WindowsXPKg/src/server.cpp

367 lines
12 KiB
C++
Raw Normal View History

//
// Created by Andrew on 01/06/2023.
//
2023-06-01 19:24:07 +03:00
#include "header.h"
char pCharset[] = "BCDFGHJKMPQRTVWXY2346789";
2023-06-05 12:19:47 +03:00
const std::string filename = "keys.json";
using json = nlohmann::json;
/* Unpacks the Windows XP-like Product Key. */
2023-06-04 23:39:02 +03:00
void unpackServer(
QWORD (&pRaw)[2],
2023-06-04 23:39:02 +03:00
DWORD &pChannelID,
DWORD &pHash,
2023-06-05 01:24:20 +03:00
QWORD &pSignature,
2023-06-04 23:39:02 +03:00
DWORD &pAuthInfo
) {
2023-06-02 17:13:57 +03:00
// We're assuming that the quantity of information within the product key is at most 114 bits.
// log2(24^25) = 114.
// Channel ID = Bits [0..10] -> 11 bits
pChannelID = FIRSTNBITS(pRaw[0], 11);
2023-06-02 17:13:57 +03:00
// Hash = Bits [11..41] -> 31 bits
pHash = NEXTSNBITS(pRaw[0], 31, 11);
2023-06-02 17:13:57 +03:00
// Signature = Bits [42..103] -> 62 bits
// The quad-word signature overlaps AuthInfo in bits 104 and 105,
// hence Microsoft employs a secret technique called: Signature = HIDWORD(Signature) >> 2 | LODWORD(Signature)
pSignature = NEXTSNBITS(pRaw[1], 30, 10) << 32 | FIRSTNBITS(pRaw[1], 10) << 22 | NEXTSNBITS(pRaw[0], 22, 42);
2023-06-02 17:13:57 +03:00
// AuthInfo = Bits [104..113] -> 10 bits
pAuthInfo = NEXTSNBITS(pRaw[1], 10, 40);
}
2023-06-04 23:39:02 +03:00
void packServer(
QWORD (&pRaw)[2],
2023-06-04 23:39:02 +03:00
DWORD pChannelID,
DWORD pHash,
2023-06-05 01:24:20 +03:00
QWORD &pSignature,
2023-06-04 23:39:02 +03:00
DWORD pAuthInfo
) {
// AuthInfo [113..104] <- Signature [103..42] <- Hash [41..11] <- Channel ID [10..1] <- Upgrade [0]
pRaw[0] = FIRSTNBITS(pSignature, 22) << 42 | (QWORD)pHash << 11 | pChannelID;
pRaw[1] = FIRSTNBITS(pAuthInfo, 10) << 40 | NEXTSNBITS(pSignature, 40, 22);
}
2023-06-05 12:13:15 +03:00
bool verifyServerKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
EC_POINT *publicKey,
char (&cdKey)[25]
) {
2023-06-02 17:13:57 +03:00
BN_CTX *context = BN_CTX_new();
2023-06-02 17:13:57 +03:00
// Convert Base24 CD-key to bytecode.
2023-06-05 01:24:20 +03:00
DWORD pChannelID, pHash, pAuthInfo;
QWORD bKey[2]{};
2023-06-01 16:09:22 +03:00
2023-06-05 01:24:20 +03:00
QWORD pSignature = 0;
2023-06-04 22:26:58 +03:00
unbase24((BYTE *)bKey, cdKey);
2023-06-01 16:09:22 +03:00
2023-06-02 17:13:57 +03:00
// Extract segments from the bytecode and reverse the signature.
