mirror of
https://github.com/Neo-Desktop/WindowsXPKg
synced 2025-12-02 16:25:13 +02:00
Folder refactor
This commit is contained in:
44
src/cli.cpp
Normal file
44
src/cli.cpp
Normal file
@@ -0,0 +1,44 @@
|
||||
//
|
||||
// Created by Andrew on 01/06/2023.
|
||||
//
|
||||
|
||||
#include "header.h"
|
||||
|
||||
void print_product_id(ul32 *pid)
|
||||
{
|
||||
char raw[12];
|
||||
char b[6], c[8];
|
||||
int i, digit = 0;
|
||||
|
||||
// Cut a away last bit of pid and convert it to an accii-number (=raw)
|
||||
sprintf(raw, "%lu", pid[0] >> 1);
|
||||
|
||||
// Make b-part {640-....}
|
||||
strncpy(b, raw, 3);
|
||||
b[3] = 0;
|
||||
|
||||
// Make c-part {...-123456X...}
|
||||
strcpy(c, raw + 3);
|
||||
printf("> %s\n", c);
|
||||
|
||||
// Make checksum digit-part {...56X-}
|
||||
assert(strlen(c) == 6);
|
||||
for (i = 0; i < 6; i++)
|
||||
digit -= c[i] - '0'; // Sum digits
|
||||
|
||||
while (digit < 0)
|
||||
digit += 7;
|
||||
c[6] = digit + '0';
|
||||
c[7] = 0;
|
||||
|
||||
printf("Product ID: PPPPP-%s-%s-23xxx\n", b, c);
|
||||
}
|
||||
|
||||
void print_product_key(char *pk) {
|
||||
int i;
|
||||
assert(strlen(pk) == 25);
|
||||
for (i = 0; i < 25; i++) {
|
||||
putchar(pk[i]);
|
||||
if (i != 24 && i % 5 == 4) putchar('-');
|
||||
}
|
||||
}
|
||||
69
src/header.h
Normal file
69
src/header.h
Normal file
@@ -0,0 +1,69 @@
|
||||
//
|
||||
// Created by neo on 5/26/2023.
|
||||
//
|
||||
|
||||
#ifndef WINDOWSXPKG_HEADER_H
|
||||
#define WINDOWSXPKG_HEADER_H
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/ec.h>
|
||||
#include <openssl/sha.h>
|
||||
#include <openssl/rand.h>
|
||||
|
||||
#define PK_LENGTH 25
|
||||
#define NULL_TERMINATOR 1
|
||||
|
||||
#define FIELD_BITS 384
|
||||
#define FIELD_BYTES 48
|
||||
#define FIELD_BITS_2003 512
|
||||
#define FIELD_BYTES_2003 64
|
||||
|
||||
typedef unsigned char byte;
|
||||
typedef unsigned int ul32;
|
||||
|
||||
extern char charset[];
|
||||
|
||||
// util.cpp
|
||||
void endian(byte *data, int length);
|
||||
EC_GROUP *initializeEllipticCurve(
|
||||
const char *pSel,
|
||||
const char *aSel,
|
||||
const char *bSel,
|
||||
const char *generatorXSel,
|
||||
const char *generatorYSel,
|
||||
const char *publicKeyXSel,
|
||||
const char *publicKeyYSel,
|
||||
EC_POINT **genPoint,
|
||||
EC_POINT **pubPoint
|
||||
);
|
||||
|
||||
// key.cpp
|
||||
void unbase24(ul32 *byteSeq, const char *cdKey);
|
||||
void base24(char *cdKey, ul32 *byteSeq);
|
||||
|
||||
// cli.cpp
|
||||
void print_product_key(char *pk);
|
||||
void print_product_id(ul32 *pid);
|
||||
|
||||
// xp.cpp
|
||||
bool verifyXPKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *publicKey, char *cdKey);
|
||||
void generateXPKey(char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *pRaw);
|
||||
|
||||
// server.cpp
|
||||
int verify2003(EC_GROUP *ec, EC_POINT *generator, EC_POINT *public_key, char *cdkey);
|
||||
void generate2003(char *pkey, EC_GROUP *ec, EC_POINT *generator, BIGNUM *order, BIGNUM *priv, ul32 *osfamily, ul32 *prefix);
|
||||
|
||||
#endif //WINDOWSXPKG_HEADER_H
|
||||
68
src/key.cpp
Normal file
68
src/key.cpp
Normal file
@@ -0,0 +1,68 @@
|
||||
//
|
||||
// Created by neo on 5/26/2023.
|
||||
//
|
||||
|
||||
#include "header.h"
|
||||
|
||||
/* Converts from CD-key to a byte sequence. */
|
||||
void unbase24(ul32 *byteSeq, const char *cdKey) {
|
||||
byte pDecodedKey[PK_LENGTH + NULL_TERMINATOR]{};
|
||||
BIGNUM *y = BN_new();
|
||||
|
||||
BN_zero(y);
|
||||
|
||||
// Remove dashes from the CD-key and put it into a Base24 byte array.
