14 Commits

Author SHA1 Message Date
2bcc9d5178 Revert x2 2025-07-18 00:21:54 -05:00
af058711ec Revert because you just don't use macos icons for cli 2025-07-18 00:21:12 -05:00
793432f07b use --args 2025-07-18 00:18:24 -05:00
8cb00c165d use open -a 2025-07-18 00:16:32 -05:00
070dbe46d0 oh yeah we're an app now x2 2025-07-18 00:12:42 -05:00
51248fb5cc oh yeah we're an app now 2025-07-18 00:11:19 -05:00
bda0ea93c8 macOS icon + diff placeholder 2025-07-18 00:09:53 -05:00
843b904639 placeholder icon change 2025-07-17 23:48:08 -05:00
f7427792e3 Add Wither's gists as references (#137)
* Add Wither's gists as references

* remove broken ones

---------

Co-authored-by: WitherOrNot <damemem@gmail.com>
2025-07-09 20:12:49 -05:00
c0aca723b8 Update windows-x86-x64.yml 2025-07-09 16:04:20 -05:00
8c98a3d173 Update windows-x86-x64.yml 2025-07-09 16:02:26 -05:00
a1845d9d6a Update windows-x86-x64.yml 2025-07-09 16:01:50 -05:00
817695d988 Update windows-x86-x64.yml 2025-07-09 15:57:08 -05:00
8dc6dfb97e Downgrade OpenSSL to 1.1.1 (#136)
* Update windows-x86-x64.yml

* Update windows-arm.yml

* Update windows-arm.yml

* Update windows-arm.yml

* Update windows-arm.yml

* Update windows-arm.yml
2025-07-09 15:43:33 -05:00
13 changed files with 2678 additions and 126 deletions

View File

@ -39,7 +39,7 @@ jobs:
cmake_arch: ARM
sdk_version: '10.0.17763.0'
- arch: arm64
arch_compilename: arm64
arch_compilename: amd64_arm64
vcpkg_arch: arm64-windows-static
cmake_arch: ARM64
sdk_version: '10.0.17763.0'
@ -53,52 +53,18 @@ jobs:
- name: Checkout Source Tree
uses: actions/checkout@v4
- name: Setup vcpkg
if: matrix.arch == 'arm64'
shell: pwsh
run: |
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
.\bootstrap-vcpkg.bat
echo "VCPKG_ROOT=$env:GITHUB_WORKSPACE/vcpkg" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "VCPKG_DEFAULT_BINARY_CACHE=$env:GITHUB_WORKSPACE/vcpkg/bincache" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "VCPKG_BINARY_SOURCES=clear;default,readwrite" | Out-File -FilePath $env:GITHUB_ENV -Append
- name: Cache vcpkg packages
if: matrix.arch == 'arm64'
uses: actions/cache@v4
with:
path: |
${{ github.workspace }}/vcpkg/bincache
${{ github.workspace }}/vcpkg/installed
${{ github.workspace }}/vcpkg/packages
key: vcpkg-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}-${{ hashFiles('**/*.cmake') }}
restore-keys: |
vcpkg-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}-
vcpkg-${{ matrix.arch }}-
- name: Cache OpenSSL Binaries
if: matrix.arch == 'arm32'
uses: actions/cache@v4
uses: actions/cache/restore@v4
with:
path: |
${{ github.workspace }}/openssl-install
key: openssl-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
restore-keys: |
${{ github.workspace }}-OpenSSL-MSVC-${{ matrix.arch }}
key: openssl-1.1.1-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
- name: Install OpenSSL
- name: Checkout and Compile OpenSSL v1.1.1
shell: pwsh
run: |
if ("${{ matrix.arch }}" -eq "arm32") {
# For ARM32, build OpenSSL from source
$opensslVersion = "1.1.1w"
$opensslDir = "openssl-src"
# Download OpenSSL source
Invoke-WebRequest -Uri "https://www.openssl.org/source/openssl-$opensslVersion.tar.gz" -OutFile "openssl.tar.gz"
tar -xf openssl.tar.gz
Rename-Item -Path "openssl-$opensslVersion" -NewName $opensslDir
cd $opensslDir
git clone https://github.com/UMSKT/openssl --branch OpenSSL_1_1_1-stable --depth 1 openssl-src
cd openssl-src
# Install Perl if needed
choco install strawberryperl -y
@ -110,32 +76,31 @@ jobs:
$vsPath = & "${env:ProgramFiles(x86)}\Microsoft Visual Studio\Installer\vswhere.exe" -latest -property installationPath
$vcvarsall = Join-Path $vsPath "VC\Auxiliary\Build\vcvarsall.bat"
# Configure OpenSSL
perl Configure VC-WIN32-ARM no-shared no-asm no-engine --prefix="$env:GITHUB_WORKSPACE/openssl-install"
# Build using MSVC ARM32 tools
cmd /c "call `"$vcvarsall`" amd64_arm && nmake && nmake install_sw"
cd ..
$vcTarget = ""
if ("${{ matrix.arch}}" -eq "arm32") {
$vcTarget = "VC-WIN32-ARM"
} else {
# For ARM64, use vcpkg as before
New-Item -ItemType Directory -Force -Path $env:VCPKG_DEFAULT_BINARY_CACHE
& "$env:VCPKG_ROOT\vcpkg.exe" install openssl:${{ matrix.vcpkg_arch }} --clean-after-build
echo "OPENSSL_ROOT_DIR=$env:VCPKG_ROOT/installed/${{ matrix.vcpkg_arch }}" | Out-File -FilePath $env:GITHUB_ENV -Append
$vcTarget = "VC-WIN64-ARM"
}
# Configure OpenSSL
perl Configure $vcTarget no-shared no-asm no-engine --prefix="$env:GITHUB_WORKSPACE/OpenSSL-MSVC-${{ matrix.arch }}"
# Build using MSVC ARM32 tools
cmd /c "call `"$vcvarsall`" ${{matrix.arch_compilename}} && nmake && nmake install_sw"
cd ..
- name: Save OpenSSL Binaries
if: matrix.arch == 'arm32'
uses: actions/cache/save@v4
with:
path: |
${{ github.workspace }}/openssl-install
key: openssl-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
${{ github.workspace }}/OpenSSL-MSVC-${{ matrix.arch }}
key: openssl-1.1.1-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
- name: Set OpenSSL Environment
if: matrix.arch == 'arm32'
shell: pwsh
run: |
echo "OPENSSL_ROOT=$env:GITHUB_WORKSPACE/openssl-install" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "OPENSSL_ROOT=$env:GITHUB_WORKSPACE/OpenSSL-MSVC-${{ matrix.arch }}" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "OPENSSL_LIBDIR=lib" | Out-File -FilePath $env:GITHUB_ENV -Append
- name: Configure UMSKT

View File

@ -32,7 +32,14 @@ jobs:
strategy:
fail-fast: false
matrix:
arch: [x64, x86]
include:
- arch: x86
msystem: MINGW
cmake_flag: -m32
- arch: x64
msystem: MINGW64
cmake_flag: -m64
steps:
- name: Setup TDM-GCC
run: |
@ -53,26 +60,16 @@ jobs:
- name: Checkout Source Tree
uses: actions/checkout@v4
- name: Cache OpenSSL 3.1.2 (32-bit)
- name: Cache OpenSSL 1.1.1
uses: actions/cache/restore@v4
if: matrix.arch == 'x86'
id: cache-openssl-32
id: cache-openssl
with:
path: |
${{ github.workspace }}/OpenSSL-TDM-32
key: openssl-3.1.2-x86-${{ hashFiles('**/CMakeLists.txt') }}
- name: Cache OpenSSL 3.1.2 (64-bit)
uses: actions/cache/restore@v4
if: matrix.arch == 'x64'
id: cache-openssl-64
with:
path: |
${{ github.workspace }}/OpenSSL-TDM-64
key: openssl-3.1.2-x64-${{ hashFiles('**/CMakeLists.txt') }}
${{ github.workspace }}/OpenSSL-TDM-${{ matrix.arch }}
key: openssl-1.1.1-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
- name: Setup MSYS2
if: steps.cache-openssl-32.outputs.cache-hit != 'true' && steps.cache-openssl-64.outputs.cache-hit != 'true'
if: steps.cache-openssl.outputs.cache-hit != 'true'
uses: msys2/setup-msys2@v2
with:
msystem: ${{ matrix.arch == 'x86' && 'MINGW32' || 'MINGW64' }}
@ -84,81 +81,45 @@ jobs:
perl
git
- name: Checkout and Compile OpenSSL 3.1.2
if: steps.cache-openssl-32.outputs.cache-hit != 'true' && steps.cache-openssl-64.outputs.cache-hit != 'true'
- name: Checkout and Compile OpenSSL 1.1.1
if: steps.cache-openssl.outputs.cache-hit != 'true'
shell: msys2 {0}
run: |
# Clone UMSKT's OpenSSL fork
echo "Cloning UMSKT OpenSSL fork..."
git clone https://github.com/UMSKT/openssl.git --depth 1 openssl-3.1.2
- name: Checkout and Compile OpenSSL 3.1.2 (32-bit)
if: matrix.arch == 'x86' && steps.cache-openssl-32.outputs.cache-hit != 'true'
shell: msys2 {0}
run: |
git clone https://github.com/UMSKT/openssl.git --branch OpenSSL_1_1_1-stable --depth 1 openssl-1.1.1
# Set up proper MSYS2 environment
export MSYS=winsymlinks:nativestrict
export MSYS2_PATH_TYPE=strict
export LANG=en_US.UTF-8
export PATH="/usr/bin:/mingw64/bin:$PATH"
export PATH="/c/TDM-GCC-64/bin:$PATH"
export MSYSTEM=MINGW32
echo "Compiling 32-bit OpenSSL..."
cd openssl-3.1.2
/usr/bin/perl Configure mingw --prefix=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-32 --openssldir=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-32 no-tests no-sse2 no-asm no-threads -DOPENSSL_DEV_NO_ATOMICS -mno-mmx -mno-sse -mno-sse2 -march=i686 -mtune=generic
export MSYSTEM=${{ matrix.msystem }}
cd openssl-1.1.1
if [[ ${{ matrix.arch }} == "x86" ]]; then
/usr/bin/perl Configure mingw --prefix=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-${{ matrix.arch }} --openssldir=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-32 no-tests no-sse2 no-asm no-threads -DOPENSSL_DEV_NO_ATOMICS -mno-mmx -mno-sse -mno-sse2 -march=i686 -mtune=generic
else
/usr/bin/perl Configure mingw64 --prefix=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-${{ matrix.arch }} --openssldir=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-64 no-tests no-asm -DOPENSSL_DEV_NO_ATOMICS -mno-mmx
fi
mingw32-make -j
mingw32-make install_sw
cd ..
- name: Checkout and Compile OpenSSL 3.1.2 (64-bit)
if: matrix.arch == 'x64' && steps.cache-openssl-64.outputs.cache-hit != 'true'
shell: msys2 {0}
run: |
# Set up proper MSYS2 environment
export MSYS=winsymlinks:nativestrict
export MSYS2_PATH_TYPE=strict
export LANG=en_US.UTF-8
export PATH="/usr/bin:/mingw64/bin:$PATH"
export PATH="/c/TDM-GCC-64/bin:$PATH"
export MSYSTEM=MINGW64
echo "Compiling 64-bit OpenSSL..."
cd openssl-3.1.2
/usr/bin/perl Configure mingw64 --prefix=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-64 --openssldir=$(cygpath -u "$GITHUB_WORKSPACE")/OpenSSL-TDM-64 no-tests no-asm -DOPENSSL_DEV_NO_ATOMICS -mno-mmx
mingw32-make -j
mingw32-make install_sw
cd ..
- name: Save OpenSSL 3.1.2 (32-bit)
if: matrix.arch == 'x86' && steps.cache-openssl-32.outputs.cache-hit != 'true'
- name: Save OpenSSL 1.1.1
if: steps.cache-openssl.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
${{ github.workspace }}/OpenSSL-TDM-32
key: openssl-3.1.2-x86-${{ hashFiles('**/CMakeLists.txt') }}
${{ github.workspace }}/OpenSSL-TDM-${{ matrix.arch }}
key: openssl-1.1.1-${{ matrix.arch }}-${{ hashFiles('**/CMakeLists.txt') }}
- name: Save OpenSSL 3.1.2 (64-bit)
if: matrix.arch == 'x64' && steps.cache-openssl-64.outputs.cache-hit != 'true'
uses: actions/cache/save@v4
with:
path: |
${{ github.workspace }}/OpenSSL-TDM-64
key: openssl-3.1.2-x64-${{ hashFiles('**/CMakeLists.txt') }}
- name: Set OpenSSL Environment (32-bit)
if: matrix.arch == 'x86'
- name: Set OpenSSL Environment
shell: pwsh
run: |
echo "OPENSSL_ROOT=$env:GITHUB_WORKSPACE/OpenSSL-TDM-32" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "OPENSSL_ROOT=$env:GITHUB_WORKSPACE/OpenSSL-TDM-${{ matrix.arch }}" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "OPENSSL_LIBDIR=lib" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_FLAGS=-m32" | Out-File -FilePath $env:GITHUB_ENV -Append
- name: Set OpenSSL Environment (64-bit)
if: matrix.arch == 'x64'
shell: pwsh
run: |
echo "OPENSSL_ROOT=$env:GITHUB_WORKSPACE/OpenSSL-TDM-64" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "OPENSSL_LIBDIR=lib" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_FLAGS=-m64" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_FLAGS=${{ matrix.cmake_flag }}" | Out-File -FilePath $env:GITHUB_ENV -Append
- name: Configure UMSKT
shell: pwsh