2023-06-05 00:52:10 +03:00
unpackServer(bKey, pChannelID, pHash, pSignature, pAuthInfo);
std::cout << "Validation results:\n Serial: 0x" << std::hex << std::setw(8) << std::setfill('0') << pChannelID << std::endl
<< " Hash: 0x" << std::hex << std::setw(8) << std::setfill('0') << pHash << std::endl
<< " Signature: 0x" << std::hex << std::setw(8) << std::setfill('0') << pSignature << std::endl
<< " AuthInfo: 0x" << std::hex << std::setw(8) << std::setfill('0') << pAuthInfo << std::endl
<< std::endl;
2023-06-05 00:52:10 +03:00
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_2003]{},
xBin[FIELD_BYTES_2003]{},
yBin[FIELD_BYTES_2003]{};
2023-06-02 17:13:57 +03:00
// H = SHA-1(5D || OS Family || Hash || Prefix || 00 00)
2023-06-05 00:52:10 +03:00
msgBuffer[0x00] = 0x5D;
msgBuffer[0x01] = (pChannelID & 0x00FF);
msgBuffer[0x02] = (pChannelID & 0xFF00) >> 8;
msgBuffer[0x03] = (pHash & 0x000000FF);
msgBuffer[0x04] = (pHash & 0x0000FF00) >> 8;
msgBuffer[0x05] = (pHash & 0x00FF0000) >> 16;
msgBuffer[0x06] = (pHash & 0xFF000000) >> 24;
msgBuffer[0x07] = (pAuthInfo & 0x00FF);
msgBuffer[0x08] = (pAuthInfo & 0xFF00) >> 8;
msgBuffer[0x09] = 0x00;
msgBuffer[0x0A] = 0x00;
SHA1(msgBuffer, 11, msgDigest);
QWORD newHash = NEXTSNBITS(BYDWORD(&msgDigest[4]), 30, 2) << 32 | BYDWORD(msgDigest);
2023-06-02 17:13:57 +03:00
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
2023-06-05 01:24:20 +03:00
BIGNUM *s = BN_lebin2bn((BYTE *)&pSignature, sizeof(pSignature), nullptr);
BIGNUM *e = BN_lebin2bn((BYTE *)&newHash, sizeof(newHash), nullptr);
2023-06-02 17:13:57 +03:00
EC_POINT *u = EC_POINT_new(eCurve);
EC_POINT *v = EC_POINT_new(eCurve);
2023-06-05 12:13:15 +03:00
// EC_POINT_mul calculates r = basePoint * n + q * m.
// v = s * (s * basePoint + e * publicKey)
2023-06-02 17:13:57 +03:00
2023-06-05 12:13:15 +03:00
// u = basePoint * s
EC_POINT_mul(eCurve, u, nullptr, basePoint, s, context);
2023-06-02 17:13:57 +03:00
// v = publicKey * e
EC_POINT_mul(eCurve, v, nullptr, publicKey, e, context);
// v += u
EC_POINT_add(eCurve, v, u, v, context);
// v *= s
EC_POINT_mul(eCurve, v, nullptr, v, s, context);
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be nullptr, to the corresponding coordinates of p.
// x = v.x; y = v.y;
2023-06-05 00:27:50 +03:00
EC_POINT_get_affine_coordinates(eCurve, v, x, y, context);
2023-06-02 17:13:57 +03:00
2023-06-05 00:27:50 +03:00
// Convert resulting point coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES_2003);
BN_bn2lebin(y, yBin, FIELD_BYTES_2003);
2023-06-02 17:13:57 +03:00
2023-06-05 00:27:50 +03:00
// Assemble the SHA message.
2023-06-05 00:52:10 +03:00
msgBuffer[0x00] = 0x79;
msgBuffer[0x01] = (pChannelID & 0x00FF);
msgBuffer[0x02] = (pChannelID & 0xFF00) >> 8;
2023-06-02 17:13:57 +03:00
2023-06-05 00:27:50 +03:00
memcpy((void *)&msgBuffer[3], (void *)xBin, FIELD_BYTES_2003);
memcpy((void *)&msgBuffer[3 + FIELD_BYTES_2003], (void *)yBin, FIELD_BYTES_2003);
2023-06-02 17:13:57 +03:00
2023-06-05 00:27:50 +03:00
// Retrieve the message digest.
SHA1(msgBuffer, SHA_MSG_LENGTH_2003, msgDigest);
2023-06-02 17:13:57 +03:00
2023-06-05 00:52:10 +03:00
// Translate the byte digest into a 32-bit integer - this is our computed pHash.
// Truncate the pHash to 28 bits.
2023-06-02 17:13:57 +03:00
// Hash = First31(SHA-1(79 || OS Family || v.x || v.y))
2023-06-05 00:27:50 +03:00
DWORD compHash = BYDWORD(msgDigest) & BITMASK(31);
2023-06-02 17:13:57 +03:00
BN_free(s);
BN_free(e);
BN_free(x);
BN_free(y);
BN_CTX_free(context);
EC_POINT_free(v);
EC_POINT_free(u);
2023-06-05 00:52:10 +03:00
// If we managed to generate a key with the same pHash, the key is correct.
return compHash == pHash;
}
2023-06-05 12:13:15 +03:00
void generateServerKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
BIGNUM *genOrder,
BIGNUM *privateKey,
DWORD pChannelID,
DWORD pAuthInfo,
char (&pKey)[25]
) {
BN_CTX *numContext = BN_CTX_new();
BIGNUM *c = BN_new();
BIGNUM *s = BN_new();
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
BIGNUM *e = BN_new();
QWORD pRaw[2]{};
BOOL wrong = false;
QWORD pSignature = 0;
2023-06-02 17:13:57 +03:00
do {
EC_POINT *r = EC_POINT_new(eCurve);
wrong = false;
QWORD sig = 0;
2023-06-02 17:13:57 +03:00
// Generate a random number c consisting of 512 bits without any constraints.
