1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-23 11:11:06 +02:00

Adding ADC example

This commit is contained in:
Carlos Camargo 2010-04-02 21:44:09 -05:00
parent 34b8cb651b
commit 0b5d03e1e6
4 changed files with 380 additions and 0 deletions

View File

@ -0,0 +1,41 @@
NET clk LOC = "P38";
NET reset LOC = "P71"; #WARNING change to another pin
NET led LOC = "P44";
#ADDRESS BUS
#NET "addr<12>" LOC = "P90";
#NET "addr<11>" LOC = "P91";
NET "addr<10>" LOC = "P85";
NET "addr<9>" LOC = "P92";
NET "addr<8>" LOC = "P94";
NET "addr<7>" LOC = "P95";
NET "addr<6>" LOC = "P98";
NET "addr<5>" LOC = "P3";
NET "addr<4>" LOC = "P2";
NET "addr<3>" LOC = "P78";
NET "addr<2>" LOC = "P79";
NET "addr<1>" LOC = "P83";
NET "addr<0>" LOC = "P84";
#DATA BUS
NET "sram_data<7>" LOC = "P4";
NET "sram_data<6>" LOC = "P5";
NET "sram_data<5>" LOC = "P9";
NET "sram_data<4>" LOC = "P10";
NET "sram_data<3>" LOC = "P11";
NET "sram_data<2>" LOC = "P12";
NET "sram_data<1>" LOC = "P15";
NET "sram_data<0>" LOC = "P16";
#CONTROL BUS
NET "nwe" LOC = "P88";
NET "noe" LOC = "P86";
NET "ncs" LOC = "P69";
#ADC
NET "ADC_EOC" LOC = "P17";
NET "ADC_SCLK" LOC = "P18" ;
NET "ADC_SDIN" LOC = "P22";
NET "ADC_SDOUT" LOC = "P23";
NET "ADC_CS" LOC = "P24";
NET "ADC_CSTART" LOC = "P26";

104
Examples/ADC/logic/ADC.v Normal file
View File

@ -0,0 +1,104 @@
`timescale 1ns / 1ps
module ADC(clk, sram_data, addr, nwe, ncs, noe, reset, led, ADC_EOC,
ADC_SCLK, ADC_SDIN, ADC_SDOUT, ADC_CS, ADC_CSTART);
parameter B = (7);
input clk, addr, nwe, ncs, noe, reset, ADC_EOC;
inout [B:0] sram_data;
output led, ADC_CS, ADC_CSTART, ADC_SCLK;
inout ADC_SDIN, ADC_SDOUT;
// Internal conection
reg led;
// synchronize signals
reg sncs, snwe;
reg [10:0] buffer_addr;
wire [8:0] addr2;
reg [B:0] buffer_data;
// interfaz fpga signals
wire [10:0] addr;
// bram interfaz signals
reg we;
wire we2;
reg w_st=0;
reg [B:0] wrBus;
wire [B:0] rdBus;
wire [B:0] wrBus2;
wire [B:0] rdBus2;
reg [25:0] counter;
// Test : LED blinking
always @(posedge clk) begin
if (reset)
counter <= {25{1'b0}};
else
counter <= counter + 1;
led <=counter[25];
end
// interefaz signals assignments
wire T = ~noe | ncs;
assign sram_data = T?8'bZ:rdBus;
// synchronize assignment
always @(negedge clk)
begin
sncs <= ncs;
snwe <= nwe;
buffer_data <= sram_data;
buffer_addr <= addr;
end
// write access cpu to bram
always @(posedge clk)
if(reset) {w_st, we, wrBus} <= 0;
else begin
wrBus <= buffer_data;
case (w_st)
0: begin
we <= 0;
if(sncs | snwe) w_st <= 1;
end
1: begin
if(~(sncs | snwe)) begin
we <= 1;
w_st <= 0;
end
else we <= 0;
end
endcase
end
// Dual-port RAM instatiation
RAMB16_S9_S9 ba0(
.DOA(rdBus), // Port A 8-bit Data Output
.DOB(rdBus2), // Port B 8-bit Data Output
.DOPA(), // Port A 1-bit Parity Output
.DOPB(), // Port B 1-bit Parity Output
.ADDRA(buffer_addr[10:0]), // Port A 11-bit Address Input
.ADDRB(addr2[8:0]), // Port B 11-bit Address Input
.CLKA(~clk), // Port A Clock
.CLKB(~clk), // Port B Clock
.DIA(wrBus), // Port A 8-bit Data Input
.DIB(wrBus2), // Port B 8-bit Data Input
.DIPA(1'b0), // Port A 1-bit parity Input
.DIPB(1'b0), // Port-B 1-bit parity Input
.ENA(1'b1), // Port A RAM Enable Input
.ENB(1'b1), // Port B RAM Enable Input
.SSRA(1'b0), // Port A Synchronous Set/Reset Input
.SSRB(1'b0), // Port B Synchronous Set/Reset Input
.WEA(we), // Port A Write Enable Input
.WEB(we2) ); // Port B Write Enable Input
// Peripheral instantiation
ADC_peripheral P1( clk, reset, ADC_EOC, ADC_CS, ADC_CSTART,
ADC_SCLK, ADC_SDIN, ADC_SDOUT, we2,
rdBus2, wrBus2, addr2);
endmodule