|
||||
for (int i = 0, k = 0; i < strlen(cdKey) && k < PK_LENGTH; i++) {
|
||||
for (int j = 0; j < 24; j++) {
|
||||
if (cdKey[i] != '-' && cdKey[i] == charset[j]) {
|
||||
pDecodedKey[k++] = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Empty byte sequence.
|
||||
memset(byteSeq, 0, 16);
|
||||
|
||||
// Calculate the weighed sum of byte array elements.
|
||||
for (int i = 0; i < PK_LENGTH; i++) {
|
||||
BN_mul_word(y, PK_LENGTH - 1);
|
||||
BN_add_word(y, pDecodedKey[i]);
|
||||
}
|
||||
|
||||
// Acquire length.
|
||||
int n = BN_num_bytes(y);
|
||||
|
||||
// Place the generated code into the byte sequence.
|
||||
BN_bn2bin(y, (byte *)byteSeq);
|
||||
BN_free(y);
|
||||
|
||||
// Reverse the byte sequence.
|
||||
endian((byte *) byteSeq, n);
|
||||
}
|
||||
|
||||
/* Converts from byte sequence to the CD-key. */
|
||||
void base24(char *cdKey, ul32 *byteSeq) {
|
||||
byte rbyteSeq[16];
|
||||
BIGNUM *z;
|
||||
|
||||
// Copy byte sequence to the reversed byte sequence.
|
||||
memcpy(rbyteSeq, byteSeq, sizeof(rbyteSeq));
|
||||
|
||||
// Skip trailing zeroes and reverse y.
|
||||
int length;
|
||||
|
||||
for (length = 15; rbyteSeq[length] == 0; length--);
|
||||
endian(rbyteSeq, ++length);
|
||||
|
||||
// Convert reversed byte sequence to BigNum z.
|
||||
z = BN_bin2bn(rbyteSeq, length, nullptr);
|
||||
|
||||
// Divide z by 24 and convert the remainder to a CD-key char.
|
||||
cdKey[25] = 0;
|
||||
|
||||
for (int i = 24; i >= 0; i--)
|
||||
cdKey[i] = charset[BN_div_word(z, 24)];
|
||||
|
||||
BN_free(z);
|
||||
}
|
||||
97
src/main.cpp
Normal file
97
src/main.cpp
Normal file
@@ -0,0 +1,97 @@
|
||||
//
|
||||
// Created by Andrew on 01/06/2023.
|
||||
//
|
||||
|
||||
#include "header.h"
|
||||
#include <iostream>
|
||||
|
||||
char charset[] = "BCDFGHJKMPQRTVWXY2346789";
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
int main() {
|
||||
char* BINKID = "2E";
|
||||
|
||||
std::ifstream f("keys.json");
|
||||
json keys = json::parse(f);
|
||||
|
||||
rand();
|
||||
srand(time(nullptr));
|
||||
rand();
|
||||
|
||||
// We cannot produce a valid key without knowing the private key k. The reason for this is that
|
||||
// we need the result of the function K(x; y) = kG(x; y).
|
||||
BIGNUM *privateKey = BN_new();
|
||||
|
||||
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
|
||||
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
|
||||
BIGNUM *genOrder = BN_new();
|
||||
|
||||
/* Computed data */
|
||||
BN_dec2bn(&genOrder, keys["BINK"][BINKID]["n"].get<std::string>().c_str());
|
||||
BN_dec2bn(&privateKey, keys["BINK"][BINKID]["priv"].get<std::string>().c_str());
|
||||
|
||||
std::cout << keys["BINK"][BINKID]["p"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["a"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["b"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["g"]["x"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["g"]["y"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["pub"]["x"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["pub"]["y"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["n"].get<std::string>().c_str() << std::endl;
|
||||
std::cout << keys["BINK"][BINKID]["priv"].get<std::string>().c_str() << std::endl;
|
||||
|
||||
EC_POINT *genPoint, *pubPoint;
|
||||
EC_GROUP *eCurve = initializeEllipticCurve(
|
||||
keys["BINK"][BINKID]["p"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["a"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["b"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["g"]["x"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["g"]["y"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["pub"]["x"].get<std::string>().c_str(),