View File

@ -0,0 +1,302 @@
import hashlib
def add_pid_cksum(pid):
sumPID = 0
val = pid
while val != 0:
sumPID += val % 10
val //= 10
return pid * 10 + 7 - (sumPID % 7)
def decode_iid_new_version(iid, pid):
buffer = [0] * 5
for i in range(len(buffer)):
buffer[i] = int.from_bytes(iid[i*4:i*4+4], byteorder='little')
# print("buffer[" + str(i) + "] = " + hex(buffer[i])[2:].zfill(8))
v1 = (buffer[3] & 0xFFFFFFF8) | 2 # Not really sure but seems to work
v2 = (buffer[3] & 7) << 29 | buffer[2] >> 3
hardwareId = (v1) << 32 | v2
hardwareId = int(hardwareId).to_bytes(8, byteorder='little')
v3 = (buffer[0] & 0xFFFFFF80) >> 7 & 0xFFFFFFFF
unknown1 = v3 & 0x000007FF
v4 = v3 & 0xFFFFF800
v5 = buffer[1] & 0x7F
v6 = buffer[1] >> 7
v7 = (v5 << 25 | v4) >> 11
productID1 = v7 & 0x000003FF
v8 = v7 & 0xFFFFFC00
v9 = (v6 >> 11) & 0x00001FFF
v10 = v9 & 0x00001C00
v11 = v9 & 0x000003FF
v12 = ((v6 << 21) & 0xFFFFFFFF | v8) >> 10
v13 = (v11 << 22) & 0xFFFFFFFF
v14 = v13 | v12
productID3RandomPart = (v14 & 0x3FF00000) >> 20
productID2NoChecksum = v14 & 0x000FFFFF
v15 = v13 >> 30 # 0x00000003
v16 = v10 >> 8 # 0x0000001C
v17 = (buffer[2] & 7) << 6 # 0x000001C0
v18 = (buffer[4] & 1) << 9 # 0x00000200
authInfo = v18 | v17 | v16 | v15 # Not that important bug: bit 5 is not present
productID0 = pid[0]
productID2 = add_pid_cksum(productID2NoChecksum)
productID3 = (pid[3] // 1000) * 1000 + productID3RandomPart
# Just to remember: public key index I of pid (XXXXX-XXX-XXXXXXX-IIXXX) = BINK ID // 2
# Where is actually located the version number?
# version1 = buffer[0] & 7
# print("Decoded IID Version1?: " + str(version1))
# version2 = (int.from_bytes(iid[8:17], byteorder='little') >> 52) & 7
# print("Decoded IID Version2?: " + str(version2))
# version3 = buffer[3] & 7
# print("Decoded IID Version3?: " + str(version3))
if productID1 != pid[1] or productID2 != pid[2] or pid[3] % 1000 != productID3RandomPart:
print("Error: Product ID not matching!")
return 0, 0, 0
return hardwareId, authInfo, unknown1
# Validate installation ID checksum
def validate_cksum(n):
print("Checksumming installation ID...")
n = n.replace("-", "")
cksum = 0
for i, k in enumerate(map(int, n)):
if (i + 1) % 6 == 0 or i == len(n) - 1:
print("Expected last digit", cksum % 7, "got", k)
if cksum % 7 != k:
return None
cksum = 0
else:
cksum += k * (i % 2 + 1)
parts = [n[i:i+5] for i in range(0, len(n), 6)]
n_out = "".join(parts)
if len(n_out) == 42:
n_out = n_out[:-1]
if len(n_out) != 45 and len(n_out) != 41:
return None
return int(n_out)
# Insert checksum digits into confirmation ID
def add_cksum(n):
cksums = []
n = str(n).zfill(35)
parts = [n[i:i+5] for i in range(0, len(n), 5)]
for p in parts:
cksum = 0
for i, k in enumerate(map(int, p)):
cksum += k * (i % 2 + 1)
cksums.append(str(cksum % 7))
n_out = ""
for i in range(7):
n_out += parts[i] + cksums[i] + ("-" if i != 6 else "")
return n_out
def encrypt(decrypted, key):
size_half = len(decrypted) // 2
size_half_dwords = size_half - (size_half % 4)
last = decrypted[size_half*2:]
decrypted = decrypted[:size_half*2]
for i in range(4):
first = decrypted[:size_half]
second = decrypted[size_half:]
# A magic byte 0x79 is now added at the beginning of the list of bytes to hash
sha1_result = hashlib.sha1(bytearray.fromhex("79") + second + key).digest()
sha1_result = (sha1_result[:size_half_dwords] +
sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])
decrypted = second + bytes(x^^y for x,y in zip(first, sha1_result))
return decrypted + last
def decrypt(encrypted, key):
size_half = len(encrypted) // 2
size_half_dwords = size_half - (size_half % 4)
last = encrypted[size_half*2:]
encrypted = encrypted[:size_half*2]
for i in range(4):
first = encrypted[:size_half]
second = encrypted[size_half:]
# A magic byte 0x79 is now added at the beginning of the list of bytes to hash
sha1_result = hashlib.sha1(bytearray.fromhex("79") + first + key).digest()
sha1_result = (sha1_result[:size_half_dwords] +
sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])
encrypted = bytes(x^^y for x,y in zip(second, sha1_result)) + first
return encrypted + last
# Find v of divisor (u, v) of curve y^2 = F(x)
def find_v(u):
f = F % u
c2 = u[1]^2 - 4 * u[0]
c1 = 2 * f[0] - f[1] * u[1]
if c2 == 0:
if c1 == 0:
return None
try:
v1 = sqrt(f[1]^2 / (2 * c1))
v1.lift()
except:
return None
else:
try:
d = 2 * sqrt(f[0]^2 + f[1] * (f[1] * u[0] - f[0] * u[1]))
v1_1 = sqrt((c1 - d)/c2)
v1_2 = sqrt((c1 + d)/c2)
except:
return None
try:
v1_1.lift()
v1 = v1_1
except:
try:
v1_2.lift()
v1 = v1_2
except:
return None
v0 = (f[1] + u[1] * v1^2) / (2 * v1)
v = v0 + v1 * x
assert (v^2 - f) % u == 0
return v
# order of field Fp
p = 0x16E48DD18451FE9
# Coefficients of F
coeffs = [0, 0xE5F5ECD95C8FD2, 0xFF28276F11F61, 0xFB2BD9132627E6, 0xE5F5ECD95C8FD2, 1]
# This constant inverts multiplication by 0x10001 in verification
INV = 0x01fb8cf48a70dfefe0302a1f7a5341
# Key to decrypt installation IDs
IID_KEY = b'\x5A\x30\xB9\xF3'
#"""
# minimal quadratic non-residue of p
mqnr = least_quadratic_nonresidue(p)
# Galois field of order p
Fp = GF(p)
# Polynomial field Fp[x] over Fp
Fpx.<x> = Fp[]
# Hyperellptic curve function
F = sum(k*x^i for i, k in enumerate(coeffs))
# Hyperelliptic curve E: y^2 = F(x) over Fp
E = HyperellipticCurve(F)
# The jacobian over E
J = E.jacobian()
# unpack&decrypt installationId
installationId = validate_cksum(input("Installation ID (dashes optional): "))
productId = input("Product ID (with dashes): ").split("-")
pid = [int(x) for x in productId]
# Office 2003 Professional Edition FWYTB-C7PPP-4497G-FV737-2HQWG (UMSKT generated)
# installationId = 020572391118023984229275432949036355811509788 # 020570-239116-180233-984220-927546-329495-036352-581151-097880
# pid = [73931, 746, 6952006, 57345] # 73931-746-6952006-57345
# Office 2007 Enterprise Edition XGQ68-R77XM-FPYFH-B436K-46QDY (UMSKT generated)
# installationId = 032422660398632786377841998280144793681167281 # 032424-266032-986324-786370-784193-982801-144791-368115-672814
# pid = [89388, 864, 6523093, 65443] # 89388-864-6523093-65443
print(installationId)
if not installationId:
raise Exception("Invalid Installation ID (checksum fail)")
installationIdSize = 19 if len(str(installationId)) > 41 else 17 # 17 for XP Gold, 19 for SP1+ (includes 12 bits of sha1(product key))
iid = int(installationId).to_bytes(installationIdSize, byteorder='little')
iid = decrypt(iid, IID_KEY)
hwid, authInfo, unknown1 = decode_iid_new_version(iid, pid)
print("\nDecoded Hardware ID: " + hex(int.from_bytes(hwid, byteorder='big')))
print("Decoded AuthInfo: " + hex(authInfo))
print("Decoded Unknown1: " + hex(unknown1))
assert hwid != 0
key = hwid + int((pid[0] << 41 | pid[1] << 58 | pid[2] << 17 | pid[3]) & ((1 << 64) - 1)).to_bytes(8, byteorder='little')
data = [0x00] * 14
# data = b'\xb9g\xdd\xe1\xb0\xef-\x1e\xbd\x0frE\xd8\xbe'
print("\nConfirmation IDs:")
for i in range(0x81):
data[6] = i # Attempt number was byte 7 in older confirmation ID version but it is now byte 6
# Encrypt conf ID, find u of divisor (u, v)
encrypted = encrypt(bytes(data), key)
encrypted = int.from_bytes(encrypted, byteorder="little")
x1, x2 = Fp(encrypted % p), Fp((encrypted // p) + 1)
u1, u0 = x1 * 2, (x1 ^ 2) - ((x2 ^ 2) * mqnr)
u = x^2 + u1 * x + u0
# Generate original divisor
v = find_v(u)
if not v:
print(v)
continue
d2 = J(u, v)
divisor = d2 * INV
# Get x1 and x2
roots = [x for x, y in divisor[0].roots()]
if len(roots) > 0:
y = [divisor[1](r) for r in roots]
x1 = (-roots[0]).lift()
x2 = (-roots[1]).lift()
if (x1 > x2) or (y[0].lift() % 2 != y[1].lift() % 2):
x1 = (-roots[1]).lift()
x2 = (-roots[0]).lift()
else:
x2 = (divisor[0][1] / 2).lift()
x1 = sqrt((x2^2 - divisor[0][0]) / mqnr).lift() + p
# Win
conf_id = x1 * (p + 1) + x2
conf_id = add_cksum(conf_id)
print(conf_id)