BN_rand(c, FIELD_BITS_2003, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
2023-06-05 12:13:15 +03:00
// r = basePoint * c
EC_POINT_mul(eCurve, r, nullptr, basePoint, c, numContext);
2023-06-02 17:13:57 +03:00
// x = r.x; y = r.y;
EC_POINT_get_affine_coordinates(eCurve, r, x, y, numContext);
2023-06-02 17:13:57 +03:00
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_2003]{},
xBin[FIELD_BYTES_2003]{},
yBin[FIELD_BYTES_2003]{};
2023-06-02 17:13:57 +03:00
// Convert resulting point coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES_2003);
BN_bn2lebin(y, yBin, FIELD_BYTES_2003);
2023-06-02 17:13:57 +03:00
// Assemble the SHA message.
// Hash = SHA-1(79 || OS Family || r.x || r.y)
msgBuffer[0x00] = 0x79;
msgBuffer[0x01] = (pChannelID & 0x00FF);
msgBuffer[0x02] = (pChannelID & 0xFF00) >> 8;
2023-06-02 17:13:57 +03:00
memcpy((void *)&msgBuffer[3], (void *)xBin, FIELD_BYTES_2003);
memcpy((void *)&msgBuffer[3 + FIELD_BYTES_2003], (void *)yBin, FIELD_BYTES_2003);
2023-06-02 17:13:57 +03:00
// Retrieve the message digest.
SHA1(msgBuffer, SHA_MSG_LENGTH_2003, msgDigest);
2023-06-02 17:13:57 +03:00
DWORD hash = BYDWORD(msgDigest) & BITMASK(31);
2023-06-02 17:13:57 +03:00
// H = SHA-1(5D || OS Family || Hash || Prefix || 00 00)
msgBuffer[0x00] = 0x5D;
msgBuffer[0x01] = (pChannelID & 0x00FF);
msgBuffer[0x02] = (pChannelID & 0xFF00) >> 8;
msgBuffer[0x03] = (hash & 0x000000FF);
msgBuffer[0x04] = (hash & 0x0000FF00) >> 8;
msgBuffer[0x05] = (hash & 0x00FF0000) >> 16;
msgBuffer[0x06] = (hash & 0xFF000000) >> 24;
msgBuffer[0x07] = (pAuthInfo & 0x00FF);
msgBuffer[0x08] = (pAuthInfo & 0xFF00) >> 8;
msgBuffer[0x09] = 0x00;
msgBuffer[0x0A] = 0x00;
SHA1(msgBuffer, 11, msgDigest);
2023-06-02 17:13:57 +03:00
// First word.
sig = NEXTSNBITS(BYDWORD(&msgDigest[4]), 30, 2) << 32 | BYDWORD(msgDigest);
2023-06-02 17:13:57 +03:00
BN_lebin2bn((BYTE *)&sig, sizeof(sig), e);
2023-06-02 17:13:57 +03:00
/*
* Signature * (Signature * G + H * K) = rG (mod p)
* K = kG
*
* Signature * (Signature * G + H * k * G) = rG (mod p)
* Signature^2 * G + Signature * HkG = rG (mod p)
* G(Signature^2 + Signature * HkG) = G (mod p) * r
2023-06-05 12:13:15 +03:00
* G^(-1)(G (mod p)) = (mod n), n = genOrder of G
2023-06-02 17:13:57 +03:00
*
* Signature^2 + Hk * Signature = r (mod n)
* Signature = -(e +- sqrt(D)) / 2a Signature = (-Hk +- sqrt((Hk)^2 + 4r)) / 2
2023-06-02 17:13:57 +03:00
*
* S = (-Hk +- sqrt((Hk)^2 + 4r)) (mod n) / 2
*
* S = s
* H = e
2023-06-02 17:13:57 +03:00
* k = privateKey
2023-06-05 12:13:15 +03:00
* n = genOrder
2023-06-02 17:13:57 +03:00
* r = c
*
* s = ( ( -e * privateKey +- sqrt( (e * privateKey)^2 + 4c ) ) / 2 ) % genOrder
2023-06-02 17:13:57 +03:00
*/
// e = (e * privateKey) % genOrder
BN_mod_mul(e, e, privateKey, genOrder, numContext);
2023-06-02 17:13:57 +03:00
// s = e
BN_copy(s, e);
2023-06-02 17:13:57 +03:00
2023-06-05 12:13:15 +03:00
// s = (s % genOrder)^2
BN_mod_sqr(s, s, genOrder, numContext);
2023-06-02 17:13:57 +03:00
// c <<= 2 (c = 4c)
BN_lshift(c, c, 2);
// s = s + c
BN_add(s, s, c);
2023-06-05 12:13:15 +03:00
// s^2 = s % genOrder (genOrder must be prime)
if (BN_mod_sqrt(s, s, genOrder, numContext) == nullptr) wrong = true;
2023-06-02 17:13:57 +03:00
// s = s - e
BN_mod_sub(s, s, e, genOrder, numContext);
2023-06-02 17:13:57 +03:00
2023-06-05 12:13:15 +03:00
// if s is odd, s = s + genOrder
2023-06-02 17:13:57 +03:00
if (BN_is_odd(s)) {
2023-06-05 12:13:15 +03:00
BN_add(s, s, genOrder);
2023-06-02 17:13:57 +03:00
}
// s >>= 1 (s = s / 2)
BN_rshift1(s, s);
// Convert s from BigNum back to bytecode and reverse the endianness.