|
||||
keys["BINK"][BINKID]["pub"]["y"].get<std::string>().c_str(),
|
||||
&genPoint,
|
||||
&pubPoint
|
||||
);
|
||||
|
||||
/*BN_print_fp(stdout, p);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, a);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, b);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, gx);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, gy);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, pubx);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, puby);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, n);
|
||||
std::cout << std::endl;
|
||||
BN_print_fp(stdout, priv);
|
||||
std::cout << std::endl;*/
|
||||
// Calculation
|
||||
|
||||
|
||||
char pKey[25];
|
||||
|
||||
ul32 nRaw = 640 * 1000000 ; /* <- change */
|
||||
//nRaw += rand() & 999999;
|
||||
|
||||
printf("> PID: %u\n", nRaw);
|
||||
|
||||
// generate a key
|
||||
BN_sub(privateKey, genOrder, privateKey);
|
||||
nRaw <<= 1;
|
||||
|
||||
generateXPKey(pKey, eCurve, genPoint, genOrder, privateKey, &nRaw);
|
||||
print_product_key(pKey);
|
||||
printf("\n\n");
|
||||
|
||||
// verify the key
|
||||
if (!verifyXPKey(eCurve, genPoint, pubPoint, pKey)) printf("Fail! Key is invalid.\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
279
src/server.cpp
Normal file
279
src/server.cpp
Normal file
@@ -0,0 +1,279 @@
|
||||
#include "header.h"
|
||||
|
||||
char charset[] = "BCDFGHJKMPQRTVWXY2346789";
|
||||
|
||||
void unpack2003(ul32 *osfamily, ul32 *hash, ul32 *sig, ul32 *prefix, ul32 *raw)
|
||||
{
|
||||
osfamily[0] = raw[0] & 0x7ff;
|
||||
hash[0] = ((raw[0] >> 11) | (raw[1] << 21)) & 0x7fffffff;
|
||||
sig[0] = (raw[1] >> 10) | (raw[2] << 22);
|
||||
sig[1] = ((raw[2] >> 10) | (raw[3] << 22)) & 0x3fffffff;
|
||||
prefix[0] = (raw[3] >> 8) & 0x3ff;
|
||||
}
|
||||
|
||||
void pack2003(ul32 *raw, ul32 *osfamily, ul32 *hash, ul32 *sig, ul32 *prefix)
|
||||
{
|
||||
raw[0] = osfamily[0] | (hash[0] << 11);
|
||||
raw[1] = (hash[0] >> 21) | (sig[0] << 10);
|
||||
raw[2] = (sig[0] >> 22) | (sig[1] << 10);
|
||||
raw[3] = (sig[1] >> 22) | (prefix[0] << 8);
|
||||
}
|
||||
|
||||
int verify2003(EC_GROUP *ec, EC_POINT *generator, EC_POINT *public_key, char *cdkey)
|
||||
{
|
||||
char key[25];
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
|
||||
for (int i = 0, k = 0; i < strlen(cdkey); i++) {
|
||||
for (int j = 0; j < 24; j++) {
|
||||
if (cdkey[i] != '-' && cdkey[i] == charset[j]) {
|
||||
key[k++] = j;
|
||||
break;
|
||||
}
|
||||
assert(j < 24);
|
||||
}
|
||||
if (k >= 25) break;
|
||||
}
|
||||
|
||||
ul32 bkey[4] = {0};
|
||||
ul32 osfamily[1], hash[1], sig[2], prefix[1];
|
||||
|
||||
unbase24(bkey, key);
|
||||
|
||||
printf("%.8lx %.8lx %.8lx %.8lx\n", bkey[3], bkey[2], bkey[1], bkey[0]);
|
||||
unpack2003(osfamily, hash, sig, prefix, bkey);
|
||||
|
||||
printf("OS Family: %lu\nHash: %.8lx\nSig: %.8lx %.8lx\nPrefix: %.8lx\n", osfamily[0], hash[0], sig[1], sig[0], prefix[0]);
|
||||
|
||||
byte buf[FIELD_BYTES_2003], md[20];
|
||||
ul32 h1[2];
|
||||
SHA_CTX h_ctx;
|
||||
|
||||
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
||||
SHA1_Init(&h_ctx);
|
||||
buf[0] = 0x5d;
|
||||
buf[1] = osfamily[0] & 0xff;
|
||||
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||
buf[3] = hash[0] & 0xff;
|
||||
buf[4] = (hash[0] & 0xff00) >> 8;
|
||||
buf[5] = (hash[0] & 0xff0000) >> 16;
|
||||
buf[6] = (hash[0] & 0xff000000) >> 24;
|
||||
buf[7] = prefix[0] & 0xff;
|
||||
buf[8] = (prefix[0] & 0xff00) >> 8;
