WindowsXPKg/src/xp.cpp

246 lines
6.9 KiB
C++
Raw Normal View History

//
// Created by Andrew on 01/06/2023.
//
2019-08-21 18:29:48 +03:00
2023-06-01 19:24:07 +03:00
#include "header.h"
2023-06-01 16:09:22 +03:00
/* Unpacks the Windows XP-like Product Key. */
2023-06-04 16:44:22 +03:00
void unpackXP(
QWORD (&pRaw)[2],
DWORD &pSerial,
DWORD &pHash,
QWORD &pSignature
) {
2023-06-01 16:09:22 +03:00
// We're assuming that the quantity of information within the product key is at most 114 bits.
// log2(24^25) = 114.
// Serial = Bits [0..30] -> 31 bits
2023-06-04 15:06:51 +03:00
pSerial = FIRSTNBITS(pRaw[0], 31);
2023-06-01 16:09:22 +03:00
2023-06-04 16:44:22 +03:00
// Hash = Bits [31..58] -> 28 bits
pHash = NEXTSNBITS(pRaw[0], 28, 31);
2023-06-01 16:09:22 +03:00
2023-06-04 16:44:22 +03:00
// Signature = Bits [59..113] -> 56 bits
pSignature = FIRSTNBITS(pRaw[1], 51) << 5 | NEXTSNBITS(pRaw[0], 5, 59);
2019-08-21 18:29:48 +03:00
}
/* Packs the Windows XP-like Product Key. */
2023-06-04 16:44:22 +03:00
void packXP(
QWORD (&pRaw)[2],
DWORD pSerial,
DWORD pHash,
QWORD pSignature
) {
// The quantity of information the key provides is 114 bits.
// We're storing it in 2 64-bit quad-words with 14 trailing bits.
// 64 * 2 = 128
// Signature [114..59] <- Hash [58..31] <- Serial [30..1] <- Upgrade [0]
2023-06-04 16:32:05 +03:00
pRaw[0] = FIRSTNBITS(pSignature, 5) << 59 | FIRSTNBITS(pHash, 28) << 31 | pSerial;
2023-06-04 16:44:22 +03:00
pRaw[1] = NEXTSNBITS(pSignature, 51, 5);
2019-08-21 18:29:48 +03:00
}
/* Verifies the Windows XP-like Product Key. */
bool verifyXPKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
EC_POINT *publicKey,
char (&cdKey)[25]
) {
BN_CTX *numContext = BN_CTX_new();
2023-06-01 16:09:22 +03:00
QWORD pRaw[2]{},
pSignature = 0;
2023-06-01 16:09:22 +03:00
DWORD pSerial = 0,
pHash = 0;
2023-06-01 16:09:22 +03:00
// Convert Base24 CD-key to bytecode.
unbase24((BYTE *)pRaw, cdKey);
// Extract RPK, hash and signature from bytecode.
unpackXP(pRaw, pSerial, pHash, pSignature);
/*
*
* Scalars:
* e = Hash
* s = Schnorr Signature
*
* Points:
* G(x, y) = Generator (Base Point)
* K(x, y) = Public Key
*
* Equation:
* P = sG + eK
*
*/
BIGNUM *e = BN_lebin2bn((BYTE *)&pHash, sizeof(pHash), nullptr),
*s = BN_lebin2bn((BYTE *)&pSignature, sizeof(pSignature), nullptr),
*x = BN_new(),
*y = BN_new();
// Create 2 points on the elliptic curve.
EC_POINT *t = EC_POINT_new(eCurve);
EC_POINT *p = EC_POINT_new(eCurve);
// t = sG
EC_POINT_mul(eCurve, t, nullptr, basePoint, s, numContext);
// p = eK
EC_POINT_mul(eCurve, p, nullptr, publicKey, e, numContext);
// p += t
EC_POINT_add(eCurve, p, t, p, numContext);
// x = p.x; y = p.y;
EC_POINT_get_affine_coordinates(eCurve, p, x, y, numContext);
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_XP]{},
xBin[FIELD_BYTES]{},
yBin[FIELD_BYTES]{};
DWORD compHash;
// Convert resulting point coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES);
BN_bn2lebin(y, yBin, FIELD_BYTES);
// Assemble the SHA message.
memcpy((void *)&msgBuffer[0], (void *)&pSerial, 4);
memcpy((void *)&msgBuffer[4], (void *)xBin, FIELD_BYTES);
memcpy((void *)&msgBuffer[4 + FIELD_BYTES], (void *)yBin, FIELD_BYTES);
// Retrieve the message digest.