BN_bn2lebinpad(s, (BYTE *)&pSignature, BN_num_bytes(s));
2023-06-02 17:13:57 +03:00
// Pack product key.
packServer(pRaw, pChannelID, hash, pSignature, pAuthInfo);
std::cout << "Generation results:\n Serial: 0x" << std::hex << std::setw(8) << std::setfill('0') << pChannelID << std::endl
<< " Hash: 0x" << std::hex << std::setw(8) << std::setfill('0') << hash << std::endl
<< " Signature: 0x" << std::hex << std::setw(8) << std::setfill('0') << pSignature << std::endl
<< " AuthInfo: 0x" << std::hex << std::setw(8) << std::setfill('0') << pAuthInfo << std::endl
<< std::endl;
EC_POINT_free(r);
} while (HIBYTES(pSignature, sizeof(DWORD)) >= 0x40000000);
2023-06-02 17:13:57 +03:00
base24(pKey, (BYTE *)pRaw);
2023-06-02 17:13:57 +03:00
std::cout << "attempt pass " << pKey << " key is " << (wrong ? "INVALID" : "VALID") << std::endl;
BN_free(c);
BN_free(s);
BN_free(x);
BN_free(y);
BN_free(e);
BN_CTX_free(numContext);
}
2023-06-01 18:56:26 +03:00
int main()
{
2023-06-05 12:19:47 +03:00
const char* BINKID = "5A";
// We cannot produce a valid key without knowing the private key k. The reason for this is that
// we need the result of the function K(x; y) = kG(x; y).
BIGNUM *privateKey = BN_new();
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
BIGNUM *genOrder = BN_new();
std::ifstream f(filename);
json keys = json::parse(f);
EC_POINT *genPoint, *pubPoint;
EC_GROUP *eCurve = initializeEllipticCurve(
keys["BINK"][BINKID]["p"].get<std::string>(),
keys["BINK"][BINKID]["a"].get<std::string>(),
keys["BINK"][BINKID]["b"].get<std::string>(),
keys["BINK"][BINKID]["g"]["x"].get<std::string>(),
keys["BINK"][BINKID]["g"]["y"].get<std::string>(),
keys["BINK"][BINKID]["pub"]["x"].get<std::string>(),
keys["BINK"][BINKID]["pub"]["y"].get<std::string>(),
genPoint,
pubPoint
);
BN_dec2bn(&genOrder, keys["BINK"][BINKID]["n"].get<std::string>().c_str());
BN_dec2bn(&privateKey, keys["BINK"][BINKID]["priv"].get<std::string>().c_str());
char pKey[25]{};
2023-06-05 12:13:15 +03:00
DWORD pChannelID = 640 << 1, pAuthInfo;
RAND_bytes((BYTE *)&pAuthInfo, 4);
pAuthInfo &= 0x3ff;
printf("AuthInfo: %d\n", pAuthInfo);
do {
2023-06-05 12:19:47 +03:00
generateServerKey(eCurve, genPoint, genOrder, privateKey, pChannelID, pAuthInfo, pKey);
} while (!verifyServerKey(eCurve, genPoint, pubPoint, pKey));
2023-06-05 12:13:15 +03:00
print_product_key(pKey);
std::cout << std::endl << std::endl;
return 0;
}