|
||||
buf[9] = buf[10] = 0;
|
||||
SHA1_Update(&h_ctx, buf, 11);
|
||||
SHA1_Final(md, &h_ctx);
|
||||
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
||||
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
||||
h1[1] &= 0x3FFFFFFF;
|
||||
printf("h1: %.8lx %.8lx\n", h1[1], h1[0]);
|
||||
|
||||
BIGNUM *s, *h, *x, *y;
|
||||
x = BN_new();
|
||||
y = BN_new();
|
||||
endian((byte *)sig, 8);
|
||||
endian((byte *)h1, 8);
|
||||
s = BN_bin2bn((byte *)sig, 8, nullptr);
|
||||
h = BN_bin2bn((byte *)h1, 8, nullptr);
|
||||
|
||||
EC_POINT *r = EC_POINT_new(ec);
|
||||
EC_POINT *t = EC_POINT_new(ec);
|
||||
/* r = sig*(sig*generator + h1*public_key) */
|
||||
EC_POINT_mul(ec, t, nullptr, generator, s, ctx);
|
||||
EC_POINT_mul(ec, r, nullptr, public_key, h, ctx);
|
||||
EC_POINT_add(ec, r, r, t, ctx);
|
||||
EC_POINT_mul(ec, r, nullptr, r, s, ctx);
|
||||
EC_POINT_get_affine_coordinates(ec, r, x, y, ctx);
|
||||
|
||||
ul32 h2[1];
|
||||
/* h2 = SHA-1(79 || OS Family || r.x || r.y) */
|
||||
SHA1_Init(&h_ctx);
|
||||
buf[0] = 0x79;
|
||||
buf[1] = osfamily[0] & 0xff;
|
||||
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||
SHA1_Update(&h_ctx, buf, 3);
|
||||
|
||||
memset(buf, 0, FIELD_BYTES_2003);
|
||||
BN_bn2bin(x, buf);
|
||||
endian((byte *)buf, FIELD_BYTES_2003);
|
||||
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||
|
||||
memset(buf, 0, FIELD_BYTES_2003);
|
||||
BN_bn2bin(y, buf);
|
||||
endian((byte *)buf, FIELD_BYTES_2003);
|
||||
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||
|
||||
SHA1_Final(md, &h_ctx);
|
||||
h2[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
||||
printf("Calculated hash: %.8lx\n", h2[0]);
|
||||
|
||||
BN_free(s);
|
||||
BN_free(h);
|
||||
BN_free(x);
|
||||
BN_free(y);
|
||||
EC_POINT_free(r);
|
||||
EC_POINT_free(t);
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
if (h2[0] == hash[0]) {
|
||||
printf("Key VALID\n");
|
||||
return 1;
|
||||
}
|
||||
else {
|
||||
printf("Key invalid\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void generate2003(char *pkey, EC_GROUP *ec, EC_POINT *generator, BIGNUM *order, BIGNUM *priv, ul32 *osfamily, ul32 *prefix)
|
||||
{
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
|
||||
BIGNUM *k = BN_new();
|
||||
BIGNUM *s = BN_new();
|
||||
BIGNUM *x = BN_new();
|
||||
BIGNUM *y = BN_new();
|
||||
BIGNUM *b = BN_new();
|
||||
EC_POINT *r = EC_POINT_new(ec);
|
||||
|
||||
ul32 bkey[4];
|
||||
byte buf[FIELD_BYTES_2003], md[20];
|
||||
ul32 h1[2];
|
||||
ul32 hash[1], sig[2];
|
||||
|
||||
SHA_CTX h_ctx;
|
||||
|
||||
for (;;) {
|
||||
/* r = k*generator */
|
||||
BN_pseudo_rand(k, FIELD_BITS_2003, -1, 0);
|
||||
EC_POINT_mul(ec, r, nullptr, generator, k, ctx);
|
||||
EC_POINT_get_affine_coordinates_GFp(ec, r, x, y, ctx);
|
||||
|
||||
/* hash = SHA-1(79 || OS Family || r.x || r.y) */
|
||||
SHA1_Init(&h_ctx);
|
||||
buf[0] = 0x79;
|
||||
buf[1] = osfamily[0] & 0xff;
|
||||
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||
SHA1_Update(&h_ctx, buf, 3);
|
||||
|
||||
memset(buf, 0, FIELD_BYTES_2003);
|
||||
BN_bn2bin(x, buf);
|
||||
endian((byte *)buf, FIELD_BYTES_2003);
|
||||
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||
|
||||
memset(buf, 0, FIELD_BYTES_2003);
|
||||
BN_bn2bin(y, buf);
|
||||
endian((byte *)buf, FIELD_BYTES_2003);
|
||||
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||
|
||||
SHA1_Final(md, &h_ctx);
|
||||
hash[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
||||
|
||||
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
||||
SHA1_Init(&h_ctx);
|
||||
