1
0
mirror of git://projects.qi-hardware.com/xburst-tools.git synced 2024-11-22 19:35:59 +02:00
xburst-tools/xbboot/target-stage1/stage1.c
2010-04-28 16:34:38 +08:00

281 lines
7.4 KiB
C

//
// Authors: Wolfgang Spraul <wolfgang@qi-hardware.com>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version.
//
#include <inttypes.h>
#include "../target-common/jz4740.h"
#include "../target-common/serial.h"
void load_args();
void gpio_init();
void pll_init();
void serial_init();
void sdram_init();
void nand_init();
void c_main(void)
{
load_args();
gpio_init();
serial_init();
pll_init();
serial_puts("XBurst boot stage1...\n");
sdram_init();
nand_init();
serial_puts("stage 1 finished: GPIO, clocks, SDRAM, UART setup - now jump back to BOOT ROM...\n");
}
// tbd: do they have to be copied into globals? or just reference STAGE1_ARGS_ADDR?
static volatile u32 ARG_EXTAL;
static volatile u32 ARG_CPU_SPEED;
static volatile u8 ARG_PHM_DIV;
static volatile u32 ARG_UART_BASE;
static volatile u32 ARG_UART_BAUD;
static volatile u8 ARG_BUS_WIDTH_16;
static volatile u8 ARG_BANK_ADDR_2BIT;
static volatile u8 ARG_ROW_ADDR;
static volatile u8 ARG_COL_ADDR;
void load_args()
{
ARG_EXTAL = 12 * 1000000;
ARG_CPU_SPEED = 21 * ARG_EXTAL;
ARG_PHM_DIV = 3;
ARG_UART_BASE = UART0_BASE + 0 * UART_OFF;
UART_BASE = ARG_UART_BASE; // for ../target-common/serial.c
ARG_UART_BAUD = 57600;
ARG_BUS_WIDTH_16 = * (int *)0x80002014;
ARG_BANK_ADDR_2BIT = 1;
ARG_ROW_ADDR = 13;
ARG_COL_ADDR = 9;
}
void gpio_init()
{
__gpio_as_nand();
__gpio_as_sdram_32bit();
__gpio_as_uart0();
__gpio_as_lcd_18bit();
__gpio_as_msc();
#define GPIO_LCD_CS (2 * 32 + 21)
#define GPIO_KEYOUT_BASE (2 * 32 + 10)
#define GPIO_KEYIN_BASE (3 * 32 + 18)
unsigned int i;
for (i = 0; i < 7; i++){
__gpio_as_input(GPIO_KEYIN_BASE + i);
__gpio_enable_pull(GPIO_KEYIN_BASE + i);
}
for (i = 0; i < 8; i++) {
__gpio_as_output(GPIO_KEYOUT_BASE + i);
__gpio_clear_pin(GPIO_KEYOUT_BASE + i);
}
__gpio_as_output(GPIO_LCD_CS);
__gpio_clear_pin(GPIO_LCD_CS);
}
void pll_init()
{
register unsigned int cfcr, plcr1;
int n2FR[33] = {
0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
9
};
/* int div[5] = {1, 4, 4, 4, 4}; */ /* divisors of I:S:P:L:M */
int nf, pllout2;
cfcr = CPM_CPCCR_CLKOEN |
(n2FR[1] << CPM_CPCCR_CDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_HDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_PDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_MDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_LDIV_BIT);
pllout2 = (cfcr & CPM_CPCCR_PCS) ? ARG_CPU_SPEED : (ARG_CPU_SPEED / 2);
/* Init UHC clock */
REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
nf = ARG_CPU_SPEED * 2 / ARG_EXTAL;
plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
(0 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
(0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
(0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
CPM_CPPCR_PLLEN; /* enable PLL */
/* init PLL */
REG_CPM_CPCCR = cfcr;
REG_CPM_CPPCR = plcr1;
}
static void serial_setbaud()
{
volatile u8* uart_lcr = (volatile u8*)(ARG_UART_BASE + OFF_LCR);
volatile u8* uart_dlhr = (volatile u8*)(ARG_UART_BASE + OFF_DLHR);
volatile u8* uart_dllr = (volatile u8*)(ARG_UART_BASE + OFF_DLLR);
u32 baud_div, tmp;
baud_div = ARG_EXTAL / 16 / ARG_UART_BAUD;
tmp = *uart_lcr;
tmp |= UART_LCR_DLAB;
*uart_lcr = tmp;
*uart_dlhr = (baud_div >> 8) & 0xff;
*uart_dllr = baud_div & 0xff;
tmp &= ~UART_LCR_DLAB;
*uart_lcr = tmp;
}
void serial_init()
{
volatile u8* uart_fcr = (volatile u8*)(ARG_UART_BASE + OFF_FCR);
volatile u8* uart_lcr = (volatile u8*)(ARG_UART_BASE + OFF_LCR);
