1
0
mirror of git://projects.qi-hardware.com/xburst-tools.git synced 2024-11-23 01:10:17 +02:00
xburst-tools/xbboot/target-stage1/stage1.c
2009-08-21 14:04:09 +08:00

273 lines
7.7 KiB
C

//
// Authors: Wolfgang Spraul <wolfgang@qi-hardware.com>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version.
//
#include <inttypes.h>
#include "../target-common/jz4740.h"
#include "../target-common/serial.h"
#define STAGE1_ARGS_ADDR 0x80002008
struct stage1_args {
// PLL
unsigned char ext_clk; // external crystal in MHz
unsigned char cpu_speed; // PLL output frequency=cpu_speed * ext_clk Mhz
unsigned char phm_div; // frequency divider ratio of PLL=CCLK:PCLK=HCLK=MCLK
// UART
unsigned char uart_num; // which UART to use (default: 0)
unsigned int uart_baud; // default: 57600
// SDRAM
unsigned char bus_width_16; // bus width of SDRAM is 16-bit (default is 32-bit)
unsigned char bank_addr_2bit; // 2-bit bank address width (=4 banks each chip select), default is 1-bit bank address=2 banks
unsigned char row_addr; // row address width in bits (11-13)
unsigned char col_addr; // column address width in bits (8-12)
} __attribute__((packed));
void load_args();
void gpio_init();
void pll_init();
void serial_init();
void sdram_init();
void c_main(void)
{
load_args();
gpio_init();
pll_init();
serial_init();
serial_puts("XBurst boot stage1...\n");
sdram_init();
serial_puts("stage 1 finished: GPIO, clocks, SDRAM, UART setup - now jump back to BOOT ROM...\n");
}
// tbd: do they have to be copied into globals? or just reference STAGE1_ARGS_ADDR?
volatile u32 ARG_EXTAL;
volatile u32 ARG_CPU_SPEED;
volatile u8 ARG_PHM_DIV;
volatile u32 ARG_UART_BASE;
volatile u32 ARG_UART_BAUD;
volatile u8 ARG_BUS_WIDTH_16;
volatile u8 ARG_BANK_ADDR_2BIT;
volatile u8 ARG_ROW_ADDR;
volatile u8 ARG_COL_ADDR;
void load_args()
{
struct stage1_args* args = (struct stage1_args*) STAGE1_ARGS_ADDR;
// NanoNote defaults
args->ext_clk = 12;
args->cpu_speed = 21;
args->phm_div = 3;
args->uart_num = 0;
args->uart_baud = 57600;
args->bus_width_16 = 1;
args->bank_addr_2bit = 1;
args->row_addr = 13;
args->col_addr = 9;
// END NanoNote defaults
ARG_EXTAL = args->ext_clk * 1000000;
ARG_CPU_SPEED = args->cpu_speed * ARG_EXTAL;
ARG_PHM_DIV = args->phm_div;
ARG_UART_BASE = UART0_BASE + args->uart_num * UART_OFF;
UART_BASE = ARG_UART_BASE; // for ../target-common/serial.c
ARG_UART_BAUD = args->uart_baud;
ARG_BUS_WIDTH_16 = args->bus_width_16;
ARG_BANK_ADDR_2BIT = args->bank_addr_2bit;
ARG_ROW_ADDR = args->row_addr;
ARG_COL_ADDR = args->col_addr;
}
void gpio_init()
{
__gpio_as_nand();
__gpio_as_sdram_32bit();
__gpio_as_uart0();
__gpio_as_uart1();
}
void pll_init()
{
register unsigned int cfcr, plcr1;
int n2FR[33] = {
0, 0, 1, 2, 3, 0, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0,
7, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0,
9
};
/* int div[5] = {1, 4, 4, 4, 4}; */ /* divisors of I:S:P:L:M */
int nf, pllout2;
cfcr = CPM_CPCCR_CLKOEN |
(n2FR[1] << CPM_CPCCR_CDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_HDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_PDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_MDIV_BIT) |
(n2FR[ARG_PHM_DIV] << CPM_CPCCR_LDIV_BIT);
pllout2 = (cfcr & CPM_CPCCR_PCS) ? ARG_CPU_SPEED : (ARG_CPU_SPEED / 2);
/* Init UHC clock */
REG_CPM_UHCCDR = pllout2 / 48000000 - 1;
nf = ARG_CPU_SPEED * 2 / ARG_EXTAL;
plcr1 = ((nf - 2) << CPM_CPPCR_PLLM_BIT) | /* FD */
(0 << CPM_CPPCR_PLLN_BIT) | /* RD=0, NR=2 */
(0 << CPM_CPPCR_PLLOD_BIT) | /* OD=0, NO=1 */
(0x20 << CPM_CPPCR_PLLST_BIT) | /* PLL stable time */
CPM_CPPCR_PLLEN; /* enable PLL */
/* init PLL */
REG_CPM_CPCCR = cfcr;
REG_CPM_CPPCR = plcr1;
}
static void serial_setbaud()
{
volatile u8* uart_lcr = (volatile u8*)(ARG_UART_BASE + OFF_LCR);
volatile u8* uart_dlhr = (volatile u8*)(ARG_UART_BASE + OFF_DLHR);