buf[0] = 0x5d;
|
||||
buf[1] = osfamily[0] & 0xff;
|
||||
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||
buf[3] = hash[0] & 0xff;
|
||||
buf[4] = (hash[0] & 0xff00) >> 8;
|
||||
buf[5] = (hash[0] & 0xff0000) >> 16;
|
||||
buf[6] = (hash[0] & 0xff000000) >> 24;
|
||||
buf[7] = prefix[0] & 0xff;
|
||||
buf[8] = (prefix[0] & 0xff00) >> 8;
|
||||
buf[9] = buf[10] = 0;
|
||||
SHA1_Update(&h_ctx, buf, 11);
|
||||
SHA1_Final(md, &h_ctx);
|
||||
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
||||
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
||||
h1[1] &= 0x3FFFFFFF;
|
||||
printf("h1: %.8lx %.8lx\n", h1[1], h1[0]);
|
||||
|
||||
/* s = ( -h1*priv + sqrt( (h1*priv)^2 + 4k ) ) / 2 */
|
||||
endian((byte *)h1, 8);
|
||||
BN_bin2bn((byte *)h1, 8, b);
|
||||
BN_mod_mul(b, b, priv, order, ctx);
|
||||
BN_copy(s, b);
|
||||
BN_mod_sqr(s, s, order, ctx);
|
||||
BN_lshift(k, k, 2);
|
||||
BN_add(s, s, k);
|
||||
BN_mod_sqrt(s, s, order, ctx);
|
||||
BN_mod_sub(s, s, b, order, ctx);
|
||||
if (BN_is_odd(s)) {
|
||||
BN_add(s, s, order);
|
||||
}
|
||||
BN_rshift1(s, s);
|
||||
sig[0] = sig[1] = 0;
|
||||
BN_bn2bin(s, (byte *)sig);
|
||||
endian((byte *)sig, BN_num_bytes(s));
|
||||
if (sig[1] < 0x40000000) break;
|
||||
}
|
||||
pack2003(bkey, osfamily, hash, sig, prefix);
|
||||
printf("OS family: %lu\nHash: %.8lx\nSig: %.8lx %.8lx\nPrefix: %.8lx\n", osfamily[0], hash[0], sig[1], sig[0], prefix[0]);
|
||||
printf("%.8lx %.8lx %.8lx %.8lx\n", bkey[3], bkey[2], bkey[1], bkey[0]);
|
||||
|
||||
base24(pkey, bkey);
|
||||
|
||||
BN_free(k);
|
||||
BN_free(s);
|
||||
BN_free(x);
|
||||
BN_free(y);
|
||||
BN_free(b);
|
||||
EC_POINT_free(r);
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
BIGNUM *a, *b, *p, *gx, *gy, *pubx, *puby, *n, *priv;
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
|
||||
a = BN_new();
|
||||
b = BN_new();
|
||||
p = BN_new();
|
||||
gx = BN_new();
|
||||
gy = BN_new();
|
||||
pubx = BN_new();
|
||||
puby = BN_new();
|
||||
n = BN_new();
|
||||
priv = BN_new();
|
||||
|
||||
/* Windows Sever 2003 VLK */
|
||||
BN_set_word(a, 1);
|
||||
BN_set_word(b, 0);
|
||||
BN_hex2bn(&p, "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379");
|
||||
BN_hex2bn(&gx, "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7");
|
||||
BN_hex2bn(&gy, "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4");
|
||||
BN_hex2bn(&pubx, "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E");
|
||||
BN_hex2bn(&puby, "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE");
|
||||
BN_hex2bn(&n, "4CC5C56529F0237D"); // from mskey 4in1
|
||||
BN_hex2bn(&priv, "2606120F59C05118");
|
||||
|
||||
|
||||
EC_GROUP *ec = EC_GROUP_new_curve_GFp(p, a, b, ctx);
|
||||
EC_POINT *g = EC_POINT_new(ec);
|
||||
EC_POINT_set_affine_coordinates_GFp(ec, g, gx, gy, ctx);
|
||||
EC_POINT *pub = EC_POINT_new(ec);
|
||||
EC_POINT_set_affine_coordinates_GFp(ec, pub, pubx, puby, ctx);
|
||||
|
||||
assert(EC_POINT_is_on_curve(ec, g, ctx) == 1);
|
||||
assert(EC_POINT_is_on_curve(ec, pub, ctx) == 1);
|
||||
|
||||
char pkey[25];
|
||||
ul32 osfamily[1], prefix[1];
|
||||
|
||||
osfamily[0] = 1280;
|
||||
RAND_pseudo_bytes((byte *)prefix, 4);
|
||||
prefix[0] &= 0x3ff;
|
||||
|
||||
do {
|
||||
generate2003(pkey, ec, g, n, priv, osfamily, prefix);
|
||||
} while (!verify2003(ec, g, pub, (char*)pkey));
|
||||
|
||||
print_product_key(pkey); printf("\n\n");
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
87
src/util.cpp
Normal file
87
src/util.cpp
Normal file
@@ -0,0 +1,87 @@
|
||||
//
|
||||
// Created by Andrew on 01/06/2023.
