WindowsXPKg/main.cpp

97 lines
3.3 KiB
C++
Raw Normal View History

2023-06-01 16:09:22 +03:00
//
// Created by Andrew on 01/06/2023.
//
#include "header.h"
#include <iostream>
2023-06-01 16:09:22 +03:00
char charset[] = "BCDFGHJKMPQRTVWXY2346789";
using json = nlohmann::json;
int main() {
char* BINKID = "2E";
std::ifstream f("keys.json");
json keys = json::parse(f);
2023-06-01 16:09:22 +03:00
rand();
srand(time(nullptr));
rand();
// We cannot produce a valid key without knowing the private key k. The reason for this is that
// we need the result of the function K(x; y) = kG(x; y).
BIGNUM *privateKey = BN_new();
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
BIGNUM *genOrder = BN_new();
/* Computed data */
BN_dec2bn(&genOrder, keys["BINK"][BINKID]["n"].get<std::string>().c_str());
BN_dec2bn(&privateKey, keys["BINK"][BINKID]["priv"].get<std::string>().c_str());
std::cout << keys["BINK"][BINKID]["p"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["a"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["b"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["g"]["x"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["g"]["y"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["pub"]["x"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["pub"]["y"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["n"].get<std::string>().c_str() << std::endl;
std::cout << keys["BINK"][BINKID]["priv"].get<std::string>().c_str() << std::endl;
EC_POINT *genPoint, *pubPoint;
EC_GROUP *eCurve = initializeEllipticCurve(
keys["BINK"][BINKID]["p"].get<std::string>().c_str(),
keys["BINK"][BINKID]["a"].get<std::string>().c_str(),
keys["BINK"][BINKID]["b"].get<std::string>().c_str(),
keys["BINK"][BINKID]["g"]["x"].get<std::string>().c_str(),
keys["BINK"][BINKID]["g"]["y"].get<std::string>().c_str(),
keys["BINK"][BINKID]["pub"]["x"].get<std::string>().c_str(),
keys["BINK"][BINKID]["pub"]["y"].get<std::string>().c_str(),
&genPoint,
&pubPoint
);
/*BN_print_fp(stdout, p);
std::cout << std::endl;
BN_print_fp(stdout, a);
std::cout << std::endl;
BN_print_fp(stdout, b);
std::cout << std::endl;
BN_print_fp(stdout, gx);
std::cout << std::endl;
BN_print_fp(stdout, gy);
std::cout << std::endl;
BN_print_fp(stdout, pubx);
std::cout << std::endl;
BN_print_fp(stdout, puby);
std::cout << std::endl;
BN_print_fp(stdout, n);
std::cout << std::endl;
BN_print_fp(stdout, priv);
std::cout << std::endl;*/
// Calculation
2023-06-01 16:09:22 +03:00
char pKey[25];
2023-06-01 16:09:22 +03:00
ul32 nRaw = 640 * 1000000 ; /* <- change */
//nRaw += rand() & 999999;
2023-06-01 16:09:22 +03:00
printf("> PID: %lu\n", nRaw);
2023-06-01 16:09:22 +03:00
// generate a key
BN_sub(privateKey, genOrder, privateKey);
nRaw <<= 1;
generateXPKey(pKey, eCurve, genPoint, genOrder, privateKey, &nRaw);
print_product_key(pKey);
2023-06-01 16:09:22 +03:00
printf("\n\n");
// verify the key
if (!verifyXPKey(eCurve, genPoint, pubPoint, pKey)) printf("Fail! Key is invalid.\n");
2023-06-01 16:09:22 +03:00
return 0;
}