View File

@ -0,0 +1,161 @@
`timescale 1ns / 1ps
module ADC_peripheral( clk, reset, ADC_EOC, ADC_CS, ADC_CSTART,
ADC_SCLK, ADC_SDIN, ADC_SDOUT, we2,
rdBus2, wrBus2, addr2);
input clk, reset, ADC_EOC;
input [7:0] rdBus2;
output we2, ADC_CS, ADC_CSTART, ADC_SCLK;
output [7:0] wrBus2;
output [8:0] addr2;
inout ADC_SDIN, ADC_SDOUT;
reg we2=0, nSample=0;
reg [7:0] wrBus2;
reg [8:0] addr2;
reg [7:0] auto_count=0;
reg [4:0] w_st2=0;
reg [3:0] SPI_in_data=0;
reg [9:0] SPI_out_data;
reg SPI_rd = 0;
reg SPI_wr = 0;
reg [7:0] buffer_rd1;
reg [3:0] ADC_cmd;
assign ADC_CSTART = 1'b1;
// SPI comunication module instantiation
reg ADC_SCLK_buffer = 0;
reg ADC_SDIN_buffer = 0;
reg busy = 0;
reg [3:0] in_buffer=0;
reg [9:0] out_buffer;
reg [7:0] clkcount = 0;
reg [7:0] clkdiv = 255;
reg [4:0] count = 0;
assign ADC_CS = ~busy;
always@(SPI_rd or out_buffer or busy or clkdiv)
begin
SPI_out_data = 10'bx;
if(SPI_rd)
begin SPI_out_data = out_buffer; end
end
always@(negedge clk)
begin
if(!busy)
begin
if(SPI_wr)
begin in_buffer = SPI_in_data; busy = 1; end
end
else
begin
clkcount = clkcount + 1;
if(clkcount >= clkdiv)
begin
clkcount = 0;
// Send the ADC CMD on first 4 rising edge of SCLK
if((count % 2) == 0)
begin
ADC_SDIN_buffer = in_buffer[3];
in_buffer = in_buffer << 1;
end
// We generate 10 cicles of SCLK
if(count > 0 && count < 21)
begin
ADC_SCLK_buffer = ~ADC_SCLK_buffer;
end
count = count + 1;
if(count > 21)
begin
count = 0;
busy = 0;
end
end
end
end
always@(posedge ADC_SCLK_buffer)
begin
out_buffer = out_buffer << 1;
out_buffer[0] = ADC_SDOUT;
end
assign ADC_SCLK = ADC_SCLK_buffer;
assign ADC_SDIN = ADC_SDIN_buffer;
// State Machine for control ADC comunication
always @(posedge clk)
if(reset)
{we2, SPI_wr, SPI_rd, w_st2, auto_count, SPI_in_data} <= 0;
else begin
case (w_st2)
0: begin addr2 <= 0; w_st2 <= 1; end
1: begin
ADC_cmd <= rdBus2[3:0];
if (rdBus2[7:4] == 5)
// Send command without read samples
begin addr2<= 2; w_st2 <= 2; nSample <= 1; end
else if (rdBus2[7:4] == 6)
// Read: Stop when buffer full
begin addr2<= 2; w_st2 <= 2; nSample <= 0; end
else if (rdBus2[7:4] == 9)
// Set clkdiv on SPI controller
begin addr2<= 1; w_st2 <= 10; end
else
begin w_st2 <= 0; end
end
2: begin
if (rdBus2[7:0] == 0)
begin auto_count<=0; w_st2 <= 0; end
else begin
//Send data to ADC
buffer_rd1<=rdBus2;
auto_count<=auto_count+1;
SPI_in_data <= ADC_cmd[3:0];
SPI_wr <= 1; w_st2 <= 3;
end
end
3: begin
SPI_wr <= 0;
//Wait for complete convertion
if(!ADC_EOC || ADC_CS) begin
buffer_rd1<=buffer_rd1-1;
SPI_rd <=1;
if(nSample)
w_st2<= 8;
else
w_st2<= 4;
end
end
4: begin
//Write data on BRAM (LOW)
wrBus2 <= SPI_out_data[7:0];
addr2 <= 2+2*auto_count;
we2 <= 1; w_st2 <= 5;
end
5: begin we2 <= 0; w_st2 <= 6; end
6: begin
//Write data on BRAM (HI)
wrBus2 <= SPI_out_data[9:8];
addr2 <= 3+2*auto_count;
we2 <= 1; w_st2 <= 7;
end
7: begin we2 <= 0; w_st2 <= 8; end
8: begin
SPI_rd <=0;
//Update Buffer Size value
wrBus2 <= buffer_rd1;
addr2 <= 2;
we2 <= 1; w_st2 <= 9;
end
9: begin we2 <= 0; w_st2 <= 0; end
//Sent clock divider for speed on SPI comunication
10: begin clkdiv = rdBus2; w_st2 <= 0; end
endcase
end
endmodule