|
||||
//
|
||||
|
||||
#include "header.h"
|
||||
|
||||
int randomRange() {
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* Convert data between endianness types. */
|
||||
void endian(byte *data, int length) {
|
||||
for (int i = 0; i < length / 2; i++) {
|
||||
byte temp = data[i];
|
||||
data[i] = data[length - i - 1];
|
||||
data[length - i - 1] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initializes the elliptic curve. */
|
||||
EC_GROUP *initializeEllipticCurve(
|
||||
const char *pSel,
|
||||
const char *aSel,
|
||||
const char *bSel,
|
||||
const char *generatorXSel,
|
||||
const char *generatorYSel,
|
||||
const char *publicKeyXSel,
|
||||
const char *publicKeyYSel,
|
||||
EC_POINT **genPoint,
|
||||
EC_POINT **pubPoint
|
||||
) {
|
||||
// Initialize BIGNUM and BIGNUMCTX structures.
|
||||
// BIGNUM - Large numbers
|
||||
// BIGNUMCTX - Context large numbers (temporary)
|
||||
BIGNUM *a, *b, *p, *generatorX, *generatorY, *publicKeyX, *publicKeyY;
|
||||
BN_CTX *context;
|
||||
|
||||
// We're presented with an elliptic curve, a multivariable function y(x; p; a; b), where
|
||||
// y^2 % p = x^3 + ax + b % p.
|
||||
a = BN_new();
|
||||
b = BN_new();
|
||||
p = BN_new();
|
||||
|
||||
// Public key will consist of the resulting (x; y) values.
|
||||
publicKeyX = BN_new();
|
||||
publicKeyY = BN_new();
|
||||
|
||||
// G(x; y) is a generator function, its return value represents a point on the elliptic curve.
|
||||
generatorX = BN_new();
|
||||
generatorY = BN_new();
|
||||
|
||||
// Context variable
|
||||
context = BN_CTX_new();
|
||||
|
||||
/* Public data */
|
||||
BN_dec2bn(&p, pSel);
|
||||
BN_dec2bn(&a, aSel);
|
||||
BN_dec2bn(&b, bSel);
|
||||
BN_dec2bn(&generatorX, generatorXSel);
|
||||
BN_dec2bn(&generatorY, generatorYSel);
|
||||
|
||||
BN_dec2bn(&publicKeyX, publicKeyXSel);
|
||||
BN_dec2bn(&publicKeyY, publicKeyYSel);
|
||||
|
||||
/* Elliptic Curve calculations. */
|
||||
// The group is defined via Fp = all integers [0; p - 1], where p is prime.
|
||||
// The function EC_POINT_set_affine_coordinates() sets the x and y coordinates for the point p defined over the curve given in group.
|
||||
EC_GROUP *eCurve = EC_GROUP_new_curve_GFp(p, a, b, context);
|
||||
|
||||
// Create new point for the generator on the elliptic curve and set its coordinates to (genX; genY).
|
||||
*genPoint = EC_POINT_new(eCurve);
|
||||
EC_POINT_set_affine_coordinates(eCurve, *genPoint, generatorX, generatorY, context);
|
||||
|
||||
// Create new point for the public key on the elliptic curve and set its coordinates to (pubX; pubY).
|
||||
*pubPoint = EC_POINT_new(eCurve);
|
||||
EC_POINT_set_affine_coordinates(eCurve, *pubPoint, publicKeyX, publicKeyY, context);
|
||||
|
||||
// If generator and public key points are not on the elliptic curve, either the generator or the public key values are incorrect.
|
||||
assert(EC_POINT_is_on_curve(eCurve, *genPoint, context) == 1);
|
||||
assert(EC_POINT_is_on_curve(eCurve, *pubPoint, context) == 1);
|
||||
|
||||
// Cleanup
|
||||
BN_CTX_free(context);
|
||||
|
||||
return eCurve;
|
||||
}
|
||||
250
src/xp.cpp
Normal file
250
src/xp.cpp
Normal file
@@ -0,0 +1,250 @@
|
||||
/*
|
||||
Windows XP CD Key Verification/Generator v0.03
|
||||
by z22
|
||||
|
||||
Compile with OpenSSL libs, modify to suit your needs.
|
||||
http://gnuwin32.sourceforge.net/packages/openssl.htm
|
||||
|
||||
History:
|
||||
0.03 Stack corruptionerror on exit fixed (now pkey is large enough)
|
||||
More Comments added
|
||||
0.02 Changed name the *.cpp;
|
||||
Fixed minor bugs & Make it compilable on VC++
|
||||
0.01 First version compilable MingW
|
||||
|
||||
|
||||
*/
|
||||
|
||||
#include "header.h"
|
||||
|
||||
/* Unpacks the Windows XP Product Key. */
|
||||
void unpackXP(ul32 *serial, ul32 *hash, ul32 *sig, ul32 *raw) {
|
||||
|
||||
// We're assuming that the quantity of information within the product key is at most 114 bits.