433
extras/confid.ipynb Normal file
View File

@ -0,0 +1,433 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Constants (run this cell first!)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"# MS Plus! DME\n",
"\n",
"# order of field Fp \n",
"p = 0x16A5DABA0605983\n",
"# Coefficients of F\n",
"coeffs = [0x334f24f75caa0e, 0x1392ff62889bd7b, 0x135131863ba2db8, 0x153208e78006010, 0x163694f26056db, 1]\n",
"# This constant inverts multiplication by 0x10001 in verification\n",
"INV = 0x01c61212ece6107c4254c43a5d1181\n",
"# Key to decrypt installation IDs\n",
"IID_KEY = b'\\x6A\\xC8\\x5E\\xD4'\n",
"#\"\"\"\n",
"\n",
"#\"\"\"\n",
"# Office XP/2003\n",
"\n",
"# order of field Fp \n",
"p = 0x16E48DD18451FE9\n",
"# Coefficients of F\n",
"coeffs = [0, 0xE5F5ECD95C8FD2, 0xFF28276F11F61, 0xFB2BD9132627E6, 0xE5F5ECD95C8FD2, 1]\n",
"# This constant inverts multiplication by 0x10001 in verification\n",
"INV = 0x01fb8cf48a70dfefe0302a1f7a5341\n",
"# Key to decrypt installation IDs\n",
"IID_KEY = b'\\x5A\\x30\\xB9\\xF3'\n",
"#\"\"\"\n",
"\n",
"\"\"\"\n",
"# Whistler 2428 (could be others)\n",
"\n",
"# order of field Fp \n",
"p = 0x16BD82821354FA3\n",
"# Coefficients of F\n",
"coeffs = [0, 0xDEFD8C5651954F, 0xA23AA12556ECE5, 0x89D79AD61B786D, 0xCCA087F0A6A4A4, 1]\n",
"# This constant inverts multiplication by 0x10001 in verification\n",
"INV = 0xd9ed873ed84a45761c23fd7fafd1\n",
"# Key to decrypt installation IDs\n",
"IID_KEY = b'\\x6A\\xC8\\x5E\\xD4'\n",
"#\"\"\"\n",
"\n",
"\n",
"\"\"\"\n",
"# Windows XP/Server 2003/Longhorn Pre-Reset\n",
"\n",
"# order of field Fp \n",
"p = 0x16A6B036D7F2A79\n",
"# Coefficients of F\n",
"coeffs = [0, 0x21840136C85381, 0x44197B83892AD0, 0x1400606322B3B04, 0x1400606322B3B04, 1]\n",
"# This constant inverts multiplication by 0x10001 in verification\n",
"INV = 0x40DA7C36D44C04E21B9D10F127C1\n",
"# Key to decrypt installation IDs\n",
"IID_KEY = b'\\x6A\\xC8\\x5E\\xD4'\n",
"#\"\"\"\n",
"\n",
"# minimal quadratic non-residue of p\n",
"mqnr = least_quadratic_nonresidue(p)\n",
"# Galois field of order p\n",
"Fp = GF(p)\n",
"# Polynomial field Fp[x] over Fp\n",
"Fpx.<x> = Fp[]\n",
"\n",
"# Hyperellptic curve function\n",
"F = sum(k*x^i for i, k in enumerate(coeffs))\n",
"# Hyperelliptic curve E: y^2 = F(x) over Fp\n",
"E = HyperellipticCurve(F)\n",
"# The jacobian over E\n",
"J = E.jacobian()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generate Confirmation ID"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"# Validate installation ID checksum\n",
"def validate_cksum(n):\n",
" print(\"Checksumming installation ID...\")\n",
" n = n.replace(\"-\", \"\")\n",
"\n",
" cksum = 0\n",
" for i, k in enumerate(map(int, n)):\n",
" if (i + 1) % 6 == 0 or i == len(n) - 1:\n",
" print(\"Expected last digit\", cksum % 7, \"got\", k)\n",
" if cksum % 7 != k:\n",
" return None\n",
" \n",
" cksum = 0\n",
" else:\n",
" cksum += k * (i % 2 + 1)\n",
" \n",
" parts = [n[i:i+5] for i in range(0, len(n), 6)]\n",
" n_out = \"\".join(parts)\n",
" \n",
" if len(n_out) == 42:\n",
" n_out = n_out[:-1]\n",
" \n",
" if len(n_out) != 45 and len(n_out) != 41:\n",
" return None\n",
" \n",
" return int(n_out)\n",
"\n",
"# Insert checksum digits into confirmation ID\n",
"def add_cksum(n):\n",
" cksums = []\n",
" n = str(n).zfill(35)\n",
" parts = [n[i:i+5] for i in range(0, len(n), 5)]\n",
" \n",
" for p in parts:\n",
" cksum = 0\n",
" \n",
" for i, k in enumerate(map(int, p)):\n",
" cksum += k * (i % 2 + 1)\n",
" \n",
" cksums.append(str(cksum % 7))\n",
" \n",
" n_out = \"\"\n",
" \n",
" for i in range(7):\n",
" n_out += parts[i] + cksums[i] + (\"-\" if i != 6 else \"\")\n",
" \n",
" return n_out\n",
"\n",
"def encrypt(decrypted, key):\n",
" size_half = len(decrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = decrypted[size_half*2:]\n",
" decrypted = decrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = decrypted[:size_half]\n",
" second = decrypted[size_half:]\n",
" sha1_result = hashlib.sha1(second + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" decrypted = second + bytes(x^^y for x,y in zip(first, sha1_result))\n",
" return decrypted + last\n",
"\n",
"def decrypt(encrypted, key):\n",
" size_half = len(encrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = encrypted[size_half*2:]\n",
" encrypted = encrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = encrypted[:size_half]\n",
" second = encrypted[size_half:]\n",
" sha1_result = hashlib.sha1(first + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" encrypted = bytes(x^^y for x,y in zip(second, sha1_result)) + first\n",
" return encrypted + last\n",
"\n",
"# Find v of divisor (u, v) of curve y^2 = F(x)\n",
"def find_v(u):\n",
" f = F % u\n",
" c2 = u[1]^2 - 4 * u[0]\n",
" c1 = 2 * f[0] - f[1] * u[1]\n",
" \n",
" if c2 == 0:\n",
" if c1 == 0:\n",
" return None\n",
" \n",
" try:\n",
" v1 = sqrt(f[1]^2 / (2 * c1))\n",
" v1.lift()\n",
" except:\n",
" return None\n",
" else:\n",
" try:\n",
" d = 2 * sqrt(f[0]^2 + f[1] * (f[1] * u[0] - f[0] * u[1]))\n",
" v1_1 = sqrt((c1 - d)/c2)\n",
" v1_2 = sqrt((c1 + d)/c2)\n",
" except:\n",
" return None\n",
"\n",
" try:\n",
" v1_1.lift()\n",
" v1 = v1_1\n",
" except:\n",
" try:\n",
" v1_2.lift()\n",
" v1 = v1_2\n",
" except:\n",
" return None\n",
" \n",
" v0 = (f[1] + u[1] * v1^2) / (2 * v1)\n",
" v = v0 + v1 * x\n",
" \n",
" assert (v^2 - f) % u == 0\n",
" return v\n",
"\n",
"# unpack&decrypt installationId\n",
"installationId = validate_cksum(input(\"Installation ID (dashes optional): \"))\n",
"# installationId = 11234597509478704096883784033789146715149\n",
"print(installationId)\n",
"\n",
"if not installationId:\n",
" raise Exception(\"Invalid Installation ID (checksum fail)\")\n",
"\n",
"installationIdSize = 19 if len(str(installationId)) > 41 else 17 # 17 for XP Gold, 19 for SP1+ (includes 12 bits of sha1(product key))\n",
"iid = int(installationId).to_bytes(installationIdSize, byteorder='little')\n",
"iid = decrypt(iid, IID_KEY)\n",
"hwid = iid[:8]\n",
"productid = int.from_bytes(iid[8:17], byteorder='little')\n",
"productkeyhash = iid[17:]\n",
"pid1 = productid & ((1 << 17) - 1)\n",
"pid2 = (productid >> 17) & ((1 << 10) - 1)\n",
"pid3 = (productid >> 27) & ((1 << 24) - 1)\n",
"version = (productid >> 52) & 7\n",
"pid4 = productid >> 55\n",
"\n",
"if version != (4 if len(iid) == 17 else 5):\n",
" print(f\"Invalid Installation ID (unknown version {version})\")\n",
"\n",
"print(installationIdSize)\n",
"print(pid1, pid2, pid3, pid4)\n",
"\n",
"key = hwid + int((pid1 << 41 | pid2 << 58 | pid3 << 17 | pid4) & ((1 << 64) - 1)).to_bytes(8, byteorder='little')\n",
"\n",
"data = [0x00] * 14\n",
"# data = b'\\xb9g\\xdd\\xe1\\xb0\\xef-\\x1e\\xbd\\x0frE\\xd8\\xbe'\n",
"print(\"\\nConfirmation IDs:\")\n",
"\n",
"for i in range(0x81):\n",
" data[4] = i\n",
" # Encrypt conf ID, find u of divisor (u, v)\n",
" encrypted = encrypt(bytes(data), key)\n",
" encrypted = int.from_bytes(encrypted, byteorder=\"little\")\n",
" x1, x2 = Fp(encrypted % p), Fp((encrypted // p) + 1)\n",
" u1, u0 = x1 * 2, (x1 ^ 2) - ((x2 ^ 2) * mqnr)\n",
" u = x^2 + u1 * x + u0\n",
"\n",
" # Generate original divisor\n",
" v = find_v(u)\n",
" \n",
" if not v:\n",
" continue\n",
" \n",
" d2 = J(u, v)\n",
" divisor = d2 * INV\n",
" \n",
" # Get x1 and x2\n",
" roots = [x for x, y in divisor[0].roots()]\n",
"\n",
" if len(roots) > 0:\n",
" y = [divisor[1](r) for r in roots]\n",
" x1 = (-roots[0]).lift()\n",
" x2 = (-roots[1]).lift()\n",
"\n",
" if (x1 > x2) or (y[0].lift() % 2 != y[1].lift() % 2):\n",
" x1 = (-roots[1]).lift()\n",
" x2 = (-roots[0]).lift()\n",
" else:\n",
" x2 = (divisor[0][1] / 2).lift()\n",
" x1 = sqrt((x2^2 - divisor[0][0]) / mqnr).lift() + p\n",
"\n",
" # Win\n",
" conf_id = x1 * (p + 1) + x2\n",
" conf_id = add_cksum(conf_id)\n",
" print(conf_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Validate Confirmation ID (originally by diamondggg)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"# 226512-274743-842923-777124-961370-722240-570042-517722-757426\n",
"installationId = 44706039542602728435285810860722693781\n",
"installationIdSize = 17 # 17 for XP Gold, 19 for SP1+ (includes 12 bits of sha1(product key))\n",
"# all three of following are valid generated\n",
"# 013705-060122-603141-961392-086136-909901-494476\n",
"confid = input(\"Confirmation ID: \").replace(\"-\", \"\")\n",
"confirmationId = int(\"\".join([confid[i:i+5] for i in range(0, len(confid), 6)]))\n",
"# confirmationId = 13009861034010972507754924748629391\n",
"print(confirmationId)\n",
"# 022032-220754-159721-909624-985141-504586-914001\n",
"#confirmationId = 2203220751597290962985145045891400\n",
"# 137616-847280-708585-827476-874935-313366-790880\n",
"#confirmationId = 13761847287085882747874933133679088\n",
"\n",
"def decrypt(encrypted, key):\n",
" size_half = len(encrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = encrypted[size_half*2:]\n",
" encrypted = encrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = encrypted[:size_half]\n",
" second = encrypted[size_half:]\n",
" sha1_result = hashlib.sha1(first + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" encrypted = bytes(x^^y for x,y in zip(second, sha1_result)) + first\n",
" return encrypted + last\n",
"\n",
"# unpack&decrypt installationId\n",
"iid = int(installationId).to_bytes(installationIdSize, byteorder='little')\n",
"iid = decrypt(iid, IID_KEY)\n",
"hwid = iid[:8]\n",
"productid = int.from_bytes(iid[8:17], byteorder='little')\n",
"# productkeyhash is not used for validation, it exists just to allow the activation server to reject keygenned pids\n",
"productkeyhash = iid[17:]\n",
"pid1 = productid & ((1 << 17) - 1)\n",
"pid2 = (productid >> 17) & ((1 << 10) - 1)\n",
"pid3 = (productid >> 27) & ((1 << 24) - 1)\n",
"version = (productid >> 52) & 7\n",
"pid4 = productid >> 55\n",
"\n",
"print(pid1, pid2, pid3, pid4)\n",
"\n",
"if version != (4 if len(iid) == 17 else 5):\n",
" print(version)\n",
"\n",
"key = hwid + int((pid1 << 41 | pid2 << 58 | pid3 << 17 | pid4) & ((1 << 64) - 1)).to_bytes(8, byteorder='little')\n",
"\n",
"# deserialize divisor\n",
"x1 = confirmationId // (p + 1)\n",
"x2 = confirmationId % (p + 1)\n",
"if x1 <= p:\n",
" # two or less points over GF(p)\n",
" point1 = E.lift_x(Fp(-x1)) if x1 != p else None\n",
" point2 = E.lift_x(Fp(-x2)) if x2 != p else None\n",
" if point1 is not None and point2 is not None:\n",
" # there are 4 variants of how lift_x() could select both y-s\n",
" # we don't distinguish D and -D, but this still leaves 2 variants\n",
" # the chosen one is encoded by order of x1 <=> x2\n",
" lastbit1 = point1[1].lift() & 1\n",
" lastbit2 = point2[1].lift() & 1\n",
" if x2 < x1:\n",
" if lastbit1 == lastbit2:\n",
" point2 = E(point2[0], -point2[1])\n",
" else:\n",
" if lastbit1 != lastbit2:\n",
" point2 = E(point2[0], -point2[1])\n",
" point1 = J(point1) if point1 is not None else J(0)\n",
" point2 = J(point2) if point2 is not None else J(0)\n",
" divisor = point1 + point2\n",
"else:\n",
" # a pair of conjugate points over GF(p^2)\n",
" f = (x+x2)*(x+x2) - mqnr*x1*x1 # 43 is the minimal quadratic non-residue in Fp\n",
" Fp2 = GF(p^2)\n",
" point1 = E.lift_x(f.roots(Fp2)[0][0])\n",
" point2 = E(Fp2)(point1[0].conjugate(), point1[1].conjugate())\n",
" divisor = J(Fp2)(point1) + J(Fp2)(point2)\n",
" divisor = J(Fpx(divisor[0]), Fpx(divisor[1])) #return from Fp2 to Fp\n",
"\n",
"d2 = divisor * 0x10001\n",
"assert d2[0].degree() == 2\n",
"x1 = d2[0][1]/2\n",
"x2 = sqrt((x1*x1-d2[0][0])/mqnr)\n",
"\n",
"encrypted = x1.lift() + (x2.lift() - 1) * p\n",
"encrypted = int(encrypted).to_bytes(14,byteorder='little')\n",
"\n",
"# end of the math\n",
"decrypted = decrypt(encrypted, key)\n",
"print(decrypted.hex())\n",
"# 0000000000000001000000000000 for the first confirmationId\n",
"# 0000000000000002000000000000 for the second confirmationId\n",
"# 0000000000000006000000000000 for the last confirmationId\n",
"assert decrypted[8:] == b'\\0' * 6\n",
"assert decrypted[7] <= 0x80\n",
"# all zeroes in decrypted[0:7] are okay for the checker\n",
"# more precisely: if decrypted[6] == 0, first 6 bytes can be anything\n",
"# otherwise, decrypted[0] = length, and decrypted[1:1+length] must match first length bytes of sha1(product key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.0",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