volatile u8* uart_ier = (volatile u8*)(ARG_UART_BASE + OFF_IER);
volatile u8* uart_sircr = (volatile u8*)(ARG_UART_BASE + OFF_SIRCR);
/* Disable port interrupts while changing hardware */
*uart_ier = 0;
/* Disable UART unit function */
*uart_fcr = ~UART_FCR_UUE;
/* Set both receiver and transmitter in UART mode (not SIR) */
*uart_sircr = ~(SIRCR_RSIRE | SIRCR_TSIRE);
/* Set databits, stopbits and parity. (8-bit data, 1 stopbit, no parity) */
*uart_lcr = UART_LCR_WLEN_8 | UART_LCR_STOP_1;
/* Set baud rate */
serial_setbaud();
/* Enable UART unit, enable and clear FIFO */
*uart_fcr = UART_FCR_UUE | UART_FCR_FE | UART_FCR_TFLS | UART_FCR_RFLS;
}
#define SDRAM_CASL 3 /* CAS latency: 2 or 3 */
// SDRAM Timings, unit: ns
#define SDRAM_TRAS 45 /* RAS# Active Time */
#define SDRAM_RCD 20 /* RAS# to CAS# Delay */
#define SDRAM_TPC 20 /* RAS# Precharge Time */
#define SDRAM_TRWL 7 /* Write Latency Time */
#define SDRAM_TREF 15625 /* Refresh period: 4096 refresh cycles/64ms */
void sdram_init()
{
register unsigned int dmcr0, dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
unsigned int cas_latency_sdmr[2] = {
EMC_SDMR_CAS_2,
EMC_SDMR_CAS_3,
};
unsigned int cas_latency_dmcr[2] = {
1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
};
int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
if (ARG_BUS_WIDTH_16 == 0xff)
return;
else
ARG_BUS_WIDTH_16 = 1;
cpu_clk = ARG_CPU_SPEED;
mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
REG_EMC_BCR = 0; /* Disable bus release */
REG_EMC_RTCSR = 0; /* Disable clock for counting */
/* Fault DMCR value for mode register setting*/
#define SDRAM_ROW0 11
#define SDRAM_COL0 8
#define SDRAM_BANK40 0
#define SDRAM_BW16 1
dmcr0 = ((SDRAM_ROW0-11)<<EMC_DMCR_RA_BIT) |
((SDRAM_COL0-8)<<EMC_DMCR_CA_BIT) |
(SDRAM_BANK40<<EMC_DMCR_BA_BIT) |
(SDRAM_BW16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Basic DMCR value */
dmcr = ((ARG_ROW_ADDR-11)<<EMC_DMCR_RA_BIT) |
((ARG_COL_ADDR-8)<<EMC_DMCR_CA_BIT) |
(ARG_BANK_ADDR_2BIT<<EMC_DMCR_BA_BIT) |
(ARG_BUS_WIDTH_16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* SDRAM timimg */
ns = 1000000000 / mem_clk;
tmp = SDRAM_TRAS/ns;
if (tmp < 4) tmp = 4;
if (tmp > 11) tmp = 11;
dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
tmp = SDRAM_RCD/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_RCD_BIT);
tmp = SDRAM_TPC/ns;
if (tmp > 7) tmp = 7;
dmcr |= (tmp << EMC_DMCR_TPC_BIT);
tmp = SDRAM_TRWL/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
if (tmp > 14) tmp = 14;
dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
/* SDRAM mode value */
sdmode = EMC_SDMR_BT_SEQ |
EMC_SDMR_OM_NORMAL |
EMC_SDMR_BL_4 |
cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Stage 1. Precharge all banks by writing SDMR with DMCR.MRSET=0 */
REG_EMC_DMCR = dmcr;
REG8(EMC_SDMR0|sdmode) = 0;
/* Wait for precharge, > 200us */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 2. Enable auto-refresh */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH;
tmp = SDRAM_TREF/ns;
tmp = tmp/64 + 1;
if (tmp > 0xff) tmp = 0xff;
REG_EMC_RTCOR = tmp;
REG_EMC_RTCNT = 0;
REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
/* Wait for number of auto-refresh cycles */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 3. Mode Register Set */
REG_EMC_DMCR = dmcr0 | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
REG8(EMC_SDMR0|sdmode) = 0;
/* Set back to basic DMCR value */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
/* everything is ok now */
}
void nand_init()
{
REG_EMC_SMCR1 = 0x094c4400;
REG_EMC_NFCSR |= EMC_NFCSR_NFE1 | EMC_NFCSR_NFCE1; //__nand_enable()
}