarm */
while ( !__rtc_write_ready())
;
REG_RTC_RGR = 0x00007fff; /* type value */
while ( !__rtc_write_ready())
;
REG_RTC_HWFCR = 0x0000ffe0; /* Power on delay 2s */
while ( !__rtc_write_ready())
;
REG_RTC_HRCR = 0x00000fe0; /* reset delay 125ms */
#if 0
while ( !__rtc_write_ready())
;
rtcsta = REG_RTC_HWRSR;
while ( !__rtc_write_ready())
;
if (rtcsta & 0x33) {
if (rtcsta & 0x10) {
while ( !__rtc_write_ready())
;
REG_RTC_RSR = 0x0;
}
while ( !__rtc_write_ready())
;
REG_RTC_HWRSR = 0x0;
}
#endif
}
/*
* jz4740 board init routine
*/
int jz_board_init(void)
{
board_early_init(); /* init gpio, pll etc. */
#ifndef CONFIG_NAND_U_BOOT
pll_init(); /* init PLL */
sdram_init(); /* init sdram memory */
#endif
calc_clocks(); /* calc the clocks */
rtc_init(); /* init rtc on any reset: */
return 0;
}
/* U-Boot common routines */
phys_size_t initdram(int board_type)
{
u32 dmcr;
u32 rows, cols, dw, banks;
ulong size;
dmcr = REG_EMC_DMCR;
rows = 11 + ((dmcr & EMC_DMCR_RA_MASK) >> EMC_DMCR_RA_BIT);
cols = 8 + ((dmcr & EMC_DMCR_CA_MASK) >> EMC_DMCR_CA_BIT);
dw = (dmcr & EMC_DMCR_BW) ? 2 : 4;
banks = (dmcr & EMC_DMCR_BA) ? 4 : 2;
size = (1 << (rows + cols)) * dw * banks;
return size;
}
/*
* Timer routines
*/
#define TIMER_CHAN 0
#define TIMER_FDATA 0xffff /* Timer full data value */
#define TIMER_HZ CONFIG_SYS_HZ
#define READ_TIMER REG_TCU_TCNT(TIMER_CHAN) /* macro to read the 16 bit timer */
static ulong timestamp;
static ulong lastdec;
void reset_timer_masked (void);
ulong get_timer_masked (void);
void udelay_masked (unsigned long usec);
/*
* timer without interrupts
*/
int timer_init(void)
{
REG_TCU_TCSR(TIMER_CHAN) = TCU_TCSR_PRESCALE256 | TCU_TCSR_EXT_EN;
REG_TCU_TCNT(TIMER_CHAN) = 0;
REG_TCU_TDHR(TIMER_CHAN) = 0;
REG_TCU_TDFR(TIMER_CHAN) = TIMER_FDATA;
REG_TCU_TMSR = (1 << TIMER_CHAN) | (1 << (TIMER_CHAN + 16)); /* mask irqs */
REG_TCU_TSCR = (1 << TIMER_CHAN); /* enable timer clock */
REG_TCU_TESR = (1 << TIMER_CHAN); /* start counting up */
lastdec = 0;
timestamp = 0;
return 0;
}
void reset_timer(void)
{
reset_timer_masked ();
}
ulong get_timer(ulong base)
{
return get_timer_masked () - base;
}
void set_timer(ulong t)
{
timestamp = t;
}
void udelay (unsigned long usec)
{
ulong tmo,tmp;
/* normalize */
if (usec >= 1000) {
tmo = usec / 1000;
tmo *= TIMER_HZ;
tmo /= 1000;
}
else {
if (usec >= 1) {
tmo = usec * TIMER_HZ;
tmo /= (1000*1000);
}
else
tmo = 1;
}
/* check for rollover during this delay */
tmp = get_timer (0);
if ((tmp + tmo) < tmp )
reset_timer_masked(); /* timer would roll over */
else
tmo += tmp;
while (get_timer_masked () < tmo);
}
void reset_timer_masked (void)
{
/* reset time */
lastdec = READ_TIMER;
timestamp = 0;
}
ulong get_timer_masked (void)
{
ulong now = READ_TIMER;
if (lastdec <= now) {
/* normal mode */
timestamp += (now - lastdec);
} else {
/* we have an overflow ... */
timestamp += TIMER_FDATA + now - lastdec;
}
lastdec = now;
return timestamp;
}
void udelay_masked (unsigned long usec)
{
ulong tmo;
ulong endtime;
signed long diff;
/* normalize */
if (usec >= 1000) {
tmo = usec / 1000;
tmo *= TIMER_HZ;
tmo /= 1000;
} else {
if (usec > 1) {
tmo = usec * TIMER_HZ;
tmo /= (1000*1000);
} else {
tmo = 1;
}
}
endtime = get_timer_masked () + tmo;
do {
ulong now = get_timer_masked ();
diff = endtime - now;
} while (diff >= 0);
}
/*
* This function is derived from PowerPC code (read timebase as long long).
* On MIPS it just returns the timer value.
*/
unsigned long long get_ticks(void)
{
return get_timer(0);
}
/*
* This function is derived from PowerPC code (timebase clock frequency).
* On MIPS it returns the number of timer ticks per second.
*/
ulong get_tbclk (void)
{
return TIMER_HZ;
}
#endif /* CONFIG_NAND_SPL */
/* End of timer routine. */
#endif