65
extras/parse_dpcdll.py Normal file
View File

@ -0,0 +1,65 @@
from glob import glob
from struct import unpack
import json
import sys
def readint(f):
return unpack("<I", f.read(4))[0]
if __name__ == "__main__":
if len(sys.argv) < 3:
print(f"usage: {sys.argv[0]} dpcdll.dll out.json")
lic_types = ["NULL", "Volume", "Retail", "Evaluation", "Tablet", "OEM-SLP", "Embedded"]
dpcdata = []
with open(sys.argv[1], "rb") as f:
tmp = f.read()
f.seek(tmp.find(b"\x1e\x00\x00\x00\xff\xff\xff\x7f") - 20)
del tmp
while f.read(4) != b"\x00\x00\x00\x00":
f.seek(-164, 1)
f.seek(-4, 1)
last_ind = -1
ind = 0
dpcentry = {}
while True:
ind = readint(f)
bink_id = hex(readint(f))[2:].zfill(8).upper()
min_pid = readint(f)
max_pid = readint(f)
if min_pid > 999 or max_pid > 999:
break
lic_type = readint(f)
if lic_type > 6:
break
if lic_type == 2 and int(bink_id, 16) % 2 == 1:
lic_type_str = "OEM-COA"
else:
lic_type_str = lic_types[lic_type]
days_to_act = readint(f)
eval_days = readint(f)
sig_len = readint(f)
f.read(sig_len)
dpcdata.append({
"index": ind,
"bink": bink_id,
"pid_range": [min_pid, max_pid],
"type": lic_type_str,
"days_to_activate": days_to_act,
"days_evaluation": eval_days
})
with open(sys.argv[2], "w") as f:
f.write(json.dumps(dpcdata, indent=4))

98
extras/parse_pubkey.py Normal file
View File

@ -0,0 +1,98 @@
from struct import pack, unpack, calcsize
from json import dumps
from os.path import basename
import sys
def readint(f):
return unpack("<I", f.read(4))[0]
def readstc(f, s):
s = "<" + s
sz = calcsize(s)
return unpack(s, f.read(sz))
pubkey_data = {}
with open(sys.argv[1], "rb") as f:
magic1 = readint(f)
if magic1 != 0x44556677:
raise Exception("Invalid pubkey format")
f.read(4)
field_data_size = readint(f)
magic2 = readint(f)
if magic2 != 0x00112233:
raise Exception("Invalid pubkey format")
f.read(4)
data = readstc(f, "B" * 3 + "I" * 9)
must_be_0 = data[0]
if must_be_0 != 0:
raise Exception("Invalid field data")
size_modulus = data[1]
size_order = data[2]
ext_deg1 = data[3]
ext_deg2 = data[4]
offset_modulus = data[8]
f.read(1)
h1_bases = list(readstc(f, "B" * size_modulus))
modulus = int.from_bytes(f.read(size_modulus), "little")
order = int.from_bytes(f.read(size_order), "little")
ext_minpoly1 = list(readstc(f, "B" * (ext_deg1 + 1)))
ext_minpoly2 = list(readstc(f, "B" * (ext_deg2 + 1)))
f.read(size_modulus * 2)
ec_a = int.from_bytes(f.read(size_modulus), "little")
ec_b = int.from_bytes(f.read(size_modulus), "little")
f.seek(field_data_size + 12)
points = []
for i in range(size_modulus):
x = []
y = []
for i in range(ext_deg1):
x.append(int.from_bytes(f.read(size_modulus), "little"))
for i in range(ext_deg1):
y.append(int.from_bytes(f.read(size_modulus), "little"))
points.append({"x": x, "y": y})
pairing_val = []
for i in range(ext_deg2):
ext1_val = []
for j in range(ext_deg1):
ext1_val.append(int.from_bytes(f.read(size_modulus), "little"))
pairing_val.append(ext1_val)
pubkey_data = {
"field": {
"modulus": modulus,
"ec_base_order": order,
"k3_minpoly": ext_minpoly1,
"k6_minpoly": ext_minpoly2,
},
"h1_bases": h1_bases,
"curve": {
"a": ec_a,
"b": ec_b
},
"points": points,
"pairing_val": pairing_val
}
with open("pubkey_info/" + basename(sys.argv[1]).replace(".pubkey", ".json"), "w") as g:
g.write(dumps(pubkey_data, indent=4))