SHA1(msgBuffer, SHA_MSG_LENGTH_XP, msgDigest);
// Translate the byte digest into a 32-bit integer - this is our computed hash.
// Truncate the hash to 28 bits.
compHash = BYDWORD(msgDigest) >> 4;
compHash &= BITMASK(28);
2023-06-01 16:09:22 +03:00
BN_free(e);
BN_free(s);
BN_free(x);
BN_free(y);
BN_CTX_free(numContext);
2023-06-01 16:09:22 +03:00
EC_POINT_free(t);
EC_POINT_free(p);
2023-06-01 16:09:22 +03:00
// If the computed hash checks out, the key is valid.
return compHash == pHash;
2019-08-21 18:29:48 +03:00
}
2023-06-01 16:09:22 +03:00
/* Generate a valid Product Key. */
void generateXPKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
BIGNUM *genOrder,
BIGNUM *privateKey,
DWORD pSerial,
char (&pKey)[25]
) {
BN_CTX *numContext = BN_CTX_new();
2023-06-01 16:09:22 +03:00
BIGNUM *c = BN_new();
BIGNUM *s = BN_new();
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
QWORD pRaw[2]{};
2023-06-01 16:09:22 +03:00
do {
EC_POINT *r = EC_POINT_new(eCurve);
2023-06-01 16:09:22 +03:00
QWORD pSignature = 0;
DWORD pHash;
2023-06-01 16:09:22 +03:00
// Generate a random number c consisting of 384 bits without any constraints.
BN_rand(c, FIELD_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
// Pick a random derivative of the base point on the elliptic curve.
// R = cG;
EC_POINT_mul(eCurve, r, nullptr, basePoint, c, numContext);
// Acquire its coordinates.
// x = R.x; y = R.y;
EC_POINT_get_affine_coordinates(eCurve, r, x, y, numContext);
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_XP]{},
xBin[FIELD_BYTES]{},
yBin[FIELD_BYTES]{};
// Convert coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES);
BN_bn2lebin(y, yBin, FIELD_BYTES);
// Assemble the SHA message.
memcpy((void *)&msgBuffer[0], (void *)&pSerial, 4);
memcpy((void *)&msgBuffer[4], (void *)xBin, FIELD_BYTES);
memcpy((void *)&msgBuffer[4 + FIELD_BYTES], (void *)yBin, FIELD_BYTES);
// Retrieve the message digest.
SHA1(msgBuffer, SHA_MSG_LENGTH_XP, msgDigest);
// Translate the byte digest into a 32-bit integer - this is our computed pHash.
// Truncate the pHash to 28 bits.
pHash = BYDWORD(msgDigest) >> 4;
pHash &= BITMASK(28);
/*
*
* Scalars:
* c = Random multiplier
* e = Hash
* s = Signature
* n = Order of G
* k = Private Key
* K = Public Key
*
* Points:
* G(x, y) = Generator (Base Point)
*
* We need to find the signature s that satisfies the equation with a given hash:
* P = sG + eK
* s = ek + c (mod n) <- computation optimization
*/
// s = ek;
2023-06-01 16:09:22 +03:00
BN_copy(s, privateKey);
BN_mul_word(s, pHash);
2023-06-01 16:09:22 +03:00
// s += c (mod n)
BN_mod_add(s, s, c, genOrder, numContext);
2023-06-01 16:09:22 +03:00
// Translate resulting scalar into a 64-bit integer (the byte order is little-endian).
BN_bn2lebinpad(s, (BYTE *)&pSignature, BN_num_bytes(s));
2023-06-01 16:09:22 +03:00
// Pack product key.
packXP(pRaw, pSerial, pHash, pSignature);
std::cout << " Serial: 0x" << std::hex << std::setw(8) << std::setfill('0') << pSerial << std::endl
<< " Hash: 0x" << std::hex << std::setw(8) << std::setfill('0') << pHash << std::endl
<< " Signature: 0x" << std::hex << std::setw(8) << std::setfill('0') << pSignature << std::endl
<< std::endl;
EC_POINT_free(r);
} while (pRaw[1] > BITMASK(50));
2023-06-01 16:09:22 +03:00
// ↑ ↑ ↑
// pRaw[1] can't be longer than 50 bits, else the signature part
// will make the CD-key longer than 25 characters.
2023-06-01 16:09:22 +03:00
// Convert bytecode to Base24 CD-key.
base24(pKey, (BYTE *)pRaw);
2023-06-01 16:09:22 +03:00
BN_free(c);
BN_free(s);
BN_free(x);
BN_free(y);
BN_CTX_free(numContext);
2023-06-01 16:09:22 +03:00
}