volatile u8* uart_dllr = (volatile u8*)(ARG_UART_BASE + OFF_DLLR);
u32 baud_div, tmp;
baud_div = ARG_EXTAL / 16 / ARG_UART_BAUD;
tmp = *uart_lcr;
tmp |= UART_LCR_DLAB;
*uart_lcr = tmp;
*uart_dlhr = (baud_div >> 8) & 0xff;
*uart_dllr = baud_div & 0xff;
tmp &= ~UART_LCR_DLAB;
*uart_lcr = tmp;
}
void serial_init()
{
volatile u8* uart_fcr = (volatile u8*)(ARG_UART_BASE + OFF_FCR);
volatile u8* uart_lcr = (volatile u8*)(ARG_UART_BASE + OFF_LCR);
volatile u8* uart_ier = (volatile u8*)(ARG_UART_BASE + OFF_IER);
volatile u8* uart_sircr = (volatile u8*)(ARG_UART_BASE + OFF_SIRCR);
/* Disable port interrupts while changing hardware */
*uart_ier = 0;
/* Disable UART unit function */
*uart_fcr = ~UART_FCR_UUE;
/* Set both receiver and transmitter in UART mode (not SIR) */
*uart_sircr = ~(SIRCR_RSIRE | SIRCR_TSIRE);
/* Set databits, stopbits and parity. (8-bit data, 1 stopbit, no parity) */
*uart_lcr = UART_LCR_WLEN_8 | UART_LCR_STOP_1;
/* Set baud rate */
serial_setbaud();
/* Enable UART unit, enable and clear FIFO */
*uart_fcr = UART_FCR_UUE | UART_FCR_FE | UART_FCR_TFLS | UART_FCR_RFLS;
}
#define SDRAM_CASL 3 /* CAS latency: 2 or 3 */
// SDRAM Timings, unit: ns
#define SDRAM_TRAS 45 /* RAS# Active Time */
#define SDRAM_RCD 20 /* RAS# to CAS# Delay */
#define SDRAM_TPC 20 /* RAS# Precharge Time */
#define SDRAM_TRWL 7 /* Write Latency Time */
#define SDRAM_TREF 15625 /* Refresh period: 4096 refresh cycles/64ms */
void sdram_init()
{
register unsigned int dmcr0, dmcr, sdmode, tmp, cpu_clk, mem_clk, ns;
unsigned int cas_latency_sdmr[2] = {
EMC_SDMR_CAS_2,
EMC_SDMR_CAS_3,
};
unsigned int cas_latency_dmcr[2] = {
1 << EMC_DMCR_TCL_BIT, /* CAS latency is 2 */
2 << EMC_DMCR_TCL_BIT /* CAS latency is 3 */
};
int div[] = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32};
cpu_clk = ARG_CPU_SPEED;
mem_clk = cpu_clk * div[__cpm_get_cdiv()] / div[__cpm_get_mdiv()];
REG_EMC_BCR = 0; /* Disable bus release */
REG_EMC_RTCSR = 0; /* Disable clock for counting */
/* Fault DMCR value for mode register setting*/
dmcr0 = (ARG_BUS_WIDTH_16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Basic DMCR value */
dmcr = ((ARG_ROW_ADDR-11)<<EMC_DMCR_RA_BIT) |
((ARG_COL_ADDR-8)<<EMC_DMCR_CA_BIT) |
(ARG_BANK_ADDR_2BIT<<EMC_DMCR_BA_BIT) |
(ARG_BUS_WIDTH_16<<EMC_DMCR_BW_BIT) |
EMC_DMCR_EPIN |
cas_latency_dmcr[((SDRAM_CASL == 3) ? 1 : 0)];
/* SDRAM timimg */
ns = 1000000000 / mem_clk;
tmp = SDRAM_TRAS/ns;
if (tmp < 4) tmp = 4;
if (tmp > 11) tmp = 11;
dmcr |= ((tmp-4) << EMC_DMCR_TRAS_BIT);
tmp = SDRAM_RCD/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_RCD_BIT);
tmp = SDRAM_TPC/ns;
if (tmp > 7) tmp = 7;
dmcr |= (tmp << EMC_DMCR_TPC_BIT);
tmp = SDRAM_TRWL/ns;
if (tmp > 3) tmp = 3;
dmcr |= (tmp << EMC_DMCR_TRWL_BIT);
tmp = (SDRAM_TRAS + SDRAM_TPC)/ns;
if (tmp > 14) tmp = 14;
dmcr |= (((tmp + 1) >> 1) << EMC_DMCR_TRC_BIT);
/* SDRAM mode value */
sdmode = EMC_SDMR_BT_SEQ |
EMC_SDMR_OM_NORMAL |
EMC_SDMR_BL_4 |
cas_latency_sdmr[((SDRAM_CASL == 3) ? 1 : 0)];
/* Stage 1. Precharge all banks by writing SDMR with DMCR.MRSET=0 */
REG_EMC_DMCR = dmcr;
REG8(EMC_SDMR0|sdmode) = 0;
/* Wait for precharge, > 200us */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 2. Enable auto-refresh */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH;
tmp = SDRAM_TREF/ns;
tmp = tmp/64 + 1;
if (tmp > 0xff) tmp = 0xff;
REG_EMC_RTCOR = tmp;
REG_EMC_RTCNT = 0;
REG_EMC_RTCSR = EMC_RTCSR_CKS_64; /* Divisor is 64, CKO/64 */
/* Wait for number of auto-refresh cycles */
tmp = (cpu_clk / 1000000) * 1000;
while (tmp--);
/* Stage 3. Mode Register Set */
REG_EMC_DMCR = dmcr0 | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
REG8(EMC_SDMR0|sdmode) = 0;
/* Set back to basic DMCR value */
REG_EMC_DMCR = dmcr | EMC_DMCR_RFSH | EMC_DMCR_MRSET;
/* everything is ok now */
}