348
extras/pidgenx.ipynb Normal file
View File

@ -0,0 +1,348 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The math in this notebook is described in [this patent](https://patentimages.storage.googleapis.com/a3/27/c1/3c0948a078cb28/US7587605.pdf). Be warned, the math is very complicated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Windows 7 Retail/GVLK, public key ID 170\n",
"\n",
"pubkey_data = {\n",
" \"field\": {\n",
" \"modulus\": 886368969471450739924935101400677,\n",
" \"ec_base_order\": 886368969471450710152985728350703,\n",
" \"k3_minpoly\": [\n",
" 4,\n",
" 1,\n",
" 0,\n",
" 1\n",
" ],\n",
" \"k6_minpoly\": [\n",
" 2,\n",
" 0,\n",
" 1\n",
" ]\n",
" },\n",
" \"h1_bases\": [\n",
" 1,\n",
" 3,\n",
" 8,\n",
" 15,\n",
" 15,\n",
" 15,\n",
" 31,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 7,\n",
" 63\n",
" ],\n",
" \"curve\": {\n",
" \"a\": 26392827536965106777121445123290,\n",
" \"b\": 372325368096095544195525883520589\n",
" },\n",
" \"points\": [\n",
" {\n",
" \"x\": [\n",
" 365236101742748463929673543888206,\n",
" 858097895593939865996182272259769,\n",
" 148438159087534462792506738986740\n",
" ],\n",
" \"y\": [\n",
" 776418047571862972603801173382237,\n",
" 873677028107508092012208744232957,\n",
" 622138327043805563266794621920098\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 940136574680879136511599445781,\n",
" 566978253317108608042529258054523,\n",
" 176284220413545220121710961573292\n",
" ],\n",
" \"y\": [\n",
" 828856809691743749590800150937649,\n",
" 225146018128364550960496522448712,\n",
" 348601659612301002638949468744847\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 733747358623171948496764545320051,\n",
" 728506535527490173098593825125337,\n",
" 82462451162574422717677160727098\n",
" ],\n",
" \"y\": [\n",
" 416331132638004657079841565104549,\n",
" 366794872410090667339979925100938,\n",
" 154519017608105570119249112044121\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 849718119860311390685018324089317,\n",
" 69736499980142833460080381132368,\n",
" 72139323263966224829624934948858\n",
" ],\n",
" \"y\": [\n",
" 122550620604034160835298121626961,\n",
" 232865179257577260620478614346661,\n",
" 96495922331236902442197840422963\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 737949449696062407373114808812927,\n",
" 526576673882551145431025311648593,\n",
" 577710732700754839750249914833193\n",
" ],\n",
" \"y\": [\n",
" 245977198113437420529250724111432,\n",
" 316396368275232555978824338443046,\n",
" 755792900000892204654488821885538\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 712586405875738967442641545880322,\n",
" 615445286425878710157557053762371,\n",
" 734183236086095230968388017605820\n",
" ],\n",
" \"y\": [\n",
" 851284376759840359812981263306021,\n",
" 769237654873203944088649987250083,\n",
" 359324880331507581802773028306633\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 579665839598807564349118802507078,\n",
" 793103874095793223248478622956780,\n",
" 502860226530799804560661048077280\n",
" ],\n",
" \"y\": [\n",
" 526775274489316486107329470634542,\n",
" 828721161962151275145535457964404,\n",
" 204415317809040518371881977645416\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 804790447447351785544412956578788,\n",
" 119046642031064430140912082580578,\n",
" 475159529884254928674792290619954\n",
" ],\n",
" \"y\": [\n",
" 458245266057063984580129835988070,\n",
" 338411981227059768831710308435687,\n",
" 577923375329917551735757167190702\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 448295070796654878810211055051604,\n",
" 482910785083759911781193909334072,\n",
" 795628820954832750108065551162801\n",
" ],\n",
" \"y\": [\n",
" 417757375223493128894380427308216,\n",
" 755520039102173573177271365439537,\n",
" 863842006193777913816171128026446\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 663389221842281261857262032548436,\n",
" 846447543951704162020988219326272,\n",
" 686142287698732386980948449542167\n",
" ],\n",
" \"y\": [\n",
" 769015970121598916167134609518482,\n",
" 738460771147019950148429256265493,\n",
" 613009789239563486872501072748270\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 23530113060362511985797534739195,\n",
" 718131004725002854064127778364823,\n",
" 140870968646848990835780066321375\n",
" ],\n",
" \"y\": [\n",
" 641031697928634900295866764583620,\n",
" 295544383156746469642549388283327,\n",
" 133766761871461067699690599056442\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 7518354584460889742005963384331,\n",
" 340825540582760123772991939806390,\n",
" 525549834323799848592419044187971\n",
" ],\n",
" \"y\": [\n",
" 585295007893871934790357000030208,\n",
" 117490751031779271453224407217079,\n",
" 838852298106199238437827740364400\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 806036388470182281562651653929939,\n",
" 266085928879449679004785507000719,\n",
" 201474020142460453395308745398496\n",
" ],\n",
" \"y\": [\n",
" 573468377549807523205344415925956,\n",
" 667459718759242575444856430313959,\n",
" 226975716159080217447594275999935\n",
" ]\n",
" },\n",
" {\n",
" \"x\": [\n",
" 794167987155642331621801361756614,\n",
" 809201520617560616339201020039820,\n",
" 198696155869194654384403079624544\n",
" ],\n",
" \"y\": [\n",
" 725959545288387914551997303844726,\n",
" 49262476800238214847233993847181,\n",
" 537326577113493149345527624223733\n",
" ]\n",
" }\n",
" ],\n",
" \"pairing_val\": [\n",
" [\n",
" 242940802691096077821709859741616,\n",
" 178851543248946074944443141484182,\n",
" 802059826004050667481466713086225\n",
" ],\n",
" [\n",
" 701042518368651902930590425782509,\n",
" 265571225406900742458432149860962,\n",
" 699432283102586243018242179516873\n",
" ]\n",
" ]\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"p = pubkey_data[\"field\"][\"modulus\"]\n",
"a = pubkey_data[\"curve\"][\"a\"]\n",
"b = pubkey_data[\"curve\"][\"b\"]\n",
"order = pubkey_data[\"field\"][\"ec_base_order\"]\n",
"h1_bases = list(map(lambda x: x+1, pubkey_data[\"h1_bases\"]))\n",
"KCHARS = \"BCDFGHJKMPQRTVWXY2346789\"\n",
"\n",
"def decode_pkey(k):\n",
" k = k.replace(\"-\", \"\")\n",
" out = 0\n",
" \n",
" for c in k:\n",
" out *= 24\n",
" out += KCHARS.index(c)\n",
" \n",
" return out\n",
"\n",
"K = GF(p)\n",
"Kx.<x> = K[]\n",
"K3.<u> = K.extension(Kx(pubkey_data[\"field\"][\"k3_minpoly\"]))\n",
"K3y.<y> = K3[]\n",
"K6.<t> = K3.extension(K3y(pubkey_data[\"field\"][\"k6_minpoly\"]))\n",
"\n",
"E = EllipticCurve(K, [a, b])\n",
"E6 = EllipticCurve(K6, [a, b])\n",
"\n",
"Qi = [E6(K3(point[\"x\"]) * t^-2, K3(point[\"y\"]) * t^-3) for point in pubkey_data[\"points\"]]\n",
"\n",
"# pairing_val = e_m(P, S)\n",
"pairing_val = K6([K3(pubkey_data[\"pairing_val\"][0]), K3(pubkey_data[\"pairing_val\"][1])])\n",
"\n",
"assert is_prime(p)\n",
"assert len(h1_bases) == len(Qi)\n",
"assert h1_bases[0] == 2\n",
"assert pairing_val^order == 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pkey_chars = \"33PXH-7Y6KF-2VJC9-XBBR8-HVTHH\"\n",
"\n",
"# pkey = HASH(M)\n",
"# HASH is a currently unknown hash function\n",
"pkey = decode_pkey(pkey_chars)\n",
"\n",
"# h1_coeffs = H1(M)\n",
"# During validation, coeffs must be found by a search that i havent implemented\n",
"# h1_coeffs = [1, 0, 7, 1, 4, 15, 9, 1, 1, 0, 2, 1, 0, 19]\n",
"\n",
"# 10 bits unknown, 30 bits product ID, 1 bit unknown (upgrade?)\n",
"key_data = (342 << 31 | 918500000 << 1 | 0)\n",
"h1_coeffs = [1]\n",
"\n",
"for i in range(len(h1_bases) - 1):\n",
" h1_coeffs.append(key_data % h1_bases[i + 1])\n",
" key_data //= h1_bases[i + 1]\n",
"\n",
"print(h1_coeffs)\n",
"\n",
"# H2(M) = E.lift_x(HASH(M) % p)\n",
"T = E6(E.lift_x(pkey % p))\n",
"Q = sum(map(lambda x: x[0] * x[1], zip(h1_coeffs, Qi))) \n",
"\n",
"test_pairing = T.tate_pairing(Q, order, 6, q=p)\n",
"\n",
"print(test_pairing == pairing_val or test_pairing == 1/pairing_val)\n",
"\n",
"key_data = 0\n",
"\n",
"for i in range(len(h1_bases) - 1, 0, -1):\n",
" key_data *= h1_bases[i]\n",
" key_data += h1_coeffs[i]\n",
" print(h1_bases[i], h1_coeffs[i], key_data)\n",
"\n",
"pid = (key_data & ((1 << 31) - 1)) >> 1"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.0",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

159
extras/tspkgen.py Normal file
View File

@ -0,0 +1,159 @@
from Crypto.Cipher import ARC4
from hashlib import sha1, md5
from random import randint
from ecutils.core import Point, EllipticCurve
from sys import argv
KCHARS = "BCDFGHJKMPQRTVWXY2346789"
SPK_ECKEY = {
"a": 1,
"b": 0,
"g": {
"x": 10692194187797070010417373067833672857716423048889432566885309624149667762706899929433420143814127803064297378514651,
"y": 14587399915883137990539191966406864676102477026583239850923355829082059124877792299572208431243410905713755917185109
},
"n": 629063109922370885449,
"p": 21782971228112002125810473336838725345308036616026120243639513697227789232461459408261967852943809534324870610618161,
"priv": 153862071918555979944,
"pub": {
"x": 3917395608307488535457389605368226854270150445881753750395461980792533894109091921400661704941484971683063487980768,
"y": 8858262671783403684463979458475735219807686373661776500155868309933327116988404547349319879900761946444470688332645
}
}
LKP_ECKEY = {
"a": 1,
"b": 0,
"g": {
"x": 18999816458520350299014628291870504329073391058325678653840191278128672378485029664052827205905352913351648904170809,
"y": 7233699725243644729688547165924232430035643592445942846958231777803539836627943189850381859836033366776176689124317
},
"n": 675048016158598417213,
"p": 28688293616765795404141427476803815352899912533728694325464374376776313457785622361119232589082131818578591461837297,
"priv": 100266970209474387075,
"pub": {
"x": 7147768390112741602848314103078506234267895391544114241891627778383312460777957307647946308927283757886117119137500,
"y": 20525272195909974311677173484301099561025532568381820845650748498800315498040161314197178524020516408371544778243934
}
}
def encode_pkey(n):
out = ""
while n > 0:
out = KCHARS[n % 24] + out
n //= 24
out = "-".join([out[i:i+5] for i in range(0, len(out), 5)])
return out
def decode_pkey(k):
k = k.replace("-", "")
out = 0
for c in k:
out *= 24
out += KCHARS.index(c)
return out
def int_to_bytes(n, l=None):
n = int(n)
if not l:
l = (n.bit_length() + 7) // 8
return n.to_bytes(l, byteorder="little")
def make_curve(curve_def):
G = Point(x=curve_def["g"]["x"], y=curve_def["g"]["y"])
K = Point(x=curve_def["pub"]["x"], y=curve_def["pub"]["y"])
E = EllipticCurve(p=curve_def["p"], a=curve_def["a"], b=curve_def["b"], G=G, n=curve_def["n"], h=1)
return E, G, K
def get_spkid(pid):
spkid_s = pid[10:16] + pid[18:23]
return int(spkid_s.split("-")[0])
def validate_tskey(pid, tskey, is_spk=True):
keydata = decode_pkey(tskey).to_bytes(21, "little")
rk = md5(pid.encode("utf-16-le")).digest()[:5] + b"\x00" * 11
c = ARC4.new(rk)
dc_kdata = c.decrypt(keydata)
keydata = dc_kdata[:7]
sigdata = int.from_bytes(dc_kdata[7:], "little")
h = sigdata & 0x7ffffffff
s = (sigdata >> 35) & 0x1fffffffffffffffff
params = SPK_ECKEY if is_spk else LKP_ECKEY
E, G, K = make_curve(params)
R = E.add_points(E.multiply_point(h, K), E.multiply_point(s, G))
md = sha1(keydata + int_to_bytes(R.x, 48) + int_to_bytes(R.y, 48)).digest()
ht = ((int.from_bytes(md[4:8], "little") >> 29) << 32) | (int.from_bytes(md[:4], "little"))
spkid = int.from_bytes(keydata, "little") & 0x1FFFFFFFFF
return h == ht and (not is_spk or spkid == get_spkid(pid))
def generate_tskey(pid, keydata, is_spk=True):
params = SPK_ECKEY if is_spk else LKP_ECKEY
priv = SPK_ECKEY["priv"] if is_spk else LKP_ECKEY["priv"]
E, G, K = make_curve(params)
s = 0
while True:
c = randint(1, E.n - 1)
R = E.multiply_point(c, G)
md = sha1(keydata + int_to_bytes(R.x, 48) + int_to_bytes(R.y, 48)).digest()
h = ((int.from_bytes(md[4:8], "little") >> 29) << 32) | (int.from_bytes(md[:4], "little"))
s = ((-priv * h + c) % E.n) & 0x1fffffffffffffffff
keyinf = int.from_bytes(keydata, "little")
pkdata = ((s << 91) | (h << 56) | keyinf).to_bytes(21, "little")
rk = md5(pid.encode("utf-16-le")).digest()[:5] + b"\x00" * 11
c = ARC4.new(rk)
pke = c.encrypt(pkdata)[:20]
pk = int.from_bytes(pke, "little")
pkstr = encode_pkey(pk)
if s < 0x1fffffffffffffff and validate_tskey(pid, pkstr, is_spk):
return pkstr
def generate_spk(pid):
spkid = get_spkid(pid)
spkdata = spkid.to_bytes(7, "little")
return generate_tskey(pid, spkdata)
def generate_lkp(pid, count, major_ver, minor_ver, chid):
version = 1
if (major_ver == 5 and minor_ver > 0) or major_ver > 5:
version = (major_ver << 3) | minor_ver
lkpinfo = (chid << 46) | (count << 32) | (2 << 18) | (144 << 10) | (version << 3)
lkpdata = lkpinfo.to_bytes(7, "little")
return generate_tskey(pid, lkpdata, False)
if __name__ == "__main__":
if len(argv) == 2:
pid = argv[1]
print(f"License Server ID: {generate_spk(pid)}")
elif len(argv) == 5:
pid = argv[1]
count = int(argv[2])
ver_major, ver_minor = map(int, argv[3].split("."))
chid = int(argv[4])
print(f"License Key Pack ID: {generate_lkp(pid, count, ver_major, ver_minor, chid)}")
else:
print(f"Usage: {argv[0]} <pid> [<count> <version> <chid>]")
print(f"Example: {argv[0]} 00490-92005-99454-AT527 1234 10.3 32")