View File

@ -0,0 +1,74 @@
DESIGN = ADC
PINS = $(DESIGN).ucf
DEVICE = xc3s250e-VQ100-4
BGFLAGS = -g TdoPin:PULLNONE -g DonePin:PULLUP \
-g CRC:enable -g StartUpClk:CCLK
SIM_CMD = /opt/cad/modeltech/bin/vsim
SIM_COMP_SCRIPT = simulation/$(DESIGN)_TB.do
#SIM_INIT_SCRIPT = simulation/$(DESIGN)_init.do
SIMGEN_OPTIONS = -p $(FPGA_ARCH) -lang $(LANGUAGE)
SAKC_IP = 192.168.254.101
SRC = $(DESIGN).v ADC_peripheral.v
all: bits
remake: clean-build all
clean:
rm -f *~ */*~ a.out *.log *.key *.edf *.ps trace.dat
rm *.bit
clean-build: clean
rm -rf build
cleanall: clean
rm -rf build $(DESIGN).bit
bits: $(DESIGN).bit
#
# Synthesis
#
build/project.src:
@[ -d build ] || mkdir build
@rm -f $@
for i in $(SRC); do echo verilog work ../$$i >> $@; done
for i in $(SRC_HDL); do echo VHDL work ../$$i >> $@; done
build/project.xst: build/project.src
echo "run" > $@
echo "-top $(DESIGN) " >> $@
echo "-p $(DEVICE)" >> $@
echo "-opt_mode Area" >> $@
echo "-opt_level 1" >> $@
echo "-ifn project.src" >> $@
echo "-ifmt mixed" >> $@
echo "-ofn project.ngc" >> $@
echo "-ofmt NGC" >> $@
echo "-rtlview yes" >> $@
build/project.ngc: build/project.xst $(SRC)
cd build && xst -ifn project.xst -ofn project.log
build/project.ngd: build/project.ngc $(PINS)
cd build && ngdbuild -p $(DEVICE) project.ngc -uc ../$(PINS)
build/project.ncd: build/project.ngd
cd build && map -pr b -p $(DEVICE) project
build/project_r.ncd: build/project.ncd
cd build && par -w project project_r.ncd
build/project_r.twr: build/project_r.ncd
cd build && trce -v 25 project_r.ncd project.pcf
$(DESIGN).bit: build/project_r.ncd build/project_r.twr
cd build && bitgen project_r.ncd -l -w $(BGFLAGS)
@mv -f build/project_r.bit $@
sim:
cd simulation; $(SIM_CMD) -do $(DESIGN)_TB.do
upload: $(DESIGN).bit
scp $(DESIGN).bit root@$(SAKC_IP):