|
||||
// log2(24^25) = 114.
|
||||
|
||||
// Serial = Bits [0..30] -> 31 bits
|
||||
if (serial)
|
||||
serial[0] = raw[0] & 0x7fffffff;
|
||||
|
||||
// Hash (e) = Bits [31..58] -> 28 bits
|
||||
if (hash)
|
||||
hash[0] = ((raw[0] >> 31) | (raw[1] << 1)) & 0xfffffff;
|
||||
|
||||
// Signature (s) = Bits [59..113] -> 55 bits
|
||||
if (sig) {
|
||||
sig[0] = (raw[1] >> 27) | (raw[2] << 5);
|
||||
sig[1] = (raw[2] >> 27) | (raw[3] << 5);
|
||||
}
|
||||
}
|
||||
|
||||
/* Packs the Windows XP Product Key. */
|
||||
void packXP(ul32 *raw, const ul32 *serial, const ul32 *hash, const ul32 *sig) {
|
||||
raw[0] = serial[0] | ((hash[0] & 1) << 31);
|
||||
raw[1] = (hash[0] >> 1) | ((sig[0] & 0x1f) << 27);
|
||||
raw[2] = (sig[0] >> 5) | (sig[1] << 27);
|
||||
raw[3] = sig[1] >> 5;
|
||||
}
|
||||
|
||||
/* Verify Product Key */
|
||||
bool verifyXPKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) {
|
||||
BN_CTX *context = BN_CTX_new();
|
||||
|
||||
// Convert Base24 CD-key to bytecode.
|
||||
ul32 bKey[4]{};
|
||||
ul32 pID, checkHash, sig[2];
|
||||
|
||||
unbase24(bKey, cdKey);
|
||||
|
||||
// Extract data, hash and signature from the bytecode.
|
||||
unpackXP(&pID, &checkHash, sig, bKey);
|
||||
|
||||
// e = Hash
|
||||
// s = Signature
|
||||
BIGNUM *e, *s;
|
||||
|
||||
// Put hash word into BigNum e.
|
||||
e = BN_new();
|
||||
BN_set_word(e, checkHash);
|
||||
|
||||
// Reverse signature and create a new BigNum s.
|
||||
endian((byte *)sig, sizeof(sig));
|
||||
s = BN_bin2bn((byte *)sig, sizeof(sig), nullptr);
|
||||
|
||||
// Create x and y.
|
||||
BIGNUM *x = BN_new();
|
||||
BIGNUM *y = BN_new();
|
||||
|
||||
// Create 2 new points on the existing elliptic curve.
|
||||
EC_POINT *u = EC_POINT_new(eCurve);
|
||||
EC_POINT *v = EC_POINT_new(eCurve);
|
||||
|
||||
// EC_POINT_mul calculates r = generator * n + q * m.
|
||||
// v = s * generator + e * (-publicKey)
|
||||
|
||||
// u = generator * s
|
||||
EC_POINT_mul(eCurve, u, nullptr, generator, s, context);
|
||||
|
||||
// v = publicKey * e
|
||||
EC_POINT_mul(eCurve, v, nullptr, publicKey, e, context);
|
||||
|
||||
// v += u
|
||||
EC_POINT_add(eCurve, v, u, v, context);
|
||||
|
||||
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be nullptr, to the corresponding coordinates of p.
|
||||
// x = v.x; y = v.y;
|
||||
EC_POINT_get_affine_coordinates(eCurve, v, x, y, context);
|
||||
|
||||
byte buf[FIELD_BYTES], md[SHA_DIGEST_LENGTH], t[4];
|
||||
ul32 newHash;
|
||||
|
||||
SHA_CTX hContext;
|
||||
|
||||
// h = First32(SHA-1(pID || v.x || v.y)) >> 4
|
||||
SHA1_Init(&hContext);
|
||||
|
||||
// Chop Product ID into 4 bytes.
|
||||
t[0] = (pID & 0xff); // First 8 bits
|
||||
t[1] = (pID & 0xff00) >> 8; // Second 8 bits
|
||||
t[2] = (pID & 0xff0000) >> 16; // Third 8 bits
|
||||
t[3] = (pID & 0xff000000) >> 24; // Fourth 8 bits
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, t, sizeof(t));
|
||||
|
||||
// Empty buffer, place v.x in little-endian.
|
||||
memset(buf, 0, FIELD_BYTES);
|
||||
BN_bn2bin(x, buf);
|
||||
endian(buf, FIELD_BYTES);
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, buf, FIELD_BYTES);
|
||||
|
||||
// Empty buffer, place v.y in little-endian.
|
||||
memset(buf, 0, FIELD_BYTES);
|
||||
BN_bn2bin(y, buf);
|
||||
endian(buf, FIELD_BYTES);
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, buf, FIELD_BYTES);
|
||||
|
||||
// Store the final message from hContext in md.