526
extras/winxp_act.ipynb Normal file
View File

@ -0,0 +1,526 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Product Key Generator - Windows XP"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Paste JSON object for BINK data here:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Windows XP Professional Retail (Bink ID 2C)\n",
"key_data = {\n",
" \"p\": 24412280675538104642884792561502783185577987209710041026341163083973933860854736635268965257725055809364646140091249,\n",
" \"a\": 1,\n",
" \"b\": 0,\n",
" \"B\": [\n",
" 21673361717619259910600499419800485528178801849923454062050055236231939594233283543796077751210469045350919066368895,\n",
" 5232476492611604888729825305639232005017822876108144652169892952989580351454246958886421453535493897842819359154864\n",
" ],\n",
" \"K\": [\n",
" 21551722775458524408480112576069559265917312687549112053580919391285918530584174752292844347621326558272739603979057,\n",
" 13463977158522661542654520438933687107907187215503371589980428235633526671841388652148099285621876350916055100879930\n",
" ],\n",
" \"order\": 55681564377333977,\n",
" \"private_key\": 30951839223306173\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run this cell to generate key"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"# p = order of field Fp\n",
"# Fp = Galois field of order p\n",
"# E = Elliptic curve y^2 = x^3 + ax + b over Fp\n",
"# B = generator on E\n",
"# K = inverse of public key\n",
"# order = order of E\n",
"\n",
"p = key_data[\"p\"]\n",
"Fp = GF(p)\n",
"E = EllipticCurve(Fp, [0, 0, 0, key_data[\"a\"], key_data[\"b\"]])\n",
"B = E.point(key_data[\"B\"])\n",
"K = E.point(key_data[\"K\"])\n",
"order = key_data[\"order\"]\n",
"private_key = -key_data[\"private_key\"] % order\n",
"\n",
"# PID of product key\n",
"pid = 756_696969\n",
"\n",
"# Key alphabet\n",
"KCHARS = \"BCDFGHJKMPQRTVWXY2346789\"\n",
"\n",
"def int_to_bytes(n, l=None):\n",
" n = int(n)\n",
" \n",
" if not l:\n",
" l = (n.bit_length() + 7) // 8\n",
" \n",
" return n.to_bytes(l, byteorder=\"little\")\n",
"\n",
"def encode_pkey(n):\n",
" out = \"\"\n",
" \n",
" while n > 0:\n",
" out = KCHARS[n % 24] + out\n",
" n //= 24\n",
" \n",
" out = \"-\".join([out[i:i+5] for i in range(0, len(out), 5)])\n",
" return out\n",
"\n",
"pid <<= 1\n",
"\n",
"while True:\n",
" k = getrandbits(384)\n",
" r = k * B\n",
" x, y = r.xy()\n",
"\n",
" md = hashlib.sha1(int_to_bytes(pid, 4) + int_to_bytes(x, 48) + int_to_bytes(y, 48)).digest()\n",
" h = int.from_bytes(md[:4], byteorder=\"little\") >> 4\n",
" h &= 0xfffffff\n",
"\n",
" s = int(abs((private_key * h + k) % order))\n",
" raw_pkey = s << 59 | h << 31 | pid\n",
" \n",
" print(hex(pid)[2:], hex(h)[2:], hex(s)[2:], hex(raw_pkey)[2:])\n",
" \n",
" if raw_pkey >> 96 < 0x40000:\n",
" break\n",
"\n",
"print(encode_pkey(raw_pkey))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Key decoder (run above cell first)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def decode_pkey(k):\n",
" k = k.replace(\"-\", \"\")\n",
" out = 0\n",
" \n",
" for c in k:\n",
" out *= 24\n",
" out += KCHARS.index(c)\n",
" \n",
" return out\n",
"\n",
"pkey = input(\"Product Key (dashes optional): \")\n",
"raw_pkey = decode_pkey(pkey)\n",
"\n",
"kpid = (raw_pkey & 0x7fffffff) >> 1\n",
"verify = (kpid // 1000000) == ((pid >> 1) // 1000000)\n",
"print(kpid, pid >> 1)\n",
"\n",
"if verify:\n",
" h = (raw_pkey >> 31) & 0xfffffff\n",
" s = (raw_pkey >> 59) & 0x7ffffffffffffff\n",
"\n",
" r = h * K + s * B\n",
" x, y = r.xy()\n",
"\n",
" md = hashlib.sha1(int_to_bytes(kpid << 1, 4) + int_to_bytes(x, 48) + int_to_bytes(y, 48)).digest()\n",
" hp = int.from_bytes(md[:4], byteorder=\"little\") >> 4\n",
" hp &= 0xfffffff\n",
"\n",
" print(h, hp)\n",
" \n",
" if h == hp:\n",
" print(\"Valid key\")\n",
" else:\n",
" print(\"Invalid key\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Confirmation ID generator"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"# order of field Fp \n",
"p = 0x16A6B036D7F2A79\n",
"# Galois field of order p\n",
"Fp = GF(p)\n",
"# Polynomial field Fp[x] over Fp\n",
"Fpx.<x> = Fp[]\n",
"# Hyperellptic curve function\n",
"F = x^5+0x1400606322B3B04*x^4+0x1400606322B3B04*x^3+0x44197B83892AD0*x^2+0x21840136C85381*x\n",
"# Hyperelliptic curve E: y^2 = F(x) over Fp\n",
"E = HyperellipticCurve(F)\n",
"# The jacobian over E\n",
"J = E.jacobian()\n",
"\n",
"# This constant inverts multiplication by 0x1001 in verification\n",
"# My best guess for how it was calculated: INV = 0x10001^-1 (mod |J|)\n",
"# |J| is hard to compute, how can we calculate for other curves?\n",
"INV = 0x40DA7C36D44C04E21B9D10F127C1\n",
"\n",
"# Key to decrypt installation IDs\n",
"IID_KEY = b'\\x6A\\xC8\\x5E\\xD4'\n",
"\n",
"# Validate installation ID checksum\n",
"def validate_cksum(n):\n",
" print(\"Checksumming installation ID...\")\n",
" n = n.replace(\"-\", \"\")\n",
"\n",
" cksum = 0\n",
" for i, k in enumerate(map(int, n)):\n",
" if (i + 1) % 6 == 0 or i == len(n) - 1:\n",
" print(\"Expected last digit\", cksum % 7, \"got\", k)\n",
" if cksum % 7 != k:\n",
" return None\n",
" \n",
" cksum = 0\n",
" else:\n",
" cksum += k * (i % 2 + 1)\n",
" \n",
" parts = [n[i:i+5] for i in range(0, len(n), 6)]\n",
" n_out = \"\".join(parts)\n",
" \n",
" if len(n_out) == 42:\n",
" n_out = n_out[:-1]\n",
" \n",
" if len(n_out) != 45 and len(n_out) != 41:\n",
" return None\n",
" \n",
" return int(\"\".join(parts))\n",
"\n",
"# Insert checksum digits into confirmation ID\n",
"def add_cksum(n):\n",
" cksums = []\n",
" n = str(n).zfill(35)\n",
" parts = [n[i:i+5] for i in range(0, len(n), 5)]\n",
" \n",
" for p in parts:\n",
" cksum = 0\n",
" \n",
" for i, k in enumerate(map(int, p)):\n",
" cksum += k * (i % 2 + 1)\n",
" \n",
" cksums.append(str(cksum % 7))\n",
" \n",
" n_out = \"\"\n",
" \n",
" for i in range(7):\n",
" n_out += parts[i] + cksums[i] + (\"-\" if i != 6 else \"\")\n",
" \n",
" return n_out\n",
"\n",
"def encrypt(decrypted, key):\n",
" size_half = len(decrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = decrypted[size_half*2:]\n",
" decrypted = decrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = decrypted[:size_half]\n",
" second = decrypted[size_half:]\n",
" sha1_result = hashlib.sha1(second + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" decrypted = second + bytes(x^^y for x,y in zip(first, sha1_result))\n",
" return decrypted + last\n",
"\n",
"def decrypt(encrypted, key):\n",
" size_half = len(encrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = encrypted[size_half*2:]\n",
" encrypted = encrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = encrypted[:size_half]\n",
" second = encrypted[size_half:]\n",
" sha1_result = hashlib.sha1(first + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" encrypted = bytes(x^^y for x,y in zip(second, sha1_result)) + first\n",
" return encrypted + last\n",
"\n",
"# Find v of divisor (u, v) of curve y^2 = F(x)\n",
"def find_v(u):\n",
" f = F % u\n",
" c2 = u[1]^2 - 4 * u[0]\n",
" c1 = 2 * f[0] - f[1] * u[1]\n",
" \n",
" if c2 == 0:\n",
" if c1 == 0:\n",
" return None\n",
" \n",
" try:\n",
" v1 = sqrt(f[1]^2 / (2 * c1))\n",
" v1.lift()\n",
" except:\n",
" return None\n",
" else:\n",
" try:\n",
" d = 2 * sqrt(f[0]^2 + f[1] * (f[1] * u[0] - f[0] * u[1]))\n",
" v1_1 = sqrt((c1 - d)/c2)\n",
" v1_2 = sqrt((c1 + d)/c2)\n",
" except:\n",
" return None\n",
"\n",
" try:\n",
" v1_1.lift()\n",
" v1 = v1_1\n",
" except:\n",
" try:\n",
" v1_2.lift()\n",
" v1 = v1_2\n",
" except:\n",
" return None\n",
" \n",
" v0 = (f[1] + u[1] * v1^2) / (2 * v1)\n",
" v = v0 + v1 * x\n",
" \n",
" assert (v^2 - f) % u == 0\n",
" return v\n",
"\n",
"# unpack&decrypt installationId\n",
"installationId = validate_cksum(input(\"Installation ID (dashes optional): \"))\n",
"print(installationId)\n",
"\n",
"if not installationId:\n",
" raise Exception(\"Invalid Installation ID (checksum fail)\")\n",
"\n",
"installationIdSize = 19 if len(str(installationId)) > 41 else 17 # 17 for XP Gold, 19 for SP1+ (includes 12 bits of sha1(product key))\n",
"iid = int(installationId).to_bytes(installationIdSize, byteorder='little')\n",
"iid = decrypt(iid, IID_KEY)\n",
"hwid = iid[:8]\n",
"productid = int.from_bytes(iid[8:17], byteorder='little')\n",
"productkeyhash = iid[17:]\n",
"pid1 = productid & ((1 << 17) - 1)\n",
"pid2 = (productid >> 17) & ((1 << 10) - 1)\n",
"pid3 = (productid >> 27) & ((1 << 25) - 1)\n",
"version = (productid >> 52) & 7\n",
"pid4 = productid >> 55\n",
"\n",
"assert version == (4 if len(iid) == 17 else 5)\n",
"\n",
"key = hwid + int((pid1 << 41 | pid2 << 58 | pid3 << 17 | pid4) & ((1 << 64) - 1)).to_bytes(8, byteorder='little')\n",
"\n",
"data = [0x00] * 14\n",
"\n",
"print(\"\\nConfirmation IDs:\")\n",
"\n",
"for i in range(0x81):\n",
" data[7] = i\n",
" # Encrypt conf ID, find u of divisor (u, v)\n",
" encrypted = encrypt(bytes(data), key)\n",
" encrypted = int.from_bytes(encrypted, byteorder=\"little\")\n",
" x1, x2 = Fp(encrypted % p), Fp((encrypted // p) + 1)\n",
" u1, u0 = x1 * 2, (x1 ^ 2) - ((x2 ^ 2) * 43)\n",
" u = x^2 + u1 * x + u0\n",
"\n",
" # Generate original divisor\n",
" v = find_v(u)\n",
" \n",
" if not v:\n",
" continue\n",
" \n",
" d2 = J(u, v)\n",
" divisor = d2 * INV\n",
" \n",
" # Get x1 and x2\n",
" roots = [x for x, y in divisor[0].roots()]\n",
"\n",
" if len(roots) > 0:\n",
" y = [divisor[1](r) for r in roots]\n",
" x1 = (-roots[0]).lift()\n",
" x2 = (-roots[1]).lift()\n",
"\n",
" if (x1 > x2) or (y[0].lift() % 2 != y[1].lift() % 2):\n",
" x1 = (-roots[1]).lift()\n",
" x2 = (-roots[0]).lift()\n",
" else:\n",
" x2 = (divisor[0][1] / 2).lift()\n",
" x1 = sqrt((x2^2 - divisor[0][0]) / 43).lift() + p\n",
"\n",
" # Win\n",
" conf_id = x1 * (p + 1) + x2\n",
" conf_id = add_cksum(conf_id)\n",
" print(conf_id)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Confirmation ID decoder/validator (made by diamondggg)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"# 226512-274743-842923-777124-961370-722240-570042-517722-757426\n",
"installationId = 114535500880440159787527912804896629001083118\n",
"installationIdSize = 19 # 17 for XP Gold, 19 for SP1+ (includes 12 bits of sha1(product key))\n",
"# all three of following are valid generated\n",
"# 013705-060122-603141-961392-086136-909901-494476\n",
"confirmationId = 15771960290497900806797040541467113\n",
"# 022032-220754-159721-909624-985141-504586-914001\n",
"#confirmationId = 02203220751597290962985145045891400\n",
"# 137616-847280-708585-827476-874935-313366-790880\n",
"#confirmationId = 13761847287085882747874933133679088\n",
"\n",
"def decrypt(encrypted, key):\n",
" size_half = len(encrypted) // 2\n",
" size_half_dwords = size_half - (size_half % 4)\n",
" last = encrypted[size_half*2:]\n",
" encrypted = encrypted[:size_half*2]\n",
" for i in range(4):\n",
" first = encrypted[:size_half]\n",
" second = encrypted[size_half:]\n",
" sha1_result = hashlib.sha1(first + key).digest()\n",
" sha1_result = (sha1_result[:size_half_dwords] +\n",
" sha1_result[size_half_dwords+4-(size_half%4) : size_half+4-(size_half%4)])\n",
" encrypted = bytes(x^^y for x,y in zip(second, sha1_result)) + first\n",
" return encrypted + last\n",
"\n",
"# unpack&decrypt installationId\n",
"iid = int(installationId).to_bytes(installationIdSize, byteorder='little')\n",
"iid = decrypt(iid, b'\\x6A\\xC8\\x5E\\xD4')\n",
"hwid = iid[:8]\n",
"productid = int.from_bytes(iid[8:17], byteorder='little')\n",
"productkeyhash = iid[17:]\n",
"pid1 = productid & ((1 << 17) - 1)\n",
"pid2 = (productid >> 17) & ((1 << 10) - 1)\n",
"pid3 = (productid >> 27) & ((1 << 25) - 1)\n",
"version = (productid >> 52) & 7\n",
"pid4 = productid >> 55\n",
"\n",
"assert version == (4 if len(iid) == 17 else 5)\n",
"\n",
"key = hwid + int((pid1 << 41 | pid2 << 58 | pid3 << 17 | pid4) & ((1 << 64) - 1)).to_bytes(8, byteorder='little')\n",
"# productkeyhash is not used for validation, it exists just to allow the activation server to reject keygenned pids\n",
"\n",
"# now the math\n",
"\n",
"p = 0x16A6B036D7F2A79\n",
"Fp = GF(p)\n",
"Fpx.<x> = Fp[]\n",
"E = HyperellipticCurve(x^5+0x1400606322B3B04*x^4+0x1400606322B3B04*x^3+0x44197B83892AD0*x^2+0x21840136C85381*x)\n",
"J = E.jacobian()\n",
"\n",
"# deserialize divisor\n",
"x1 = confirmationId // (p + 1)\n",
"x2 = confirmationId % (p + 1)\n",
"if x1 <= p:\n",
" # two or less points over GF(p)\n",
" point1 = E.lift_x(Fp(-x1)) if x1 != p else None\n",
" point2 = E.lift_x(Fp(-x2)) if x2 != p else None\n",
" if point1 is not None and point2 is not None:\n",
" # there are 4 variants of how lift_x() could select both y-s\n",
" # we don't distinguish D and -D, but this still leaves 2 variants\n",
" # the chosen one is encoded by order of x1 <=> x2\n",
" lastbit1 = point1[1].lift() & 1\n",
" lastbit2 = point2[1].lift() & 1\n",
" if x2 < x1:\n",
" if lastbit1 == lastbit2:\n",
" point2 = E(point2[0], -point2[1])\n",
" else:\n",
" if lastbit1 != lastbit2:\n",
" point2 = E(point2[0], -point2[1])\n",
" point1 = J(point1) if point1 is not None else J(0)\n",
" point2 = J(point2) if point2 is not None else J(0)\n",
" divisor = point1 + point2\n",
"else:\n",
" # a pair of conjugate points over GF(p^2)\n",
" f = (x+x2)*(x+x2)-43*x1*x1 # 43 is the minimal quadratic non-residue in Fp\n",
" Fp2 = GF(p^2)\n",
" point1 = E.lift_x(f.roots(Fp2)[0][0])\n",
" point2 = E(Fp2)(point1[0].conjugate(), point1[1].conjugate())\n",
" divisor = J(Fp2)(point1) + J(Fp2)(point2)\n",
" divisor = J(Fpx(divisor[0]), Fpx(divisor[1])) #return from Fp2 to Fp\n",
"\n",
"d2 = divisor * 0x10001\n",
"assert d2[0].degree() == 2\n",
"x1 = d2[0][1]/2\n",
"x2 = sqrt((x1*x1-d2[0][0])/43)\n",
"\n",
"encrypted = x1.lift() + (x2.lift() - 1) * p\n",
"encrypted = int(encrypted).to_bytes(14,byteorder='little')\n",
"\n",
"# end of the math\n",
"decrypted = decrypt(encrypted, key)\n",
"print(decrypted.hex())\n",
"# 0000000000000001000000000000 for the first confirmationId\n",
"# 0000000000000002000000000000 for the second confirmationId\n",
"# 0000000000000006000000000000 for the last confirmationId\n",
"assert decrypted[8:] == b'\\0' * 6\n",
"assert decrypted[7] <= 0x80\n",
"# all zeroes in decrypted[0:7] are okay for the checker\n",
"# more precisely: if decrypted[6] == 0, first 6 bytes can be anything\n",
"# otherwise, decrypted[0] = length, and decrypted[1:1+length] must match first length bytes of sha1(product key)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.0",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,267 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# From Longhorn 4074\n",
"# Any version that accepts TCP8W-T8PQJ-WWRRH-QH76C-99FBW will work\n",
"key_data = {\n",
" \"p\": 7181106593102322766813520532476531209871483588988471009176871145241389568314039093657656718839885029493125387894856821599452867350054864568294961595970889,\n",
" \"a\": 1,\n",
" \"b\": 0,\n",
" \"B\": [\n",
" 520282615406607935808830413235837609227529008118239433194891765554084261177667142590192616462797266047427714603514505726507565809100858610756034340614180,\n",
" 4557046395510954851157569206449480560848332315791566919607580280750304632075435589109908909351625686398512699199297926705742962219032991805095344264722444\n",
" ],\n",
" \"K\": [\n",
" 1748427561645745685508888890965804844329037567281415535239953290167653001827496844268667372126127464466687812723744919132659150838866693283679107969476861,\n",
" 6808711632346399211426562555523956018872055718394662707289722207520029794097689415773036615424757895159410496488301598927496012713658489637493990459415502\n",
" ],\n",
" \"order\": 4633201844252750473,\n",
" \"private_key\": 4329540238250287790\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Product Key Generator, run above cell first"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10928323 10928323 2003509697754295848 6615195716181683752\n",
"868186915 868186915 878552257861989116 5490238276289377020\n",
"446954708 446954708 776512975037445878 776512975037445878\n",
"353785506 353785506 1772257197849916146 6383943216277304050\n",
"1598465793 1598465793 385978941068063200 4997664959495451104\n",
"1118655069 1118655069 374356218385227934 374356218385227934\n",
"52 531faff484f609e 42ad525d d2\n",
"CH89R-TPQRK-GPJMW-7KTYQ-F8PJD\n"
]
}
],
"source": [
"import hashlib\n",
"\n",
"# p = order of field Fp\n",
"# Fp = Galois field of order p\n",
"# E = Elliptic curve y^2 = x^3 + ax + b over Fp\n",
"# B = generator on E\n",
"# K = inverse of public key\n",
"# order = order of E\n",
"# Ro = Ring Z/orderZ\n",
"\n",
"p = key_data[\"p\"]\n",
"Fp = GF(p)\n",
"E = EllipticCurve(Fp, [0, 0, 0, key_data[\"a\"], key_data[\"b\"]])\n",
"B = E.point(key_data[\"B\"])\n",
"K = E.point(key_data[\"K\"])\n",
"order = key_data[\"order\"]\n",
"Ro = Integers(order)\n",
"private_key = -key_data[\"private_key\"] % order\n",
"\n",
"# OS Family of product key\n",
"# x64 VLK - 652\n",
"# x64 Retail - 306\n",
"os_family = 105\n",
"\n",
"# Key alphabet\n",
"KCHARS = \"BCDFGHJKMPQRTVWXY2346789\"\n",
"\n",
"def int_to_bytes(n, l=None):\n",
" n = int(n)\n",
" \n",
" if not l:\n",
" l = (n.bit_length() + 7) // 8\n",
" \n",
" return n.to_bytes(l, byteorder=\"little\")\n",
"\n",
"def encode_pkey(n):\n",
" out = \"\"\n",
" \n",
" for i in range(25):\n",
" out = KCHARS[n % 24] + out\n",
" n //= 24\n",
" \n",
" out = \"-\".join([out[i:i+5] for i in range(0, len(out), 5)])\n",
" return out\n",
"\n",
"os_family <<= 1\n",
"\n",
"while True:\n",
" k = getrandbits(512)\n",
" prefix = getrandbits(32) & 0x3ff\n",
" \n",
" r = k * B\n",
" x, y = r.xy()\n",
"\n",
" mde = hashlib.sha1(b\"\\x79\" + int_to_bytes(os_family, 2) + int_to_bytes(x, 64) + int_to_bytes(y, 64)).digest()\n",
" e = int.from_bytes(mde[:4], byteorder=\"little\")\n",
" e &= 0x7fffffff\n",
" \n",
" mdh = hashlib.sha1(b\"\\x5d\" + int_to_bytes(os_family, 2) + int_to_bytes(e, 4) + int_to_bytes(prefix, 4)).digest()\n",
" h1 = int.from_bytes(mdh[:4], byteorder=\"little\")\n",
" h2 = int.from_bytes(mdh[4:8], byteorder=\"little\") >> 2\n",
" h2 &= 0x3fffffff\n",
" h = h2 << 32 | h1\n",
" b = Ro(-h * private_key)\n",
" \n",
" try:\n",
" s = Ro(b)\n",
" s = int((-b + sqrt(b^2 + 4 * Ro(k))) / 2)\n",
" except:\n",
" continue\n",
" \n",
" if s % 2 == 1:\n",
" s += order\n",
" \n",
" if (s * (s * B + h * K)) != (s * (s * B + int(b) * B)):\n",
" continue\n",
" \n",
" raw_pkey = prefix << 104 | s << 42 | e << 11 | os_family\n",
" \n",
" print((raw_pkey >> 11) & 0x7fffffff, e, (raw_pkey >> 42) & 0x3fffffffffffffff, s)\n",
" \n",
" # I could fix whatever bug made this necessary, but it works so I don't care\n",
" if ((raw_pkey >> 11) & 0x7fffffff) != e or ((raw_pkey >> 42) & 0x3fffffffffffffff) != s:\n",
" continue\n",
" \n",
" if (raw_pkey >> 32) & 0xffffffff < 0x40000000:\n",
" break\n",
"\n",
"print(hex(prefix)[2:], hex(s)[2:], hex(e)[2:], hex(os_family)[2:])\n",
"print(encode_pkey(raw_pkey))\n",
"pkey = encode_pkey(raw_pkey)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Product Key Verifier (must run above cell first)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Product Key (dashes optional): TCP8W-T8PQJ-WWRRH-QH76C-99FBW\n",
"TCP8W-T8PQJ-WWRRH-QH76C-99FBW\n",
"318 3e550ae1709773d8 6674d45a ce\n",
"f0ce4281d7695e3\n",
"110001100011111001010101000010101110000101110000100101110111001111011000110011001110100110101000101101000011001110\n",
"110001100011111001010101000010101110000101110000100101110111001111011000110011001110100110101000101101000011001110\n",
"1718932570 1718932570 True\n"
]
}
],
"source": [
"def decode_pkey(k):\n",
" k = k.replace(\"-\", \"\")\n",
" out = 0\n",
" \n",
" for c in k:\n",
" out *= 24\n",
" out += KCHARS.index(c)\n",
" \n",
" return out\n",
"\n",
"pkey = input(\"Product Key (dashes optional): \")\n",
"print(pkey)\n",
"raw_key = decode_pkey(pkey)\n",
"\n",
"osf = raw_key & 0x7ff\n",
"e = (raw_key >> 11) & 0x7fffffff\n",
"s = (raw_key >> 42) & 0x3fffffffffffffff\n",
"pf = (raw_key >> 104) & 0x3ff\n",
"\n",
"mdh = hashlib.sha1(b\"\\x5d\" + int_to_bytes(osf, 2) + int_to_bytes(e, 4) + int_to_bytes(pf, 4)).digest()\n",
"h1 = int.from_bytes(mdh[:4], byteorder=\"little\")\n",
"h2 = int.from_bytes(mdh[4:8], byteorder=\"little\") >> 2\n",
"h2 &= 0x3fffffff\n",
"h = h2 << 32 | h1\n",
"\n",
"print(hex(pf)[2:], hex(s)[2:], hex(e)[2:], hex(osf)[2:])\n",
"print(hex(h)[2:])\n",
"print(bin(raw_key)[2:])\n",
"print(bin(pf << 104 | s << 42 | e << 11 | osf)[2:])\n",
"\n",
"v = s * (s * B + h * K)\n",
"x, y = v.xy()\n",
"\n",
"mde = hashlib.sha1(b\"\\x79\" + int_to_bytes(osf, 2) + int_to_bytes(x, 64) + int_to_bytes(y, 64)).digest()\n",
"ep = int.from_bytes(mde[:4], byteorder=\"little\")\n",
"ep &= 0x7fffffff\n",
"\n",
"print(e, ep, e == ep)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"71"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"0x8e/2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.0",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