|
||||
SHA1_Final(md, &hContext);
|
||||
|
||||
// h = First32(SHA-1(pID || v.x || v.y)) >> 4
|
||||
newHash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
||||
newHash &= 0xfffffff;
|
||||
|
||||
BN_free(e);
|
||||
BN_free(s);
|
||||
BN_free(x);
|
||||
BN_free(y);
|
||||
|
||||
BN_CTX_free(context);
|
||||
|
||||
EC_POINT_free(u);
|
||||
EC_POINT_free(v);
|
||||
|
||||
// If we managed to generate a key with the same hash, the key is correct.
|
||||
return newHash == checkHash;
|
||||
}
|
||||
|
||||
/* Generate a valid Product Key. */
|
||||
void generateXPKey(char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *pRaw) {
|
||||
EC_POINT *r = EC_POINT_new(eCurve);
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
|
||||
BIGNUM *c = BN_new();
|
||||
BIGNUM *s = BN_new();
|
||||
BIGNUM *x = BN_new();
|
||||
BIGNUM *y = BN_new();
|
||||
|
||||
ul32 bKey[4]{};
|
||||
|
||||
do {
|
||||
ul32 hash = 0, sig[2]{};
|
||||
|
||||
memset(bKey, 0, 4);
|
||||
|
||||
// Generate a random number c consisting of 384 bits without any constraints.
|
||||
BN_rand(c, FIELD_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
|
||||
|
||||
// r = generator * c;
|
||||
EC_POINT_mul(eCurve, r, nullptr, generator, c, ctx);
|
||||
|
||||
// x = r.x; y = r.y;
|
||||
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
||||
|
||||
SHA_CTX hContext;
|
||||
byte md[SHA_DIGEST_LENGTH]{}, buf[FIELD_BYTES]{}, t[4]{};
|
||||
|
||||
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
||||
SHA1_Init(&hContext);
|
||||
|
||||
// Chop Raw Product Key into 4 bytes.
|
||||
t[0] = (*pRaw & 0xff);
|
||||
t[1] = (*pRaw & 0xff00) >> 8;
|
||||
t[2] = (*pRaw & 0xff0000) >> 16;
|
||||
t[3] = (*pRaw & 0xff000000) >> 24;
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, t, sizeof(t));
|
||||
|
||||
// Empty buffer, place r.x in little-endian
|
||||
memset(buf, 0, FIELD_BYTES);
|
||||
BN_bn2bin(x, buf);
|
||||
endian(buf, FIELD_BYTES);
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, buf, FIELD_BYTES);
|
||||
|
||||
// Empty buffer, place r.y in little-endian.
|
||||
memset(buf, 0, FIELD_BYTES);
|
||||
BN_bn2bin(y, buf);
|
||||
endian(buf, FIELD_BYTES);
|
||||
|
||||
// Hash chunk of data.
|
||||
SHA1_Update(&hContext, buf, FIELD_BYTES);
|
||||
|
||||
// Store the final message from hContext in md.
|
||||
SHA1_Final(md, &hContext);
|
||||
|
||||
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
||||
hash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
||||
hash &= 0xfffffff;
|
||||
|
||||
/* s = privateKey * hash + c; */
|
||||
// s = privateKey;
|
||||
BN_copy(s, privateKey);
|
||||
|
||||
// s *= hash;
|
||||
BN_mul_word(s, hash);
|
||||
|
||||
// BN_mod_add() adds a to b % m and places the non-negative result in r.
|
||||
// s = |s + c % order|;
|
||||
BN_mod_add(s, s, c, order, ctx);
|
||||
|
||||
// Convert s from BigNum back to bytecode and reverse the endianness.
|
||||
BN_bn2bin(s, (byte *)sig);
|
||||
endian((byte *)sig, BN_num_bytes(s));
|
||||
|
||||
// Pack product key.
|
||||
packXP(bKey, pRaw, &hash, sig);
|
||||
|
||||
printf("PID: %.8X\nHash: %.8X\nSig: %.8X %.8X\n", pRaw[0], hash, sig[1], sig[0]);
|
||||
} while (bKey[3] >= 0x40000);
|
||||
// ↑ ↑ ↑
|
||||
// bKey[3] can't be longer than 18 bits, else the signature part will make
|
||||
// the CD-key longer than 25 characters.
|
||||
|
||||
// Convert the key to Base24.
|
||||
base24(pKey, bKey);
|
||||
|
||||
BN_free(c);
|
||||
BN_free(s);
|
||||
BN_free(x);
|
||||
BN_free(y);
|
||||
|
||||
BN_CTX_free(ctx);
|
||||
EC_POINT_free(r);
|
||||
}
|
||||
Reference in New Issue
Block a user