428
src/icon_LICENSE Normal file
View File

@ -0,0 +1,428 @@
Attribution-ShareAlike 4.0 International
=======================================================================
Creative Commons Corporation ("Creative Commons") is not a law firm and
does not provide legal services or legal advice. Distribution of
Creative Commons public licenses does not create a lawyer-client or
other relationship. Creative Commons makes its licenses and related
information available on an "as-is" basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their
terms and conditions, or any related information. Creative Commons
disclaims all liability for damages resulting from their use to the
fullest extent possible.
Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and
conditions that creators and other rights holders may use to share
original works of authorship and other material subject to copyright
and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not
exhaustive, and do not form part of our licenses.
Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors
Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor's permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees
=======================================================================
Creative Commons Attribution-ShareAlike 4.0 International Public
License
By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your
acceptance of these terms and conditions, and the Licensor grants You
such rights in consideration of benefits the Licensor receives from
making the Licensed Material available under these terms and
conditions.
Section 1 -- Definitions.
a. Adapted Material means material subject to Copyright and Similar
Rights that is derived from or based upon the Licensed Material
and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.
b. Adapter's License means the license You apply to Your Copyright
and Similar Rights in Your contributions to Adapted Material in
accordance with the terms and conditions of this Public License.
c. BY-SA Compatible License means a license listed at
creativecommons.org/compatiblelicenses, approved by Creative
Commons as essentially the equivalent of this Public License.
d. Copyright and Similar Rights means copyright and/or similar rights
closely related to copyright including, without limitation,
performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.
e. Effective Technological Measures means those measures that, in the
absence of proper authority, may not be circumvented under laws
fulfilling obligations under Article 11 of the WIPO Copyright
Treaty adopted on December 20, 1996, and/or similar international
agreements.
f. Exceptions and Limitations means fair use, fair dealing, and/or
any other exception or limitation to Copyright and Similar Rights
that applies to Your use of the Licensed Material.
g. License Elements means the license attributes listed in the name
of a Creative Commons Public License. The License Elements of this
Public License are Attribution and ShareAlike.
h. Licensed Material means the artistic or literary work, database,
or other material to which the Licensor applied this Public
License.
i. Licensed Rights means the rights granted to You subject to the
terms and conditions of this Public License, which are limited to
all Copyright and Similar Rights that apply to Your use of the
Licensed Material and that the Licensor has authority to license.
j. Licensor means the individual(s) or entity(ies) granting rights
under this Public License.
k. Share means to provide material to the public by any means or
process that requires permission under the Licensed Rights, such
as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material
available to the public including in ways that members of the
public may access the material from a place and at a time
individually chosen by them.
l. Sui Generis Database Rights means rights other than copyright
resulting from Directive 96/9/EC of the European Parliament and of
the Council of 11 March 1996 on the legal protection of databases,
as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.
m. You means the individual or entity exercising the Licensed Rights
under this Public License. Your has a corresponding meaning.
Section 2 -- Scope.
a. License grant.
1. Subject to the terms and conditions of this Public License,
the Licensor hereby grants You a worldwide, royalty-free,
non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:
a. reproduce and Share the Licensed Material, in whole or
in part; and
b. produce, reproduce, and Share Adapted Material.
2. Exceptions and Limitations. For the avoidance of doubt, where
Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with
its terms and conditions.
3. Term. The term of this Public License is specified in Section
6(a).
4. Media and formats; technical modifications allowed. The
Licensor authorizes You to exercise the Licensed Rights in
all media and formats whether now known or hereafter created,
and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or
authority to forbid You from making technical modifications
necessary to exercise the Licensed Rights, including
technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License,
simply making modifications authorized by this Section 2(a)
(4) never produces Adapted Material.
5. Downstream recipients.
a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.
b. Additional offer from the Licensor -- Adapted Material.
Every recipient of Adapted Material from You
automatically receives an offer from the Licensor to
exercise the Licensed Rights in the Adapted Material
under the conditions of the Adapter's License You apply.
c. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.
6. No endorsement. Nothing in this Public License constitutes or
may be construed as permission to assert or imply that You
are, or that Your use of the Licensed Material is, connected
with, or sponsored, endorsed, or granted official status by,
the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i).
b. Other rights.
1. Moral rights, such as the right of integrity, are not
licensed under this Public License, nor are publicity,
privacy, and/or other similar personality rights; however, to
the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited
extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.
2. Patent and trademark rights are not licensed under this
Public License.
3. To the extent possible, the Licensor waives any right to
collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.
Section 3 -- License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the
following conditions.
a. Attribution.
1. If You Share the Licensed Material (including in modified
form), You must:
a. retain the following if it is supplied by the Licensor
with the Licensed Material:
i. identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated);
ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of
warranties;
v. a URI or hyperlink to the Licensed Material to the
extent reasonably practicable;
b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and
c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.
2. You may satisfy the conditions in Section 3(a)(1) in any
reasonable manner based on the medium, means, and context in
which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or
hyperlink to a resource that includes the required
information.
3. If requested by the Licensor, You must remove any of the
information required by Section 3(a)(1)(A) to the extent
reasonably practicable.
b. ShareAlike.
In addition to the conditions in Section 3(a), if You Share
Adapted Material You produce, the following conditions also apply.
1. The Adapter's License You apply must be a Creative Commons
license with the same License Elements, this version or
later, or a BY-SA Compatible License.
2. You must include the text of, or the URI or hyperlink to, the
Adapter's License You apply. You may satisfy this condition
in any reasonable manner based on the medium, means, and
context in which You Share Adapted Material.
3. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological
Measures to, Adapted Material that restrict exercise of the
rights granted under the Adapter's License You apply.
Section 4 -- Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
to extract, reuse, reproduce, and Share all or a substantial
portion of the contents of the database;
b. if You include all or a substantial portion of the database
contents in a database in which You have Sui Generis Database
Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material,
including for purposes of Section 3(b); and
c. You must comply with the conditions in Section 3(a) if You Share
all or a substantial portion of the contents of the database.
For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
c. The disclaimer of warranties and limitation of liability provided
above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and
waiver of all liability.
Section 6 -- Term and Termination.
a. This Public License applies for the term of the Copyright and
Similar Rights licensed here. However, if You fail to comply with
this Public License, then Your rights under this Public License
terminate automatically.
b. Where Your right to use the Licensed Material has terminated under
Section 6(a), it reinstates:
1. automatically as of the date the violation is cured, provided
it is cured within 30 days of Your discovery of the
violation; or
2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations
of this Public License.
c. For the avoidance of doubt, the Licensor may also offer the
Licensed Material under separate terms or conditions or stop
distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
License.
Section 7 -- Other Terms and Conditions.
a. The Licensor shall not be bound by any additional or different
terms or conditions communicated by You unless expressly agreed.
b. Any arrangements, understandings, or agreements regarding the
Licensed Material not stated herein are separate from and
independent of the terms and conditions of this Public License.
Section 8 -- Interpretation.
a. For the avoidance of doubt, this Public License does not, and
shall not be interpreted to, reduce, limit, restrict, or impose
conditions on any use of the Licensed Material that could lawfully
be made without permission under this Public License.
b. To the extent possible, if any provision of this Public License is
deemed unenforceable, it shall be automatically reformed to the
minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License
without affecting the enforceability of the remaining terms and
conditions.
c. No term or condition of this Public License will be waived and no
failure to comply consented to unless expressly agreed to by the
Licensor.
d. Nothing in this Public License constitutes or may be interpreted
as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
=======================================================================
Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons
public licenses is dedicated to the public domain under the CC0 Public
Domain Dedication. Except for the limited purpose of indicating that
material is shared under a Creative Commons public license or as
otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark "Creative Commons" or any other trademark or logo
of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements,
understandings, or agreements concerning use of licensed material. For
the avoidance of doubt, this paragraph does not form part of the
public licenses.
Creative Commons may be contacted at creativecommons.org.

BIN
src/macos/icon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.4 KiB

After

Width:  |  Height:  |  Size: 138 KiB